JP2004218515A - Power generator by steam - Google Patents

Power generator by steam Download PDF

Info

Publication number
JP2004218515A
JP2004218515A JP2003006493A JP2003006493A JP2004218515A JP 2004218515 A JP2004218515 A JP 2004218515A JP 2003006493 A JP2003006493 A JP 2003006493A JP 2003006493 A JP2003006493 A JP 2003006493A JP 2004218515 A JP2004218515 A JP 2004218515A
Authority
JP
Japan
Prior art keywords
steam
steam turbine
turbine
generator
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003006493A
Other languages
Japanese (ja)
Other versions
JP4133355B2 (en
Inventor
Shizumaro Ooishi
鎮麿 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2003006493A priority Critical patent/JP4133355B2/en
Publication of JP2004218515A publication Critical patent/JP2004218515A/en
Application granted granted Critical
Publication of JP4133355B2 publication Critical patent/JP4133355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the generating efficiency of a steam turbine by increasing turbine output. <P>SOLUTION: A steam supply pipe 1 is connected to the steam turbine 2 through a vapor-liquid separator 7. A generator 3 is connected to an output shaft of the steam turbine 2, and a steam condenser 4 is connected to the outlet side of the steam turbine 2. An ejector type vacuum pump 5 is disposed below the steam condenser 4. A thermomagnetic engine 17 is connected to an excess water discharge pipe 16 of the ejector type vacuum pump 5. The generator 18 is mounted to the thermomagnetic engine 17. The steam turbine 2 is rotated by the steam supplied to the steam turbine 2 from the steam supply pipe 1, and power is generated by the generator 3. In this case, power is efficiently generated due to the large pressure difference between the inlet and outlet of the steam turbine 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、各種蒸気使用装置へ供給され余った余剰蒸気や、コージェネレーション・システムで発生して余った余剰蒸気等を利用して蒸気タービンで電力を発生させる蒸気による発電装置に関する。
【0002】
【従来の技術】
【特許文献1】特開平2−61305号公報
これには、蒸気タービンの入口側に排気圧力調整弁を設け、蒸気発生器で発生した蒸気を蒸気タービンで減圧してプロセスに供給すると同時に、蒸気タービンの余剰出力を電力に変換する蒸気タービンを利用した発電装置が開示されている。
【特許文献2】特開平9−268968号公報
これは、温度差と磁力によって回転力を発生させる熱磁気エンジンであり、感温磁性材料製の円筒状ロータと、この円筒状ロータの外周面の円周方向に磁極を位置させて配設した磁石と、円筒状ロータの一部を加熱冷却する加熱冷却領域とから成るものである。
【0003】
【発明が解決しようとする課題】
上記従来の発電装置では、蒸気タービンの発電効率が低い値となってしまう問題があった。これは、タービン出口側をプロセスと連結しているために、タービンの入口から出口の熱落差が小さく、単位蒸気流量当たりの出力が小さなものとなってしまうためである。
【0004】
このような実情に鑑み、本発明の課題は、タービンでの熱落差を大きく確保して、タービン出力を大きくすることによって、蒸気タービンの発電効率を向上させることのできる蒸気による発電装置を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するために講じた本発明の手段は、蒸気タービンの入口側へ蒸気源から蒸気を供給する蒸気供給管を接続して、当該蒸気供給管から蒸気タービンに供給される蒸気によって発電するものにおいて、蒸気タービンの出口側へ真空吸引手段を接続して、当該真空吸引手段によって蒸気タービンから真空吸引手段の間を所定の真空状態に維持すると共に、真空吸引手段に温度差と磁力によって回転力を発生する熱磁気エンジンを接続して、当該熱磁気エンジンの回転力で電力を発生する発電機を取り付けたものである。
【0006】
【発明の実施の形態】
真空吸引手段によって蒸気タービンから真空吸引手段の間を所定の真空状態に維持することにより、大きな熱落差が得られ、蒸気の保有する熱エネルギを最大限活用してタービン出力を大きなものとすることができ、蒸気タービンの発電効率を向上させることができる。
【0007】
真空吸引手段に熱磁気エンジンと発電機を設けたことにより、真空吸引手段から排出される復水の熱を利用して熱磁気エンジンを回転させ、発電機で電力を発生することができる。
【0008】
【実施例】
図1において、蒸気供給管1にその入口側を接続した蒸気タービン2と、この蒸気タービン2の出力軸と連結した発電機3と、蒸気タービン2の出口側と接続した蒸気凝縮器4と、蒸気凝縮器4の下方に設置した真空吸引手段としてのエゼクタ式真空ポンプ5、及び、エゼクタ式真空ポンプ5と接続した熱磁気エンジン17とで蒸気による発電装置を構成する。
【0009】
図示しない蒸気源と接続した蒸気供給管1は、スチームトラップ6を内蔵した気液分離器7を介在して蒸気タービン2と接続する。気液分離器7は、流入してくる流体を旋回させて遠心力によって質量の大きな液体と小さな気体を気液分離する。一方、スチームトラップ6は、流入してくる蒸気と復水の混合流体の内、蒸気は排出することがなく、復水だけを外部へ排出する機能を有する。
【0010】
気液分離器7では、蒸気中に含まれている蒸気の凝縮した水滴状の復水と蒸気を気液分離して、分離した蒸気を蒸気タービン2側へ流下させ、一方、分離した復水はスチームトラップ6から系外へ排除する。本実施例においては、分離した復水は管路8によってエゼクタ式真空ポンプ5へ吸引されるる
【0011】
蒸気タービン2の出口側に蒸気凝縮器4を接続する。蒸気凝縮器4は、その内部に冷却水供給管9及び冷却水排出管10と連通した複数の熱交換チューブを内蔵しており、蒸気タービン2で膨張して保有する熱エネルギを速度エネルギへ変換された蒸気と熱交換して復水とする。
【0012】
蒸気凝縮器4の下方を、エゼクタ式真空ポンプ5の液体エゼクタ11と接続する。エゼクタ式真空ポンプ5は、この液体エゼクタ11とタンク12と循環ポンプ13、及び、これらを連通する循環路14とで構成する。タンク12の上部には冷却水を補給する冷却水補給管15を接続する。また、循環路14の一部を分岐して余剰水排出管16を取り付ける。
【0013】
余剰水排出管16に熱磁気エンジン17を取り付ける。熱磁気エンジン17は、排出管16から流入する復水の高温と、大気中の常温との温度差を利用して回転力を発生させるもので、発生した回転力は発電機18へ伝達され電気を生じる。熱磁気エンジン17で熱を奪われた復水は排出管19から外部へ排出される。
【0014】
エゼクタ式真空ポンプ5は、タンク12内の水を循環ポンプ13で液体エゼクタ11へ流下させることにより、液体エゼクタ11で吸引力を生じて、蒸気凝縮器4で凝縮した復水を吸引すると共に、蒸気凝縮器4内ひいては蒸気タービン2内を所定の真空状態に維持するものである。
【0015】
エゼクタ式真空ポンプ5は、エゼクタ11内を流下する液体の温度に応じた吸引力を発生する。すなわち、エゼクタ11内を流下する液温に対する飽和圧力と等しい吸引力を発生するもので、液温を100℃以下とすることによって、大気圧以下の真空圧力となり、例えば、液温を50℃とすると発生する真空圧力はおよそ95mmHgとなる。
【0016】
エゼクタ式真空ポンプ5のタンク12内へ冷却水補給管15から冷却水を補給して、タンク12内の液温を所定値に設定することによって、エゼクタ11の吸引力を任意に設定することができ、従って、蒸気タービン2での熱落差も任意に設定することができる。
【0017】
蒸気供給管1には、コージェネレーション・システム等で発生した余剰の蒸気が供給される。そして、蒸気供給管1から気液分離器7を経て混在していた復水を排除された蒸気だけが蒸気タービン2へ供給され、連結した発電機3を回転させて発電する。
【0018】
蒸気タービン2で膨張して仕事を行った蒸気は、蒸気凝縮器4へ流下して冷却水と熱交換されて凝縮して復水となり、エゼクタ式真空ポンプ5のエゼクタ11に吸引されタンク12に至る。タンク12からエゼクタ式真空ポンプ5を循環し、余剰となった復水と冷却水の混合液体は、余剰水排出管16から熱磁気エンジン17へ至り発電機18を回転させて発電する。
【0019】
【発明の効果】
上記のように本発明によれば、エゼクタ式真空ポンプによって蒸気タービン内を所定の真空状態に維持することにより、大きな熱落差が得られ、蒸気の保有する熱エネルギを最大限活用してタービン出力を大きなものとすることができ、蒸気タービンの発電効率を向上させることができる。
