JP2004218024A - Method for producing grain-oriented silicon steel sheet excellent in magnetic characteristic - Google Patents

Method for producing grain-oriented silicon steel sheet excellent in magnetic characteristic Download PDF

Info

Publication number
JP2004218024A
JP2004218024A JP2003008437A JP2003008437A JP2004218024A JP 2004218024 A JP2004218024 A JP 2004218024A JP 2003008437 A JP2003008437 A JP 2003008437A JP 2003008437 A JP2003008437 A JP 2003008437A JP 2004218024 A JP2004218024 A JP 2004218024A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
ppm
mass
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003008437A
Other languages
Japanese (ja)
Other versions
JP4292804B2 (en
Inventor
Minoru Takashima
稔 高島
Yasuyuki Hayakawa
康之 早川
Takashi Terajima
敬 寺島
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003008437A priority Critical patent/JP4292804B2/en
Publication of JP2004218024A publication Critical patent/JP2004218024A/en
Application granted granted Critical
Publication of JP4292804B2 publication Critical patent/JP4292804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented silicon steel sheet excellent in the magnetic characteristic at a low cost. <P>SOLUTION: In the method for producing the grain-oriented silicon steel sheet, in which to a steel slab containing 0.01-0.08 mass% C, 2.0-4.5 mass% Si and 0.01-0.5 mass% Mn and <50 mass ppm S, Se and O, respectively, and restraining <60 mass ppm N and <100 mass ppm Sol. Al, an annealing and a rolling are applied, and after forming a cold-rolled sheet having the finish sheet thickness, a primary recrystallize-annealing is applied and an annealing parting agent is applied and a secondary recrystallize-annealing is applied, the crystal grain diameter in the steel sheet after the primary recrystallize-annealing, is made to in the range of 8-25 μm, the average temperature rising rate at 800-900°C in the temperature-rising process after the secondary recrystallize-annealing, is made to be in the range of 0.5-5°C/h, and the difference of nitrogen in the steel sheet at 900°C and 800°C in the temperature-rising process of the secondary recrystallize-annealing, is made to be in the range of -10 ppm to +25 ppm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明に属する技術分野】
この発明は、磁気特性に優れた方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
方向性電磁鋼板は、変圧器や発電機の鉄心材料として用いられる軟磁性材料である。近年、省エネルギーの観点から、これら電気機器のエネルギーロスの低減に対する要求が高まっており、鉄心材料として用いられる方向性電磁鋼板においても、従来に増して、良好な磁気特性が求められるようになってきた。
【0003】
方向性電磁鋼板は、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、仕上焼鈍の際に、いわゆるゴス(Goss)方位と称される(110)〔001〕方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。したがって、二次再結晶粒の結晶方位が磁気特性に大きな影響を及ぼす。
【0004】
さて、従来、この様な方向性電磁鋼板はSiを4.5 mass%程度以下、および、MnS、MnSe、AlNなどのインヒビター成分を含有するスラブを1300℃以上に加熱後、熱間圧延し、必要に応じて、熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで湿潤水素雰囲気で一次再結晶焼鈍することにより、一次再結晶および脱炭を行い、マグネシアを主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分の純化のために、1200℃で5時間程度の二次再結晶焼鈍を行うことにより製造されてきた。たとえば、特許文献1〜3などに、その技術が開示されている。しかしながら、このような方向性電磁鋼板の製造工程では、高温のスラブ加熱および高温でかつ長時間の二次再結晶焼鈍が必要であり、その製造コストは極めて高いものであった。
【0005】
【特許文献1】
米国特許No.1965559号公報
【特許文献2】
特公昭40−15611 号公報
【特許文献3】
特公昭51−13469 号公報
【0006】
そこで、発明者らは、特許文献4に記載されているように、スラブにインヒビター成分が含有せずとも二次再結晶できる技術(インヒビターレス法)を開発した。
【0007】
【特許文献4】
特開2000−129356号公報
【0008】
この方法は、従来の方向性電磁鋼板の製造方法とは、全く技術思想を異にする。すなわち、従来の方向性電磁鋼板がMnS、AlN、MnSeなどの析出物(インヒビター)を利用して、二次再結晶を発現させるのに対して、インヒビターレス法では、これらインヒビターを用いず、むしろ、高純度化することにより、二次再結晶を発現させる技術である。インヒビターレス法では、高温でのスラブ加熱が不要であり、また、二次再結晶焼鈍を高温で長時間行う必要もなく、低コストでの方向性電磁鋼板の製造が可能となる。しかしながら、近年、特に強く求められている高特性材を安定して製造するには、限界があった。特に、コイルエッジ部にて磁気特性が大きく劣化するという問題点があった。
【0009】
【発明が解決しようとする課題】
上述した通り、スラブにインヒビター成分を含有しない方向性電磁鋼板の製造において、磁気特性が近年の高特性材の要求には、不十分であり、特に、コイルエッジ部付近で磁気特性が劣化するという問題点があった。
【0010】
この発明は、上記の問題を有利に解決するもので、磁気特性に優れた方向性電磁鋼板を低コストで製造する方法を提案することを目的とする。
【0011】
【課題を解決するための手段】
発明者らは、インヒビターレス成分系における二次再結晶時の諸条件が磁気特性に及ぼす影響について、鋭意研究を進めた。
【0012】
その結果、二次再結晶粒をゴス方位に高度に集積させるためには、二次再結晶挙動の厳密な制御、すなわち、
▲1▼800 ℃から900 ℃の間で二次再結晶させること
▲2▼この温度域での昇温速度を厳密に制御すること
▲3▼この温度域での鋼板中の窒素の増減を厳密に制御すること
が必要であることを研究室規模の実験により明らかにした。更に、これらの知見の工業的規模での適用を試みた結果、コイル中央部のみならず、コイルエッジ部においても磁気特性が大きく改善され、コイル全幅において、極めて良好な破気特性が得られることを見いだした。
【0013】
本発明の要旨とするところは、以下の通りである。
(i)C:0.01〜0.08質量%、Si:2.0〜4.5質量%およびMn:0.01〜0.5質量%を含有するとともに、S、SeおよびOを各々50質量ppm 未満、Nを60質量ppm 未満ならびにSol.Alを100質量ppm未満に抑制し、残部がFeおよび不可避的不純物よりなる鋼スラブに、焼鈍および圧延を施して最終板厚の冷間圧延板とした後、一次再結晶焼鈍を施し、焼鈍分離剤を塗布し、二次再結晶焼鈍を施す方向性電磁鋼板の製造方法において、
