JP2004217995A - Method for producing electroformed product - Google Patents

Method for producing electroformed product Download PDF

Info

Publication number
JP2004217995A
JP2004217995A JP2003006036A JP2003006036A JP2004217995A JP 2004217995 A JP2004217995 A JP 2004217995A JP 2003006036 A JP2003006036 A JP 2003006036A JP 2003006036 A JP2003006036 A JP 2003006036A JP 2004217995 A JP2004217995 A JP 2004217995A
Authority
JP
Japan
Prior art keywords
resist
electroformed product
electroformed
product
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006036A
Other languages
Japanese (ja)
Inventor
Masaru Kato
勝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003006036A priority Critical patent/JP2004217995A/en
Publication of JP2004217995A publication Critical patent/JP2004217995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an electroformed product by which the electroformed product having high hardness can be produced while leaving fine pattern in the good state as it is. <P>SOLUTION: A silver plating is applied on a silicon wafer to make a basic plate 1 (a). Then, on this, a resist 2 is coated (b). Successively, a pattern is baked on the resist 2 in a photo-lithographic process and the resist 2 is developed (c). Then, nickel plating is performed on this basic plate 1 to produce the electroformed product 3 (d). Successively, the electroformed product 3 is removed from the basic plate 1, and the resist stuck to the electroformed product 3 is carbonized by heating the electroformed product 3 and thereafter, the carbonized resist is removed with ultrasonic water washing (e). In this way, the electroformed product 3 having the fine pattern formed on the surface can be produced without damaging the pattern of the electroformed product 3 and also, causing the softening of the electroformed product 3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フォトリソグラフィプロセスを使用して、微細なパターンを表面に有する電鋳品を製造する方法に関するものである。
【0002】
【従来の技術】
近年、マイクロマシニング技術によってセンサやアクチュエータの小型化が盛んに行われている。これらの中でめっき(電鋳)を用いるものとしてはLIGAプロセスが提唱されている。LIGAとはドイツ語のLithographie,Galvanoformung,Abformungを略したもので、レジストのリソグラフによりめっきの型を形成し、その型に電鋳を施し、その電鋳部分を基板から引き剥がして金型とする工程を示している。このようにして形成された金型は、光ディスクのスタンパー等に使用される。
【0003】
一般にLIGAプロセスには、レジストとしてPMMAが、露光にはX線であるシンクロトロン放射光が用いられる。形成可能な形状として、幅5μm、高さ200μmの高アスペクト比の構造体が報告されている。このように、LIGAプロセスは高アスペクト比を必要とする微細な構造体を作製するのには有効な手段であるが、シンクロトロン放射光を発生させるのに巨大な装置が必要なため、あまり普及していない。
【0004】
一方、LIGAプロセスより加工精度が落ちるものの、シンクロトロン放射光の代わりに、通常用いられるUV光を用いて、アスペクト比の高いリソグラフが可能な厚膜レジストが開発され、市販されるようになった。これらUV光で露光可能な厚膜レジストを用いて、LIGAと類似の方法で微細な構造体を形成するプロセスは、LIGAライクプロセスと呼ばれている。
【0005】
【発明が解決しようとする課題】
一般的に、LIGAライクプロセスに用いられるレジストはネガタイプであり、露光およびその後のベークによって架橋すると長時間現像液中に置かれても安定している。これは、現像後のレジストの除去が困難であることを示している。さらに、微細なパターンが形成された電鋳品においては、そのパターン間に残ったレジストは除去困難となる。
【0006】
従来のレジスト除去方法として、有機溶剤系薬品による溶解、高温加熱分解、プラズマアッシング等が挙げられるが、どれも一長一短で実際の使用には不安が残る方法であった。たとえば、有機溶剤系では三次元に架橋したレジストを溶解するものが無い。高温加熱分解とは、一般に600〜800℃の高温で電鋳品の表面を加熱し、レジストを完全に分解させ気化してしまうものであり、レジストを除去することは可能であるが、電鋳品表面の微細なパターンが高熱の影響で崩れやすく、また、電鋳品の硬度が下がってしまうという問題点が有る。プラズマアッシングでは除去すべき膜の厚さが厚いために非常な長時間を要することになる。以上のように、LIGAライクプロセスにおいて、最後のレジスト除去に課題があった。
【0007】
本発明はこのような事情に鑑みてなされたもので、電鋳後に電鋳品表面に付着して残ったレジスト、特にエポキシ系レジストを、電鋳品表面のパターンを傷つけず、かつ、効率的に除去可能であり、それにより、微細なパターンが良好なまま残り、かつ硬度が高い電鋳品を製造することが可能な電鋳品の製造方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
前記課題を解決するための第1の手段は、レジストを塗布した基板に所定のパターンを露光し、レジストを現像して型を形成し、その後当該基板に電鋳を行った後、形成された電鋳品を前記基板から剥離し、当該電鋳品に付着したレジストを除去する工程を有する電鋳品の製造方法であって、電鋳品からレジストを除去する際に、レジストの炭化処理を行ってから除去する工程を有することを特徴とする電鋳品の製造方法(請求項1)である。
【0009】
本手段においては、前記高温熱分解のように600〜800℃の高温でレジストを分解させるのではなく、それよりも低温での加熱を行い、レジストを炭化させている。炭化したレジストは、剥離液(水を含む)がその中にしみこみやすく、除去しやすくなる。特に、超音波洗浄等、物理的な振動を併せて与えることにより、容易に電鋳品から除去することができる。しかも、加熱温度が低くてよいため、電鋳品表面に形成されたパターンを傷めたり、電鋳品の硬度を低下させることがない。
【0010】
前記課題を解決するための第2の手段は、前記第1の手段であって、前記レジストの膜厚が、50μm〜1000μmであることを特徴とするもの(請求項2)である。
【0011】
レジストの膜厚が50μm未満であると、電鋳品に形成されるパターンの高さが低くなりすぎ、また、レジストが剥離し易いという問題点が生じる。また、レジストを1000μm以上の厚さに塗布することは困難であり、特にその必要もない。よって、本手段においては、レジストの膜厚を上記のように限定する。
【0012】
前記課題を解決するための第3の手段は、前記第1の手段、又は第2の手段であって、前記レジストの炭化処理が、300℃以下の温度で電鋳品を加熱することにより行われることを特徴とするもの(請求項3)である。
【0013】
炭化処理の温度が300℃を超えると、電鋳品の表面に形成されたパターンを傷つけ易くなると共に、電鋳品の硬度の低下を招きやすくなる。よって、本手段においては、炭化処理を行う温度を、300℃以下に限定する。
【0014】
前記課題を解決するための第4の手段は、前記第3の手段であって、前記レジストの炭化処理が、250〜300℃の温度で電鋳品を加熱することにより行われることを特徴とするもの(請求項4)である。
【0015】
前記第3の手段においては、加熱温度の下限は特に定めていなかった。それは使用するレジストに応じて、炭化が可能な温度域を適度に決めればよいからである。しかし、ほとんどのレジストにおいては、250℃以上の温度とすれば炭化が可能である。よって、本手段においては、電鋳品の加熱温度の下限を250℃以上に限定している。
【0016】