【0020】
また本発明によれば、エゼクタ式真空ポンプに熱磁気エンジンと発電機を接続したことにより、エゼクタ式真空ポンプから排出される復水の熱を利用して発電することができ、発電装置全体の発電効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の蒸気による発電装置の実施例を示す構成図。
【符号の説明】
1 蒸気供給管
2 蒸気タービン
3 発電機
4 蒸気凝縮器
5 エゼクタ式真空ポンプ
6 スチームトラップ
7 気液分離器
11 液体エゼクタ
12 タンク
13 循環ポンプ
17 熱磁気エンジン
18 発電機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steam-based power generation apparatus that generates electric power in a steam turbine using surplus steam that is excessively supplied to various types of steam-using devices and surplus steam that is generated in a cogeneration system.
[0002]
[Prior art]
[Patent Document 1] Japanese Unexamined Patent Publication No. 2-61305 In this method, an exhaust pressure regulating valve is provided on the inlet side of a steam turbine, and the steam generated by the steam generator is reduced in pressure by the steam turbine and supplied to the process. A power generation device using a steam turbine that converts surplus output of a turbine into electric power is disclosed.
[Patent Document 2] Japanese Patent Application Laid-Open No. 9-268968 This is a thermomagnetic engine that generates a rotating force by a temperature difference and a magnetic force, and includes a cylindrical rotor made of a temperature-sensitive magnetic material and an outer peripheral surface of the cylindrical rotor. It comprises a magnet having magnetic poles positioned in the circumferential direction and a heating / cooling region for heating / cooling a part of the cylindrical rotor.
[0003]
[Problems to be solved by the invention]
In the above-described conventional power generation device, there is a problem that the power generation efficiency of the steam turbine becomes a low value. This is because, since the turbine outlet side is connected to the process, the heat drop from the inlet to the outlet of the turbine is small, and the output per unit steam flow is small.
[0004]
In view of such circumstances, an object of the present invention is to obtain a steam-based power generation device capable of improving the power generation efficiency of a steam turbine by securing a large heat drop in the turbine and increasing the turbine output. It is.
[0005]
[Means for Solving the Problems]
Means of the present invention taken to solve the above-mentioned problem is to connect a steam supply pipe for supplying steam from a steam source to the inlet side of the steam turbine, and to use the steam supplied from the steam supply pipe to the steam turbine. In the power generator, a vacuum suction means is connected to the outlet side of the steam turbine, the vacuum suction means maintains a predetermined vacuum state between the steam turbine and the vacuum suction means, and a temperature difference and a magnetic force are applied to the vacuum suction means. A thermo-magnetic engine that generates a rotational force is connected thereto, and a generator that generates electric power by the rotational force of the thermo-magnetic engine is attached.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
By maintaining a predetermined vacuum state between the steam turbine and the vacuum suction means by the vacuum suction means, a large heat drop can be obtained, and the turbine energy can be increased by making full use of the heat energy held by the steam. And the power generation efficiency of the steam turbine can be improved.
[0007]
By providing the thermomagnetic engine and the generator in the vacuum suction means, the thermomagnetic engine can be rotated by using the heat of the condensate discharged from the vacuum suction means, and electric power can be generated by the generator.
[0008]
【Example】
1, a steam turbine 2 having an inlet connected to a steam supply pipe 1, a generator 3 connected to an output shaft of the steam turbine 2, a steam condenser 4 connected to an outlet of the steam turbine 2, An ejector-type vacuum pump 5 as a vacuum suction means installed below the steam condenser 4 and a thermomagnetic engine 17 connected to the ejector-type vacuum pump 5 constitute a steam-based power generator.
[0009]
The steam supply pipe 1 connected to a steam source (not shown) is connected to the steam turbine 2 via a gas-liquid separator 7 having a built-in steam trap 6. The gas-liquid separator 7 swirls the inflowing fluid, and separates a large liquid and a small gas into gas and liquid by centrifugal force. On the other hand, the steam trap 6 has a function of discharging only the condensate to the outside without discharging the steam out of the mixed fluid of the flowing steam and the condensate.
[0010]
