JP2010046571A - Method and device for concentrating aqueous solution by evaporation - Google Patents

Method and device for concentrating aqueous solution by evaporation Download PDF

Info

Publication number
JP2010046571A
JP2010046571A JP2008210822A JP2008210822A JP2010046571A JP 2010046571 A JP2010046571 A JP 2010046571A JP 2008210822 A JP2008210822 A JP 2008210822A JP 2008210822 A JP2008210822 A JP 2008210822A JP 2010046571 A JP2010046571 A JP 2010046571A
Authority
JP
Japan
Prior art keywords
evaporator
aqueous solution
vapor
steam
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008210822A
Other languages
Japanese (ja)
Inventor
Satoru Hirano
悟 平野
Yukinori Kihira
幸則 紀平
Yoshihiro Fujiwara
義浩 藤原
Masuo Yuasa
升夫 湯淺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2008210822A priority Critical patent/JP2010046571A/en
Publication of JP2010046571A publication Critical patent/JP2010046571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for concentrating an aqueous solution by evaporation which performs the efficient concentration of the aqueous solution by evaporation at a low cost. <P>SOLUTION: The device 1 for concentrating an aqueous solution by evaporation comprises a first evaporator 30 which evaporates the aqueous solution by heat, a second evaporator 50 which produces heat transfer vapor by heating a heat transfer fluid, using the vapor of the aqueous solution produced by the first evaporator 30 as a heating source, an ejector 20 which compresses the heat transfer vapor produced by the second evaporator 50 through sucking the heat transfer vapor with the help of a driving vapor, and a compressor 26 which further compresses the heat transfer vapor compressed by the ejector 20. In addition, the device 1 utilizes the heat transfer vapor heated up by the compressor 26 as a heating source of the first evaporator 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水溶液の蒸発濃縮方法および蒸発濃縮装置に関する。   The present invention relates to an evaporation concentration method and an evaporation concentration apparatus for an aqueous solution.

水溶液を蒸発濃縮する装置として、例えば特許文献1の構成が知られている。この蒸発濃縮装置は、図3に示すように、複数の伝熱管202を有する蒸発缶201を備えており、蒸発缶201に貯留された水溶液をポンプ203により汲み上げて、散布器204から各伝熱管202の外表面に散布することにより、水溶液を加熱蒸発させる。   As an apparatus for evaporating and concentrating an aqueous solution, for example, the configuration of Patent Document 1 is known. As shown in FIG. 3, the evaporation concentrator includes an evaporator 201 having a plurality of heat transfer tubes 202, and an aqueous solution stored in the evaporator 201 is pumped up by a pump 203, and each heat transfer tube is supplied from a spreader 204. By spraying on the outer surface of 202, the aqueous solution is heated and evaporated.

蒸発缶201は、吸い込みダクト205を介してブロワー圧縮機206に接続されており、蒸発缶201で生成された蒸気は、ブロワー圧縮機206で圧縮された後、蒸気ダクト207を介して複数の伝熱管202の内部を通過することにより、水溶液を蒸発させるための加熱源として利用される。   The evaporator 201 is connected to a blower compressor 206 through a suction duct 205, and the steam generated in the evaporator 201 is compressed by the blower compressor 206 and then transmitted to a plurality of transmissions through the steam duct 207. By passing through the inside of the heat tube 202, it is used as a heating source for evaporating the aqueous solution.

また、蒸気ダクト207には分岐管208を介してエゼクタ209が接続されており、ブロワー圧縮機206で圧縮された蒸気は、蒸気切替弁210を閉じた状態で駆動蒸気供給管211からエゼクタ209に駆動蒸気を導入することにより、エゼクタ209に吸引されて更に圧縮される。   Further, an ejector 209 is connected to the steam duct 207 via a branch pipe 208, and the steam compressed by the blower compressor 206 is transferred from the driving steam supply pipe 211 to the ejector 209 with the steam switching valve 210 closed. By introducing the driving steam, it is sucked into the ejector 209 and further compressed.

特許文献1の蒸発濃縮装置によれば、水溶液が低濃度の場合には、蒸気切替弁210を開にしてブロワー圧縮機206を作動することにより、蒸発缶201で生成された蒸気がブロワー圧縮機206により一段圧縮される。そして、水溶液が徐々に蒸発濃縮されて中濃度になると、蒸気切替弁210を閉にすると共にエゼクタ209に駆動蒸気を供給することにより、蒸発缶201で生成された蒸気が、ブロワー圧縮機206で圧縮された後、エゼクタ209で圧縮されて二段圧縮される。こうして、水溶液の高濃度化により沸点上昇が生じても、水溶液の蒸発に必要な伝熱管202の表面温度を確保することができる。
特開平10−57702号公報
According to the evaporative concentration apparatus of Patent Document 1, when the aqueous solution has a low concentration, the steam switching valve 210 is opened and the blower compressor 206 is operated so that the steam generated in the evaporator 201 is blower compressor. One-stage compression is performed by 206. When the aqueous solution is gradually evaporated and concentrated to a medium concentration, the steam switching valve 210 is closed and the drive steam is supplied to the ejector 209 so that the steam generated in the evaporator 201 is blown by the blower compressor 206. After being compressed, it is compressed by the ejector 209 and compressed in two stages. Thus, even if the boiling point rises due to the concentration of the aqueous solution increasing, the surface temperature of the heat transfer tube 202 necessary for evaporation of the aqueous solution can be secured.
Japanese Patent Laid-Open No. 10-57702

ところが、上記従来の蒸発濃縮装置は、蒸気を二段圧縮する場合、エゼクタ209で圧縮する前に、先にブロワー圧縮機206で圧縮するように構成されているので、ブロワー圧縮機206には、低温で比容積が大きい蒸気が導入される。このため、ブロワー圧縮機206は、処理すべき容積流量が大きいために、過大な設備が必要とされていた。一方、エゼクタ209は、ブロワー圧縮機206で圧縮された後の蒸気を吸引するために、高価な駆動蒸気の消費量が多くならざるをえず、この点でも低コスト化の余地があった。   However, the conventional evaporative concentrator is configured so that when the steam is compressed in two stages, before being compressed by the ejector 209, it is first compressed by the blower compressor 206. Steam having a large specific volume is introduced at a low temperature. For this reason, the blower compressor 206 requires a large amount of equipment because the volume flow rate to be processed is large. On the other hand, since the ejector 209 sucks the steam after being compressed by the blower compressor 206, the consumption of expensive driving steam must be increased, and there is still room for cost reduction in this respect.