(1)一次再結晶焼鈍後の鋼板における結晶粒径を8〜25μmの範囲とすること、
(2)二次再結晶焼鈍の昇温過程における、800 ℃から900 ℃までの平均昇温速度を0.5〜5 ℃/hの範囲とすること、および、
(3)二次再結晶焼鈍の昇温過程にて、900 ℃での鋼板窒素量から800 ℃での鋼板窒素量を減じたときの鋼板窒素量差を−10ppm〜+25ppmの範囲とすること、
を特徴とする磁気特性に優れた方向性電磁鋼板の製造方法。
【0014】
(ii)前記鋼スラブは、Sol.Alを20質量ppm以上含有することを特徴とする上記(i)記載の磁気特性に優れた方向性電磁鋼板の製造方法。
【0015】
(iii)前記鋼スラブは、さらにSb:0.02〜0.30質量%およびSn:0.04〜0.60質量%の一種又は二種を含有し、かつ、SbおよびSnの含有量をそれぞれ[Sb]および[Sn]としたときの[Sb]+1/2[Sn]の値が0.020〜0.30質量%であることを特徴とする上記(i)または(ii)に記載の磁気特性に優れた方向性電磁鋼板の製造方法。
【0016】
(iv)前記鋼スラブは、さらにCu:0.06〜0.5質量%を含有することを特徴とする上記(i)〜(iii)のいずれかに記載の磁気特性に優れた方向性電磁鋼板の製造方法。
【0017】
【発明の実施の形態】
以下、この発明を具体的に説明する。
この発明のスラブは、公知の方法、たとえば、製鋼−連続鋳造(あるいは造塊−分塊圧延)によって製造される。この際、スラブ組成については、以下のように限定される。尚、以下、各成分の含有量の単位である質量%および質量ppmは、それぞれ単に%およびppmと記載する。
【0018】
C:0.01〜0.08%
Cは、一次再結晶集合組織改善に有用な元素であり、この観点から0.01〜0.08%の範囲で添加する必要がある。Cの上記範囲外の添加は、一次再結晶集合組織が劣化し、ゴス方位に高度に集積した二次再結晶粒が得られず、磁気特性が劣化するからである。
【0019】
Si:2.0〜4.5%
Siは、電気抵抗を高めることによって鉄損を改善する有用元素であり、この発明では2.0 %以上含有させる必要がある。しかしながら、Si含有量が4.5 %を超えると冷間圧延が著しく困難になるため、Si含有量の上限を4.5 %とする。
【0020】
Mn:0.01〜0.5%
Mnは、製造時の熱間加工性を向上させる効果がある。この目的のため、この発明では0.01%以上添加する必要がある。しかしながら、0.5 %を超えてMnを含有した場合、一次再結晶集合組織が劣化し、Goss方位に高度に集積した二次再結晶粒が得られず、磁気特性が劣化するため、Mn含有量の上限を0.5%とする。
【0021】
S、SeおよびO:各々50ppm 未満
S、SeおよびOは、いずれも磁気特性を劣化させる成分であることから、これらの成分の含有量を抑制する必要がある。特に、S、SeおよびOのそれぞれの含有量がともに50ppm以上である場合には、二次再結晶が困難となり、磁気特性が劣化するため、S、SeおよびOの含有量は各々50ppm 未満に抑制することが必要である。
【0022】
N:60ppm 未満
Nもまた、S、SeおよびOと同様、磁気特性を劣化させる成分であることから、N含有量を抑制する必要がある。特に、N含有量が60ppm以上である場合には、二次再結晶が困難となり、磁気特性が劣化するため、N含有量は60ppm 未満に抑制することが必要である。
以上の成分が、鋼スラブ中に含有(添加)あるいは含有抑制が必須の元素であるが、必要に応じて、sol.Al、Sb、Sn、Cuについても、工業的により安定に磁気特性が良好な製品を得る観点から、以下に示す含有量の範囲で鋼スラブ中に適宜添加することができる。
【0023】
Sol.Al: 100ppm 未満
Alは、製鋼において、脱酸のために微量添加(いわゆるアルミキルド)されるが、鋼中のSol.Al含有量が100ppm以上だと、一次再結晶焼鈍時に鋼板表面に形成される酸化膜の緻密性に悪影響を及ぼすので、Sol.Al含有量は100ppm未満に抑制する必要がある。なお、Sol.Alは、20ppm 以上100ppm未満の範囲であれば、一次再結晶焼鈍時に鋼板表面に形成される酸化膜を緻密化し、二次再結晶焼鈍時の窒素の増減を抑制して、二次再結晶粒のゴス方位への集積を向上させ、磁気特性を改善することができる。そのため、Sol.Alは、20ppm 以上の微量含有させることが好ましい。
【0024】
Sb:0.02〜0.30質量%およびSn:0.04〜0.60質量%の一種又は二種を含有し、かつ、SbおよびSnの含有量をそれぞれ[Sb]および[Sn]としたときの[Sb]+1/2[Sn]の値が0.020〜0.30質量%であること
SbおよびSnは、一次再結晶焼鈍時に、鋼板の酸化速度を低減し、Alによる緻密な酸化膜の形成を促進する成分である。したがって、Sb、Snを添加する場合には、上記微量Sol.Alの存在下であることが好ましい。SbおよびSnはいずれも、上記効果を奏する成分であるので、SbおよびSnのいずれか一方だけを含有しても、あるいは、双方を含有してもよい。SbおよびSnの含有量は、上記効果を発揮するため、それぞれ0.30%以下および0.60%以下含有し、かつ、SbおよびSnの含有量をそれぞれ[Sb]および[Sn]としたときの[Sb]+1/2[Sn]の値が0.020〜0.30%であることが好ましい。Sbが0.02%未満であるか、Snが0.04%未満であるか、あるいは、〔Sb〕+1/2〔Sn〕が0.020%未満であると窒素の増減を抑制する効果が不十分になる傾向があり、また、Sbが0.30%超えか、Snが0.60%超えか、〔Sb〕+1/2〔Sn〕が0.30%超えである場合には、冷間圧延性が劣化するので、不経済である。
なお、鋼スラブの原料の一部としてスクラップ等を用いた場合には、Sbを0.02質量%未満およびSnを0.04質量%未満をそれぞれ微量含有する場合があるが、かかる微量のSbおよびSnを含有する場合には、本発明の効果は奏しないものの、害を及ぼすものではないので、不可避的不純物に含めることとする。
【0025】
なお、二次再結晶中のガス切替パターンやガス組成を制御することによっても、二次再結晶焼鈍時の窒素の増減を抑制することは可能であるが、実コイルを用いた工業的規模での生産では、安定性に欠ける。というのは、二次再結晶焼鈍中に、コイルの幅方向や長手方向に、均一な雰囲気を得ることは困難だからである。一方、微量Sol.Alの制御や、Sb、Snの添加は、工業的規模での生産において二次再結晶焼鈍時の窒素の増減を安定的に抑制するために効果的である。
【0026】
Cu:0.06〜0.5%
Cuは二次再結晶焼鈍時に、表面に偏析して窒素の増減を制御する。特にコイルエッジ部での窒素増減の抑制に効果的であり、この点から、0.06〜0.5%の範囲で添加されることが望ましい。Cu含有量が0.06%未満では、コイルエッジ部において、窒素増減を抑制する効果が小さく、0.5%を超えて添加すると、表面に「へげ」と呼ばれる欠陥が生じる。
【0027】
上記成分組成に限定した鋼スラブをスラブ加熱した後、熱間圧延を施す。このスラブ加熱は1050〜1250℃の範囲が望ましい。1250℃を超える高温スラブ加熱は、スラブにインヒビター成分を含まない本発明においては無意味であり、コストアップとなるばかりである。
【0028】
次いで、熱延鋼板に、必要に応じて熱延板焼鈍を施したのち、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延を施して、最終冷延板とする。冷間圧延は、常温で行っても良いし、あるいは、常温より高い温度、例えば250 ℃程度に上げて圧延する温間圧延としてもよい。
【0029】
その他、上記に代わる方法、たとえばスラブ厚を薄くして熱間圧延を省略、あるいは簡略化するなどの圧延工程を施してもよい。
【0030】
ついで、最終冷間圧延板に一次再結晶焼鈍を施す。一次再結晶焼鈍の第一の目的は、一次再結晶粒径を制御し、二次再結晶温度を800 ℃〜900 ℃とすることである。二次再結晶温度が800 ℃未満であったり、900 ℃越えであったりすると、二次再結晶粒のゴス方位への集積度が劣化し、磁気特性が劣化する。二次再結晶温度を800 ℃から900 ℃に調整するためには、一次再結晶焼鈍後の鋼板における平均結晶粒径を8〜25μmの範囲とする必要がある。一次再結晶焼鈍後の結晶粒径は、一次再結晶焼鈍温度が高くなるほど、また焼鈍時間が長くなるほど大きくなるが、冷延圧下率や冷間圧延前の結晶粒径の影響も受けるので、一次再結晶焼鈍後の結晶粒径が上記の範囲となるように、一次再結晶焼鈍における焼鈍温度および焼鈍時間を設定する。一次再結晶焼鈍の第二の目的は、二次再結晶焼鈍中に窒素の増減変動が起こりにくい表面を得ることである。前述のように、鋼中の微量のSol.Alや、Sb、Sbは、一次再結晶焼鈍中に形成される表面酸化層を緻密化し、窒素の増減変動を小さくするのに有効である。一次再結晶焼鈍の第三の目的は、脱炭である。鋼中の炭素量を50ppm 未満に低減することにより、時効による製品の磁気特性劣化を防ぐことができる。
【0031】
一次再結晶焼鈍後、鋼板の表面に焼鈍分離剤を塗布する。焼鈍分離剤としては、従来から公知のあらゆる焼鈍分離剤が適合する。特に、マグネシアを主剤とし、必要に応じて、チタニア、ストロンチウム化合物、硫化物、塩化物およびほう化物などの添加剤を添加したものを水スラリーとして塗布したものが好適である。その他の焼鈍分離剤としては、シリカやアルミナなどを用いることもできる。
【0032】
その後、二次再結晶焼鈍を行う。二次再結晶焼鈍の第一の目的は、二次再結晶の発現である。二次再結晶により、ゴス方位に集積した結晶粒となり、良好な磁気特性が得られる。このとき、二次再結晶が生じる800 ℃から900 ℃までの昇温過程における昇温速度および窒素増減変動の制御が重要である。
【0033】
この発明では、800℃から900℃への昇温過程における平均昇温速度は0.5〜5℃/hの範囲であることが必要である。800℃から900℃への平均昇温速度が0.5℃/h未満であるか、あるいは、5℃/h超えである場合には、二次再結晶粒のゴス方位への集積が悪くなり、磁気特性が劣化するからである。
【0034】
また、この発明では、二次再結晶焼鈍の昇温過程にて、900 ℃での鋼板窒素量から800 ℃での鋼板窒素量を減じたときの鋼板窒素量差を−10ppm〜+25ppmの範囲とすることが必要である。前記鋼板窒素量差、すなわち、(900℃での鋼中窒素量)−(800℃での鋼中窒素量)が−10ppm未満であるか、+25ppm超えである場合には、二次再結晶粒のゴス方位への集積が悪くなり、磁気特性が劣化するからである。
【0035】
なお、鋼中の窒素を増減変動を抑制するための手段としては、仕上焼鈍時の800〜900℃における、雰囲気ガスの適正化(窒素ガス分圧の増減)、これらガス組成の切り換えパターン、昇温速度(この温度域での滞留時間の増減)の制御によることが好ましい。また、上記鋼板窒素量差は、少なくともコイル幅方向中央部で達成されていれば良いが、全幅で達成されることが好ましい。
【0036】
二次再結晶焼鈍の後、鋼板表面に絶縁被膜を塗布、焼き付けることもできる。絶縁被膜の種類については、特に限定されないが、従来公知のあらゆる絶縁被膜が適合する。たとえば、特開昭50−79442 号公報や特開昭48−39338 号公報に記載されている、リン酸塩−クロム酸−コロイダルシリカを含有する塗布液を鋼板に塗布し、800 ℃程度で焼き付ける方法が好適である。
【0037】
また、平坦化焼鈍により、鋼板の形状を整えることも可能であり、さらには絶縁被膜の焼き付けを兼ねた平坦化焼鈍を行うこともできる。
【0038】
【実施例】
実施例1
C:0.07%、Si:3.5%、Mn:0.05%、Sol.Al:50ppm、N:25ppm、S:10ppm、Se:0.1ppm、O:10ppm、Sb:0.02%、Sn:0.02%、Cu:0.15%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1150℃に加熱後、熱間圧延により板厚2.0 mmの熱延板とした後、1000℃で30秒間の熱延板焼鈍を施した。ついで、冷間圧延により板厚0.30mmとした後、種々の均熱温度にて、均熱時間30秒間の一次再結晶焼鈍を施した。表1に均熱温度と一次再結晶焼鈍後の平均結晶粒径を示す。次に、MgO:95%、TiO:5%を含有する焼鈍分離剤を水スラリーとし鋼板に塗布し、800℃から900℃までの昇温速度が異なる5種類のヒートパターンのいずれかの条件で二次再結晶焼鈍を行った。二次再結晶焼鈍の各種ヒートパターンについては図1に示す。上記のようにして得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを重量比3:1:3で含有する塗布液を塗布し、800℃で焼き付けた。その後、コイル幅中央部の磁気特性を調査した。磁気特性は、800℃で3時間の歪取焼鈍を行った後、800A/mで励磁したときの磁束密度Bおよび50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。得られた結果を表1に併記する。また、二次再結晶焼鈍にて800℃と900℃にそれぞれ到達した時点で焼鈍を中止して、800℃と900 ℃におけるコイル幅中央部での鋼中の窒素含有量をそれぞれ分析すると共に、二次再結晶発現の有無をマクロ組織観察により明らかにした。表中のΔN(ppm)は、(900℃での鋼板窒素量)−(800 ℃の鋼板窒素量)を表す。
【0039】
【表1】

Figure 2004218024
【0040】
表1より明らかなように、二次再結晶焼鈍における800℃から900 ℃までの昇温過程での窒索の増減変動が抑制された条件において、一次再結晶焼鈍後の平均結晶粒径が8〜25μmであって、かつ、二次再結晶焼鈍時の昇温速度が0.5〜5℃/hの範囲であるとき、良好な磁気特性が得られている。
【0041】
実施例2
C:0.015%、Si:3.2%、Mn:0.25%、Sol.Al:15ppm、N:55ppm、S:10ppm、Se:0.1ppm、O:10ppm、Sb:0.01%、Sn:0.001%、Cu:0.01%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブAと、C:0.015 %、Si:3.2 %、Mn:0.25%、Sol.Al:30ppm 、N:55ppm 、S:10ppm 、Se:0.1ppm、O:10ppm 、Sb:0.02%、Sn:0.02%、Cu:0.01%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブBを、1220℃に加熱後、熱間圧延により板厚2.2mmの熱延板とした後、冷間圧延により、板厚1.8mmとした。その後、1050℃で100秒間の中間焼鈍を施した。ついで、冷間圧延により板厚0.23mmとした後、均熱温度880℃、均熱時間30秒間 の条件で一次再結晶焼鈍を施した。一次再結晶焼鈍後の平均結晶粒径は、18μmであった。次に、MgO:95%、SrSO:5%を含有する焼鈍分離剤を水スラリーとして鋼板に塗布し、800℃から900℃までの昇温過程における、昇温速度を2℃/h(一定)とした上で、炉内雰囲気ガスが異なる5種類のヒートパターンのいずれかの条件で二次再結晶焼鈍を行った。二次再結晶焼鈍の各種ヒートパターンについては図2に示す。上記のようにして得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを重量比3:1:2で含有する塗布液を塗布し、800℃で焼き付けた。その後、コイル幅中央部の磁気特性を調査した。磁気特性は、800℃で3時間の歪取焼鈍を行った後、800A/mで励磁したときの磁束密度Bおよび50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。得られた結果を表2に併記する。また、二次再結晶焼鈍にて800℃と900 ℃にそれぞれ到達した時点で焼鈍を中止して、800℃と900 ℃におけるコイル幅中央部での鋼中の窒素含有量をそれぞれ分析すると共に、二次再結晶発現の有無をマクロ組織観察により明らかにした。表中のΔN(ppm)は、(900℃での鋼板窒素量)−(800 ℃の鋼板窒素量)を表す。
【0042】
【表2】
Figure 2004218024
【0043】
表2より、Sol.Al、Sb、Snの有無に関わらず、(900℃到達時の窒素量)−(800℃到達時の窒素量)が、−10ppm〜+25ppmの範囲の時に良好な磁気特性が得られることがわかる。しかし、微量Sol.Al、Sb、Snを含まない鋼Aにおいて、二次再結晶焼鈍昇温時の窒素の増減は、安定性に欠ける。これは、微量Sol.Al、Sb、Snを含まないとき、緻密な酸化膜が形成されないため、二次再結晶中の窒素の増減変動は、ガス組成、ヒートパターンのみならず、ガスの流れなど工業生産において、不可避的に変動する焼鈍条件の影響を受けやすくなるためである。一方、微量Sol.Alの存在下でSbやSnが添加された鋼Bにおいては、適切なガス組成、ガス切替パターンのもとでは、安定して、窒素の増減変動を抑制することが可能となり、良好な破気特性が安定して得られる。
【0044】
したがって、この発明では、窒素量の増減変動を抑制することが、良好な磁気特性を得るためには必要であるのであって、微量Sol.Alの存在下でSbおよび/またはSnの添加は必ずしも必要ではない。しかし、工業生産においては、微量Sol.Alの存在下でSbおよび/またはSnを添加することが、安定性の点において有利に働く。
【0045】
実施例3
C:0.05%、Si:3.5%、Mn:0.05%、N:35ppm、S:10ppm、Se:0.1ppm、O:10ppm、および表3に示す組成のSol.Al、Sb、Sn、Cuを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1100℃に加熱した後、熱間圧延により板厚2.0mmの熱延板とした後、950℃で30秒間の熱延板焼鈍を施した。ついで、冷間圧延により板厚0.35mmとした後、一次再結晶焼鈍後の平均粒径が8〜25μmの範囲になるように、均熱温度および均熱時間を調整し、一次再結晶焼鈍を行った。次に、MgO:95%、MgSO:5%を含有する焼鈍分離剤を水スラリーとして鋼板に塗布し、図2に示すヒートパターンCの条件で二次再結晶焼鈍を行った。上記のようにして得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイダルシリカを重量比4:1:3で含有する塗布液を塗布し、800 ℃で焼き付けた。
【0046】
その後、コイル幅中央部(コイル幅:1000mm)、およびコイル幅端部(具体的には、コイルエッジからコイル幅方向に80mmだけ内側にある部分)の磁気特性をそれぞれ調査した。磁気特性は、800℃で3時間の歪取焼鈍を行った後、800A/mで励磁したときの磁束密度Bおよび50Hzで1.7Tまで交流で励磁したときの鉄損W17/50で評価した。得られた結果を表3および表4に併記する。また、二次再結晶焼鈍にて800℃と900℃にそれぞれ到達した時点で焼鈍を中止して、800℃と900℃におけるコイル幅中央部およびコイル幅端部での鋼中の窒素含有量をそれぞれ分析すると共に、二次再結晶発現の有無をマクロ組織観察により明らかにした。表中のΔN(ppm)は、(900℃での鋼板窒素量)−(800 ℃の鋼板窒素量)を表す。
【0047】
【表3】
Figure 2004218024
【0048】
【表4】
Figure 2004218024
【0049】
