JP2004218900A - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator Download PDF

Info

Publication number
JP2004218900A
JP2004218900A JP2003005647A JP2003005647A JP2004218900A JP 2004218900 A JP2004218900 A JP 2004218900A JP 2003005647 A JP2003005647 A JP 2003005647A JP 2003005647 A JP2003005647 A JP 2003005647A JP 2004218900 A JP2004218900 A JP 2004218900A
Authority
JP
Japan
Prior art keywords
pulse tube
thin tubes
tube
bundle
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003005647A
Other languages
Japanese (ja)
Inventor
Shin Matsumoto
伸 松本
Yukio Yasukawa
保川  幸雄
Keiji Oshima
恵司 大嶋
Kentaro Toyama
健太郎 外山
Yuji Tsukahara
祐二 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003005647A priority Critical patent/JP2004218900A/en
Publication of JP2004218900A publication Critical patent/JP2004218900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase cooling performance by increasing a surface area while suppressing a volume at a low temperature end in a return type pulse tube refrigerator. <P>SOLUTION: In the pulse tube refrigerator in which a cold accumulator 2 is connected to a pulse tube 3 through a connection tube bent in U-shape, a plurality of thin tubes 12 having a same inner diameter and a length are bound and the bound thin tubes are bent to form the connection tube 5. By binding the plurality of thin tubes 12, the large area can be secured while reducing the volume of the connection tube 5. Also, the flow resistances of the thin tubes 12 are made equal to each other by making equal the inner diameters and lengths of the plurality of thin tubes 12 to each other so that the flow velocity distribution of working gas can be uniformized in a pulse tube cross section without using a straightening body. In this case, both end faces of the bundle of the thin tubes 12 after being bent in U-shape are kept at a right angle relative to the axis thereof by twisting the bundle of the thin tubes 12 so that the connection of the cold accumulator 2 to the pulse tube 3 can be easily performed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、パルスチューブ冷凍機に関し、詳しくはリターン型パルスチューブ冷凍機の接続管構造に関する。
【従来の技術】
【0002】
図4は従来のパルスチューブ冷凍機の一般構成を示す概略図である。図4において、パルスチューブ冷凍機は、圧縮機1、蓄冷器2、パルス管3、位相制御制御機4を備え、蓄冷器2とパルス管3とはU字形に屈曲された接続管5により接続されている。位相制御部4はイナータンスチューブ6とバッファタンク7とからなっている。このパルスチューブ冷凍機の系内には作動ガス(冷媒ガス)として、例えばヘリウムが封入されている。
【0003】