前記課題を解決するための第5の手段は、前記第1の手段から第4の手段のいずれかであって、前記電鋳品が、その主成分がニッケルからなるものであることを特徴とするもの(請求項5)である。
【0017】
電鋳の材料としては、銅等も考えられるが、ニッケルの場合、特に高温に耐えるので、本手段のように炭化処理を施すのに適している。
【0018】
【実施例】
以下、本発明の実施例と比較例について説明する。
(実施例1)
以下の方法でニッケル電鋳品を製造した。
(1) 蒸着:電鋳の際に必要となる導電膜として銀(厚さ50〜100nm)を、シリコンウエハ基板に蒸着させ、基板1を形成した(図1(a))。
(2) レジスト塗布:上記基板1にエポキシ系レジスト2(MCC社製:SU8−50)を滴下し、スピンナーを使用して、レジスト2を50μmの厚さに均一に塗布した。スピンナーの条件は、回転数500rpmで15秒間保持し、次に回転数を1000rpm/15秒で上げていき、最終回転数1500rpmで15秒間保持した。塗布後は、ホットプレートを用い、65℃で20分、次いで90℃で15分のベークを行い、その後除冷した(図1(b))。
(3) 露光:次に、レジスト2に線幅10μmのパターンを、マスクを用いて露光した。露光には、波長域が350〜400nmのUV光を使用した。また、露光エネルギーは400〜500mJ/cmとした。露光後は、ホットプレート上で、65℃で10分、さらに90℃で10分ベークを行った。
(4) 現像:その後、自然冷却させレジストが室温になったところで、現像液(2−アセトキシ−1−メトキシプロパン)に浸漬して、レジスト2を現像した。現像を行うことで、線幅10μm、厚さ50μm(アスペクト比:5)の微細パターンが形成された(図1(c))。
(5) 電鋳:次に、パターンが形成された基板1をめっき治具に固定し、スルファミン酸ニッケルを主成分とするめっき液中で、電流密度(5A/dm)で、50時間めっきを行い、厚さ3mmのニッケルめっき(電鋳品)3を基板1上に析出させた(図1(d))。
(6) 剥離:まず基板1と(5)で析出したニッケルめっき(電鋳品)3を分離した。次いで、ニッケルめっき側に付いている銀を(硝酸第二鉄)で除去した。次に、電鋳品3をアルミホイルで包み、乾燥炉で、温度:300℃で2時間加熱し、レジストの炭化処理を行った。自然冷却後、超音波水洗を行い炭化したレジストを除去した(図1(e))。
【0019】
これにより、レジストが完全に除去された電鋳品3が得られた。また、この電鋳品3の硬度は約300Hvであった。電鋳品3のパターンの線幅は10μm、高さは50μm(アスペクト比5)であった。
【0020】
(実施例2)
前記(6)の工程で、乾燥炉の温度を250℃とした他は、実施例1と全く同じ条件で電鋳品3を製造した。その結果、実施例と全く同じ電鋳品を得ることができた。
【0021】
(比較例1)
前記(6)の工程で、乾燥炉の温度を350℃とした他は、実施例1と全く同じ条件で電鋳品3を製造した。その結果、実施例と全く同じ形状の電鋳品を得ることができた。しかし、この電鋳品の硬度は約250Hvと低い値となった。この原因は、加熱によりニッケルの軟化が生じているためである。
【0022】
(比較例2)
前記(6)の工程で、乾燥炉の温度を200℃とした他は、実施例1と全く同じ条件で電鋳品3を製造した。その結果、レジストの炭化が十分でなく、レジストを十分に除去することができなかった。従って、目的とするパターンを有する電鋳品が得られなかった。
【0023】
【発明の効果】
以上説明したように、本発明によれば、電鋳後に電鋳品表面に付着して残ったレジスト、特にエポキシ系レジストを、電鋳品表面のパターンを傷つけず、かつ、効率的に除去可能であり、それにより、微細なパターンが良好なまま残り、かつ硬度が高い電鋳品を製造することが可能な電鋳品の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例である電鋳品の製造工程を示す図である。
【符号の説明】
1 基板
2 レジスト
3 ニッケルめっき(電鋳品)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an electroformed product having a fine pattern on a surface using a photolithography process.
[0002]
[Prior art]
In recent years, miniaturization of sensors and actuators has been actively performed by micromachining technology. Among these, the LIGA process has been proposed as one using plating (electroforming). LIGA is an abbreviation for German Lithographie, Galvanoformung, and Abformung. A mold for plating is formed by lithography of a resist, the mold is electroformed, and the electroformed portion is peeled off from the substrate to form a mold. The steps are shown. The mold thus formed is used for a stamper or the like of an optical disc.
[0003]
Generally, in the LIGA process, PMMA is used as a resist, and synchrotron radiation, which is X-rays, is used for exposure. As a form that can be formed, a structure having a high aspect ratio of 5 μm in width and 200 μm in height has been reported. As described above, the LIGA process is an effective means for producing a fine structure requiring a high aspect ratio, but is not widely used because a huge apparatus is required to generate synchrotron radiation. I haven't.
[0004]
On the other hand, although the processing accuracy is lower than that of the LIGA process, a thick film resist capable of lithography with a high aspect ratio using a commonly used UV light instead of the synchrotron radiation light has been developed and commercialized. . A process of forming a fine structure using a method similar to LIGA using a thick film resist that can be exposed to UV light is called a LIGA-like process.
[0005]
[Problems to be solved by the invention]
Generally, the resist used in the LIGA-like process is of a negative type, and when cross-linked by exposure and subsequent baking, is stable even in a developing solution for a long time. This indicates that it is difficult to remove the resist after development. Further, in an electroformed product on which a fine pattern is formed, it is difficult to remove the resist remaining between the patterns.
[0006]
Conventional methods for removing the resist include dissolution with an organic solvent-based chemical, high-temperature thermal decomposition, plasma ashing, and the like. However, all of these methods have advantages and disadvantages and remain uneasy in actual use. For example, there is no organic solvent that dissolves a three-dimensionally crosslinked resist. The high-temperature thermal decomposition generally refers to heating the surface of an electroformed product at a high temperature of 600 to 800 ° C. to completely decompose and vaporize the resist, and it is possible to remove the resist. There is a problem that the fine pattern on the product surface is easily broken by the influence of high heat, and the hardness of the electroformed product is lowered. In plasma ashing, a very long time is required because the thickness of the film to be removed is large. As described above, in the LIGA-like process, there was a problem in the last resist removal.