表3および表4の結果から、Sol.Alが20ppm未満のNo.3−1、および、〔Sb〕+1/2〔Sn〕が0.02%未満のNo.3−4はいずれも、コイル幅中央部においては良好な磁気特性が得られたが、コイル幅端部では、やや磁性が劣化し、歩留まりを落とす結果となった。また、微量Sol.Alの存在下でSbまたはSnが添加されて〔Sb〕+1/2〔Sn〕の値が好適範囲(0.020〜0.30%)であり、Cuを好適範囲(0.06〜0.5%)外である0.05%添加した、No.3−2、3−3および3−5〜3−10は、コイル幅中央部およびコイル幅端部でいずれも良好な磁気特性であった。さらに、微量Sol.Alの存在下でSbまたはSnが添加されて〔Sb〕+1/2〔Sn〕の値が好適範囲(0.020〜0.30%)であり、Cuを好適範囲(0.06〜0.5%)で複合添加した、No.3−11および3−12では、コイル中央部およびコイル幅端部でいずれも、より一層安定して良好な磁気特性が得られた。
【0050】
【発明の効果】
かくして、この発明に従い、鋼スラブにインヒビター成分を有しない方向性電磁鋼板の製造において、(1)一次再結晶焼鈍後の鋼板における結晶粒径を8〜25μmの範囲とすること、(2)二次再結晶焼鈍の昇温過程における、800 ℃から900 ℃までの平均昇温速度を0.5〜5 ℃/hの範囲とすること、および、(3)二次再結晶焼鈍の昇温過程にて、900 ℃での鋼板窒素量から800 ℃での鋼板窒素量を減じたときの鋼板窒素量差を−10ppm〜+25ppmの範囲とすることにより、磁気特性に優れた方向性電磁鋼板の製造が可能となる。とくに、これを工業的に実施する場合には、微量Sol.Alの存在下でSb、Sn、Cuの適正量の添加が有利に働く。
【0051】
本発明によれば、安価かつ磁気特性に優れた方向性電磁鋼板を、工業的に安定して製造することが可能となり、その工業的価値は極めて高い。
【図面の簡単な説明】
【図1】実施例1で行った二次再結晶焼鈍における種々のヒートパターンを示した図である。
【図2】実施例2で行った二次再結晶焼鈍における種々のヒートパターンを示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties.
[0002]
[Prior art]
A grain-oriented electrical steel sheet is a soft magnetic material used as a core material of a transformer or a generator. In recent years, from the viewpoint of energy saving, there has been an increasing demand for reduction of energy loss of these electrical devices, and even in grain-oriented electrical steel sheets used as iron core materials, better magnetic properties than ever have been demanded. Was.
[0003]
A grain-oriented electrical steel sheet has a crystal structure in which the <001> orientation, which is the axis of easy magnetization of iron, is highly aligned with the rolling direction of the steel sheet. Such texture causes preferentially large growth of crystal grains of the (110) [001] orientation, so-called Goss orientation, during the finish annealing during the manufacturing process of the grain-oriented electrical steel sheet. Formed through secondary recrystallization. Therefore, the crystal orientation of the secondary recrystallized grains has a great influence on the magnetic properties.
[0004]
Conventionally, such a grain-oriented electrical steel sheet is prepared by heating a slab containing about 4.5 mass% or less of Si and an inhibitor component such as MnS, MnSe, and AlN to 1300 ° C. or more, followed by hot rolling. If necessary, after performing hot-rolled sheet annealing, the final sheet thickness is obtained by cold rolling once or twice or more with intermediate annealing, followed by primary recrystallization annealing in a wet hydrogen atmosphere to perform primary recrystallization. And decarburization, apply an annealing separator mainly composed of magnesia, and then perform secondary recrystallization annealing at 1200 ° C for about 5 hours for secondary recrystallization and purification of inhibitor components. It has been. For example, Patent Documents 1 to 3 disclose the technology. However, in the production process of such a grain-oriented electrical steel sheet, high-temperature slab heating and high-temperature and long-time secondary recrystallization annealing are required, and the production cost is extremely high.
[0005]
[Patent Document 1]
U.S. Pat. 1965559
[Patent Document 2]
Japanese Patent Publication No. 40-15611
[Patent Document 3]
JP-B-51-13469
[0006]
Therefore, the inventors have developed a technique (inhibitor-less method) capable of performing secondary recrystallization without containing an inhibitor component in a slab, as described in Patent Document 4.
[0007]
[Patent Document 4]
JP 2000-129356 A
[0008]
This method has a completely different technical idea from the conventional method for manufacturing a grain-oriented electrical steel sheet. That is, while conventional grain-oriented electrical steel sheets utilize precipitates (inhibitors) such as MnS, AlN, and MnSe to develop secondary recrystallization, the inhibitorless method does not use these inhibitors, but rather uses these inhibitors. This is a technique for expressing secondary recrystallization by high purification. In the inhibitorless method, slab heating at a high temperature is not required, and secondary recrystallization annealing does not need to be performed at a high temperature for a long time, so that it is possible to manufacture a grain-oriented electrical steel sheet at low cost. However, in recent years, there has been a limit in stably producing a high-performance material that is particularly strongly required. In particular, there is a problem that the magnetic characteristics are greatly deteriorated at the coil edge portion.