In the gas-liquid separator 7, the condensed water-drop-like condensate of the steam contained in the steam and the steam are separated into gas and liquid, and the separated steam flows down to the steam turbine 2 side. Is removed from the steam trap 6 to the outside of the system. In this embodiment, the separated condensate is sucked into the ejector type vacuum pump 5 through the pipe 8.
The steam condenser 4 is connected to the outlet side of the steam turbine 2. The steam condenser 4 incorporates therein a plurality of heat exchange tubes communicating with a cooling water supply pipe 9 and a cooling water discharge pipe 10, and expands the steam turbine 2 to convert the retained heat energy into velocity energy. Heat exchange with the produced steam is made to condense.
[0012]
The lower part of the vapor condenser 4 is connected to the liquid ejector 11 of the ejector type vacuum pump 5. The ejector-type vacuum pump 5 includes the liquid ejector 11, a tank 12, a circulation pump 13, and a circulation path 14 that connects these. A cooling water supply pipe 15 for supplying cooling water is connected to an upper portion of the tank 12. In addition, a part of the circulation path 14 is branched and a surplus water discharge pipe 16 is attached.
[0013]
A thermomagnetic engine 17 is attached to the surplus water discharge pipe 16. The thermomagnetic engine 17 generates a rotational force by utilizing a temperature difference between a high temperature of the condensed water flowing from the discharge pipe 16 and a normal temperature in the atmosphere. Is generated. The condensate deprived of heat by the thermomagnetic engine 17 is discharged from the discharge pipe 19 to the outside.
[0014]
The ejector-type vacuum pump 5 causes the water in the tank 12 to flow down to the liquid ejector 11 by the circulation pump 13, thereby generating a suction force in the liquid ejector 11 and sucking the condensed water condensed in the steam condenser 4. The inside of the steam condenser 4 and thus the inside of the steam turbine 2 is maintained at a predetermined vacuum state.
[0015]
The ejector type vacuum pump 5 generates a suction force according to the temperature of the liquid flowing down in the ejector 11. That is, it generates a suction force equal to the saturation pressure with respect to the temperature of the liquid flowing down in the ejector 11. By setting the liquid temperature to 100 ° C. or less, the vacuum pressure becomes equal to or less than the atmospheric pressure. Then, the generated vacuum pressure becomes about 95 mmHg.
[0016]
It is possible to arbitrarily set the suction force of the ejector 11 by supplying cooling water from the cooling water supply pipe 15 into the tank 12 of the ejector type vacuum pump 5 and setting the liquid temperature in the tank 12 to a predetermined value. Therefore, the heat drop in the steam turbine 2 can be arbitrarily set.
[0017]
Excess steam generated in a cogeneration system or the like is supplied to the steam supply pipe 1. Then, only the steam from which condensate has been removed from the steam supply pipe 1 via the gas-liquid separator 7 is supplied to the steam turbine 2, and the connected generator 3 is rotated to generate power.
[0018]
The steam that has expanded and worked in the steam turbine 2 flows down to the steam condenser 4, exchanges heat with the cooling water, condenses and becomes condensed water, and is sucked by the ejector 11 of the ejector-type vacuum pump 5 and stored in the tank 12. Reach. The ejector-type vacuum pump 5 is circulated from the tank 12, and the excess mixed liquid of the condensed water and the cooling water flows from the excess water discharge pipe 16 to the thermomagnetic engine 17 to rotate the generator 18 to generate power.
[0019]
【The invention's effect】
As described above, according to the present invention, by maintaining the inside of the steam turbine at a predetermined vacuum state by the ejector type vacuum pump, a large heat drop is obtained, and the heat energy held by the steam is utilized to the utmost so that the turbine output is reduced. Can be increased, and the power generation efficiency of the steam turbine can be improved.
[0020]
Further, according to the present invention, by connecting the thermomagnetic engine and the generator to the ejector type vacuum pump, it is possible to generate electric power by utilizing the heat of the condensate discharged from the ejector type vacuum pump, and Power generation efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a steam-based power generation device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam supply pipe 2 Steam turbine 3 Generator 4 Steam condenser 5 Ejector type vacuum pump 6 Steam trap 7 Gas-liquid separator 11 Liquid ejector 12 Tank 13 Circulation pump 17 Thermomagnetic engine 18 Generator