[0007]
The present invention has been made in view of such circumstances, the resist remaining on the surface of the electroformed product after electroforming, particularly an epoxy-based resist, without damaging the pattern on the electroformed product surface, and efficiently It is an object of the present invention to provide a method for producing an electroformed product that can be removed to a high degree, thereby leaving an excellent fine pattern and producing an electroformed product having high hardness.
[0008]
[Means for Solving the Problems]
A first means for solving the above problem is that a predetermined pattern is exposed on a substrate coated with a resist, the resist is developed to form a mold, and then the substrate is electroformed, and then formed. A method of manufacturing an electroformed product having a step of removing an electroformed product from the substrate and removing a resist attached to the electroformed product, wherein when removing the resist from the electroformed product, a carbonization process of the resist is performed. A method for producing an electroformed product, comprising a step of removing after performing.
[0009]
In this means, the resist is not decomposed at a high temperature of 600 to 800 ° C. as in the high-temperature pyrolysis, but is heated at a lower temperature to carbonize the resist. The carbonized resist is easily removed by a stripping solution (including water) and easily removed. In particular, it can be easily removed from the electroformed product by applying physical vibration such as ultrasonic cleaning. In addition, since the heating temperature may be low, the pattern formed on the surface of the electroformed product is not damaged, and the hardness of the electroformed product is not reduced.
[0010]
A second means for solving the above-mentioned problem is the first means, wherein the film thickness of the resist is 50 μm to 1000 μm (Claim 2).
[0011]
If the thickness of the resist is less than 50 μm, the height of the pattern formed on the electroformed product becomes too low, and the resist is easily peeled. Further, it is difficult to apply the resist to a thickness of 1000 μm or more, and there is no particular necessity. Therefore, in this means, the thickness of the resist is limited as described above.
[0012]
A third means for solving the above-mentioned problems is the first means or the second means, wherein the resist is carbonized by heating an electroformed product at a temperature of 300 ° C. or less. (Claim 3).
[0013]
When the carbonization temperature exceeds 300 ° C., the pattern formed on the surface of the electroformed product is easily damaged, and the hardness of the electroformed product is liable to be reduced. Therefore, in this means, the temperature at which the carbonization is performed is limited to 300 ° C. or less.
[0014]
A fourth means for solving the problem is the third means, wherein the carbonization of the resist is performed by heating an electroformed product at a temperature of 250 to 300 ° C. (Claim 4).
[0015]
In the third means, the lower limit of the heating temperature is not specified. This is because the temperature range in which carbonization is possible may be appropriately determined according to the resist used. However, most of the resist can be carbonized at a temperature of 250 ° C. or higher. Therefore, in this means, the lower limit of the heating temperature of the electroformed product is limited to 250 ° C. or higher.
[0016]
A fifth means for solving the above problem is any of the first means to the fourth means, wherein the electroformed product is made of nickel as a main component. (Claim 5).
[0017]
As a material for the electroforming, copper or the like is conceivable, but nickel is particularly suitable for carbonization treatment as in the present means, since it withstands particularly high temperatures.
[0018]
【Example】
Hereinafter, examples of the present invention and comparative examples will be described.
(Example 1)
