JP2008188514A - Compressor for steam in reduced pressure type evaporator - Google Patents

Compressor for steam in reduced pressure type evaporator Download PDF

Info

Publication number
JP2008188514A
JP2008188514A JP2007024162A JP2007024162A JP2008188514A JP 2008188514 A JP2008188514 A JP 2008188514A JP 2007024162 A JP2007024162 A JP 2007024162A JP 2007024162 A JP2007024162 A JP 2007024162A JP 2008188514 A JP2008188514 A JP 2008188514A
Authority
JP
Japan
Prior art keywords
steam
compressor
compression
compressed
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007024162A
Other languages
Japanese (ja)
Inventor
Masaaki Imai
正昭 今井
Yoshinori Inoue
良則 井上
Hiroaki Hayase
宏明 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2007024162A priority Critical patent/JP2008188514A/en
Publication of JP2008188514A publication Critical patent/JP2008188514A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the compression ratio of steam in an evaporator which compresses steam generated by boiling and evaporating under a reduced pressure condition by indirectly heating a volatile liquid such as water and uses the compressed steam as the heat source for indirectly heating the liquid. <P>SOLUTION: Compression of the steam is performed by compression with a front stage centrifugal compressor 12 and by compression with a back stage volume type compressor 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,例えば,水等の蒸発性液体を間接加熱により減圧状態で沸騰蒸発することで前記液体を濃縮するようにした蒸発濃縮装置,或いは,海水又は廃水等の蒸発性液体を間接加熱により減圧状態で沸騰蒸発しその蒸気の一部を凝縮することで淡水を製造するようにした蒸発淡水化装置等のような減圧式の蒸発装置において,水等の蒸発性液体を減圧の状態で沸騰蒸発することによって発生した蒸気を,前記液体を沸騰蒸発するための熱源とするように圧縮する装置に関するものである。   The present invention is, for example, an evaporative concentration apparatus that concentrates the liquid by boiling and evaporating the evaporative liquid such as water in a reduced pressure state or indirectly evaporating liquid such as seawater or wastewater by indirect heating. Evaporating liquid such as water is boiled under reduced pressure in a reduced pressure type evaporator such as an evaporation desalination unit that produces boiled water by condensing a part of its vapor under reduced pressure. The present invention relates to a device for compressing vapor generated by evaporation so as to be a heat source for boiling and evaporating the liquid.

一般に,前記に列挙した各種の蒸発装置において,水等の蒸発性液体を間接加熱したのち大気圧以下の減圧状態で沸騰蒸発し,この沸騰蒸発で発生した蒸気を圧縮して,前記液体を間接加熱するための熱源とする場合において,前記減圧状態での沸騰蒸発にて発生した蒸気の圧縮には,例えば,先行技術としての特許文献1等に記載されているように,羽根車を高速回転しその羽根の間を半径方向に流動する遠心力を利用するという所謂遠心式(ブロワー)圧縮機を使用している。   In general, in the various types of evaporators listed above, an evaporating liquid such as water is indirectly heated and then boiled and evaporated at a reduced pressure below atmospheric pressure, and the vapor generated by the boiling evaporation is compressed to indirectly inject the liquid. In the case of using a heat source for heating, the compression of steam generated by boiling evaporation in the reduced pressure state is performed by rotating the impeller at high speed as described in, for example, Patent Document 1 as a prior art. In addition, a so-called centrifugal compressor that uses a centrifugal force flowing in the radial direction between the blades is used.

すなわち,大気圧より低い減圧での沸騰蒸発にて発生した飽和状態の蒸気における比容積は,減圧度が高くなるにつれて急激に大きくなることにより,前記減圧での沸騰蒸発にて発生した蒸気は,大きい比容積の状態で吸引して圧縮するようにしなければならないから,前記蒸気の圧縮には,多量の気体を取り扱うことに適している遠心式圧縮機を使用している。   That is, the specific volume of the saturated steam generated by boiling evaporation at a reduced pressure lower than the atmospheric pressure increases rapidly as the degree of vacuum increases, so that the steam generated by boiling evaporation at the reduced pressure becomes A centrifugal compressor suitable for handling a large amount of gas is used for compressing the vapor because it must be sucked and compressed in a state of a large specific volume.

また,別の先行技術としての特許文献2は,減圧状態での沸騰蒸発にて発生した比容積の大きい蒸気を,前段の遠心式圧縮機において圧縮し,次いで,その後段に配設した蒸気エゼクターにて圧縮することを提案している。
実公平2−39521号公報 特開平10−57702号公報
Further, Patent Document 2 as another prior art discloses that a steam having a large specific volume generated by boiling evaporation in a reduced pressure state is compressed by a centrifugal compressor in the previous stage and then a steam ejector disposed in the subsequent stage. It is proposed to compress at.
No. 2-339521 Japanese Patent Laid-Open No. 10-57702

しかし,前記遠心式圧縮機は,多量の気体を圧縮することには適していても,この遠心式圧縮機による圧縮では,温度差において精々約5℃位までしか圧縮することができないというように,その圧縮比を高くすることができず,ひいては,蒸発性液体を沸騰蒸発するように間接加熱する場合における温度差を高くすることができないから,前記した各種の蒸発装置においては,蒸発量の増大,ひいては,処理能力の増大を図るには,前記間接加熱に際しての伝熱面積を増大しなければならず,装置全体の大型化を招来するのであり,しかも,前記蒸発性液体における沸点上昇が高い場合の蒸発に適用できないという問題がある。   However, although the centrifugal compressor is suitable for compressing a large amount of gas, the compression by the centrifugal compressor can compress only about 5 ° C. at a temperature difference. , The compression ratio cannot be increased, and as a result, the temperature difference in the case of indirect heating so that the evaporating liquid is boiled and evaporated cannot be increased. In order to increase the processing capacity and to increase the processing capacity, it is necessary to increase the heat transfer area during the indirect heating, leading to an increase in the size of the entire apparatus, and an increase in the boiling point of the evaporating liquid. There is a problem that it cannot be applied to evaporation in high cases.

一方,前記特許文献2のように構成した場合には,圧縮比を,後段に蒸気エゼクターを使用する分だけ高くすることができるものの,この技術を適用できるのは,前記蒸気エゼクターを駆動するための高い圧力の蒸気が存在する箇所に限定され,高い圧力の蒸気が存在しない箇所には適用できないばかりか,圧縮比を高めることの程度が低く,しかも,高い圧力の蒸気を多量に必要とするから,熱効率が低くて,運転経費が嵩むという問題がある。   On the other hand, when configured as in Patent Document 2, the compression ratio can be increased by the amount of use of the steam ejector in the subsequent stage, but this technique can be applied to drive the steam ejector. It is limited to places where high-pressure steam is present, and is not applicable to places where high-pressure steam is not present. In addition, the degree of increasing the compression ratio is low, and a large amount of high-pressure steam is required. Therefore, there is a problem that the thermal efficiency is low and the operation cost increases.

そして,前記したように減圧状態での沸騰蒸発による蒸気の圧縮に,従来周知のルーツ型又は可動翼型等のような回転型圧縮機(ケーシング内に設けた特殊形状の回転体を高速回転するもの)にて代表される容積式圧縮機を使用することも考えられる。   As described above, a rotary compressor such as a well-known roots type or movable blade type (rotating body of a special shape provided in a casing is rotated at high speed for compressing steam by boiling evaporation in a reduced pressure state. It is also conceivable to use a positive displacement compressor represented by

しかし,この容積式圧縮機は,容積を縮小することを繰り返すことによって気体の圧縮を行うものであることにより,圧縮比を,前記遠心式圧縮機を使用する場合,及び前記遠心式圧縮機と蒸気エゼクターとを使用する場合よりも遥かに高く(温度差で約15℃程度)することができるものの,多量の気体を圧縮することには適していないから,この容積式圧縮機を前記した各種の減圧式の蒸発装置に適用して所定の処理能力を確保するためには,当該容積式圧縮機として,大容量を取り扱うことのできる,従って大型で高価なものを使用しなければならないという問題があった。   However, this positive displacement compressor compresses the gas by repeatedly reducing the volume, so that the compression ratio is the same as when the centrifugal compressor is used and when the centrifugal compressor is used. Although it can be much higher than when using a steam ejector (about 15 ° C difference in temperature), it is not suitable for compressing a large amount of gas. In order to secure the required processing capacity by applying to the vacuum evaporator of this type, there is a problem that a large capacity and high-priced compressor must be used as the positive displacement compressor. was there.

本発明は,これらの問題を解消した蒸気圧縮装置を適用することを技術的課題とするものである。   This invention makes it a technical subject to apply the vapor compression apparatus which eliminated these problems.

この技術的課題を達成するため本発明の請求項1は,
「水等の蒸発性液体を間接加熱し減圧状態で沸騰蒸発することによって発生した蒸気を,圧縮し,この圧縮した蒸気を前記液体を間接加熱するための熱源とするように構成して成る蒸発装置において,
前記蒸気の圧縮を,前段の遠心式圧縮機による圧縮と,これに続く,後段の容積式圧縮機による圧縮とで行うように構成した。」
ことを特徴としている。
In order to achieve this technical problem, claim 1 of the present invention provides:
“Vaporization configured to compress steam generated by indirect heating of evaporative liquid such as water and boiling and evaporating under reduced pressure, and to use the compressed steam as a heat source for indirectly heating the liquid. In the device,
The vapor was compressed by the former centrifugal compressor, followed by the latter positive displacement compressor. "
It is characterized by that.

本発明の請求項2は,
「前記請求項1の記載において,前記前段の遠心式圧縮機と後段の容積式圧縮機との間に,前記遠心式圧縮機にて圧縮した蒸気を飽和蒸気の状態にするか飽和蒸気の状態に近づけるように冷却する蒸気冷却手段を備えている。」
ことを特徴としている。
Claim 2 of the present invention includes:
“In the first aspect of the present invention, the steam compressed by the centrifugal compressor is brought into a saturated steam state or a saturated steam state between the preceding centrifugal compressor and the latter positive displacement compressor. It is equipped with a steam cooling means that cools it close to. "
It is characterized by that.

本発明の請求項3は,
「前記請求項1又は2の記載において,前記容積式圧縮機が,ケーシング内で回転体を回転する回転型圧縮機である。」
ことを特徴としている。
Claim 3 of the present invention provides:
“In the first or second aspect of the invention, the positive displacement compressor is a rotary compressor that rotates a rotating body in a casing.”
It is characterized by that.

本発明は,減圧状態での沸騰蒸発にて発生した比体積の大きい蒸気を,先ず,前段の遠心式圧縮機にて圧縮することで,圧力を高めるとともに比容積を小さくし,次いで,この比容積を小さくしたものを,更に,後段における容積式圧縮機にて,高い圧力にまで圧縮するものである。   In the present invention, steam having a large specific volume generated by boiling evaporation under reduced pressure is first compressed by a centrifugal compressor in the previous stage to increase the pressure and reduce the specific volume. The one with a reduced volume is further compressed to a high pressure by a positive displacement compressor in the latter stage.

これにより,液体を減圧状態で沸騰蒸発するように間接加熱するときにおける温度差を大きくするように圧縮することができるとともに,比容積の大きい状態での沸騰蒸発で発生する蒸気を多量に圧縮することができるから,各種の蒸発装置における処理能力を,前記間接加熱の伝熱面積の増大,ひいては,当該蒸発装置における大型化を招来することなく,前記蒸気の圧縮を遠心式圧縮機のみで行う場合よりも,大幅に向上できるとともに,前記蒸発性液体の沸点上昇が高い場合であっても確実に適用することができる。   As a result, the liquid can be compressed to increase the temperature difference during indirect heating so that the liquid is boiled and evaporated in a reduced pressure state, and a large amount of vapor generated by boiling evaporation in a state where the specific volume is large is compressed. Therefore, the processing capacity of various evaporators can be reduced only by a centrifugal compressor without increasing the heat transfer area of the indirect heating and, consequently, increasing the size of the evaporator. In addition to the improvement, it can be applied reliably even when the boiling point of the evaporable liquid is high.

しかも,前記容積式圧縮機としては,その前段において前記遠心式圧縮機による圧縮を行って比体積を小さくする分だけ,小容量化を図ることができ,ひいては,小型で低価格の容積式圧縮機を使用することができる。   In addition, the positive displacement compressor can be reduced in capacity by reducing the specific volume by performing the compression by the centrifugal compressor in the previous stage, and thus the small and inexpensive positive displacement compressor. You can use the machine.

ところで,液体の減圧状態での沸騰蒸発にて発生した蒸気は,略飽和蒸気の状態であるから,この蒸気を前段の遠心式圧縮機にて圧縮することにより,過熱蒸気の状態になるから,後段の容積式圧縮機においては,スケールの付着が発生することになるし,しかも,この後段の容積式圧縮機にて圧縮された過熱蒸気は,より高い過熱蒸気になるから,その後において蒸発性液体を間接加熱する場合の熱伝達係数の低下を招来する。   By the way, since the vapor generated by boiling evaporation in the reduced pressure state of the liquid is almost saturated, it becomes a superheated vapor by compressing this vapor with the centrifugal compressor in the previous stage. In the latter-stage positive displacement compressor, scale adhesion occurs, and the superheated steam compressed by this latter-stage positive displacement compressor becomes higher superheated steam. When the liquid is indirectly heated, the heat transfer coefficient is reduced.

そこで,請求項2に記載したように,前段の遠心式圧縮機にて圧縮した蒸気を,後段の容積式圧縮機にて圧縮前において,蒸気冷却手段にて,飽和蒸気の状態にするか,飽和蒸気の状態に近づけるように冷却するという構成にする。   Therefore, as described in claim 2, whether the steam compressed by the preceding centrifugal compressor is brought into a saturated steam state by the steam cooling means before being compressed by the latter positive displacement compressor, The cooling is performed so as to approach the state of saturated steam.

これにより,前段の遠心式圧縮機にて圧縮した蒸気における過熱度,及び後段の容積式圧縮機にて圧縮した蒸気における過熱度を下げることができるから,前記後段の容積式圧縮機にスケールが発生することを確実に低減できるとともに,その後において蒸発性液体を間接加熱する場合に熱伝達係数が低下することを確実に回避できる。   As a result, the degree of superheat in the steam compressed by the preceding centrifugal compressor and the degree of superheat in the steam compressed by the latter positive displacement compressor can be reduced. In addition to being able to reliably reduce the occurrence, it is possible to reliably avoid a decrease in the heat transfer coefficient when the evaporative liquid is indirectly heated thereafter.

なお,この蒸気冷却手段としては,蒸気に対して水を直接に噴霧するという手段,及び,蒸気を水又は空気との間接熱交換にて冷却するという手段等が存在するが,前者の手段では,水の噴霧により蒸気の体積が増大し,後段の容積式圧縮機の大容量化を招来するから,前者の間接冷却による手段を佐用することが好ましい。   As the steam cooling means, there are means for spraying water directly on the steam and means for cooling the steam by indirect heat exchange with water or air. Since the vapor volume increases due to the spraying of water, and the capacity of the positive displacement compressor in the subsequent stage is increased, it is preferable to use the former means by indirect cooling.

特に,前記後段の容積式圧縮機として,ルーツ型,可動翼型又はねじ型等の回転型圧縮機を使用することにより,当該容積式圧縮機における更なる小型化と,熱効率の向上とを図ることができる利点がある。   In particular, by using a rotary type compressor such as a roots type, a movable blade type or a screw type as the positive displacement compressor in the latter stage, further miniaturization of the positive displacement compressor and improvement in thermal efficiency are achieved. There are advantages that can be made.

以下,本発明の実施の形態を,図1の図面について説明する。   An embodiment of the present invention will be described below with reference to the drawing of FIG.

この図1において,符号1は,密閉型に構成して成る蒸発缶を示す。   In FIG. 1, reference numeral 1 denotes an evaporator configured as a sealed type.

この蒸発缶1内における中段には,多数本の伝熱管3を束ねて成る間接加熱手段2が,その各伝熱管3を水平横向きとするように設けられ,この間接加熱手段2には,その各伝熱管3における一端に対する入口ヘッダー4と,その各伝熱管3における他端に対する出口ヘッダー5とを備えている。   In the middle stage in the evaporator 1, indirect heating means 2 formed by bundling a large number of heat transfer tubes 3 are provided so that the heat transfer tubes 3 are horizontally oriented. An inlet header 4 for one end of each heat transfer tube 3 and an outlet header 5 for the other end of each heat transfer tube 3 are provided.

また,前記蒸発缶1内は,前記出口ヘッダー5に接続した真空ポンプ6等の真空発生にて大気圧より低い減圧の状態に保持されている。   Further, the inside of the evaporator 1 is maintained at a reduced pressure lower than the atmospheric pressure by generating a vacuum from a vacuum pump 6 or the like connected to the outlet header 5.

前記蒸発缶1内の底部に溜まる水又は海水等の蒸発性液体を,循環ポンプ7にて汲み出し,これに管路8より新たに送られて来る水又は海水等の蒸発性液体を加えて,前記蒸発缶1内の上部に設けたノズル9に供給し,このノズル9から前記間接加熱手段2における各伝熱管3の外側面に対して散布したのち,前記蒸発缶1内の底部に戻るという循環を行うように構成されており,前記蒸発缶1内の底部に溜まる蒸発性液体の一部は,管路10より濃縮済みの液体として取り出すように構成している。   The evaporating liquid such as water or seawater accumulated at the bottom of the evaporator 1 is pumped out by the circulation pump 7, and the evaporating liquid such as water or seawater newly sent from the pipe 8 is added thereto. After supplying to the nozzle 9 provided in the upper part in the said evaporator 1 and spraying with respect to the outer surface of each heat exchanger tube 3 in the said indirect heating means 2 from this nozzle 9, it returns to the bottom part in the said evaporator 1 It is configured to circulate, and a part of the evaporating liquid accumulated at the bottom of the evaporator 1 is extracted from the pipe 10 as a concentrated liquid.

次に,前記図1において,符号11は,前記蒸発缶1内における蒸気を前記間接加熱手段2における入口ヘッダー4に導くための蒸気ダクトを示す。   Next, in FIG. 1, reference numeral 11 denotes a steam duct for guiding the steam in the evaporator 1 to the inlet header 4 in the indirect heating means 2.

この蒸気ダクト11の途中には,遠心式圧縮機12とルーツ型圧縮機13とを直列に設けて,前記蒸発缶1内で発生した蒸気を,先ず前段の遠心式圧縮機12にて圧縮し,次いで,後段のルーツ型圧縮機13にて更に圧縮したのち,前記間接加熱手段2における入口ヘッダー4を介して各伝熱管3内に供給するように構成している。   In the middle of the steam duct 11, a centrifugal compressor 12 and a roots compressor 13 are provided in series, and the steam generated in the evaporator 1 is first compressed by the centrifugal compressor 12 in the previous stage. Then, after further compression by a roots type compressor 13 in the subsequent stage, the heat is supplied to each heat transfer tube 3 through the inlet header 4 in the indirect heating means 2.

また,前記蒸気ダクト11のうち前記遠心式圧縮機12とルーツ型圧縮機13との間の部位には,前記遠心式圧縮機12にて圧縮された蒸気に対する蒸気冷却手段14を設けている。   A steam cooling means 14 for steam compressed by the centrifugal compressor 12 is provided in a portion of the steam duct 11 between the centrifugal compressor 12 and the roots compressor 13.

この蒸気冷却手段14は,前記遠心式圧縮機12にて圧縮された蒸気を,過熱蒸気の状態から,飽和蒸気の状態になるように冷却するか,或いは,飽和蒸気の状態に近づけるように冷却するものであり,その冷却は,前記蒸気に対して水を直接に噴霧することによって行うか,或いは,前記蒸気を,大気空気又は冷却水による間接的熱交換にて行うように構成している。   The steam cooling means 14 cools the steam compressed by the centrifugal compressor 12 from a superheated steam state to a saturated steam state or close to a saturated steam state. The cooling is performed by spraying water directly on the steam, or the steam is configured by indirect heat exchange with atmospheric air or cooling water. .

この構成において,前記蒸発缶1内の底に溜まる蒸発性液体は,循環ポンプ7にて汲み出されたのち,前記蒸発缶1内の上部におけるノズル9から間接加熱手段2における各伝熱管3の外側面に対して散布されることにより,この各伝熱管3の内部に供給される蒸気にて間接加熱されて沸騰蒸発する。   In this configuration, the evaporative liquid accumulated at the bottom of the evaporator 1 is pumped out by the circulation pump 7 and then from the nozzle 9 in the upper part of the evaporator 1 to each heat transfer tube 3 in the indirect heating means 2. By being sprayed on the outer side surface, it is heated indirectly by the steam supplied to the inside of each heat transfer tube 3 and boiled and evaporated.

この沸騰蒸発にて発生した蒸気は,蒸気ダクト11を介して先ず前段の遠心式圧縮機12において圧縮される。   The steam generated by the boiling evaporation is first compressed by the centrifugal compressor 12 in the previous stage through the steam duct 11.

この遠心式圧縮機12において圧縮された蒸気は,蒸気冷却手段14に至り,ここで,加熱蒸気の状態から飽和蒸気の状態に,又は飽和蒸気の状態に近づくように冷却され,次いで,後段のルーツ型圧縮機13において更に圧縮されたのち,前記間接加熱手段2における各伝熱管3の内部に供給されて,この各伝熱管3の外側面における蒸発性液体の間接加熱に供される。   The steam compressed in the centrifugal compressor 12 reaches the steam cooling means 14 where the steam is cooled from the heated steam state to the saturated steam state or close to the saturated steam state, and then the subsequent stage. After further compression in the roots type compressor 13, it is supplied to the inside of each heat transfer tube 3 in the indirect heating means 2 and used for indirect heating of the evaporative liquid on the outer surface of each heat transfer tube 3.

前記間接加熱手段2における各伝熱管3の内部において凝縮した凝縮水は,出口ヘッダー5に集められ,蒸留水又は淡水として,前記出口ヘッダー5より管路15を介して取り出される。   The condensed water condensed inside each heat transfer tube 3 in the indirect heating means 2 is collected in the outlet header 5 and taken out from the outlet header 5 through the pipe line 15 as distilled water or fresh water.

前記した構成で,前段の遠心式圧縮機12においては,例えば,蒸気を温度差で約5℃程度に高めるように圧縮でき,後段のルーツ型圧縮機13においては,例えば,蒸気を温度差で約15℃程度に高めるように圧縮できることにより,全体として,前記間接加熱手段2における間接加熱の温度差を約20℃にまで高くすることができるから,この間接加熱に際しての温度差を高くすることができる分だけ,前記間接加熱手段2における伝熱面積を少なく,ひいては,装置の小型化を図ることができるとともに,前記蒸発性液体の沸点上昇が高い場合においても適用することができる。   With the above-described configuration, in the former centrifugal compressor 12, for example, the steam can be compressed so as to increase to about 5 ° C. due to the temperature difference, and in the root-type compressor 13, for example, the steam can be compressed according to the temperature difference. By being able to compress so as to increase to about 15 ° C., the temperature difference of indirect heating in the indirect heating means 2 can be increased to about 20 ° C. as a whole, so that the temperature difference during this indirect heating is increased. Therefore, the heat transfer area in the indirect heating means 2 is reduced as much as possible, so that the apparatus can be reduced in size and can be applied even when the boiling point of the evaporable liquid is high.

また,前記蒸気冷却手段14が,蒸気に対して水を直接に噴霧する形式である場合には,蒸気に直接に噴霧する水として,前記出口ヘッダー5から取り出される凝縮水の一部を使用することができる。   Further, when the steam cooling means 14 is of a type in which water is sprayed directly on the steam, a part of the condensed water taken out from the outlet header 5 is used as the water sprayed directly on the steam. be able to.

前記した実施の形態は,前記間接加熱手段2を,前記蒸発缶1に内蔵する構成にした場合であったが,本発明は,これに限らず,前記間接加熱手段を,前記蒸発缶の外側に位置して,この間接加熱手段に間接加熱した液体を前記蒸発缶内に導いて沸騰蒸発するように構成した場合にも適用できる。   In the above-described embodiment, the indirect heating means 2 is built in the evaporator 1. However, the present invention is not limited to this, and the indirect heating means is disposed outside the evaporator. The present invention is also applicable to the case where the liquid heated indirectly by the indirect heating means is introduced into the evaporator and evaporated to the boil.

また,前記した実施の形態は,後段の圧縮に,容積式圧縮機として回転式圧縮機の範疇に属するルーツ型圧縮機を使用した場合であったが,本発明はこれに限らず,容積式圧縮機として,同じく回転式圧縮機の範疇に属する可動翼型圧縮機又はねじ型圧縮機等を使用できるほか,往復動式の圧縮機を使用できることはいうまでもないが,ルーツ型圧縮機,可動翼型圧縮機又はねじ型圧縮機等を含む回転式圧縮機をすることにより,往復動式の圧縮機を使用した場合に比べて,更なる小型化と,熱効率の向上とを図ることができる。   In the above-described embodiment, the root-type compressor belonging to the category of the rotary compressor is used as the positive displacement compressor for the subsequent compression. However, the present invention is not limited to this, and the positive displacement compressor is used. As a compressor, a movable blade type compressor or screw type compressor, which also belongs to the category of a rotary compressor, can be used, and it is needless to say that a reciprocating compressor can be used. By using a rotary compressor including a movable blade compressor or a screw compressor, it is possible to further reduce the size and improve the thermal efficiency compared to the case where a reciprocating compressor is used. it can.

本発明の実施の形態を示す図である。It is a figure which shows embodiment of this invention.

符号の説明Explanation of symbols

1 蒸発缶
2 間接加熱手段
3 伝熱管
4 入口ヘッダー
5 出口ヘッダー
6 真空ポンプ
7 循環ポンプ
9 ノズル
11 蒸気ダクト
12 遠心式圧縮機
13 ルーツ型圧縮機
14 蒸気冷却手段
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Indirect heating means 3 Heat exchanger tube 4 Inlet header 5 Outlet header 6 Vacuum pump 7 Circulation pump 9 Nozzle 11 Steam duct 12 Centrifugal compressor 13 Roots type compressor 14 Steam cooling means

Claims (3)

水等の蒸発性液体を間接加熱し減圧状態で沸騰蒸発することによって発生した蒸気を,圧縮し,この圧縮した蒸気を前記液体を間接加熱するための熱源とするように構成して成る蒸発装置において,
前記蒸気の圧縮を,前段の遠心式圧縮機による圧縮と,これに続く,後段の容積式圧縮機による圧縮とで行うように構成したことを特徴とする減圧式蒸発装置における蒸気の圧縮装置。
An evaporator configured to compress steam generated by indirect heating of an evaporating liquid such as water and boiling and evaporating under reduced pressure, and to use the compressed steam as a heat source for indirectly heating the liquid In
A vapor compression apparatus in a decompression type evaporation apparatus, wherein the vapor compression is performed by compression by a centrifugal compressor at a preceding stage and subsequent compression by a positive displacement compressor at a subsequent stage.
前記請求項1の記載において,前記前段の遠心式圧縮機と後段の容積式圧縮機との間に,前記遠心式圧縮機にて圧縮した蒸気を飽和蒸気の状態にするか飽和蒸気の状態に近づけるように冷却する蒸気冷却手段を備えていることを特徴とする減圧式蒸発装置における蒸気の圧縮装置。   In the description of claim 1, the steam compressed by the centrifugal compressor is brought into a saturated steam state or a saturated steam state between the preceding centrifugal compressor and the latter positive displacement compressor. A vapor compression device in a vacuum evaporator, comprising vapor cooling means for cooling so as to approach. 前記請求項1又は2の記載において,前記容積式圧縮機が,ケーシング内で回転体を回転する回転型圧縮機であることを特徴とする減圧式蒸発装置における蒸気の圧縮装置。   3. The vapor compression apparatus according to claim 1, wherein the positive displacement compressor is a rotary compressor that rotates a rotating body in a casing.
JP2007024162A 2007-02-02 2007-02-02 Compressor for steam in reduced pressure type evaporator Pending JP2008188514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024162A JP2008188514A (en) 2007-02-02 2007-02-02 Compressor for steam in reduced pressure type evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024162A JP2008188514A (en) 2007-02-02 2007-02-02 Compressor for steam in reduced pressure type evaporator

Publications (1)

Publication Number Publication Date
JP2008188514A true JP2008188514A (en) 2008-08-21

Family

ID=39749128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024162A Pending JP2008188514A (en) 2007-02-02 2007-02-02 Compressor for steam in reduced pressure type evaporator

Country Status (1)