Claims (1)

蒸気タービンの入口側へ蒸気源から蒸気を供給する蒸気供給管を接続して、当該蒸気供給管から蒸気タービンに供給される蒸気によって発電するものにおいて、蒸気タービンの出口側へ真空吸引手段を接続して、当該真空吸引手段によって蒸気タービンから真空吸引手段の間を所定の真空状態に維持すると共に、真空吸引手段に温度差と磁力によって回転力を発生する熱磁気エンジンを接続して、当該熱磁気エンジンの回転力で電力を発生する発電機を取り付けたことを特徴とする蒸気による発電装置。A steam supply pipe for supplying steam from a steam source is connected to the inlet side of the steam turbine, and power is generated by steam supplied from the steam supply pipe to the steam turbine. A vacuum suction means is connected to an outlet side of the steam turbine. The vacuum suction means maintains a predetermined vacuum state between the steam turbine and the vacuum suction means, and a thermomagnetic engine that generates a rotational force by a temperature difference and a magnetic force is connected to the vacuum suction means, thereby A power generator using steam, wherein a generator that generates electric power by the rotation force of a magnetic engine is mounted.
JP2003006493A 2003-01-15 2003-01-15 Steam power generator Expired - Fee Related JP4133355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006493A JP4133355B2 (en) 2003-01-15 2003-01-15 Steam power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006493A JP4133355B2 (en) 2003-01-15 2003-01-15 Steam power generator