このような構成のパルスチューブ冷凍機の動作原理はよく知られている通りであり、圧縮機1の運転でピストン1aが往復運動し、作動ガスが圧縮、膨張を繰り返すと、この作動ガスは圧縮機1から蓄冷器2、接続管5、パルス管3を通り位相制御部6に達する一連の系の中を往復動流として流れる。その際、作動ガスはイナータンスチューブ6とバッファタンク7とからなる位相制御部の中をほぼ正弦波的な圧力振幅を伴って流れ、作動ガスの圧力変化と流量変化との間に位相差が発生する。
【0004】
これを電気回路に例えると、イナータンスチューブ6はインダクタンス、レジスタンス、キャパシタンス成分、またバッファタンク7はキャパシタンス成分に相当し、作動ガスの圧力に対する流量の位相差を−90°から+90°まで変化させることができる。その結果、冷凍機の運転時にはパルス管3内で圧力と流量との間に位相差が生じ、この圧力と流量によるPV仕事により、接続管5を含むパルス管上端部の低温端8に寒冷が発生する。この寒冷仕事は低温PV仕事と呼ばれている。
【0005】
ここで、圧縮機1の圧縮工程で送り出された作動ガスは、蓄冷器2で低温となってパルス管3に流入し、その内部で断熱膨張により吸熱して位相制御部4に流出する。一方、作動ガスが位相制御部4からパルス管3を通過して低温端8に還流する工程では、ほぼ一定体積で移動するため熱の発生又は吸収は行なわない。その場合に、作動ガスがPV仕事を効率よく行なうためには、作動ガスがパルス管内の少なくとも低温端側で、ある固定面となって動くようなピストン(いわゆるガスピストン)9として作用することが必要である。
【0006】
そこで、作動ガスをガスピストン9として作用させるために、従来は図4に示すように、パルス管3の低温端8に整流体10を設け、作動ガスがパルス管3に流入するときの速度分布を一様にするように構成している。また、PV仕事に重要な圧力振幅を大きくするためには、可能な限り低温端8での空間(容積)を抑制して、低温端内部ではなくパルス管3の内部で作動ガスを膨張させることが必要である。そのため、接続管5を用いて低温端8の容積の低減を図っていた。更に、低温端8で作動ガスに十分な熱交換を行なわせるためには、低温端内部での表面積を十分に確保する必要がある。そこで、図5に示すように、接続管5に代えて内部にガス流路を設けた低温端ブロック11を用い、表面積を増大させる構造を採ることもある。
【0007】
一方、特許文献1には、パルス管内の作動ガスの流速分布を均一にして、冷凍性能の向上を図ったパルス管冷凍機が記載されている。これは、パルス管の低温端に複数の貫通孔を設けた整流板を取り付けるとともに、流速が遅い作動ガスが通過する整流板の貫通孔の流路断面積を流速が速い作動ガスが通過する整流板の貫通孔よりも小さくしたものである。
【0008】
【特許文献1】
特開2002−13832号公報
【0009】
【発明が解決しようとする課題】
上記したように、パルスチューブ冷凍機の低温端では、▲1▼容積を小さく、▲2▼表面積を大きく、かつ▲3▼流れを一様にする、という条件が同時に要求される。しかし、作動ガスの流れが180度折り返すリターン型冷凍機において、例えば上記▲2▼,▲3▼の条件を満足させようとすると、▲1▼の条件が満足されずに冷却性能が低下したり、構造や内部形状が複雑になり製作コストが増大したりするという問題があった。また、▲3▼の条件を満足させようとする特許文献1の整流板は、やはり部品コストや小型化の点で問題がある。
【0010】
そこで、この発明の課題は、リターン型パルスチューブ冷凍機において、簡素な構造で上記条件▲1▼〜▲3▼を同時に満足させ、効率よくPV仕事を取り出せるようにすることにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、この発明は、圧縮機、蓄冷器、パルス管及び位相制御部を備え、前記蓄冷器とパルス管とはU字形に屈曲(以下、「U曲げ」という)された接続管により接続されたパルスチューブ冷凍機において、内径及び長さが同一の複数本の細管を束ね、この束を捩り及び曲げ加工して前記接続管を構成するものとする(請求項1)。
【0012】
請求項1の発明によれば、複数の細管を束ねることにより、容積の増加を抑えつつ、大きな表面積を確保することが可能になる。また、複数の細管の内径及び長さを同一とすることで各細管の流動抵抗を揃え、整流体を用いなくてもパルス管断面での作動ガスの流速分布を均一にすることができる。その場合、細管の束を捩ることにより、U曲げ後の細管の束の両端面を軸心に直角に保つことが可能になる。
【0013】
請求項1において、前記細管の束の捩り角は「180度+360度×N(Nは0を含む整数)」とするのがよい(請求項2)。これにより、U曲げした細管の束の両端面を同一平面内に揃えることができ、接続管と蓄冷器及びパルス管との接続が容易になる。
【0014】
請求項1又は請求項2において、前記蓄冷器及びパルス管の低温側の端部と前記細管の束とを伝熱金属で一体に包んで低温ブロックを形成するとよい(請求項3)。これにより、被冷却物の取り付けが容易な形状を任意に形成することが可能になる。その場合、前記低温ブロックは金属粉末射出燒結法を用いれば容易に形成することができる(請求項4)。
【0015】
【発明の実施の形態】
図1はこの発明の実施の形態を示し、図1(A)はパルスチューブ冷凍機の接続管部分の平面図、図1(B)はその側面図である。図1において、蓄冷器2とパルス管3とを接続するU字形の接続管5は、内径及び長さが同一の複数の銅の細管12が円柱状に束ねられて構成されている。図示の場合、細管12は21本用いられ、図1(A)に示すように、中心から半径方向に向って1本、8本、12本の細管12が同心円状に均一に配列されている。この細管12の束は180度捩られた上でU字形に屈曲され、両端が蓄冷器2及びパルス管3にそれぞれろう付けにより接続されている。
【0016】
ここで、接続管5は、上述した通り180度の捩り角で捩られることにより、U曲げ後における細管12の束の両端面が軸心に直角に保たれ、かつ同一平面内に揃えられている。図1に記載したA,B,C,Dの各符号は、接続管5の例えば最外層の4本の細管12の蓄冷器2及びパルス管3との接続点の対応関係を示している。図示の通り、蓄冷器2及びパルス管3上の各接続点A,B,C,Dは、接続管5の捩り方向に反転しながら両端が同一の位置関係で、つまり内側は内側同士、外側は外側同士が繋がるように分布し、同一長さの各細管12の接続が適正に達成されている。これは他の細管12の接続関係についても同じである。このような接続関係は、接続管5の捩り角が「180度+360度×N(Nは0を含む整数で図示の場合はN=0)」とすることにより可能となる。
【0017】
同一長さの複数の細管を蓄冷器2とパルス管3とに跨らせて接続するには、U曲げした細管を単に平行に並べて配管することも可能である。しかし、その場合は細管が多数になると細管同士が互いに干渉し、結果として配置が錯綜するため接続作業が複雑になるとともに接続信頼性が低下する。それに対して、図示実施の形態のように細管12を束ね、この束を捩り及び曲げ加工することにより、多数の細管12を緊密にかつ規則的に順序良く並べることができ、接続管5がコンパクトになるとともに接続作業も簡単になる。
【0018】
次に、接続管5を複数の細管12で構成することによる冷却特性の向上について下記に説明する。まず、接続管5の容積Vと内側の表面積Sとの関係を考えると、容積Vと表面積Sとはそれぞれ以下の式で表される。
V=π/4・d・L・n
S=πd・L・n
ここで、d、L及びnは、それぞれ細管12の内径、長さ及び本数である。
【0019】
Lを一定とした場合、S/Vは次のように変形される。
S/V=(πd・L・n)/(π/4・d・L・n)=4/d
【0020】
S/Vは一定容積に対して表面積がどれだけあるかを表す指標であるが、L、nに関係なくdのみで決まりdに反比例することから、dが小さいほどこの比を大きく取ることができる。言い換えれば、同じ表面積Sを必要とした場合には、細管12の内径dを小さくすることで容積Vを小さくすることができる。
【0021】
また、熱伝達コンダクタンスCは以下の式で定義される。
C=h・S
=Nu・λ/d
ここで、h、Nu及びλは、それぞれ平均熱伝達率、ヌセルト数及び作動ガスの熱伝達率である。このCは作動ガスと接続管5との間で可能な熱の授受の値を示す。従って、Cの値が大きいほど低温端としての性能がよいことを意味している。なお、接続管5の圧力損失については、蓄冷器2と比較して無視できるほど小さいため、特に考慮する必要はない。
【0022】
図2は、細管12の内径d(mm)と本数nを変えたときの上記各特性値V、S、S/V及びCの変化を例示したものである。パルス管3の内径は10mm、細管12の長さLは24mmとした。図2から分るように、細管12の内径dを小さくして本数nを増加させるにつれて、容積Vは減少し、表面積Sが増大して熱交換能力が増大する。
【0023】
図3は、この発明の異なる実施の形態を示すものである。図3においては、蓄冷器2及びパルス管3の低温側の端部と細管12の束とが伝熱金属で一体に包まれ、低温ブロック13が形成されている。その他の構成は図1と同じである。低温ブロック13の形成により低温端8の形状の自由度が増し、図示しない被冷却物の取り付けが容易になる。低温ブロック13の形成には、金属粉末射出燒結法(MIM)が好適である。なお、上記各実施の形態では、複数の細管12を同心円状に接続した例を示したが、接続点の配列は均一であれば必ずしも図示例に限定されるものではなく、例えば格子状に配列してもよい。
【0024】
図示実施の形態のパルスチューブ冷凍機の利点を次にまとめる。
(1) 接続管5は多数の細管12の束からなるので、低温端8での容積は小さく表面積は大きくという条件が満たされ、優れた熱交換能力が得られる。
(2) 流体抵抗の等しい多数の細管12がパルス管の断面に均一に分布するように接続されているので、パルス管3の断面で一様な流速分布が形成され整流体を省くことが可能である。
(3) 細管12の束は180度捩られてからU曲げされているので、同一長さの細管12が緊密に配列されるとともに、軸心に直交する接続管5の両端面には、各細管12の両端が蓄冷器側とパルス管側とで同一位置関係を保って同一平面上に順序良く並ぶ。従って、細管12の接続作業が簡単である。
(4) 低温端8に金属粉末射出燒結法で低温ブロック13を形成すれば、パルスチューブ冷凍機への被冷却物の取り付けが容易になる。
【0025】
【発明の効果】
以上の通り、この発明によれば、蓄冷器とパルス管との間を接続するU字形の接続管を複数の細管の束に捩り及び曲げ加工を加えて構成することにより、接続管の容積を抑えながら表面積を増やし、かつパルス管断面の速度分布を一様にして、冷却性能の向上を図ることができるとともに、整流体の省略を可能にして構造を簡単にすることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示し、(A)は蓄冷器とパルス管とを接続する接続管部分の平面図、(B)はその側面図である。
【図2】図1のパルスチューブ冷凍機の接続管における細管の内径と本数を変えたときの特性値の変化を示す線図である。
【図3】この発明の異なる実施の形態を示し、(A)は蓄冷器とパルス管とを接続する接続管部分の平面図、(B)はそれぞれの側面図である。
【図4】従来例を示すパルスチューブ冷凍機の構成図である。
【図5】異なる従来例を示すパルスチューブ冷凍機の一部構成図である。
【符号の説明】
1 圧縮機
2 蓄冷器
3 パルス管
4 位相制御部
5 接続管
8 低温端
12 細管
13 低温ブロック
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulse tube refrigerator, and more particularly, to a connection pipe structure of a return type pulse tube refrigerator.
[Prior art]
[0002]
FIG. 4 is a schematic diagram showing a general configuration of a conventional pulse tube refrigerator. In FIG. 4, the pulse tube refrigerator includes a compressor 1, a regenerator 2, a pulse tube 3, and a phase control controller 4, and the regenerator 2 and the pulse tube 3 are connected by a U-shaped connection tube 5. Have been. The phase control unit 4 includes an inertance tube 6 and a buffer tank 7. Helium, for example, is sealed as a working gas (refrigerant gas) in the system of the pulse tube refrigerator.
[0003]
The operation principle of the pulse tube refrigerator having such a configuration is well known. When the piston 1a reciprocates in the operation of the compressor 1 and the working gas repeatedly compresses and expands, the working gas is compressed. It flows as a reciprocating flow in a series of systems from the machine 1 through the regenerator 2, the connecting pipe 5, the pulse pipe 3, and reaching the phase control unit 6. At this time, the working gas flows through the phase control unit including the inertance tube 6 and the buffer tank 7 with a substantially sinusoidal pressure amplitude, and a phase difference between the pressure change of the working gas and the flow rate change is generated. appear.
[0004]
If this is compared to an electric circuit, the inertance tube 6 corresponds to an inductance, a resistance, and a capacitance component, and the buffer tank 7 corresponds to a capacitance component, and changes the phase difference of the flow rate with respect to the pressure of the working gas from -90 ° to + 90 °. be able to. As a result, during the operation of the refrigerator, a phase difference occurs between the pressure and the flow rate in the pulse tube 3, and the cold work at the low-temperature end 8 at the upper end of the pulse tube including the connection pipe 5 due to the PV work by the pressure and the flow rate. appear. This cold work is called low temperature PV work.
[0005]
Here, the working gas sent out in the compression step of the compressor 1 has a low temperature in the regenerator 2 and flows into the pulse tube 3, in which heat is absorbed by adiabatic expansion and flows out to the phase control unit 4. On the other hand, in the process in which the working gas is returned from the phase control unit 4 to the low-temperature end 8 through the pulse tube 3, heat is not generated or absorbed since the working gas moves at a substantially constant volume. In this case, in order for the working gas to perform the PV work efficiently, the working gas may act as a piston (so-called gas piston) 9 that moves as a fixed surface at least at the low-temperature end side in the pulse tube. is necessary.
[0006]
Therefore, in order to allow the working gas to act as the gas piston 9, a rectifier 10 is conventionally provided at the low-temperature end 8 of the pulse tube 3 as shown in FIG. Are configured to be uniform. Further, in order to increase the pressure amplitude that is important for the PV work, the space (volume) at the low-temperature end 8 is suppressed as much as possible, and the working gas is expanded not in the low-temperature end but in the pulse tube 3. is necessary. Therefore, the volume of the low-temperature end 8 is reduced by using the connection pipe 5. Further, in order for the working gas to perform sufficient heat exchange at the low temperature end 8, it is necessary to secure a sufficient surface area inside the low temperature end. Therefore, as shown in FIG. 5, a structure for increasing the surface area by using a low-temperature end block 11 having a gas flow path therein instead of the connection pipe 5 may be adopted.
[0007]
On the other hand, Patent Literature 1 describes a pulse tube refrigerator in which the flow velocity distribution of the working gas in the pulse tube is made uniform to improve the refrigeration performance. This is achieved by mounting a rectifying plate having a plurality of through holes at the low-temperature end of the pulse tube, and rectifying a high-speed working gas through the flow path cross-sectional area of the through-hole of the rectifying plate through which a low-flowing working gas passes. It is smaller than the through hole of the plate.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-13832
[Problems to be solved by the invention]
As described above, at the low temperature end of the pulse tube refrigerator, the conditions of (1) small volume, (2) large surface area and (3) uniform flow are simultaneously required. However, in a return-type refrigerator in which the flow of the working gas is turned back by 180 degrees, for example, when trying to satisfy the above conditions (2) and (3), the condition (1) is not satisfied and the cooling performance is reduced. However, there has been a problem that the structure and the internal shape are complicated and the manufacturing cost is increased. In addition, the rectifying plate disclosed in Japanese Patent Application Laid-Open No. H10-133, which attempts to satisfy the condition of (3), still has problems in terms of parts cost and miniaturization.
[0010]
Therefore, an object of the present invention is to provide a return-type pulse tube refrigerator capable of simultaneously satisfying the above conditions (1) to (3) with a simple structure and efficiently extracting PV work.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a compressor, a regenerator, a pulse tube, and a phase control unit, and the regenerator and the pulse tube are bent into a U-shape (hereinafter, referred to as “U-bent”). In a pulse tube refrigerator connected by a connecting tube, a plurality of thin tubes having the same inner diameter and length are bundled, and the bundle is twisted and bent to form the connecting tube (claim 1).
[0012]
According to the first aspect of the present invention, by bundling a plurality of thin tubes, it is possible to secure a large surface area while suppressing an increase in volume. In addition, by making the inner diameter and length of the plurality of thin tubes the same, the flow resistance of each thin tube can be made uniform, and the flow velocity distribution of the working gas in the cross section of the pulse tube can be made uniform without using a rectifier. In this case, by twisting the bundle of thin tubes, both end surfaces of the bundle of thin tubes after the U-bending can be kept perpendicular to the axis.
[0013]
In the first aspect, the twist angle of the bundle of the thin tubes is preferably set to “180 degrees + 360 degrees × N (N is an integer including 0)” (claim 2). Thereby, both end surfaces of the bundle of the U-bent thin tubes can be aligned in the same plane, and connection between the connecting tube, the regenerator, and the pulse tube becomes easy.
[0014]
In claim 1 or claim 2, the low-temperature block of the regenerator and the pulse tube and the bundle of the small tubes may be integrally wrapped with a heat transfer metal to form a low-temperature block (claim 3). This makes it possible to arbitrarily form a shape that allows easy attachment of the object to be cooled. In this case, the low-temperature block can be easily formed by using a metal powder injection sintering method.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention. FIG. 1 (A) is a plan view of a connecting tube portion of a pulse tube refrigerator, and FIG. 1 (B) is a side view thereof. In FIG. 1, a U-shaped connecting pipe 5 connecting the regenerator 2 and the pulse tube 3 is configured by a plurality of copper thin tubes 12 having the same inner diameter and length being bundled in a columnar shape. In the illustrated case, 21 thin tubes 12 are used, and as shown in FIG. 1A, one, eight, and twelve thin tubes 12 are arranged concentrically and uniformly from the center in the radial direction. . The bundle of the thin tubes 12 is twisted 180 degrees and bent in a U-shape, and both ends are connected to the regenerator 2 and the pulse tube 3 by brazing, respectively.
[0016]
Here, the connecting pipe 5 is twisted at a twist angle of 180 degrees as described above, so that both end faces of the bundle of the thin pipes 12 after the U-bending are maintained at a right angle to the axis and are aligned in the same plane. I have. The reference numerals A, B, C, and D shown in FIG. 1 indicate the correspondence of connection points between the regenerator 2 and the pulse tube 3 of, for example, the four outermost thin tubes 12 of the connection tube 5. As shown in the figure, the connection points A, B, C, and D on the regenerator 2 and the pulse tube 3 have the same positional relationship at both ends while being reversed in the torsion direction of the connection tube 5, that is, the inside is inside and the outside is outside. Are distributed so that the outsides are connected to each other, and the connection of the thin tubes 12 of the same length is properly achieved. This is the same for the connection relationship of the other thin tubes 12. Such a connection relationship can be realized by setting the torsion angle of the connection pipe 5 to “180 degrees + 360 degrees × N (N is an integer including 0, and N = 0 in the illustrated case)”.
[0017]
In order to connect a plurality of thin tubes of the same length across the regenerator 2 and the pulse tube 3, it is also possible to simply arrange the U-bent thin tubes in parallel. However, in this case, when the number of the thin tubes increases, the thin tubes interfere with each other, and as a result, the arrangement is complicated, so that the connecting operation is complicated and the connection reliability is reduced. On the other hand, by bundling the thin tubes 12 and twisting and bending the bundle as in the illustrated embodiment, a large number of the thin tubes 12 can be arranged closely and regularly in order, and the connecting tube 5 is compact. And the connection work becomes easier.
[0018]
Next, the improvement of the cooling characteristics by forming the connecting pipe 5 with a plurality of narrow pipes 12 will be described below. First, considering the relationship between the volume V of the connecting pipe 5 and the inner surface area S, the volume V and the surface area S are respectively represented by the following equations.
V = π / 4 · d 2 · L · n
S = πd ・ L ・ n
Here, d, L, and n are the inner diameter, length, and number of the thin tubes 12, respectively.
[0019]
When L is constant, S / V is transformed as follows.
S / V = (πd · L · n) / (π / 4 · d 2 · L · n) = 4 / d
[0020]
S / V is an index indicating how much the surface area is for a given volume. Since S / V is determined only by d regardless of L and n and is inversely proportional to d, it is necessary to increase this ratio as d decreases. it can. In other words, when the same surface area S is required, the volume V can be reduced by reducing the inner diameter d of the thin tube 12.
[0021]
The heat transfer conductance C is defined by the following equation.
C = h m · S
h m = Nu · λ / d
Here, h m, Nu and lambda, the average heat transfer coefficient, respectively, is the heat transfer coefficient of the Nusselt number and the working gas. This C indicates the value of heat transfer possible between the working gas and the connection pipe 5. Therefore, it means that the larger the value of C, the better the performance as the low temperature end. It should be noted that the pressure loss of the connecting pipe 5 is so small as to be negligible as compared with the regenerator 2, and thus need not be particularly considered.
[0022]
FIG. 2 exemplifies changes in the characteristic values V, S, S / V and C when the inner diameter d (mm) and the number n of the thin tubes 12 are changed. The inner diameter of the pulse tube 3 was 10 mm, and the length L of the thin tube 12 was 24 mm. As can be seen from FIG. 2, as the inner diameter d of the thin tube 12 is reduced and the number n is increased, the volume V decreases, the surface area S increases, and the heat exchange capacity increases.
[0023]
FIG. 3 shows a different embodiment of the present invention. In FIG. 3, a low-temperature end of the regenerator 2 and the pulse tube 3 and a bundle of the thin tubes 12 are integrally wrapped with a heat transfer metal to form a low-temperature block 13. Other configurations are the same as those in FIG. The formation of the low-temperature block 13 increases the degree of freedom of the shape of the low-temperature end 8, and facilitates the attachment of a not-shown object to be cooled. For forming the low-temperature block 13, a metal powder injection sintering method (MIM) is preferable. In each of the above embodiments, an example in which a plurality of thin tubes 12 are concentrically connected is shown. However, the arrangement of connection points is not necessarily limited to the illustrated example as long as the arrangement is uniform. May be.
[0024]
The advantages of the pulse tube refrigerator of the illustrated embodiment will be summarized below.
(1) Since the connecting tube 5 is composed of a bundle of a large number of thin tubes 12, the condition that the volume at the low-temperature end 8 is small and the surface area is large is satisfied, and excellent heat exchange capability is obtained.
(2) Since many thin tubes 12 having the same fluid resistance are connected so as to be uniformly distributed in the cross section of the pulse tube, a uniform flow velocity distribution is formed in the cross section of the pulse tube 3 and the rectifier can be omitted. It is.
(3) Since the bundle of the thin tubes 12 is twisted by 180 degrees and then U-bent, the thin tubes 12 of the same length are closely arranged, and both end surfaces of the connecting tube 5 orthogonal to the axis are provided at each end. Both ends of the thin tube 12 are arranged in order on the same plane while maintaining the same positional relationship between the regenerator and the pulse tube. Therefore, the connection work of the thin tube 12 is simple.
(4) If the low-temperature block 13 is formed on the low-temperature end 8 by the metal powder injection sintering method, it becomes easy to attach the object to be cooled to the pulse tube refrigerator.
[0025]
【The invention's effect】
As described above, according to the present invention, the volume of the connecting pipe is reduced by forming the U-shaped connecting pipe connecting between the regenerator and the pulse tube by twisting and bending a bundle of a plurality of thin tubes. It is possible to improve the cooling performance by increasing the surface area while suppressing the pressure and to make the velocity distribution of the cross section of the pulse tube uniform, and to simplify the structure by omitting the rectifier.
[Brief description of the drawings]
1A and 1B show an embodiment of the present invention, in which FIG. 1A is a plan view of a connecting pipe portion connecting a regenerator and a pulse tube, and FIG. 1B is a side view thereof.
FIG. 2 is a diagram showing changes in characteristic values when the inner diameter and the number of thin tubes in the connection tube of the pulse tube refrigerator in FIG. 1 are changed.
3A and 3B show different embodiments of the present invention, wherein FIG. 3A is a plan view of a connecting pipe portion connecting a regenerator and a pulse tube, and FIG. 3B is a side view of each of them.
FIG. 4 is a configuration diagram of a pulse tube refrigerator showing a conventional example.
FIG. 5 is a partial configuration diagram of a pulse tube refrigerator showing a different conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Regenerator 3 Pulse tube 4 Phase control part 5 Connection tube 8 Low temperature end 12 Thin tube 13 Low temperature block

Claims (4)

圧縮機、蓄冷器、パルス管及び位相制御部を備え、前記蓄冷器とパルス管とはU字形に屈曲された接続管により接続されたパルスチューブ冷凍機において、
内径及び長さが同一の複数本の細管を束ね、この束を捩り及び曲げ加工して前記接続管を構成したことを特徴とするパルスチューブ冷凍機。
A pulse tube refrigerator including a compressor, a regenerator, a pulse tube, and a phase control unit, wherein the regenerator and the pulse tube are connected by a connection pipe bent into a U shape.
A pulse tube refrigerator characterized in that a plurality of thin tubes having the same inner diameter and length are bundled, and the bundle is twisted and bent to form the connection tube.
前記細管の束の捩り角を「180度+360度×N(Nは0を含む整数)」としたことを特徴とする請求項1記載のパルスチューブ冷凍機。The pulse tube refrigerator according to claim 1, wherein the twist angle of the bundle of the thin tubes is set to "180 degrees + 360 degrees x N (N is an integer including 0)". 前記蓄冷器及びパルス管の低温側の端部と前記細管の束とを伝熱金属で一体に包んで低温ブロックを形成したことを特徴とする請求項1又は請求項2記載のパルスチューブ冷凍機。The pulse tube refrigerator according to claim 1 or 2, wherein a low-temperature block is formed by integrally wrapping the low-temperature side ends of the regenerator and the pulse tube and the bundle of the thin tubes with a heat transfer metal. . 前記低温ブロックを金属粉末射出燒結法を用いて形成したことを特徴とする請求項3記載のパルスチューブ冷凍機。The pulse tube refrigerator according to claim 3, wherein the low-temperature block is formed by using a metal powder injection sintering method.
JP2003005647A 2003-01-14 2003-01-14 Pulse tube refrigerator Pending JP2004218900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005647A JP2004218900A (en) 2003-01-14 2003-01-14 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005647A JP2004218900A (en) 2003-01-14 2003-01-14 Pulse tube refrigerator

Publications (1)

Publication Number Publication Date
JP2004218900A true JP2004218900A (en) 2004-08-05

Family

ID=32896256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005647A Pending JP2004218900A (en) 2003-01-14 2003-01-14 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP2004218900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same
CN102042711A (en) * 2010-11-26 2011-05-04 中国科学院上海技术物理研究所 Integrated slit cold head of U-shaped pulse tube refrigerating machine and manufacturing method
CN112781264A (en) * 2021-01-22 2021-05-11 杭州制氧机集团股份有限公司 Stirling refrigerator with improved cooling efficiency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same
CN102042711A (en) * 2010-11-26 2011-05-04 中国科学院上海技术物理研究所 Integrated slit cold head of U-shaped pulse tube refrigerating machine and manufacturing method
CN102042711B (en) * 2010-11-26 2012-09-26 中国科学院上海技术物理研究所 Integrated slit cold head of U-shaped pulse tube refrigerating machine and manufacturing method
CN112781264A (en) * 2021-01-22 2021-05-11 杭州制氧机集团股份有限公司 Stirling refrigerator with improved cooling efficiency

Similar Documents

Publication Publication Date Title
US20060048928A1 (en) Heat exchanger and method of manufacturing the same
CN101292123B (en) Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir
US4785879A (en) Parallel wrapped tube heat exchanger
US9086231B2 (en) Regenerative refrigerator
US20070000257A1 (en) Pulse tube refrigerating machine
JP2011149600A (en) Pulse tube refrigerator
JP4084174B2 (en) Heat exchanger
EP0229666B1 (en) Parallel wrapped tube heat exchanger
JP4668238B2 (en) Cold storage refrigerator and pulse tube refrigerator
JP2004218900A (en) Pulse tube refrigerator
EP0167161A2 (en) Parallel wrapped tube heat exchanger
US7047749B2 (en) Regenerative refrigerating apparatus
JP2005265261A (en) Pulse pipe refrigerator
JP2983215B1 (en) Pulse tube refrigerator heat exchanger
JP2003148822A (en) Cold storage unit for very low temperature refrigerator
JPH07260269A (en) Pulse tube refrigerator
JP4000512B2 (en) Pulse tube refrigerator
JP2011149601A (en) Pulse tube refrigerator
JPH09178278A (en) Cold heat accumulator
KR20060045109A (en) Regenerator of cryocooler and its applicable refrigerator and manufacturing method thereof
CN112867898B (en) Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP2004251517A (en) Cold storage tank
JP2005055047A (en) Pulse tube refrigerating machine
JP2004293998A (en) Pulse pipe refrigerator and manufacturing method thereof
JP3814418B2 (en) Regenerator material, regenerator and regenerative refrigerator using these