そこで、本発明は、水溶液の蒸発濃縮を低コストで効率良く行うことができる水溶液の蒸発濃縮方法および蒸発濃縮装置の提供を目的とする。   Accordingly, an object of the present invention is to provide a method and an apparatus for evaporating and concentrating an aqueous solution capable of efficiently evaporating and concentrating the aqueous solution at low cost.

本発明の前記目的は、水溶液を蒸発濃縮する方法であって、蒸発器内での加熱により生成された水溶液の蒸気を、駆動蒸気によりエゼクタ内に吸引して圧縮した後、圧縮装置により更に圧縮して昇温し、前記蒸発器の加熱源として利用する水溶液の蒸発濃縮方法により達成される。   The object of the present invention is a method of evaporating and concentrating an aqueous solution, wherein the vapor of the aqueous solution generated by heating in the evaporator is sucked into the ejector by driving steam and compressed, and then further compressed by a compression device. Then, the temperature is raised, and this is achieved by a method of evaporating and concentrating an aqueous solution used as a heating source of the evaporator.

あるいは、本発明の前記目的は、水溶液を蒸発濃縮する方法であって、第1の蒸発器内での加熱により生成された水溶液の蒸気を加熱源として、第2の蒸発器内で熱媒液を加熱して生成した熱媒蒸気を、駆動蒸気によりエゼクタ内に吸引して圧縮した後、圧縮装置により更に圧縮して昇温し、前記第1の蒸発器の加熱源として利用する水溶液の蒸発濃縮方法により達成される。   Alternatively, the object of the present invention is a method of evaporating and concentrating an aqueous solution, wherein the heat medium liquid is generated in the second evaporator using the vapor of the aqueous solution generated by heating in the first evaporator as a heating source. The heating medium vapor generated by heating is sucked into the ejector by driving steam and compressed, and then further compressed by the compression device and heated to evaporate the aqueous solution used as the heating source of the first evaporator. This is achieved by a concentration method.

また、本発明の前記目的は、水溶液を加熱蒸発させる蒸発器と、前記蒸発器で生成された水溶液の蒸気を駆動蒸気により吸引して圧縮するエゼクタと、前記エゼクタにより圧縮された蒸気を更に圧縮する圧縮装置とを備え、前記圧縮装置で昇温された蒸気を前記蒸発器の加熱源として利用する水溶液の蒸発濃縮装置により達成される。   Further, the object of the present invention is to provide an evaporator for heating and evaporating the aqueous solution, an ejector for sucking and compressing the vapor of the aqueous solution generated by the evaporator by driving steam, and further compressing the vapor compressed by the ejector. And an aqueous solution evaporating and concentrating device that uses steam heated by the compressing device as a heating source of the evaporator.

あるいは、本発明の前記目的は、水溶液を加熱蒸発させる第1の蒸発器と、前記第1の蒸発器で生成された水溶液の蒸気を加熱源として熱媒液を加熱することにより、熱媒蒸気を生成する第2の蒸発器と、前記第2の蒸発器で生成された熱媒蒸気を駆動蒸気により吸引して圧縮するエゼクタと、前記エゼクタにより圧縮された熱媒蒸気を更に圧縮する圧縮装置とを備え、前記圧縮装置で昇温された熱媒蒸気を前記第1の蒸発器の加熱源として利用する水溶液の蒸発濃縮装置により達成される。   Alternatively, the object of the present invention is to provide a first evaporator for heating and evaporating the aqueous solution, and heating the heat transfer liquid by using the vapor of the aqueous solution generated by the first evaporator as a heating source. A second evaporator for generating the heat, an ejector for sucking and compressing the heat medium steam generated by the second evaporator by driving steam, and a compressor for further compressing the heat medium steam compressed by the ejector And an aqueous solution evaporating and concentrating device that uses the heat medium vapor heated by the compression device as a heating source of the first evaporator.

本発明の水溶液の蒸発濃縮方法および蒸発濃縮装置によれば、水溶液の蒸発濃縮を低コストで効率良く行うことができる。   According to the method for evaporating and concentrating an aqueous solution and the apparatus for evaporating and concentrating the present invention, it is possible to efficiently perform the evaporation and concentration of the aqueous solution at low cost.

以下、本発明の実施の形態について、添付図面を参照しながら説明する。図1は、本発明の一実施形態に係る蒸発濃縮装置の概略構成図である。図1に示すように、蒸発濃縮装置1は、エゼクタ20、第1蒸発器30、第2蒸発器50および凝縮装置80を備えている。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an evaporative concentration apparatus according to an embodiment of the present invention. As shown in FIG. 1, the evaporative concentration apparatus 1 includes an ejector 20, a first evaporator 30, a second evaporator 50, and a condensing device 80.

エゼクタ20は、蒸気の吸引・圧縮を行う蒸気圧縮手段であり、蒸気吸い込み側21には、図示しない蒸気供給源から供給される水蒸気等の駆動蒸気が流通する駆動蒸気供給管路23、および第2蒸発器50から延びる蒸気再利用管路54が接続している。また、エゼクタ20の吐出側22には、当該エゼクタ20により圧縮された蒸気を第1蒸発器30に導く加熱用蒸気供給管路24が接続しており、加熱用蒸気供給管路24には、圧縮装置26が介在されている。   The ejector 20 is a vapor compression means for sucking and compressing the vapor. The vapor suction side 21 includes a drive vapor supply line 23 through which drive vapor such as water vapor supplied from a vapor supply source (not shown) flows, and a first A steam reuse line 54 extending from the two evaporators 50 is connected. Further, the discharge side 22 of the ejector 20 is connected to a heating steam supply line 24 that guides the steam compressed by the ejector 20 to the first evaporator 30. A compression device 26 is interposed.

圧縮装置26は、加熱用蒸気供給管路24を通過する気体を機械的に圧縮する装置であり、ブロワやコンプレッサなどを例示することができ、制御が容易な電動式のものを好ましく使用することができる。圧縮装置26は、所望の圧縮比が得られるように単段または多段のいずれであってもよく、本実施形態では2段式のブロワ(ヒートポンプ)を使用している。   The compression device 26 is a device that mechanically compresses the gas passing through the heating steam supply pipe 24, and can be exemplified by a blower, a compressor, and the like, and an electric type that is easy to control is preferably used. Can do. The compression device 26 may be either a single stage or a multistage so as to obtain a desired compression ratio. In the present embodiment, a two-stage blower (heat pump) is used.

第1蒸発器30は、水溶液を蒸発濃縮する。この第1蒸発器30は、密閉型の蒸発缶31、水溶液散布装置32、間接式加熱器33、水溶液蒸気移送管路34および熱媒液移送管路35を備えている。蒸発缶31の底部は、水溶液供給管路10を介して供給された水溶液を貯留する貯留部を構成している。水溶液としては、アルコール水溶液や、硫酸廃水、塩酸廃水、アンモニア廃水などを例示することができる。   The first evaporator 30 evaporates and concentrates the aqueous solution. The first evaporator 30 includes a sealed evaporator 31, an aqueous solution spraying device 32, an indirect heater 33, an aqueous solution vapor transfer line 34, and a heating medium liquid transfer line 35. The bottom of the evaporator 31 constitutes a reservoir that stores the aqueous solution supplied via the aqueous solution supply pipe 10. Examples of the aqueous solution include an alcohol aqueous solution, sulfuric acid waste water, hydrochloric acid waste water, and ammonia waste water.

水溶液散布装置32は、蒸発缶31の底部に貯留されている水溶液を複数の伝熱管39の外表面に向けて供給する供給装置であり、蒸発缶31内の上部に配置され水溶液を散布する水溶液散布ノズル36と、水溶液散布ノズル36と蒸発缶31の底部とを接続する循環管路37とを備えている。循環管路37の途中には、蒸発缶31の底部に貯留されている水溶液を水溶液散布ノズル36に導く循環ポンプ37aが設けられている。また、循環管路37には、蒸発濃縮後に蒸発缶31の底部に溜まった水溶液の濃縮液を外部に排出する濃縮液排出管路38が接続している。   The aqueous solution spraying device 32 is a supply device that supplies the aqueous solution stored at the bottom of the evaporator 31 toward the outer surfaces of the plurality of heat transfer tubes 39, and is an aqueous solution that is disposed on the top of the evaporator 31 and sprays the aqueous solution. A spray nozzle 36 and a circulation pipe 37 that connects the aqueous solution spray nozzle 36 and the bottom of the evaporator 31 are provided. In the middle of the circulation pipe 37, a circulation pump 37 a that guides the aqueous solution stored at the bottom of the evaporator 31 to the aqueous solution spray nozzle 36 is provided. The circulation line 37 is connected to a concentrate discharge line 38 for discharging the concentrated solution of the aqueous solution accumulated at the bottom of the evaporator 31 after evaporation and concentration.

間接式加熱器33は、蒸発缶31の内部に設けられる複数の伝熱管39と、これら複数の伝熱管39の両端にそれぞれ接続されている第1ヘッダ40および第2ヘッダ41とを備えている。第1ヘッダ40には、エゼクタ20により圧縮された熱媒蒸気を伝熱管39に導く加熱用蒸気供給管路24が接続している。第2ヘッダ41には、熱媒液移送管路35が接続しており、熱媒液移送管路35に介在された熱媒液ポンプ35aの作動により、第2ヘッダ41内に溜まった熱媒液が、後述する第2蒸発器50の蒸発缶51に導かれる。熱媒液移送管路35を通過する熱媒液の一部は、熱媒液移送管路35の途中から外部に排出することができる。   The indirect heater 33 includes a plurality of heat transfer tubes 39 provided inside the evaporator 31, and a first header 40 and a second header 41 respectively connected to both ends of the plurality of heat transfer tubes 39. . Connected to the first header 40 is a heating steam supply pipe 24 that guides the heat transfer steam compressed by the ejector 20 to the heat transfer pipe 39. A heat medium liquid transfer pipe 35 is connected to the second header 41, and the heat medium accumulated in the second header 41 by the operation of the heat medium liquid pump 35 a interposed in the heat medium liquid transfer pipe 35. The liquid is guided to an evaporator 51 of the second evaporator 50 described later. A part of the heat medium liquid passing through the heat medium liquid transfer pipe 35 can be discharged to the outside from the middle of the heat medium liquid transfer pipe 35.

水溶液蒸気移送管路34は、第1蒸発器30にて生成される水溶液の蒸気を排出し、後述の第2蒸発器50の間接式加熱器53に導く管路であり、蒸発缶31の上部と、間接式加熱器53を構成する第1ヘッダ60とを接続している。   The aqueous solution vapor transfer pipe 34 is a pipe that discharges the vapor of the aqueous solution generated in the first evaporator 30 and leads it to an indirect heater 53 of the second evaporator 50 described later. And the 1st header 60 which comprises the indirect heater 53 is connected.

第2蒸発器50は、第1蒸発器30から排出された水溶液の蒸気を加熱源として、熱媒液を加熱する。熱媒液としては、水を例示することができるが、これに限定されるものではない。この第2蒸発器50は、密閉型の蒸発缶51、熱媒液散布装置52、間接式加熱器53、蒸気再利用管路54および回収管路55を備えている。蒸発缶51、熱媒液散布装置52および間接式加熱器53の基本構成は、上述の第1蒸発器30を構成する蒸発缶31、水溶液散布装置32および間接式加熱器33の基本構成と同様であり、熱媒液散布装置52は、熱媒液散布ノズル56と、循環ポンプ57aが介在された循環管路57とを備えている。循環管路57からは熱媒液排出管路58が分岐している。   The second evaporator 50 heats the heat transfer fluid using the vapor of the aqueous solution discharged from the first evaporator 30 as a heating source. Examples of the heat transfer liquid include water, but are not limited thereto. The second evaporator 50 includes a sealed evaporator 51, a heat medium liquid spraying device 52, an indirect heater 53, a steam reuse pipe 54, and a recovery pipe 55. The basic configurations of the evaporator 51, the heat medium liquid spraying device 52, and the indirect heater 53 are the same as the basic configurations of the evaporator 31, the aqueous solution spraying device 32, and the indirect heater 33 that constitute the first evaporator 30. The heat medium liquid spraying device 52 includes a heat medium liquid spray nozzle 56 and a circulation pipe 57 in which a circulation pump 57a is interposed. A heat medium liquid discharge pipe 58 branches from the circulation pipe 57.

蒸気再利用管路54は、第2蒸発器50から排出される熱媒蒸気の少なくとも一部を、第1蒸発器30において水溶液の蒸気を生成するための加熱源として第1蒸発器30に供給させるための管路であり、蒸発缶51の上部とエゼクタ20の吸い込み側21とを接続している。この蒸気再利用管路54の途中には、第2蒸発器50にて生成される熱媒蒸気を後述の凝縮装置80に導く凝縮用蒸気管路70が接続している。   The steam reuse pipe line 54 supplies at least a part of the heat medium steam discharged from the second evaporator 50 to the first evaporator 30 as a heating source for generating steam of the aqueous solution in the first evaporator 30. The upper part of the evaporator 51 and the suction side 21 of the ejector 20 are connected. A condensing steam line 70 that guides the heat medium steam generated in the second evaporator 50 to a condensing device 80 described later is connected to the steam reuse line 54.

回収管路55は、伝熱管59を通過する水溶液の蒸気が当該伝熱管59を経て凝縮され、間接式加熱器53の第2ヘッダ61に溜まった凝縮液を、回収ポンプ55aの作動により外部に排出して回収する管路である。   In the recovery pipe 55, the vapor of the aqueous solution passing through the heat transfer pipe 59 is condensed through the heat transfer pipe 59, and the condensate accumulated in the second header 61 of the indirect heater 53 is discharged to the outside by the operation of the recovery pump 55a. It is a pipeline that discharges and collects.

凝縮装置80は、第2蒸発器50から導かれた熱媒蒸気を冷却して凝縮することにより凝縮液を生成する装置であり、第2蒸発器50の蒸気再利用管路54から分岐して延びる凝縮用蒸気管路70、冷却水が導かれる冷却水供給管路81および生成した凝縮水を第2蒸発器50の蒸発缶51に戻す凝縮水補給管路82が接続している。冷却水供給管路81を介して凝縮装置80に導かれる冷却水としては、図示しない冷却塔等で冷却された工業用水や冷凍装置で冷却された冷水(チラー水)等を使用できる。   The condensing device 80 is a device that generates a condensate by cooling and condensing the heat medium vapor guided from the second evaporator 50, and is branched from the vapor reuse pipe line 54 of the second evaporator 50. A condensing steam pipe 70 extending, a cooling water supply pipe 81 through which cooling water is guided, and a condensed water supply pipe 82 for returning the generated condensed water to the evaporator 51 of the second evaporator 50 are connected. As the cooling water guided to the condensing device 80 through the cooling water supply pipe 81, industrial water cooled by a cooling tower (not shown), cold water (chiller water) cooled by a refrigeration device, or the like can be used.

次に、上記の構成を備える蒸発濃縮装置1の作動を説明する。まず、第1蒸発器30の蒸発缶31には、水溶液供給管路10から水溶液を供給する。蒸発缶31の底部に貯留された水溶液は、循環ポンプ37aの作動により循環管路37を通過して水溶液散布ノズル36に供給され、各伝熱管39の外表面に散布される。   Next, the operation of the evaporative concentration apparatus 1 having the above configuration will be described. First, the aqueous solution is supplied from the aqueous solution supply pipe 10 to the evaporator 31 of the first evaporator 30. The aqueous solution stored at the bottom of the evaporator 31 is supplied to the aqueous solution spray nozzle 36 through the circulation pipe 37 by the operation of the circulation pump 37 a and sprayed on the outer surface of each heat transfer tube 39.

各伝熱管39の内部は、圧縮装置26から供給される水蒸気などの高温の熱媒蒸気が通過し、伝熱管39の内外における熱交換により水溶液の一部が蒸発する。こうして生成された水溶液の蒸気は、蒸発缶31の上部から蒸気移送管路34を経て、第2蒸発器50の第1ヘッダ60に供給される。   Inside each heat transfer tube 39, a high-temperature heat medium vapor such as water vapor supplied from the compression device 26 passes, and a part of the aqueous solution evaporates due to heat exchange inside and outside the heat transfer tube 39. The vapor of the aqueous solution thus generated is supplied from the upper part of the evaporator 31 to the first header 60 of the second evaporator 50 via the vapor transfer pipe 34.

伝熱管39の外表面において蒸発しなかった水溶液は、各伝熱管39の外表面に沿って流下して蒸発缶31の底部に貯留され、再び循環管路37を経て水溶液散布ノズル36から散布される。蒸発缶31で濃縮された水溶液は、循環管路37の途中から一部を濃縮液排出管路38に分流させて、外部に排出することができる。   The aqueous solution that has not evaporated on the outer surface of the heat transfer tube 39 flows down along the outer surface of each heat transfer tube 39 and is stored at the bottom of the evaporator 31, and is again sprayed from the aqueous solution spray nozzle 36 through the circulation line 37. The The aqueous solution concentrated in the evaporator 31 can be partially discharged from the middle of the circulation pipe 37 to the concentrate discharge pipe 38 and discharged to the outside.

一方、伝熱管39の内部を通過して水溶液と熱交換した熱媒蒸気は、冷却されて熱媒液となり、第2ヘッダ41に貯留される。この熱媒液は、熱媒液ポンプ35aの作動により一部が外部に排出され、残部が熱媒液移送管路35を介して第2蒸発器50の蒸発缶51に供給される。   On the other hand, the heat medium vapor that has passed through the inside of the heat transfer tube 39 and exchanged heat with the aqueous solution is cooled to become a heat medium liquid and stored in the second header 41. A part of the heat medium liquid is discharged to the outside by the operation of the heat medium liquid pump 35 a, and the remaining part is supplied to the evaporator 51 of the second evaporator 50 via the heat medium liquid transfer pipe 35.

第2蒸発器50においては、蒸発缶51に貯留された熱媒液が、循環ポンプ57aの作動により熱媒液散布ノズル56から各伝熱管59の外表面に散布される。伝熱管59の内部は、第1蒸発器30から供給された水溶液の蒸気が通過し、伝熱管59の内外における熱交換により熱媒液の一部が蒸発する。生成された熱媒蒸気は、駆動蒸気供給管路23からエゼクタ20への駆動蒸気の供給により、エゼクタ20に吸引されて圧縮され、駆動蒸気と共に圧縮装置26に向けて供給される。そして、圧縮装置26において機械的な圧縮が行われた後、第1蒸発器30の第1ヘッダ40に供給され、第1蒸発器30において水溶液を蒸発するための加熱源として利用される。   In the second evaporator 50, the heat transfer fluid stored in the evaporator 51 is sprayed from the heat transfer fluid spray nozzle 56 to the outer surface of each heat transfer tube 59 by the operation of the circulation pump 57a. The aqueous solution vapor supplied from the first evaporator 30 passes through the inside of the heat transfer tube 59, and a part of the heat transfer liquid evaporates due to heat exchange inside and outside the heat transfer tube 59. The generated heat medium steam is sucked and compressed by the ejector 20 by supplying the drive steam from the drive steam supply line 23 to the ejector 20, and is supplied to the compression device 26 together with the drive steam. Then, after mechanical compression is performed in the compression device 26, it is supplied to the first header 40 of the first evaporator 30 and used as a heating source for evaporating the aqueous solution in the first evaporator 30.

余剰の熱媒蒸気は、凝縮用蒸気管路70を経て凝縮装置80に供給され、冷却水供給管路81を通過する冷却水との熱交換により凝縮される。生成された凝縮液は、凝縮水補給管路82を介して再び第2蒸発器50の蒸発缶51に戻される。   Excess heat medium vapor is supplied to the condensing device 80 via the condensing steam line 70 and condensed by heat exchange with the cooling water passing through the cooling water supply line 81. The generated condensate is returned again to the evaporator 51 of the second evaporator 50 via the condensed water supply line 82.

伝熱管59の外表面において蒸発しなかった熱媒液は、伝熱管59の外表面に沿って流下して蒸発缶51の底部に貯留され、再び循環管路57を経て熱媒液散布ノズル56から散布される。循環管路57を通過する熱媒液の一部は、熱媒液排出管路58を介して外部に排出することができる。こうして、第2蒸発器50の蒸発缶51には、常時一定量の熱媒液が貯留された状態で、熱媒液と水溶液蒸気との熱交換が行われる。   The heat transfer fluid that has not evaporated on the outer surface of the heat transfer tube 59 flows down along the outer surface of the heat transfer tube 59 and is stored at the bottom of the evaporator 51, and again passes through the circulation line 57 to be the heat transfer fluid spray nozzle 56. Scattered from. A part of the heat medium liquid passing through the circulation pipe 57 can be discharged to the outside through the heat medium liquid discharge pipe 58. Thus, heat exchange between the heat transfer fluid and the aqueous solution vapor is performed in a state where a constant amount of the heat transfer fluid is always stored in the evaporator 51 of the second evaporator 50.

伝熱管59の内部を通過して熱媒液と熱交換した水溶液の蒸気は、冷却されて凝縮液となり、第2ヘッダ61に貯留される。この凝縮液は、回収ポンプ55aの作動により、回収管路55を経て回収酸等として回収される。   The vapor of the aqueous solution that has passed through the inside of the heat transfer tube 59 and exchanged heat with the heat transfer fluid is cooled to become a condensate, and stored in the second header 61. This condensate is recovered as recovered acid or the like through the recovery line 55 by the operation of the recovery pump 55a.

このように、本実施形態に係る蒸発濃縮装置1によれば、第2蒸発器50で生成された熱媒蒸気が、まずエゼクタ20で圧縮された後に、圧縮装置26で更に圧縮されて、第1蒸発器30で水溶液を蒸発させるための加熱源として利用される。したがって、比較的低温の熱媒蒸気を、小流量の駆動蒸気によりエゼクタ20に効率良く吸引することができると共に、圧縮装置26においては、エゼクタ20で昇温された蒸気を圧縮するため容積流量の低減を図ることができ、従来に比べて圧縮装置26の小型化を図ることができる。この結果、第1蒸発器30における水溶液の蒸発濃縮を、低コストで効率良く行うことができる。特に、水溶液の蒸発濃縮処理を連続的に行う場合には、特許文献1に開示された構成においてブロワー圧縮機とエゼクタとを常時併用しなければならず、上記の効果がより顕著なものとなることから、本発明の蒸発濃縮装置は、大量の水溶液を連続処理する場合に、特に好適である。   Thus, according to the evaporation concentrating device 1 according to the present embodiment, the heat medium vapor generated by the second evaporator 50 is first compressed by the ejector 20, and then further compressed by the compression device 26, One evaporator 30 is used as a heating source for evaporating the aqueous solution. Therefore, relatively low-temperature heat transfer steam can be efficiently sucked into the ejector 20 by a small flow rate of driving steam, and the compression device 26 compresses the steam heated by the ejector 20 so that the volume flow rate is low. Reduction can be achieved, and the size of the compression device 26 can be reduced as compared with the prior art. As a result, the evaporation and concentration of the aqueous solution in the first evaporator 30 can be efficiently performed at low cost. In particular, when continuously evaporating and concentrating an aqueous solution, the blower compressor and the ejector must be used together in the configuration disclosed in Patent Document 1, and the above-described effect becomes more remarkable. Therefore, the evaporative concentration apparatus of the present invention is particularly suitable when a large amount of aqueous solution is continuously processed.

以上、本発明の一実施形態について詳述したが、本発明の具体的な態様は上記実施形態に限定されるものではない。例えば、本実施形態においては、第1蒸発缶30及び第2蒸発缶50を設け、それぞれにおいて水溶液及び熱媒液を蒸発させて加熱源とすることにより水溶液と熱媒液とを完全に分離し、水溶液の蒸気がエゼクタ20や圧縮装置26に供給されないように構成しているが、図2に示す蒸発濃縮装置100のように、蒸発器110で生成された水溶液の蒸気を、蒸発器110自体の加熱源として利用するように構成することも可能である。   As mentioned above, although one Embodiment of this invention was explained in full detail, the specific aspect of this invention is not limited to the said embodiment. For example, in the present embodiment, the first evaporator 30 and the second evaporator 50 are provided, and the aqueous solution and the heat transfer liquid are completely separated from each other by evaporating the aqueous solution and the heat transfer liquid to form a heating source. The vapor of the aqueous solution is configured not to be supplied to the ejector 20 or the compression device 26, but the vapor of the aqueous solution generated in the evaporator 110 is converted into the evaporator 110 itself as in the evaporation and concentration device 100 shown in FIG. It can also be configured to be used as a heating source.

図2において、蒸発器110は、密閉型の蒸発缶111、水溶液散布装置112、間接式加熱器113、蒸気再利用管路114および回収管路115を備えている。蒸発缶111、水溶液散布装置112および間接式加熱器113の基本構成は、図1の第1蒸発器30を構成する蒸発缶31、水溶液散布装置32および間接式加熱器33の基本構成と同様であり、水溶液散布装置112は、水溶液散布ノズル116と、循環ポンプ117aが介在された循環管路117とを備えている。循環管路117からは水溶液排出管路118が分岐しており、蒸発缶111で濃縮された水溶液を排出することができる。   In FIG. 2, the evaporator 110 includes a sealed evaporator 111, an aqueous solution spraying device 112, an indirect heater 113, a steam reuse pipe 114 and a recovery pipe 115. The basic configurations of the evaporator 111, the aqueous solution spraying device 112, and the indirect heater 113 are the same as the basic configurations of the evaporator 31, the aqueous solution spraying device 32, and the indirect heater 33 that constitute the first evaporator 30 of FIG. The aqueous solution spraying device 112 includes an aqueous solution spraying nozzle 116 and a circulation pipe 117 in which a circulation pump 117a is interposed. An aqueous solution discharge pipe 118 is branched from the circulation pipe 117, and the aqueous solution concentrated by the evaporator 111 can be discharged.

蒸気再利用管路114は、蒸発缶111の上部とエゼクタ20の吸い込み側21とを接続しており、蒸気再利用管路114の途中には、蒸発缶111で生成される水溶液蒸気の一部を凝縮装置80に導く凝縮用蒸気管路70が接続している。エゼクタ20、圧縮装置26及び凝縮装置80の構成は、図1と同様であるため、図1と同じ番号を付して説明を省略する。   The steam reuse pipe line 114 connects the upper part of the evaporator 111 and the suction side 21 of the ejector 20, and a part of the aqueous solution vapor generated in the evaporator 111 is in the middle of the steam reuse pipe line 114. Is connected to the condensing steam line 70. Since the configurations of the ejector 20, the compression device 26, and the condensing device 80 are the same as those in FIG. 1, the same numbers as those in FIG.

水溶液供給管路101から蒸発缶111に供給された水溶液は、水溶液散布装置112により散布され、間接式加熱器113の伝熱管119内を通過する高温蒸気により、伝熱管119の外表面で蒸発する。生成された水溶液の蒸気は、エゼクタ20への駆動蒸気の供給によりエゼクタ20に吸引された後、圧縮装置26で更に機械的に圧縮され、蒸発器110の第1ヘッダ120を経て伝熱管119に供給される。   The aqueous solution supplied from the aqueous solution supply pipe 101 to the evaporator 111 is sprayed by the aqueous solution spraying device 112 and is evaporated on the outer surface of the heat transfer tube 119 by high-temperature steam passing through the heat transfer tube 119 of the indirect heater 113. . The steam of the generated aqueous solution is sucked into the ejector 20 by supplying driving steam to the ejector 20, further mechanically compressed by the compression device 26, and then passed through the first header 120 of the evaporator 110 to the heat transfer tube 119. Supplied.

伝熱管119の内部を通過した蒸気は、伝熱管119の内外における熱交換により冷却されて凝縮液となり、第2ヘッダ121に貯留される。この凝縮液は、回収管路115を介して凝縮装置80に供給され、凝縮用蒸気管路70から供給された水溶液蒸気と共に、凝縮液排出管路83から外部に排出される。   The steam that has passed through the inside of the heat transfer tube 119 is cooled by heat exchange inside and outside the heat transfer tube 119, becomes a condensate, and is stored in the second header 121. This condensate is supplied to the condensing device 80 via the recovery line 115 and discharged together with the aqueous solution vapor supplied from the condensing steam line 70 from the condensate discharge line 83.

本実施形態の蒸発濃縮装置110についても、図1に示す蒸発濃縮装置1と同様に、エゼクタ20に供給する駆動蒸気の消費量、および圧縮装置26の駆動電力を抑制することができ、水溶液の蒸発濃縮処理を効率良く行うことができる。   Also in the evaporative concentration apparatus 110 of the present embodiment, similarly to the evaporative concentration apparatus 1 shown in FIG. 1, the consumption amount of driving steam supplied to the ejector 20 and the driving power of the compression apparatus 26 can be suppressed. Evaporation concentration processing can be performed efficiently.

本発明の実施例及び比較例に基づき、本発明を更に詳細に説明する。但し、本発明の具体的な態様は上記実施形態に限定されるものではない。   The present invention will be described in more detail based on examples and comparative examples of the present invention. However, a specific aspect of the present invention is not limited to the above embodiment.

図1に示す蒸発濃縮装置のように、第2蒸発器50から排出された熱媒蒸気を、まずエゼクタ20に導入して圧縮した後、圧縮装置26の2段のブロワ(ヒートポンプ)で圧縮した場合に得られる温度差を測定した。これを実施例1として表1に示す。表1において、「EJ蒸気消費量」は、エゼクタ20における駆動蒸気の流量(重量流量)を示し、「HP1軸動力」及び「HP2軸動力」は、圧縮装置26の2つのブロワの消費電力を示している。実施例1では、エゼクタ20に導入前の熱媒蒸気が42.0℃であるのに対し、圧縮装置26から吐出後の蒸気温度が63.3℃まで昇温されており、21.3℃の温度差が得られている。   As in the evaporation concentrator shown in FIG. 1, the heat medium vapor discharged from the second evaporator 50 is first introduced into the ejector 20 and compressed, and then compressed by the two-stage blower (heat pump) of the compressor 26. The temperature difference obtained in the case was measured. This is shown in Table 1 as Example 1. In Table 1, “EJ steam consumption” indicates the flow rate (weight flow rate) of the driving steam in the ejector 20, and “HP 1-axis power” and “HP 2-axis power” indicate the power consumption of the two blowers of the compressor 26. Show. In Example 1, the heat medium vapor before being introduced into the ejector 20 is 42.0 ° C., whereas the vapor temperature after being discharged from the compressor 26 is raised to 63.3 ° C., and 21.3 ° C. The temperature difference is obtained.

これに対し、熱媒蒸気を、まず2段のブロワで圧縮した後に、エゼクタで圧縮した場合に得られる温度差を測定したところ、表1に比較例1として示すように、実施例1と同じEJ蒸気消費量に対し、温度差は20℃しか得られなかった。   On the other hand, when the temperature difference obtained when the heat medium vapor was first compressed by the two-stage blower and then compressed by the ejector was measured, as shown in Table 1 as Comparative Example 1, it was the same as Example 1. A temperature difference of only 20 ° C. was obtained with respect to the EJ steam consumption.

そこで、比較例1の条件で2段のブロワの回転数を上昇させ、実施例1と同じ温度差が得られるようにしたところ、表1に比較例2として示すように、EJ蒸気消費量、ならびにHP1軸動力およびHP2軸動力の合計は、実施例1のものと比べていずれも増加し、実施例1との効果の差は明らかであった。   Therefore, when the rotational speed of the two-stage blower was increased under the conditions of Comparative Example 1 so that the same temperature difference as Example 1 was obtained, as shown in Table 1 as Comparative Example 2, the EJ steam consumption amount, In addition, the total of the HP1 shaft power and the HP2 shaft power was increased as compared with that of Example 1, and the difference in effect from Example 1 was clear.

Figure 2010046571
Figure 2010046571

本発明の一実施形態に係る蒸発濃縮装置の概略構成図である。It is a schematic block diagram of the evaporative concentration apparatus which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る蒸発濃縮装置の概略構成図である。It is a schematic block diagram of the evaporative concentration apparatus which concerns on other embodiment of this invention. 従来の蒸発濃縮装置の概略構成図である。It is a schematic block diagram of the conventional evaporative concentration apparatus.

符号の説明Explanation of symbols

1,100 蒸発濃縮装置
20 エゼクタ
26 圧縮装置
30 第1蒸発器
50 第2蒸発器
110 蒸発器

DESCRIPTION OF SYMBOLS 1,100 Evaporation concentration apparatus 20 Ejector 26 Compression apparatus 30 1st evaporator 50 2nd evaporator 110 Evaporator

Claims (4)

水溶液を蒸発濃縮する方法であって、
蒸発器内での加熱により生成された水溶液の蒸気を、駆動蒸気によりエゼクタ内に吸引して圧縮した後、圧縮装置により更に圧縮して昇温し、前記蒸発器の加熱源として利用する水溶液の蒸発濃縮方法。
A method for evaporating and concentrating an aqueous solution,
The vapor of the aqueous solution generated by heating in the evaporator is sucked into the ejector by the driving vapor and compressed, and then further compressed by the compression device to increase the temperature, and the aqueous solution used as the heating source of the evaporator Evaporative concentration method.
水溶液を蒸発濃縮する方法であって、
第1の蒸発器内での加熱により生成された水溶液の蒸気を加熱源として、第2の蒸発器内で熱媒液を加熱して生成した熱媒蒸気を、駆動蒸気によりエゼクタ内に吸引して圧縮した後、圧縮装置により更に圧縮して昇温し、前記第1の蒸発器の加熱源として利用する水溶液の蒸発濃縮方法。
A method for evaporating and concentrating an aqueous solution,
Using the vapor of the aqueous solution generated by heating in the first evaporator as a heating source, the heat medium vapor generated by heating the heat medium liquid in the second evaporator is sucked into the ejector by the driving steam. The method of evaporating and concentrating the aqueous solution used as a heating source of the first evaporator after further compression by a compression device and raising the temperature.
水溶液を加熱蒸発させる蒸発器と、
前記蒸発器で生成された水溶液の蒸気を駆動蒸気により吸引して圧縮するエゼクタと、
前記エゼクタにより圧縮された蒸気を更に圧縮する圧縮装置とを備え、
前記圧縮装置で昇温された蒸気を前記蒸発器の加熱源として利用する水溶液の蒸発濃縮装置。
An evaporator that heats and evaporates the aqueous solution;
An ejector that sucks and compresses the vapor of the aqueous solution generated by the evaporator with driving steam;
A compressor for further compressing the steam compressed by the ejector,
An apparatus for evaporating and concentrating an aqueous solution, using steam heated by the compression apparatus as a heating source of the evaporator.
水溶液を加熱蒸発させる第1の蒸発器と、
前記第1の蒸発器で生成された水溶液の蒸気を加熱源として熱媒液を加熱することにより、熱媒蒸気を生成する第2の蒸発器と、
前記第2の蒸発器で生成された熱媒蒸気を駆動蒸気により吸引して圧縮するエゼクタと、
前記エゼクタにより圧縮された熱媒蒸気を更に圧縮する圧縮装置とを備え、
前記圧縮装置で昇温された熱媒蒸気を前記第1の蒸発器の加熱源として利用する水溶液の蒸発濃縮装置。
A first evaporator that heats and evaporates the aqueous solution;
A second evaporator that generates heat medium vapor by heating the heat medium liquid using the vapor of the aqueous solution generated in the first evaporator as a heating source;
An ejector that sucks and compresses the heat medium steam generated by the second evaporator by driving steam;
A compression device that further compresses the heat medium vapor compressed by the ejector,
An aqueous solution evaporating and concentrating device that uses the heat medium vapor heated by the compression device as a heating source of the first evaporator.
JP2008210822A 2008-08-19 2008-08-19 Method and device for concentrating aqueous solution by evaporation Pending JP2010046571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210822A JP2010046571A (en) 2008-08-19 2008-08-19 Method and device for concentrating aqueous solution by evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210822A JP2010046571A (en) 2008-08-19 2008-08-19 Method and device for concentrating aqueous solution by evaporation

Publications (1)

Publication Number Publication Date
JP2010046571A true JP2010046571A (en) 2010-03-04

Family

ID=42064133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210822A Pending JP2010046571A (en) 2008-08-19 2008-08-19 Method and device for concentrating aqueous solution by evaporation

Country Status (1)

Country Link
JP (1) JP2010046571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148203A (en) * 2011-01-14 2012-08-09 Sasakura Engineering Co Ltd Apparatus and method for producing distilled water
CN106322825A (en) * 2015-06-17 2017-01-11 中国科学院理化技术研究所 Mechanical vapor recompression heat pump
CN112717448A (en) * 2020-11-20 2021-04-30 郑喜勋 Low boiling point working medium compression secondary steam device
CN112870745A (en) * 2019-11-29 2021-06-01 笹仓机械工程有限公司 Device and method for separating foreign substances

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024403A (en) * 1998-07-13 2000-01-25 Sasakura Engineering Co Ltd Evaporation type thickener for aqueous solution
JP2003055282A (en) * 2001-08-09 2003-02-26 Sungrain Kk Apparatus for distilling alcohol
JP2005087175A (en) * 2003-09-19 2005-04-07 Mayekawa Mfg Co Ltd Method for reusing exhaust steam of wort-boiling kettle by highly efficient regeneration and compression and apparatus for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024403A (en) * 1998-07-13 2000-01-25 Sasakura Engineering Co Ltd Evaporation type thickener for aqueous solution
JP2003055282A (en) * 2001-08-09 2003-02-26 Sungrain Kk Apparatus for distilling alcohol
JP2005087175A (en) * 2003-09-19 2005-04-07 Mayekawa Mfg Co Ltd Method for reusing exhaust steam of wort-boiling kettle by highly efficient regeneration and compression and apparatus for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148203A (en) * 2011-01-14 2012-08-09 Sasakura Engineering Co Ltd Apparatus and method for producing distilled water
CN106322825A (en) * 2015-06-17 2017-01-11 中国科学院理化技术研究所 Mechanical vapor recompression heat pump
CN106322825B (en) * 2015-06-17 2018-09-14 中国科学院理化技术研究所 Mechanical vapor recompression heat pump
CN112870745A (en) * 2019-11-29 2021-06-01 笹仓机械工程有限公司 Device and method for separating foreign substances
CN112717448A (en) * 2020-11-20 2021-04-30 郑喜勋 Low boiling point working medium compression secondary steam device

Similar Documents

Publication Publication Date Title
JP4920020B2 (en) Evaporation concentration apparatus and evaporation concentration method for aqueous solution
WO2014057656A1 (en) Heat exchanging device and heat pump
JPH02306067A (en) Absorption type freezing
JP6397300B2 (en) Concentration system
JP2008188514A (en) Compressor for steam in reduced pressure type evaporator
JP5783810B2 (en) Beverage processing equipment
JP2010046571A (en) Method and device for concentrating aqueous solution by evaporation
KR101221092B1 (en) Flue Gas Heat Source Hot and Cold Water Making System
JP2017192868A (en) Distillation apparatus with distillation column
JP2007093043A (en) Hot water supply system
JP6199428B2 (en) Superheated steam generator
JP4542985B2 (en) Absorption heat pump
CN210751315U (en) Air source multiple-effect vacuum evaporation system applied to cutting fluid concentration
JP4618728B2 (en) Self-vapor compression evaporator
JP5557498B2 (en) Evaporative concentration method
CN210495249U (en) Negative pressure low temperature heat pump type concentrator
JP2000024403A (en) Evaporation type thickener for aqueous solution
EP2212629A1 (en) Non-vacuum absorption refrigeration
JP2018122266A (en) Concentration system and concentration method
JP2004041850A (en) Evaporative manufacturing method for highly pure water and apparatus therefor
US1134269A (en) Refrigerating apparatus.
KR20160054652A (en) Hybrid system of steam jet vacuum cooling unit
CN100494819C (en) Vacuum cooling-water machine by water injection-jet propulsion
JPH03202101A (en) Evaporation method and apparatus
JP5604742B2 (en) Distilled water production apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Effective date: 20120104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326