A nickel electroformed product was manufactured by the following method.
(1) Deposition: Silver (50 to 100 nm in thickness) was deposited as a conductive film required for electroforming on a silicon wafer substrate to form a substrate 1 (FIG. 1A).
(2) Application of resist: Epoxy resist 2 (manufactured by MCC: SU8-50) was dropped on the substrate 1, and the resist 2 was uniformly applied to a thickness of 50 μm using a spinner. The spinner was held at a rotation speed of 500 rpm for 15 seconds, then increased in rotation speed at 1000 rpm / 15 seconds, and held at a final rotation speed of 1500 rpm for 15 seconds. After the application, baking was performed at 65 ° C. for 20 minutes and then at 90 ° C. for 15 minutes using a hot plate, followed by cooling (FIG. 1B).
(3) Exposure: Next, a pattern having a line width of 10 μm was exposed on the resist 2 using a mask. UV light having a wavelength range of 350 to 400 nm was used for exposure. Further, the exposure energy was 400 to 500 mJ / cm 2 . After the exposure, baking was performed on a hot plate at 65 ° C. for 10 minutes and further at 90 ° C. for 10 minutes.
(4) Development: After the resist was cooled down to room temperature by natural cooling, the resist 2 was developed by immersion in a developing solution (2-acetoxy-1-methoxypropane). By performing the development, a fine pattern having a line width of 10 μm and a thickness of 50 μm (aspect ratio: 5) was formed (FIG. 1C).
(5) Electroforming: Next, the substrate 1 on which the pattern is formed is fixed to a plating jig, and plated in a plating solution containing nickel sulfamate as a main component at a current density (5 A / dm 2 ) for 50 hours. Then, a nickel plating (electroformed product) 3 having a thickness of 3 mm was deposited on the substrate 1 (FIG. 1D).
(6) Peeling: First, the nickel plating (electroformed product) 3 deposited on the substrate 1 and (5) was separated. Next, silver on the nickel plating side was removed with (ferric nitrate). Next, the electroformed product 3 was wrapped in aluminum foil and heated in a drying oven at a temperature of 300 ° C. for 2 hours to perform a carbonization treatment of the resist. After natural cooling, ultrasonic water washing was performed to remove the carbonized resist (FIG. 1E).
[0019]
Thus, an electroformed product 3 from which the resist was completely removed was obtained. The hardness of the electroformed product 3 was about 300 Hv. The line width of the pattern of the electroformed product 3 was 10 μm, and the height was 50 μm (aspect ratio 5).
[0020]
(Example 2)
An electroformed product 3 was manufactured under exactly the same conditions as in Example 1 except that the temperature of the drying furnace was changed to 250 ° C. in the step (6). As a result, the same electroformed product as that of the example could be obtained.
[0021]
(Comparative Example 1)
An electroformed product 3 was manufactured under exactly the same conditions as in Example 1 except that the temperature of the drying furnace was changed to 350 ° C. in the step (6). As a result, an electroformed product having exactly the same shape as that of the example could be obtained. However, the hardness of this electroformed product was a low value of about 250 Hv. This is because nickel is softened by heating.
[0022]
(Comparative Example 2)
An electroformed product 3 was manufactured under the same conditions as in Example 1 except that the temperature of the drying furnace was set to 200 ° C. in the step (6). As a result, the carbonization of the resist was not sufficient, and the resist could not be sufficiently removed. Therefore, an electroformed product having a desired pattern could not be obtained.
[0023]
【The invention's effect】
As described above, according to the present invention, a resist remaining on an electroformed product surface after electroforming, particularly an epoxy-based resist can be efficiently removed without damaging a pattern on the electroformed product surface. Accordingly, it is possible to provide a method for manufacturing an electroformed product capable of manufacturing an electroformed product having a fine pattern that remains good and having high hardness.
[Brief description of the drawings]
FIG. 1 is a view showing a manufacturing process of an electroformed product according to an embodiment of the present invention.
[Explanation of symbols]
1 substrate 2 resist 3 nickel plating (electroformed product)

Claims (5)

レジストを塗布した基板に所定のパターンを露光し、レジストを現像して型を形成し、その後当該基板に電鋳を行った後、形成された電鋳品を前記基板から剥離し、当該電鋳品に付着したレジストを除去する工程を有する電鋳品の製造方法であって、電鋳品からレジストを除去する際に、レジストの炭化処理を行ってから除去する工程を有することを特徴とする電鋳品の製造方法。The substrate coated with the resist is exposed to a predetermined pattern, the resist is developed to form a mold, and then the substrate is subjected to electroforming.The formed electroformed product is peeled from the substrate, and the electroformed A method for producing an electroformed product having a step of removing a resist attached to a product, the method comprising a step of performing a carbonization treatment of the resist and then removing the resist when removing the resist from the electroformed product. Manufacturing method of electroformed products. 請求項1に記載の電鋳品の製造方法であって、前記レジストの膜厚が、50μm〜1000μmであることを特徴とする電鋳品の製造方法。The method for producing an electroformed product according to claim 1, wherein the resist has a thickness of 50 μm to 1000 μm. 請求項1又は請求項2に記載の電鋳品の製造方法であって、前記レジストの炭化処理が、300℃以下の温度で電鋳品を加熱することにより行われることを特徴とする電鋳品の製造方法。The method for producing an electroformed product according to claim 1, wherein the carbonization of the resist is performed by heating the electroformed product at a temperature of 300 ° C. or less. Product manufacturing method. 請求項3に記載の電鋳品の製造方法であって、前記レジストの炭化処理が、250〜300℃の温度で電鋳品を加熱することにより行われることを特徴とする電鋳品の製造方法。The method for producing an electroformed product according to claim 3, wherein the carbonization of the resist is performed by heating the electroformed product at a temperature of 250 to 300C. Method. 請求項1から請求項4のうちいずれか1項に記載の電鋳品の製造方法であって、前記電鋳品が、その主成分がニッケルからなるものであることを特徴とする電鋳品の製造方法。The method for producing an electroformed product according to any one of claims 1 to 4, wherein the main component of the electroformed product is nickel. Manufacturing method.
JP2003006036A 2003-01-14 2003-01-14 Method for producing electroformed product Pending JP2004217995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006036A JP2004217995A (en) 2003-01-14 2003-01-14 Method for producing electroformed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006036A JP2004217995A (en) 2003-01-14 2003-01-14 Method for producing electroformed product

Publications (1)

Publication Number Publication Date
JP2004217995A true JP2004217995A (en) 2004-08-05

Family

ID=32896543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006036A Pending JP2004217995A (en) 2003-01-14 2003-01-14 Method for producing electroformed product

Country Status (1)

Country Link
JP (1) JP2004217995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351964A (en) * 2005-06-17 2006-12-28 Matsushita Electric Works Ltd Board for mount thereon of light emitting element and manufacturing method thereof
JP2011089169A (en) * 2009-10-22 2011-05-06 Seiko Instruments Inc Electroformed body and method for producing the same
CN103882491A (en) * 2014-04-02 2014-06-25 曲悦峰 Electroplating mold diameter control structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351964A (en) * 2005-06-17 2006-12-28 Matsushita Electric Works Ltd Board for mount thereon of light emitting element and manufacturing method thereof
JP2011089169A (en) * 2009-10-22 2011-05-06 Seiko Instruments Inc Electroformed body and method for producing the same
CN103882491A (en) * 2014-04-02 2014-06-25 曲悦峰 Electroplating mold diameter control structure

Similar Documents

Publication Publication Date Title
US8070970B2 (en) UV-LIGA process for fabricating a multilayer metal structure having adjacent layers that are not entirely superposed, and the structure obtained
JP2007070709A (en) Electroforming die, method for producing electroforming die, and method for producing electroformed component
JP5196489B2 (en) Manufacturing method of substrate having metal pattern and substrate
JP2004217995A (en) Method for producing electroformed product
CN110820023A (en) Method for preparing ultra-precise microstructure radiating fin
JP2007070678A (en) Electroforming die, method for producing electroforming die, and method for producing electroformed component
JP2006338844A (en) Stamper for preparing optical disk and method for manufacturing the same
JP2005343115A (en) Preparation method of resist pattern, method of preparing elecroforming, and preparation method of mold
JP2010006010A (en) Surface treating method of metallic mold for pattern transfer, method for manufacturing of metallic mold for duplicate pattern transfer and metallic mold for duplicate pattern transfer
US5755947A (en) Adhesion enhancement for underplating problem
KR20160017295A (en) Photoresist compositions comprising silk and photolithography method using this
JP2019021794A (en) Functional structure manufacturing method and photoresist processing apparatus
JP2008230083A (en) Stamper manufacturing method
JP3563809B2 (en) Pattern formation method
Lee et al. Fabrication of a large-scale Ni stamp using a multi-level SU-8 photoresist mold for advanced printed circuit board manufacturing
JP2014208912A (en) Substrate for wet etching
RU2195047C2 (en) Photoresist mask generation process
JP2014175376A (en) Method for producing thick film pattern
CN103496664A (en) Method for manufacturing self-support polymer structure with large depth-width ratio
JPH0470626B2 (en)
JP2004091878A (en) Method for forming tree-dimensional fine structure by plating
JP2003177555A (en) Pattern forming method
TWI783128B (en) Method to transfer patterns to a layer
TWI420261B (en) Method for manufacturing mold core
JP4164592B2 (en) Stamper manufacturing method