[0009]
[Problems to be solved by the invention]
As described above, in the production of grain-oriented electrical steel sheets that do not contain an inhibitor component in the slab, the magnetic properties are insufficient for recent demands for high-performance materials, and in particular, the magnetic properties deteriorate near the coil edge. There was a problem.
[0010]
The present invention advantageously solves the above-mentioned problems, and has as its object to propose a method of manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties at low cost.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the effects of various conditions during the secondary recrystallization on the magnetic properties in the inhibitorless component system.
[0012]
As a result, in order to highly accumulate the secondary recrystallized grains in the Goss orientation, strict control of the secondary recrystallization behavior, that is,
(1) Secondary recrystallization between 800 ° C and 900 ° C
(2) Strictly controlling the heating rate in this temperature range
(3) Strictly control the increase and decrease of nitrogen in the steel sheet in this temperature range
Is required by laboratory-scale experiments. Furthermore, as a result of attempting to apply these findings on an industrial scale, the magnetic properties were greatly improved not only in the center of the coil but also at the coil edge, and extremely good air-breaking characteristics were obtained over the entire width of the coil. Was found.
[0013]
The gist of the present invention is as follows.
(I) C: 0.01 to 0.08% by mass, Si: 2.0 to 4.5% by mass and Mn: 0.01 to 0.5% by mass, and each of S, Se and O Less than 50 ppm by weight, N less than 60 ppm by weight and Sol. Al is suppressed to less than 100 ppm by mass, and the rest of the steel slab consisting of Fe and inevitable impurities is subjected to annealing and rolling to form a cold-rolled sheet having a final thickness, then subjected to primary recrystallization annealing, and then subjected to annealing separation. In a method for producing a grain-oriented electrical steel sheet to which a coating agent is applied and subjected to secondary recrystallization annealing,
(1) The crystal grain size of the steel sheet after the primary recrystallization annealing is in the range of 8 to 25 μm,
(2) The average rate of temperature rise from 800 ° C. to 900 ° C. in the temperature rise process of the secondary recrystallization annealing is in the range of 0.5 to 5 ° C./h;
(3) The difference in the steel sheet nitrogen amount when the steel sheet nitrogen amount at 800 ° C. is reduced from the steel sheet nitrogen amount at 900 ° C. in the temperature increasing process of the secondary recrystallization annealing is in a range of −10 ppm to +25 ppm.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
[0014]
(Ii) The steel slab is Sol. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to the above (i), characterized by containing 20 mass ppm or more of Al.
[0015]
(Iii) The steel slab further contains one or two of Sb: 0.02 to 0.30% by mass and Sn: 0.04 to 0.60% by mass, and has a content of Sb and Sn. The above (i) or (ii), wherein the value of [Sb] + / [Sn] when [Sb] and [Sn] are respectively 0.020 to 0.30% by mass. Method for producing grain-oriented electrical steel sheets with excellent magnetic properties.
[0016]
(Iv) The directional electromagnetic member having excellent magnetic properties according to any one of (i) to (iii), wherein the steel slab further contains 0.06 to 0.5% by mass of Cu. Steel plate manufacturing method.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
The slab of the present invention is manufactured by a known method, for example, steelmaking-continuous casting (or ingot-bulking rolling). At this time, the composition of the slab is limited as follows. Hereinafter, mass% and mass ppm, which are units of the content of each component, are simply described as% and ppm, respectively.
[0018]
C: 0.01-0.08%
C is an element useful for improving the primary recrystallization texture, and from this viewpoint, it is necessary to add C in the range of 0.01 to 0.08%. This is because if C is added outside the above range, the primary recrystallization texture is deteriorated, secondary recrystallized grains highly integrated in the Goss orientation are not obtained, and the magnetic properties are deteriorated.
[0019]
Si: 2.0-4.5%
Si is a useful element that improves iron loss by increasing electric resistance. In the present invention, Si needs to be contained at 2.0% or more. However, when the Si content exceeds 4.5%, cold rolling becomes extremely difficult, so the upper limit of the Si content is set to 4.5%.
[0020]
Mn: 0.01-0.5%
Mn has the effect of improving hot workability during manufacturing. For this purpose, in the present invention, it is necessary to add 0.01% or more. However, when Mn is contained in an amount exceeding 0.5%, the primary recrystallization texture is deteriorated, secondary recrystallized grains highly integrated in the Goss orientation cannot be obtained, and the magnetic properties are deteriorated. The upper limit of the amount is 0.5%.
[0021]
S, Se and O: less than 50 ppm each
Since S, Se and O are all components that degrade magnetic properties, it is necessary to suppress the content of these components. In particular, when the respective contents of S, Se and O are both 50 ppm or more, secondary recrystallization becomes difficult and the magnetic properties deteriorate, so the contents of S, Se and O are each less than 50 ppm. It is necessary to control.
[0022]
N: less than 60 ppm
N, like S, Se, and O, is also a component that degrades the magnetic properties, so it is necessary to suppress the N content. In particular, when the N content is 60 ppm or more, secondary recrystallization becomes difficult and the magnetic properties deteriorate, so it is necessary to suppress the N content to less than 60 ppm.
The above components are elements that must be contained (added) or suppressed in the steel slab, but if necessary, sol. Al, Sb, Sn, and Cu can also be appropriately added to the steel slab within the following content ranges from the viewpoint of obtaining a product having better magnetic properties in an industrially stable manner.
[0023]
Sol. Al: less than 100 ppm
Al is added in a small amount (so-called aluminum killed) for deoxidation in steel making. If the Al content is 100 ppm or more, it adversely affects the denseness of the oxide film formed on the steel sheet surface during the primary recrystallization annealing. The Al content needs to be suppressed to less than 100 ppm. Note that Sol. If Al is in the range of 20 ppm or more and less than 100 ppm, Al densifies the oxide film formed on the steel sheet surface during the primary recrystallization annealing, suppresses the increase and decrease of nitrogen during the secondary recrystallization annealing, and reduces the secondary recrystallization grains. Can be improved in the Goss orientation, and the magnetic characteristics can be improved. Therefore, Sol. Al is preferably contained in a trace amount of 20 ppm or more.
[0024]
It contains one or two of Sb: 0.02 to 0.30 mass% and Sn: 0.04 to 0.60 mass%, and the contents of Sb and Sn are [Sb] and [Sn], respectively. [Sb] + / [Sn] value is 0.020 to 0.30% by mass
Sb and Sn are components that reduce the oxidation rate of the steel sheet during primary recrystallization annealing and promote the formation of a dense oxide film of Al. Therefore, when adding Sb or Sn, the above-mentioned trace amount of Sol. Preferably, it is in the presence of Al. Since both Sb and Sn are components that exhibit the above-described effects, they may contain only one of Sb and Sn, or may contain both. When the contents of Sb and Sn are 0.30% or less and 0.60% or less, respectively, and the contents of Sb and Sn are [Sb] and [Sn], respectively, in order to exhibit the above-mentioned effects. [Sb] + / [Sn] is preferably 0.020 to 0.30%. If Sb is less than 0.02%, Sn is less than 0.04%, or [Sb] + / [Sn] is less than 0.020%, the effect of suppressing the increase and decrease of nitrogen is reduced. If Sb exceeds 0.30%, Sn exceeds 0.60%, or [Sb] +1/2 [Sn] exceeds 0.30%, the temperature is low. It is uneconomical because the hot rolling property deteriorates.
When scrap or the like is used as a part of the raw material for the steel slab, trace amounts of Sb less than 0.02% by mass and Sn less than 0.04% by mass may be contained, respectively. In the case where Sn and Sn are contained, the effects of the present invention are not exerted, but they do not cause harm, so that they are included as unavoidable impurities.
[0025]
In addition, by controlling the gas switching pattern and gas composition during the secondary recrystallization, it is possible to suppress the increase and decrease of nitrogen during the secondary recrystallization annealing, but on an industrial scale using actual coils. Production lacks stability. This is because it is difficult to obtain a uniform atmosphere in the width direction and the longitudinal direction of the coil during the secondary recrystallization annealing. On the other hand, trace amounts of Sol. The control of Al and the addition of Sb and Sn are effective for stably suppressing the increase and decrease of nitrogen during secondary recrystallization annealing in production on an industrial scale.
[0026]
Cu: 0.06-0.5%
Cu segregates on the surface during secondary recrystallization annealing to control the increase and decrease of nitrogen. In particular, it is effective in suppressing the increase and decrease of nitrogen at the coil edge portion. From this point, it is desirable to add in the range of 0.06 to 0.5%. If the Cu content is less than 0.06%, the effect of suppressing the increase and decrease of nitrogen is small at the coil edge portion. If the Cu content exceeds 0.5%, a defect called "scalp" occurs on the surface.
[0027]
After slab heating the steel slab limited to the above component composition, hot rolling is performed. This slab heating is desirably in the range of 1050 to 1250 ° C. High-temperature slab heating exceeding 1250 ° C. is meaningless in the present invention in which the slab does not contain an inhibitor component, and only increases the cost.
[0028]
Next, the hot-rolled steel sheet is subjected to hot-rolled sheet annealing as needed, and then subjected to one cold rolling or two or more cold-rolling steps including intermediate annealing to obtain a final cold-rolled sheet. The cold rolling may be performed at room temperature, or may be performed at a temperature higher than room temperature, for example, at about 250 ° C. to perform rolling.
[0029]
In addition, a rolling process may be performed in place of the above, for example, reducing the slab thickness to omit or simplify hot rolling.
[0030]
Next, the final cold-rolled sheet is subjected to primary recrystallization annealing. The primary purpose of the primary recrystallization annealing is to control the primary recrystallization grain size and to set the secondary recrystallization temperature at 800 ° C to 900 ° C. If the secondary recrystallization temperature is lower than 800 ° C. or higher than 900 ° C., the degree of integration of the secondary recrystallized grains in the Goss orientation is deteriorated, and the magnetic characteristics are deteriorated. In order to adjust the secondary recrystallization temperature from 800 ° C. to 900 ° C., the average grain size of the steel sheet after the primary recrystallization annealing needs to be in the range of 8 to 25 μm. The crystal grain size after the primary recrystallization annealing increases as the primary recrystallization annealing temperature increases and as the annealing time increases, but is also affected by the cold rolling reduction and the crystal grain size before cold rolling. The annealing temperature and the annealing time in the primary recrystallization annealing are set so that the crystal grain size after the recrystallization annealing falls within the above range. A second purpose of the primary recrystallization anneal is to obtain a surface that is less prone to nitrogen fluctuations during the secondary recrystallization anneal. As described above, trace amounts of Sol. Al, Sb, and Sb are effective for densifying the surface oxide layer formed during the primary recrystallization annealing and reducing the fluctuation of nitrogen. The third purpose of the primary recrystallization annealing is decarburization. By reducing the carbon content in the steel to less than 50 ppm, deterioration of the magnetic properties of the product due to aging can be prevented.
[0031]
After the primary recrystallization annealing, an annealing separator is applied to the surface of the steel sheet. As the annealing separator, any conventionally known annealing separator is suitable. In particular, it is preferable that magnesia is used as a main component, and if necessary, additives such as titania, strontium compounds, sulfides, chlorides and borides are added as a water slurry. Other annealing separators such as silica and alumina can also be used.
[0032]
Thereafter, secondary recrystallization annealing is performed. The primary purpose of the secondary recrystallization annealing is to develop secondary recrystallization. By the secondary recrystallization, crystal grains are accumulated in the Goss orientation, and good magnetic properties are obtained. At this time, it is important to control the rate of temperature rise and the fluctuation of nitrogen increase / decrease in the temperature rise process from 800 ° C. to 900 ° C. where secondary recrystallization occurs.
[0033]
In the present invention, it is necessary that the average heating rate in the heating process from 800 ° C. to 900 ° C. is in the range of 0.5 to 5 ° C./h. If the average rate of temperature rise from 800 ° C. to 900 ° C. is less than 0.5 ° C./h or more than 5 ° C./h, accumulation of secondary recrystallized grains in the Goss orientation becomes poor. This is because the magnetic characteristics deteriorate.
[0034]
Further, in the present invention, the difference in the steel sheet nitrogen amount when the steel sheet nitrogen amount at 800 ° C. is reduced from the steel sheet nitrogen amount at 900 ° C. in the temperature rising process of the secondary recrystallization annealing is in the range of −10 ppm to +25 ppm. It is necessary to. If the difference in the steel sheet nitrogen amount, that is, (nitrogen amount in steel at 900 ° C.) − (Nitrogen amount in steel at 800 ° C.) is less than −10 ppm or more than +25 ppm, secondary recrystallized grains This is because the accumulation in the Goss orientation becomes worse, and the magnetic characteristics deteriorate.
[0035]
Means for suppressing the fluctuation of nitrogen in the steel include optimization of the atmosphere gas (increase / decrease in nitrogen gas partial pressure) at 800 to 900 ° C. during finish annealing, switching patterns of these gas compositions, It is preferable to control the heating rate (increase or decrease of the residence time in this temperature range). Further, the above steel sheet nitrogen amount difference may be achieved at least at the center in the coil width direction, but is preferably achieved over the entire width.
[0036]
After the secondary recrystallization annealing, an insulating coating can be applied to the steel sheet surface and baked. The type of the insulating coating is not particularly limited, but any conventionally known insulating coating is suitable. For example, a coating solution containing phosphate-chromic acid-colloidal silica, described in JP-A-50-79442 and JP-A-48-39338, is applied to a steel plate and baked at about 800 ° C. The method is preferred.
[0037]
In addition, the shape of the steel sheet can be adjusted by the flattening annealing, and further, the flattening annealing can be performed while also baking the insulating film.
[0038]
【Example】
Example 1
C: 0.07%, Si: 3.5%, Mn: 0.05%, Sol. Al: 50 ppm, N: 25 ppm, S: 10 ppm, Se: 0.1 ppm, O: 10 ppm, Sb: 0.02%, Sn: 0.02%, Cu: 0.15%, the balance being Fe and The steel slab having the composition of the unavoidable impurities was heated to 1150 ° C., hot-rolled into a hot-rolled sheet having a thickness of 2.0 mm, and then annealed at 1000 ° C. for 30 seconds. Next, after a sheet thickness of 0.30 mm was obtained by cold rolling, primary recrystallization annealing was performed at various soaking temperatures for a soaking time of 30 seconds. Table 1 shows the soaking temperature and the average crystal grain size after the primary recrystallization annealing. Next, MgO: 95%, TiO 2 : An annealing separator containing 5% was applied as a water slurry to a steel sheet, and subjected to secondary recrystallization annealing under any of five types of heat patterns having different heating rates from 800 ° C to 900 ° C. FIG. 1 shows various heat patterns of the secondary recrystallization annealing. A coating solution containing phosphate-chromate-colloidal silica at a weight ratio of 3: 1: 3 was applied to the surface of the finish-annealed sheet obtained as described above, and baked at 800 ° C. After that, the magnetic properties at the center of the coil width were investigated. The magnetic properties are as follows: After performing strain relief annealing at 800 ° C. for 3 hours, the magnetic flux density B when excited at 800 A / m. 8 And iron loss W when excited with AC up to 1.7 T at 50 Hz 17/50 Was evaluated. The results obtained are also shown in Table 1. Further, when the temperature reached 800 ° C. and 900 ° C. respectively in the secondary recrystallization annealing, the annealing was stopped, and the nitrogen content in the steel at the center of the coil width at 800 ° C. and 900 ° C. was analyzed, respectively. The existence of secondary recrystallization was clarified by macrostructure observation. ΔN (ppm) in the table represents (nitrogen amount of steel sheet at 900 ° C.) − (Nitrogen amount of steel sheet at 800 ° C.).
[0039]
[Table 1]
Figure 2004218024
[0040]
As is clear from Table 1, the average crystal grain size after the primary recrystallization annealing was 8 under the condition in which the fluctuation of the increase or decrease of the nitride in the temperature rising process from 800 ° C. to 900 ° C. in the secondary recrystallization annealing was suppressed. When the thickness is about 25 μm and the rate of temperature rise during the secondary recrystallization annealing is in the range of 0.5 to 5 ° C./h, good magnetic properties are obtained.
[0041]
Example 2
C: 0.015%, Si: 3.2%, Mn: 0.25%, Sol. Al: 15 ppm, N: 55 ppm, S: 10 ppm, Se: 0.1 ppm, O: 10 ppm, Sb: 0.01%, Sn: 0.001%, Cu: 0.01%, the balance being Fe and Steel slab A having an unavoidable impurity composition, C: 0.015%, Si: 3.2%, Mn: 0.25%, Sol. Al: 30 ppm, N: 55 ppm, S: 10 ppm, Se: 0.1 ppm, O: 10 ppm, Sb: 0.02%, Sn: 0.02%, Cu: 0.01%, the balance being Fe and A steel slab B having an unavoidable impurity composition was heated to 1220 ° C., hot-rolled into a hot-rolled sheet having a thickness of 2.2 mm, and then cold-rolled to a sheet thickness of 1.8 mm. Thereafter, intermediate annealing was performed at 1050 ° C. for 100 seconds. Next, after a sheet thickness of 0.23 mm was obtained by cold rolling, primary recrystallization annealing was performed under the conditions of a soaking temperature of 880 ° C. and a soaking time of 30 seconds. The average grain size after primary recrystallization annealing was 18 μm. Next, MgO: 95%, SrSO 4 : An annealing separator containing 5% was applied to a steel plate as a water slurry, and the temperature was raised at a rate of 2 ° C./h (constant) in a temperature rising process from 800 ° C. to 900 ° C., and the furnace atmosphere gas was Were subjected to secondary recrystallization annealing under any one of five types of heat patterns. FIG. 2 shows various heat patterns of the secondary recrystallization annealing. A coating solution containing phosphate-chromate-colloidal silica at a weight ratio of 3: 1: 2 was applied to the surface of the finish-annealed plate obtained as described above, and baked at 800 ° C. After that, the magnetic properties at the center of the coil width were investigated. The magnetic properties are as follows: After performing strain relief annealing at 800 ° C. for 3 hours, the magnetic flux density B when excited at 800 A / m. 8 And iron loss W when excited with AC up to 1.7 T at 50 Hz 17/50 Was evaluated. Table 2 also shows the obtained results. In addition, when the temperature reached 800 ° C. and 900 ° C. respectively in the secondary recrystallization annealing, the annealing was stopped, and the nitrogen content in the steel at the center of the coil width at 800 ° C. and 900 ° C. was analyzed, respectively. The existence of secondary recrystallization was clarified by macrostructure observation. ΔN (ppm) in the table represents (nitrogen amount of steel sheet at 900 ° C.) − (Nitrogen amount of steel sheet at 800 ° C.).
[0042]
[Table 2]
Figure 2004218024
[0043]
From Table 2, Sol. Regardless of the presence or absence of Al, Sb, and Sn, it can be seen that good magnetic properties are obtained when (nitrogen amount at 900 ° C.) − (Nitrogen amount at 800 ° C.) is in the range of −10 ppm to +25 ppm. . However, traces of Sol. In steel A that does not contain Al, Sb, and Sn, the increase or decrease in nitrogen during the secondary recrystallization annealing temperature rise lacks stability. This is because the trace amount of Sol. When Al, Sb, and Sn are not included, a dense oxide film is not formed, and the fluctuation of nitrogen during secondary recrystallization is inevitable in industrial production such as gas flow as well as gas composition and heat pattern. This is because they are easily affected by annealing conditions that fluctuate. On the other hand, trace amounts of Sol. In the steel B to which Sb or Sn is added in the presence of Al, it is possible to stably suppress the fluctuation of nitrogen under appropriate gas composition and gas switching pattern, and to obtain good gas Characteristics can be obtained stably.
[0044]
Therefore, in the present invention, it is necessary to suppress the fluctuation of the amount of nitrogen in order to obtain good magnetic properties. It is not necessary to add Sb and / or Sn in the presence of Al. However, in industrial production, traces of Sol. The addition of Sb and / or Sn in the presence of Al works advantageously in terms of stability.
[0045]
Example 3
C: 0.05%, Si: 3.5%, Mn: 0.05%, N: 35 ppm, S: 10 ppm, Se: 0.1 ppm, O: 10 ppm, and Sol. After heating a steel slab containing Al, Sb, Sn, and Cu and having a composition of Fe and inevitable impurities to 1100 ° C., a hot-rolled sheet having a thickness of 2.0 mm was formed by hot rolling. Hot rolled sheet annealing was performed at 950 ° C. for 30 seconds. Next, after the sheet thickness is reduced to 0.35 mm by cold rolling, the soaking temperature and the soaking time are adjusted so that the average grain size after the primary recrystallization annealing is in the range of 8 to 25 μm, and the primary recrystallization annealing is performed. Was done. Next, MgO: 95%, MgSO 4 : An annealing separator containing 5% was applied as a water slurry to a steel sheet, and subjected to secondary recrystallization annealing under the conditions of heat pattern C shown in FIG. A coating solution containing phosphate-chromate-colloidal silica at a weight ratio of 4: 1: 3 was applied to the surface of the finish-annealed plate obtained as described above, and baked at 800 ° C.
[0046]
Thereafter, the magnetic properties of the center portion of the coil width (coil width: 1000 mm) and the end portion of the coil width (specifically, a portion located 80 mm inward from the coil edge in the coil width direction) were examined. The magnetic properties are as follows: After performing strain relief annealing at 800 ° C. for 3 hours, the magnetic flux density B when excited at 800 A / m. 8 And iron loss W when excited with AC up to 1.7 T at 50 Hz 17/50 Was evaluated. The obtained results are shown in Tables 3 and 4. When the temperature reached 800 ° C. and 900 ° C. in the secondary recrystallization annealing, the annealing was stopped, and the nitrogen content in the steel at the coil width center and the coil width end at 800 ° C. and 900 ° C. was reduced. Each was analyzed and the presence or absence of secondary recrystallization was clarified by macrostructure observation. ΔN (ppm) in the table represents (nitrogen amount of steel sheet at 900 ° C.) − (Nitrogen amount of steel sheet at 800 ° C.).
[0047]
[Table 3]
Figure 2004218024
[0048]
[Table 4]
Figure 2004218024
[0049]
From the results in Tables 3 and 4, Sol. Al containing less than 20 ppm. Nos. 3-1 and [Sb] +1/2 [Sn] of less than 0.02%. In each of the examples 3-4, good magnetic characteristics were obtained at the center of the coil width, but at the end of the coil width, the magnetism was slightly deteriorated and the yield was lowered. Also, a trace amount of Sol. When Sb or Sn is added in the presence of Al, the value of [Sb] +1/2 [Sn] is in a preferred range (0.020 to 0.30%), and Cu is in a preferred range (0.06 to 0. 0%). No. 5%). 3-2, 3-3, and 3-5 to 3-10 all had good magnetic properties at the coil width center and coil width ends. Furthermore, a trace amount of Sol. When Sb or Sn is added in the presence of Al, the value of [Sb] +1/2 [Sn] is in a preferred range (0.020 to 0.30%), and Cu is in a preferred range (0.06 to 0. 0%). No. 5%). In 3-11 and 3-12, good magnetic characteristics were obtained even more stably at both the coil center portion and the coil width end portion.
[0050]
【The invention's effect】
Thus, according to the present invention, in the production of a grain-oriented electrical steel sheet having no inhibitor component in the steel slab, (1) the grain size of the steel sheet after the primary recrystallization annealing is in the range of 8 to 25 μm; In the temperature increase process of the secondary recrystallization annealing, the average temperature increase rate from 800 ° C. to 900 ° C. is in the range of 0.5 to 5 ° C./h, and (3) the temperature increase process of the secondary recrystallization annealing Production of grain-oriented electrical steel sheets with excellent magnetic properties by setting the difference between the steel sheet nitrogen amount at 800 ° C. and the steel sheet nitrogen amount at 800 ° C. to be in the range of −10 ppm to +25 ppm. Becomes possible. In particular, when this is carried out industrially, trace amounts of Sol. Addition of appropriate amounts of Sb, Sn, and Cu in the presence of Al works advantageously.
[0051]
According to the present invention, a grain-oriented electrical steel sheet which is inexpensive and has excellent magnetic properties can be industrially stably manufactured, and its industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a view showing various heat patterns in secondary recrystallization annealing performed in Example 1.
FIG. 2 is a view showing various heat patterns in secondary recrystallization annealing performed in Example 2.

Claims (4)

C:0.01〜0.08質量%、Si:2.0〜4.5質量%およびMn:0.01〜0.5質量%を含有するとともに、S、SeおよびOを各々50質量ppm 未満、Nを60質量ppm 未満ならびにSol.Alを100質量ppm未満に抑制し、残部がFeおよび不可避的不純物よりなる鋼スラブに、焼鈍および圧延を施して最終板厚の冷間圧延板とした後、一次再結晶焼鈍を施し、焼鈍分離剤を塗布し、二次再結晶焼鈍を施す方向性電磁鋼板の製造方法において、
(1)一次再結晶焼鈍後の鋼板における結晶粒径を8〜25μmの範囲とすること、
(2)二次再結晶焼鈍の昇温過程における、800 ℃から900 ℃までの平均昇温速度を0.5〜5 ℃/hの範囲とすること、および、
(3)二次再結晶焼鈍の昇温過程にて、900 ℃での鋼板窒素量から800 ℃での鋼板窒素量を減じたときの鋼板窒素量差を−10ppm〜+25ppmの範囲とすること、
を特徴とする磁気特性に優れた方向性電磁鋼板の製造方法。
C: 0.01 to 0.08% by mass, Si: 2.0 to 4.5% by mass and Mn: 0.01 to 0.5% by mass, and each of S, Se and O is 50% by mass. , Less than 60 ppm by weight of N and Sol. Al is suppressed to less than 100 ppm by mass, and the rest of the steel slab consisting of Fe and inevitable impurities is subjected to annealing and rolling to form a cold-rolled sheet having a final thickness, then subjected to primary recrystallization annealing, and then subjected to annealing separation. In a method for producing a grain-oriented electrical steel sheet to which a coating agent is applied and subjected to secondary recrystallization annealing,
(1) The crystal grain size of the steel sheet after the primary recrystallization annealing is in the range of 8 to 25 μm,
(2) The average rate of temperature rise from 800 ° C. to 900 ° C. in the temperature rise process of the secondary recrystallization annealing is in the range of 0.5 to 5 ° C./h;
(3) The difference in the steel sheet nitrogen amount when the steel sheet nitrogen amount at 800 ° C. is reduced from the steel sheet nitrogen amount at 900 ° C. in the temperature increasing process of the secondary recrystallization annealing is in a range of −10 ppm to +25 ppm.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
前記鋼スラブは、Sol.Alを20質量ppm以上含有することを特徴とする請求項1記載の磁気特性に優れた方向性電磁鋼板の製造方法。The steel slab is Sol. 2. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein Al is contained in an amount of 20 mass ppm or more. 前記鋼スラブは、さらにSb:0.02〜0.30質量%およびSn:0.04〜0.60質量%の一種又は二種を含有し、かつ、SbおよびSnの含有量をそれぞれ[Sb]および[Sn]としたときの[Sb]+1/2[Sn]の値が0.020〜0.30質量%であることを特徴とする請求項1または2に記載の磁気特性に優れた方向性電磁鋼板の製造方法。The steel slab further contains one or two of Sb: 0.02 to 0.30% by mass and Sn: 0.04 to 0.60% by mass, and the contents of Sb and Sn are each [Sb And [Sn], the value of [Sb] + と き [Sn] is 0.020 to 0.30% by mass, and the magnetic properties according to claim 1 or 2 are excellent. Manufacturing method of grain-oriented electrical steel sheet. 前記鋼スラブは、さらにCu:0.06〜0.5質量%を含有することを特徴とする請求項1〜3のいずれかに記載の磁気特性に優れた方向性電磁鋼板の製造方法。The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 3, wherein the steel slab further contains Cu: 0.06 to 0.5% by mass.
JP2003008437A 2003-01-16 2003-01-16 Method for producing grain-oriented electrical steel sheet Expired - Lifetime JP4292804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008437A JP4292804B2 (en) 2003-01-16 2003-01-16 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008437A JP4292804B2 (en) 2003-01-16 2003-01-16 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2004218024A true JP2004218024A (en) 2004-08-05
JP4292804B2 JP4292804B2 (en) 2009-07-08

Family

ID=32898230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008437A Expired - Lifetime JP4292804B2 (en) 2003-01-16 2003-01-16 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4292804B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021162A (en) * 2013-07-19 2015-02-02 Jfeスチール株式会社 Method of producing grain oriented magnetic steel sheet and primarily recrystallized steel sheet for producing grain oriented magnetic steel sheet
JP2017125260A (en) * 2016-01-12 2017-07-20 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet excellent in magnetic characteristics
CN108431267A (en) * 2015-12-22 2018-08-21 Posco公司 Oriented electrical steel and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021162A (en) * 2013-07-19 2015-02-02 Jfeスチール株式会社 Method of producing grain oriented magnetic steel sheet and primarily recrystallized steel sheet for producing grain oriented magnetic steel sheet
CN108431267A (en) * 2015-12-22 2018-08-21 Posco公司 Oriented electrical steel and preparation method thereof
JP2017125260A (en) * 2016-01-12 2017-07-20 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet excellent in magnetic characteristics

Also Published As

Publication number Publication date
JP4292804B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
TWI472626B (en) Method of manufacturing directional magnetic steel sheet and recrystallization annealing equipment of directional magnetic steel sheet
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
JP4321120B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
WO2016129015A1 (en) Oriented electrical steel sheet and method for producing same
CN109906284B (en) Oriented electrical steel sheet and method for manufacturing the same
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP5907202B2 (en) Method for producing grain-oriented electrical steel sheet
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
KR20190077774A (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP4292804B2 (en) Method for producing grain-oriented electrical steel sheet
JP6056675B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014156633A (en) Manufacturing method for directional electromagnetic steel plate, directional electromagnetic steel plate, surface glass coating for directional electromagnetic steel plate
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
EP0486707B1 (en) A Process for Producing an Ultrahigh Silicon, Grain-Oriented Electrical Steel Sheet and Steel Sheet obtainable with said Process
WO2019131853A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
CN111566244A (en) Oriented electrical steel sheet and method for manufacturing the same
JP6011586B2 (en) Method for producing grain-oriented electrical steel sheet
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP2007262436A (en) Method for producing grain oriented silicon steel sheet
JP2022509867A (en) Directional electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5