Country Link
JP (1) JP2008188514A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072858A (en) * 2009-09-29 2011-04-14 Sasakura Engineering Co Ltd Vaporizing concentration apparatus and vaporizing concentration method
JP2011104478A (en) * 2009-11-13 2011-06-02 Toshihiro Abe Water purification apparatus
JP2011167592A (en) * 2010-02-16 2011-09-01 Terunaito:Kk Treatment method and recycle system of fine soil particle-containing washing liquid and contaminated soil purification system
JP2011185192A (en) * 2010-03-10 2011-09-22 Sasakura Engineering Co Ltd Shaft seal structure and shaft seal method of roots blower for vacuum evaporator, and vacuum evaporation device
DE102011109613A1 (en) 2010-08-16 2012-02-16 Mazda Motor Corporation Process for the treatment of waste water and waste water treatment device
JP2012172968A (en) * 2011-02-23 2012-09-10 Samsung Techwin Co Ltd Steam supply system
CN102765769A (en) * 2012-08-15 2012-11-07 北京朗新明环保科技有限公司 Low-temperature multiple-effect heat pipe type evaporator
JP2016528035A (en) * 2013-07-29 2016-09-15 ウィナンディ フランソワ−マチューFRANCOIS−MATHIEU, Winandy Method and equipment for thermal distillation using mechanical vapor compression
CN115193071A (en) * 2022-07-08 2022-10-18 东莞益海嘉里生物科技有限公司 Distillers' grains liquid evaporation and concentration system and evaporation and concentration method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241503A (en) * 1986-04-11 1987-10-22 Hitachi Ltd Method for operating subliming gas recovery equipment
JPH0239521B2 (en) * 1979-09-07 1990-09-06 Merck & Co Inc
JPH09505515A (en) * 1993-10-01 1997-06-03 ストザーズ,ウィリアム,アール. Improved thermodynamic separation
JP2000161287A (en) * 1998-11-30 2000-06-13 Kachi Tec:Kk Series pressure boosting type compression device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239521B2 (en) * 1979-09-07 1990-09-06 Merck & Co Inc
JPS62241503A (en) * 1986-04-11 1987-10-22 Hitachi Ltd Method for operating subliming gas recovery equipment
JPH09505515A (en) * 1993-10-01 1997-06-03 ストザーズ,ウィリアム,アール. Improved thermodynamic separation
JP2000161287A (en) * 1998-11-30 2000-06-13 Kachi Tec:Kk Series pressure boosting type compression device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072858A (en) * 2009-09-29 2011-04-14 Sasakura Engineering Co Ltd Vaporizing concentration apparatus and vaporizing concentration method
JP2011104478A (en) * 2009-11-13 2011-06-02 Toshihiro Abe Water purification apparatus
JP2011167592A (en) * 2010-02-16 2011-09-01 Terunaito:Kk Treatment method and recycle system of fine soil particle-containing washing liquid and contaminated soil purification system
JP2011185192A (en) * 2010-03-10 2011-09-22 Sasakura Engineering Co Ltd Shaft seal structure and shaft seal method of roots blower for vacuum evaporator, and vacuum evaporation device
DE102011109613A1 (en) 2010-08-16 2012-02-16 Mazda Motor Corporation Process for the treatment of waste water and waste water treatment device
JP2012040468A (en) * 2010-08-16 2012-03-01 Japan Organo Co Ltd Wastewater treatment method and wastewater treatment apparatus
DE102011109613B4 (en) 2010-08-16 2020-04-23 Mazda Motor Corporation Process for treating waste water and waste water treatment device
JP2012172968A (en) * 2011-02-23 2012-09-10 Samsung Techwin Co Ltd Steam supply system
CN102765769A (en) * 2012-08-15 2012-11-07 北京朗新明环保科技有限公司 Low-temperature multiple-effect heat pipe type evaporator
JP2016528035A (en) * 2013-07-29 2016-09-15 ウィナンディ フランソワ−マチューFRANCOIS−MATHIEU, Winandy Method and equipment for thermal distillation using mechanical vapor compression
CN115193071A (en) * 2022-07-08 2022-10-18 东莞益海嘉里生物科技有限公司 Distillers' grains liquid evaporation and concentration system and evaporation and concentration method thereof

Similar Documents

Publication Publication Date Title
JP2008188514A (en) Compressor for steam in reduced pressure type evaporator
JP4859225B2 (en) Liquid evaporative cooling system
JP5151014B2 (en) HEAT PUMP DEVICE AND HEAT PUMP OPERATION METHOD
EP1215455B1 (en) Refrigerating device
JP2713451B2 (en) Low pressure distillation equipment
KR101442425B1 (en) System combining power generation apparatus and desalination apparatus
JP2012102956A (en) Vacuum cooling device
JP4031220B2 (en) Alcohol distillation equipment
KR20090030919A (en) Msf desalination apparatus with heat-pipe heat rejector
US6132555A (en) Method and arrangement for increasing evaporation capacity of a multi-stage evaporator of spent liquor in a pulp mill
JP5782368B2 (en) Vacuum drying equipment
JP2007093043A (en) Hot water supply system
JP6199428B2 (en) Superheated steam generator
JP2010046571A (en) Method and device for concentrating aqueous solution by evaporation
JP2016531263A (en) Heat recovery and improvement method and compressor for use in the method
JP3425082B2 (en) Aqueous concentrator for aqueous solution
JP6199192B2 (en) Heat recovery system in evaporator
JP4618728B2 (en) Self-vapor compression evaporator
JP2018122266A (en) Concentration system and concentration method
CN205225349U (en) Condensing system of condensing formula screw rod expander
JP5557498B2 (en) Evaporative concentration method
CN208839074U (en) A kind of crystal system of liquid
CN112619185A (en) Low-temperature evaporation device utilizing Carnot cycle principle
CN111747469A (en) Improved generation heat pump vacuum low temperature evaporation concentration system
WO2011048650A1 (en) Distillation device and electric power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100108

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20121205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130327

Free format text: JAPANESE INTERMEDIATE CODE: A02