Publications (2)

Publication Number Publication Date
JP2004218515A true JP2004218515A (en) 2004-08-05
JP4133355B2 JP4133355B2 (en) 2008-08-13

Family

ID=32896838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006493A Expired - Fee Related JP4133355B2 (en) 2003-01-15 2003-01-15 Steam power generator

Country Status (1)

Country Link
JP (1) JP4133355B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321628A (en) * 2006-05-31 2007-12-13 Osaka Gas Co Ltd Power system
JP2010065984A (en) * 2008-09-12 2010-03-25 Tlv Co Ltd Vapor compression type refrigerating machine
JP2010065983A (en) * 2008-09-12 2010-03-25 Tlv Co Ltd Vapor compression type refrigerating machine
WO2010070702A1 (en) * 2008-12-16 2010-06-24 社団法人日本銅センター Power generator utilizing natural energy
JP6403913B1 (en) * 2018-05-07 2018-10-10 信彦 鈴木 Steam generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321628A (en) * 2006-05-31 2007-12-13 Osaka Gas Co Ltd Power system
JP2010065984A (en) * 2008-09-12 2010-03-25 Tlv Co Ltd Vapor compression type refrigerating machine
JP2010065983A (en) * 2008-09-12 2010-03-25 Tlv Co Ltd Vapor compression type refrigerating machine
WO2010070702A1 (en) * 2008-12-16 2010-06-24 社団法人日本銅センター Power generator utilizing natural energy
JP6403913B1 (en) * 2018-05-07 2018-10-10 信彦 鈴木 Steam generator

Also Published As

Publication number Publication date
JP4133355B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
RU2485331C2 (en) Method and device for conversion of thermal energy of low-temperature source of heat into mechanical energy
RU2200850C2 (en) Gas-and steam-turbine plant and method of its operation
JP4668189B2 (en) Method for improving efficiency of gas turbine equipment and gas turbine equipment
JPS5818562B2 (en) Method and apparatus for producing steam from salt water
JPH07208116A (en) Combined-cycle power plant
JP2008188514A (en) Compressor for steam in reduced pressure type evaporator
JP3753760B2 (en) Heat recovery in liquid ring pump seal liquid cooler system
JPH0729363Y2 (en) Process equipment
JP4440593B2 (en) Operation method of heat pump type concentrator
JP2010038536A (en) Heat recovery system for turbomachine, and method of operating heat recovery steam system for turbomachine
JPH09203304A (en) Compound power generating system using waste as fuel
JP4133355B2 (en) Steam power generator
JP5910122B2 (en) Heat recovery generator
RU2534201C2 (en) Method (versions) and system for asymmetrical supply of working fluid medium flow
WO2001037412A3 (en) Pressure control system improving power plant efficiency
JP2004190623A (en) Power generating device by steam
KR101935637B1 (en) Combined cycle power generation system
JP4198475B2 (en) Steam power generator
KR101753526B1 (en) Combined cycle power generation system
SU1625829A1 (en) Desalinating apparatus
JP2013140001A (en) Power generating unit comprising condensed water recovery device
JP2004237136A (en) Evaporation apparatus using cogeneration equipment
WO2007085045A1 (en) Heat energy transfer system and turbopump
JPH07317508A (en) Power generation/desalination device utilizing sea water temperature difference
JP2003120513A (en) Geothermal power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees