JP2004217632A - New compound, catalyst using the same, method of producing formic acid from carbon dioxide and hydrogen using the same and method for carbon dioxide fixation - Google Patents

New compound, catalyst using the same, method of producing formic acid from carbon dioxide and hydrogen using the same and method for carbon dioxide fixation Download PDF

Info

Publication number
JP2004217632A
JP2004217632A JP2003423034A JP2003423034A JP2004217632A JP 2004217632 A JP2004217632 A JP 2004217632A JP 2003423034 A JP2003423034 A JP 2003423034A JP 2003423034 A JP2003423034 A JP 2003423034A JP 2004217632 A JP2004217632 A JP 2004217632A
Authority
JP
Japan
Prior art keywords
hydrogen
carbon dioxide
general formula
metal complex
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003423034A
Other languages
Japanese (ja)
Other versions
JP4009728B2 (en
Inventor
Yuichiro Himeda
雄一郎 姫田
Nobuko Onozawa
伸子 小野澤
Hideki Sugihara
秀樹 杉原
Hironori Arakawa
裕則 荒川
Kazuyuki Kasuga
和行 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003423034A priority Critical patent/JP4009728B2/en
Publication of JP2004217632A publication Critical patent/JP2004217632A/en
Application granted granted Critical
Publication of JP4009728B2 publication Critical patent/JP4009728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new compound that is useful as a catalyst for the reaction between carbon dioxide and hydrogen, a catalyst using the same, a method of producing formic acid by the reaction between carbon dioxide and hydrogen and a method for carbon dioxide fixation. <P>SOLUTION: The polypyridine bearing hydroxy group(s) is represented by general formula (1) (wherein R<SB>1</SB>is H or an alkyl, M<SB>1</SB>is Ir, Rh or Ru, Y is a halogen or H, X is a counter anion forming a metal complex), a catalyst using the polypyridine compound, a method of producing formic acid by reaction between carbon dioxide and hydrogen by using the polypyridine as a catalyst and a method for carbon dioxide fixation are provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、二酸化炭素と水素を反応させる触媒として有用な新規化合物及びそれを用いた触媒、二酸化炭素と水素を反応させる蟻酸の製造方法、及び二酸化炭素の固定化方法に関する。 The present invention relates to a novel compound useful as a catalyst for reacting carbon dioxide and hydrogen, a catalyst using the same, a method for producing formic acid by reacting carbon dioxide and hydrogen, and a method for immobilizing carbon dioxide.

従来から、二酸化炭素と水素を反応させることは自体は知られていた。例えば、従来反応としては、Chem. Lett. p.863 (1976) Chem. Commun. p. 1465 (1993) 、特開昭51-138614号、特開昭56-166146号などが挙げられるが、これらの反応にはいずれも有機溶媒を用いたり、アミン等の添加物が必要である。(特許文献1、特許文献2及び非特許文献1参照)
また、超臨界中で反応させることは、特開平7-173098号、特開2001-288137号、
有機化合化学協会誌、第52巻第12号 pp.1032-1043(1994)、 Nature Vol 368, p. 231 (1994)、 Chem.Lett. p.1016 (2001)、 J. Am. Chem. Soc. p. 7963 (2002)、 J. Am. Chem. Soc. p. 344 (1996)、Inorg.Chem. p. 1606 (2002)などに記載されている。(特許文献3〜4及び非特許文献2〜7参照)
さらに、水溶液中で反応させることは、特開昭56-140948、 Chem. Commun. p. 971 (1999)、 Appl. Organomeal. Chem. p857 (2000)、 Inorg. Chem. p. 5083 (2000)に記載されている。(特許文献5及び非特許文献8〜10参照)
さらにまた、常温常圧下水溶液中で固体触媒を用いた反応は、 J. Am. Chem. Soc. p.6319 (1983) その他固体触媒を用いた二酸化炭素の接触水素化反応は数多く知られている。(非特許文献11参照)
特開昭51-138614号公報 特開昭56-166146号公報 特開平7-173098号公報 特開2001-288137号公報 特開昭56-140948公報 Chem. Lett. p.863 (1976) Chem. Commun. p. 1465 (1993) 有機化合化学協会誌、第52巻第12号 pp.1032-1043(1994) NatureVol 368, p. 231 (1994) Chem. Lett. p.1016 (2001) J.Am. Chem. Soc. p. 7963 (2002) J.Am. Chem. Soc. p. 344 (1996) Inorg.Chem.p. 1606 (2002) Chem.Commun. p. 971 (1999) Appl.Organomeal. Chem. p 857 (2000) Inorg. Chem. p. 5083 (2000) J. Am. Chem. Soc. p.6319 (1983)
Conventionally, the reaction of carbon dioxide and hydrogen has been known per se. For example, conventional reactions include Chem. Lett.p. 863 (1976) Chem. Commun. P. 1465 (1993), JP-A-51-138614, JP-A-56-166146, and the like. All of the above reactions require the use of an organic solvent or an additive such as an amine. (See Patent Literature 1, Patent Literature 2, and Non-Patent Literature 1)
Also, the reaction in supercritical, JP-A-7-173,981, JP-A-2001-288137,
Journal of Organic Chemistry, Vol. 52, No. 12, pp. 1032-1043 (1994), Nature Vol 368, p. 231 (1994), Chem. Lett. P. 1016 (2001), J. Am. Chem. Soc p. 7963 (2002), J. Am. Chem. Soc. p. 344 (1996), Inorg. Chem. p. 1606 (2002), and the like. (See Patent Documents 3 and 4 and Non-Patent Documents 2 to 7)
Further, the reaction in an aqueous solution is described in JP-A-56-140948, Chem. Commun. P. 971 (1999), Appl. Organomeal. Chem. P857 (2000), Inorg. Chem. P. 5083 (2000). Has been described. (See Patent Document 5 and Non-Patent Documents 8 to 10)
Furthermore, a reaction using a solid catalyst in an aqueous solution at normal temperature and normal pressure is described in J. Am. Chem. Soc. P.6319 (1983) and many other catalytic hydrogenation reactions of carbon dioxide using a solid catalyst are known. . (See Non-Patent Document 11)
JP-A-51-138614 JP-A-56-166146 JP-A-7-173098 JP 2001-288137 A JP-A-56-140948 Chem. Lett. P. 863 (1976) Chem. Commun. P. 1465 (1993) Journal of Organic Chemistry, Vol. 52, No. 12, pp. 1032-1043 (1994) NatureVol 368, p. 231 (1994) Chem. Lett. P.1016 (2001) J. Am. Chem. Soc. P. 7963 (2002) J. Am. Chem. Soc. P. 344 (1996) Inorg.Chem.p. 1606 (2002) Chem. Commun.p. 971 (1999) Appl.Organomeal.Chem.p 857 (2000) Inorg. Chem. P. 5083 (2000) J. Am. Chem. Soc. P.6319 (1983)

二酸化炭素の大気中における濃度は年々増大しており、その固定法の開発は急務の課題である。当面は海中ないしは地中へ廃棄されると思うが、将来的にはできるだけ多くの部分を炭素資源として再利用でき、かつ貯蔵が容易な液体又は固体の有機化合物への化学変換が望まれている。また、その工程で新たな二酸化炭素の発生が抑えられるようなエネルギー消費量少ない変換法の開発が不可欠である。
近年、水素化反応による二酸化炭素の化学的固定化に有効な高活性な遷移金属錯体触媒の開発が望まれている。
これまで、遷移金属錯体を用いる二酸化炭素の水素化反応によって、主にギ酸もしくはその誘導体を生成することが知られている。代表的な例を挙げると、(1)Chem. Lett. p.863 (1976)などのように、有機溶媒もしくは水との混合溶媒中、トリエチルアミン等の有機アミンの存在下、ギ酸を製造する方法。(2)特開平7-173098号では、超臨界状態にある二酸化炭素と水素をアミン等の塩基性物質存在下反応させる方法。(3)特開昭56-140948、Chem. Commun. p. 971 (1999)に記載された炭酸塩の水溶液中二酸化炭素と水素からギ酸を製造する方法。(4)J. Am. Chem. Soc. p.6319 (1983)に記載された担持パラジウムを用いた炭酸塩の水溶液中常温常圧で水素を通じさせることよってギ酸を製造する方法等が知られている。(1)-(3)については、J. Am. Chem. Soc. p. 7963 (2001)にまとめられている。
前記(1)(2)の方法では、アミンやアルコール等の有機物を添加する必要があること、また生成するギ酸の量はアミン等の添加量の最大2倍程度に限られていること、さらに生成物であるギ酸と添加した有機物の分離等の問題がある。(3),(4)の方法は、水媒体中での反応であり、有機物を用いないという特徴を有しており、特に(4)は、常圧反応又は低圧での反応であるが、何れも触媒回転数もしくは触媒回転効率が十分とは言えず、実用には適さない。(2)は他の方法に比べ触媒効率が高いが、超臨界状態を発生させる必要があり、高圧反応システムと煩雑な操作が必要となる。
本発明が解決しようとする課題は、遷移金属錯体触媒存在下、有機物を全く用いない水媒体中、温和な条件で二酸化炭素の水素化によってギ酸へと導く二酸化炭素の固定化法を提供することである。
The concentration of carbon dioxide in the atmosphere is increasing year by year, and the development of a fixation method is an urgent issue. For the time being, it will be disposed of in the sea or underground, but in the future, chemical conversion to liquid or solid organic compounds that can be reused as much as possible as carbon resources and are easy to store is desired. . In addition, it is essential to develop a conversion method with low energy consumption such that the generation of new carbon dioxide can be suppressed in the process.
In recent years, development of a highly active transition metal complex catalyst effective for chemical immobilization of carbon dioxide by a hydrogenation reaction has been desired.
Heretofore, it has been known that formic acid or a derivative thereof is mainly produced by a hydrogenation reaction of carbon dioxide using a transition metal complex. Representative examples include (1) a method for producing formic acid in the presence of an organic amine such as triethylamine in an organic solvent or a mixed solvent with water, such as Chem. Lett. P. 863 (1976). . (2) Japanese Patent Application Laid-Open No. 7-173098 discloses a method in which carbon dioxide and hydrogen in a supercritical state are reacted in the presence of a basic substance such as an amine. (3) A method for producing formic acid from carbon dioxide and hydrogen in a carbonate aqueous solution described in JP-A-56-140948, Chem. Commun. P. 971 (1999). (4) J. Am. Chem. Soc. P.6319 (1983) describes a method for producing formic acid by passing hydrogen at room temperature and normal pressure in an aqueous solution of carbonate using supported palladium. I have. (1)-(3) are summarized in J. Am. Chem. Soc. P. 7963 (2001).
In the methods (1) and (2), it is necessary to add an organic substance such as an amine or an alcohol, and the amount of formic acid generated is limited to a maximum of about twice the addition amount of the amine or the like. There are problems such as separation of formic acid, a product, and added organic substances. (3), the method of (4) is a reaction in an aqueous medium, has a feature that does not use an organic substance, particularly (4) is a reaction under normal pressure or low pressure, In any case, the catalyst rotation speed or the catalyst rotation efficiency cannot be said to be sufficient, and is not suitable for practical use. The method (2) has a higher catalytic efficiency than other methods, but needs to generate a supercritical state, and requires a high-pressure reaction system and complicated operations.
The problem to be solved by the present invention is to provide a method for immobilizing carbon dioxide that leads to formic acid by hydrogenating carbon dioxide under mild conditions in an aqueous medium containing no organic substances in the presence of a transition metal complex catalyst. It is.

本発明は、イリジウム、ロジウム、ルテニウム等の金属錯体の新規化合物の触媒存在下、有機物を全く用いない水溶液中温和な条件で二酸化炭素の水素化することを特徴とする。
本発明は、二酸化炭素と水素の反応を高効率で行わせるために触媒の探索及び反応系の検討を行った結果、特定の有機窒素化合物配位子を有する新規の金属錯体が、水媒体中二酸化炭素の水素化反応において触媒効率の著しい向上が達成され、二酸化炭素の効率的な固定化が実現されるとの知見に基づいて完成させられたものである。
すなわち、一般式(1)

(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(2)

(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物。及び 一般式(3)
(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(4)
(式中、Rは水素及び又はアルキル基であり、MはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物及びこれを用いた二酸化炭素と水素を反応させる触媒、二酸化炭素と水素を反応させる蟻酸の製造方法、及び二酸化炭素の固定化方法を開示するものである。
The present invention is characterized in that carbon dioxide is hydrogenated under mild conditions in an aqueous solution containing no organic substance in the presence of a catalyst of a novel compound of a metal complex such as iridium, rhodium, ruthenium or the like.
The present invention has conducted a search for a catalyst and a study of a reaction system in order to carry out the reaction between carbon dioxide and hydrogen with high efficiency.As a result, a novel metal complex having a specific organic nitrogen compound ligand is produced in an aqueous medium. The present invention has been completed based on the finding that a remarkable improvement in catalytic efficiency is achieved in a hydrogenation reaction of carbon dioxide, and efficient fixation of carbon dioxide is realized.
That is, the general formula (1)

(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (2)

(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A polypyridine compound having a hydroxyl group represented by the following formula: And general formula (3)
(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (4)
(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A compound, a catalyst for reacting carbon dioxide and hydrogen using the compound, a method for producing formic acid by reacting carbon dioxide and hydrogen, and a method for immobilizing carbon dioxide are disclosed.

以上述べた通り本発明によれば、二酸化炭素と水素を反応させる触媒として有用な新規化合物及びそれを用いた触媒、二酸化炭素と水素を反応させる蟻酸の製造方法、及び二酸化炭素の固定化方法を提供することができ、火力発電所やセメント工場から大量に排出される二酸化炭素を固定化することができる。本発明の特徴は、従来の二酸化炭素の水素化法に比べ、有機物を必要とせず、温和な条件で反応が進行するため、投入するエネルギー(排出される二酸化炭素の量)が少ないという特徴を有する。
また、ギ酸の製造という観点からも、優れた特徴を有する。すなわち、従来のギ酸の製造法は、6-8気圧一酸化炭素と20-50%のカセイソーダ水溶液を120-150度で加熱後硫酸と処理して製造されていた。しかし、毒性の高い一酸化炭素を用いるため好ましくない。本発明の特徴は、一酸化炭素の代わりに無害な二酸化炭素を原料として用いることができ、さらに従来の製造法と同様な操作、反応条件でギ酸を製造できることである。
As described above, according to the present invention, a novel compound useful as a catalyst for reacting carbon dioxide and hydrogen and a catalyst using the same, a method for producing formic acid by reacting carbon dioxide and hydrogen, and a method for immobilizing carbon dioxide are provided. It can fix carbon dioxide emitted in large quantities from thermal power plants and cement plants. The feature of the present invention is that compared to the conventional carbon dioxide hydrogenation method, no organic matter is required, and the reaction proceeds under mild conditions, so that the input energy (the amount of carbon dioxide discharged) is small. Have.
In addition, it has excellent characteristics from the viewpoint of production of formic acid. That is, the conventional method for producing formic acid is produced by heating 6 to 8 atm of carbon monoxide and a 20 to 50% aqueous solution of sodium hydroxide at 120 to 150 ° C. and then treating with sulfuric acid. However, it is not preferable because highly toxic carbon monoxide is used. A feature of the present invention is that harmless carbon dioxide can be used as a raw material instead of carbon monoxide, and further, formic acid can be produced under the same operation and reaction conditions as in the conventional production method.

本発明において用いている「錯体」とは、一般式(1)及び一般式(3)で示されるイリジウム、ロジウム、ルテニウム金属錯体触媒又は一般式(2)及び一般式(4)で示されるルテニウム金属錯体触媒を用いる。
本発明で用いる金属錯体のシクロペンタジエニル配位子及びアレーン配位子は、脂肪族(アルキル基)基、脂環族基、芳香族基、エステル基(-CO2R)、アミド基(-CONRR')、酸素置換基(-OR)又は硫黄置換基(-SR)などが、1個又は複数置換していてもよい。
複数置換する場合、同じであっても異なっていてもかまわない。なかでも、ロジウム、イリジウムにはペンタメチルシクロペンタジエニル配位子、ルテニウムにはヘキサメチルベンゼン配位子が活性が高い。
本発明で用いる金属錯体には、有機窒素化合物配位子を用いる。具体的にはビピリジン又はフェナントロリン等のポリピリジン配位子上に置換基として水酸基(-OH)をもつ化合物を用いる。置換場所によって、触媒活性に差が生じるが、いずれの位置に置換されても触媒活性は発現する。また、水酸基がポリピリジン配位子上に1個以上置換される必要があるが、好ましくはそれぞれのピリジン環上に1個ずつ置換されていることが望ましい。
本発明で用いる金属錯体の金属原子と結合する配位子は、水素分子存在下ヒドリド錯体(Y=H)を形成し得るものであればどんなものでも構わない。例えば、ハロゲンイオン、アクア配位子(H2O)などが挙げられる。ここで、ヒドリド錯体(Y=H)は、本反応の触媒として機能する。
本発明で用いる金属錯体のカウンターアニオンは特にその種類を限定しない。例えば、ハロゲンアニオンや過塩素酸アニオンなど、反応液に溶解すればどんなものでも構わない。
本発明で用いる媒体としては、水を用いる。純水もしくは無機塩の水溶液で反応は進行する。好ましくは、水溶液中アルカリ性を呈する無機塩が望ましい。特に、第I族または第II族の炭酸塩又は炭酸水素塩が好ましく、その例としては、Li2CO3 、LiHCO3、Na2CO3 、NaHCO3 、K2CO3 、KHCO3、CaCO3 、BaCO3 、SrCO3などが挙げられる。又は二酸化炭素を圧入もしくはバブリングすることによって炭酸塩又は炭酸水素塩を生成する第I族または第II族の水酸化物も好ましく、その例としては、LiOH, NaOH, KOH, Ca(OH)2, Ba(OH)2, Sr(OH)2などが適当である。また、アルコールやアミン等の有機物を混合させてもなんら反応を妨げることはないため、水ー有機物の混合溶媒を用いてもよい。
本発明における上記の金属錯体の使用量については、上限及び下限はなく、反応液への溶解性及び経済性などに依存する。適切な触媒濃度は1x10-8〜1x10-3 Mで、好ましくは1x10-7〜1x10-4Mとする。
本発明における反応に用いられる圧力は、特に上限及び下限はないが、一般に常圧以上が用いられる。圧力は高いほうが好ましいが、装置及び運転コスト等の経済的な理由に依存する。
本発明における反応温度は、充分な反応速度で反応が進行する方が有利である。好ましくは40度以上200度以下が好ましい。
The “complex” used in the present invention is an iridium, rhodium, ruthenium metal complex catalyst represented by the general formula (1) and the general formula (3) or a ruthenium represented by the general formula (2) and the general formula (4) A metal complex catalyst is used.
The cyclopentadienyl ligand and the arene ligand of the metal complex used in the present invention include an aliphatic (alkyl group), an alicyclic group, an aromatic group, an ester group (—CO 2 R), and an amide group ( -CONRR '), an oxygen substituent (-OR), a sulfur substituent (-SR) and the like may be substituted one or more times.
When multiple substitutions are made, they may be the same or different. In particular, rhodium and iridium have high activity with pentamethylcyclopentadienyl ligand, and ruthenium has high activity with hexamethylbenzene ligand.
As the metal complex used in the present invention, an organic nitrogen compound ligand is used. Specifically, a compound having a hydroxyl group (—OH) as a substituent on a polypyridine ligand such as bipyridine or phenanthroline is used. Although the catalytic activity varies depending on the substitution site, the catalytic activity is exhibited regardless of the substitution at any position. In addition, it is necessary that one or more hydroxyl groups be substituted on the polypyridine ligand, and it is preferable that one hydroxyl group is substituted on each pyridine ring.
The ligand binding to the metal atom of the metal complex used in the present invention may be any ligand as long as it can form a hydride complex (Y = H) in the presence of a hydrogen molecule. For example, a halogen ion, an aqua ligand (H 2 O) and the like can be mentioned. Here, the hydride complex (Y = H) functions as a catalyst for this reaction.
The kind of the counter anion of the metal complex used in the present invention is not particularly limited. For example, any substance such as a halogen anion or a perchlorate anion may be used as long as it is dissolved in the reaction solution.
Water is used as the medium used in the present invention. The reaction proceeds with pure water or an aqueous solution of an inorganic salt. Preferably, an inorganic salt exhibiting alkalinity in an aqueous solution is desirable. In particular, Group I or carbonate or bicarbonate of Group II are preferable, and examples thereof, Li 2 CO 3, LiHCO 3 , Na 2 CO 3, NaHCO 3, K 2 CO 3, KHCO 3, CaCO 3 , BaCO 3 , SrCO 3 and the like. Alternatively, Group I or Group II hydroxides that generate carbonate or bicarbonate by injecting or bubbling carbon dioxide are also preferable, and examples thereof include LiOH, NaOH, KOH, Ca (OH) 2 , Ba (OH) 2 and Sr (OH) 2 are suitable. Further, even if an organic substance such as an alcohol or an amine is mixed, the reaction is not hindered at all. Therefore, a mixed solvent of water and an organic substance may be used.
The amount of the metal complex used in the present invention does not have an upper limit or a lower limit, and depends on solubility in a reaction solution, economy, and the like. Suitable catalyst concentrations are between 1 × 10 −8 and 1 × 10 −3 M, preferably between 1 × 10 −7 and 1 × 10 −4 M.
The pressure used for the reaction in the present invention has no particular upper limit or lower limit, but is generally normal pressure or higher. Higher pressures are preferred, but will depend on economic reasons such as equipment and operating costs.
The reaction temperature in the present invention is more advantageously such that the reaction proceeds at a sufficient reaction rate. Preferably it is 40 degrees or more and 200 degrees or less.

(実施例1〜6)
次式の化合物について合成を試み、化合物を確認し、表1に示した条件で、蟻酸の製造をした。
実施例1-6 : M=Ir
(イリジウム錯体の合成)
ペンタメチルシクロペンタジエニルイリジウム クロリドダイマー 400 mg (0.50 mmol)と4,7-ジヒドロキシ-1,10-フェナントロリン 250 mg (1.18 mmol)をジメチルホルムアミド10 ml に溶解する。この溶液を窒素雰囲気下80度で12時間加熱攪拌した。その後、溶液を室温まで冷却後、析出物を濾取した。瀘液を半分程度に濃縮し、氷浴で冷却し、析出物を濾取した。析出物にエタノールを加え、不溶物を濾過し、瀘液を減圧か20ml程度に濃縮した。これに、エーテルを加えて析出する固体を濾取した。固体はカラムクロマトグラフィー(LH20, 溶出液 エタノール)に通した後、エーテルを加えて析出させることにより収量410mgで得られる。(収率 67%)この化合物は以下に示す分析結果から同定した。
IR (Nujol) 2669 (O-H), 2587 (O-H), 1608, 1583, 1542, 1226;
1H NMR (DMSO-d6, δ): 13.2 (bs, 2 H), 8.94 (d, J = 6.3 Hz, 2 H), 8.20 (s, 2 H), 7.44 (d, J = 6.3 Hz, 2 H), 1.69 (s, 15 H).
13C NMR (DMSO-d6,δ)161.80, 150.37, 145.89, 120.19, 118.30, 109.09, 85.71, 6.32;
Anal. Calcd for C22H23Cl2IrN2O2:C, 43.28; H, 3.80; N, 4.59. Found: C, 43.20; H, 3.90; N, 4.38;
FABMS m/z 575 [M+-Cl].
(実施例7)
(Examples 1 to 6)
Synthesis was attempted for the compound of the following formula, the compound was confirmed, and formic acid was produced under the conditions shown in Table 1.
Example 1-6: M = Ir
(Synthesis of iridium complex)
Dissolve 400 mg (0.50 mmol) of pentamethylcyclopentadienyliridium chloride dimer and 250 mg (1.18 mmol) of 4,7-dihydroxy-1,10-phenanthroline in 10 ml of dimethylformamide. This solution was heated and stirred at 80 ° C. for 12 hours under a nitrogen atmosphere. Thereafter, the solution was cooled to room temperature, and the precipitate was collected by filtration. The filtrate was concentrated to about half, cooled in an ice bath, and the precipitate was collected by filtration. Ethanol was added to the precipitate, insolubles were filtered off, and the filtrate was concentrated under reduced pressure or about 20 ml. To this was added ether, and the precipitated solid was collected by filtration. The solid is passed through column chromatography (LH20, eluent ethanol) and then precipitated by adding ether to obtain a solid in a yield of 410 mg. (Yield 67%) This compound was identified from the analysis results shown below.
IR (Nujol) 2669 (OH), 2587 (OH), 1608, 1583, 1542, 1226;
1 H NMR (DMSO-d 6 , δ): 13.2 (bs, 2 H), 8.94 (d, J = 6.3 Hz, 2 H), 8.20 (s, 2 H), 7.44 (d, J = 6.3 Hz, 2 H), 1.69 (s, 15 H).
13 C NMR (DMSO-d 6 , δ) 161.80, 150.37, 145.89, 120.19, 118.30, 109.09, 85.71, 6.32;
Anal.Calcd for C 22 H 23 Cl 2 IrN 2 O 2 : C, 43.28; H, 3.80; N, 4.59. Found: C, 43.20; H, 3.90; N, 4.38;
FABMS m / z 575 [M + -Cl].
(Example 7)

M=Rh
(ロジウム錯体の合成)
ペンタメチルシクロペンタジエニルイリジウム クロリドダイマーに代えてペンタメチルシクロペンタジエニルロジウム クロリドダイマーを用いたほかは実施例1とほぼ同様にしてロジウム錯体を合成した。この化合物は以下に示す分析結果から同定した。
IR (Nujol) 2669 (O-H), 2590 (O-H), 1603, 1583, 1540, 1225;
1H NMR (DMSO-d6, δ): 13.0 (bs, 2 H), 8.93 (d, J = 6.2 Hz, 2 H), 8.16 (s, 2 H), 7.41(d, J = 6.2 Hz, 2 H), 1.69 (s, 15 H);
13C NMR (DMSO-d6, δ): 162.45, 150.34, 144.59, 120.39, 117.69, 109.12, 93.63, 6.62;
Anal. Calcd for C22H23Cl2N2O2Rh:C, 50.69; H, 4.45; N, 5.37. Found: C, 50.35; H, 4.44; N, 5.45;
FABMS m/z 485 [M - Cl]+.

(実施例8)
(ルテニウム錯体の合成)
M = Rh
(Synthesis of rhodium complex)
A rhodium complex was synthesized in substantially the same manner as in Example 1 except that pentamethylcyclopentadienyl rhodium chloride dimer was used instead of pentamethylcyclopentadienyl iridium chloride dimer. This compound was identified from the analysis results shown below.
IR (Nujol) 2669 (OH), 2590 (OH), 1603, 1583, 1540, 1225;
1 H NMR (DMSO-d 6 , δ): 13.0 (bs, 2 H), 8.93 (d, J = 6.2 Hz, 2 H), 8.16 (s, 2 H), 7.41 (d, J = 6.2 Hz, 2 H), 1.69 (s, 15 H);
13 C NMR (DMSO-d 6 , δ): 162.45, 150.34, 144.59, 120.39, 117.69, 109.12, 93.63, 6.62;
Anal.Calcd for C 22 H 23 Cl 2 N 2 O 2 Rh: C, 50.69; H, 4.45; N, 5.37. Found: C, 50.35; H, 4.44; N, 5.45;
FABMS m / z 485 [M-Cl] + .

(Example 8)
(Synthesis of ruthenium complex)

(実施例8〜10)
(ルテニウム錯体の合成)
ペンタメチルシクロペンタジエニルイリジウム クロリドダイマーに代えてヘキサメチルベンゼンルテニウム クロリドダイマーを用いたほかは実施例1とほぼ同様にしてルテニウム錯体を合成した。この化合物は以下に示す分析結果から同定した。
IR (Nujol) 2672 (O-H), 2593 (O-H), 1606, 1583, 1512, 1222;
1H NMR (DMSO-d6, δ): 13.2 (bs, 2 H), 8.88 (d, J = 6.3 Hz, 2 H), 8.11 (s, 2 H), 7.38(d, J = 6.2 Hz, 2 H), 2.07 (s, 18 H);
13C NMR (DMSO-d6, δ): 161.08, 151.99, 144.57, 119.56, 117.88, 108.67, 92.06, 13.31;
Anal. Calcd for C24H26Cl2N2O2Ru:C, 52.75; H, 4.8; N, 5.13. Found: C, 51.91; H, 4.73; N, 5.07;
FABMS m/z 511 [M - Cl]+.


(実施例11)
(ルテニウム錯体の合成)
(Examples 8 to 10)
(Synthesis of ruthenium complex)
A ruthenium complex was synthesized in substantially the same manner as in Example 1, except that hexamethylbenzeneruthenium chloride dimer was used instead of pentamethylcyclopentadienyliridium chloride dimer. This compound was identified from the analysis results shown below.
IR (Nujol) 2672 (OH), 2593 (OH), 1606, 1583, 1512, 1222;
1 H NMR (DMSO-d 6 , δ): 13.2 (bs, 2 H), 8.88 (d, J = 6.3 Hz, 2 H), 8.11 (s, 2 H), 7.38 (d, J = 6.2 Hz, 2 H), 2.07 (s, 18 H);
13 C NMR (DMSO-d 6 , δ): 161.08, 151.99, 144.57, 119.56, 117.88, 108.67, 92.06, 13.31;
Anal.Calcd for C 24 H 26 Cl 2 N 2 O 2 Ru: C, 52.75; H, 4.8; N, 5.13. Found: C, 51.91; H, 4.73; N, 5.07;
FABMS m / z 511 [M-Cl] + .


(Example 11)
(Synthesis of ruthenium complex)

(ルテニウム錯体の合成)
ペンタメチルシクロペンタジエニルイリジウム クロリドダイマーに代えてp-クメンルテニウム クロリドダイマーを用いたほかは実施例1とほぼ同様にしてルテニウム錯体を合成した。この化合物は以下に示す分析結果から同定した。
1H NMR (DMSO-d6, δ): 13.2(bs, 2 H), 9.43 (d, J = 6.2 Hz, 2 H),8.14 (s, 2 H), 7.33 (d, J = 6.2 Hz, 2H), 6.13 (d, J = 6.2 Hz, 2 H), 5.91(d, J = 6.2 Hz, 2 H), 2.6 (m, 1 H),2.15 (s, 3 H), 0.92 (d, J = 7.0 Hz, 6H);
13C NMR (DMSO-d6, δ): 162.97, 153.34, 145.04, 120.61, 117.27, 108.58, 99.81, 99.16, 82.82, 80.58, 28.37, 19.70, 16.29;
Anal. Calcd for C22H22Cl2N2O2Ru:C, 50.97; H, 4.28; N, 5.40%. Found: C,50.68; H, 4.02; N, 5.74%;
FABMS m/z 483 [M - Cl]+.


(実施例12)
(イリジウム錯体の合成)
(Synthesis of ruthenium complex)
A ruthenium complex was synthesized in substantially the same manner as in Example 1 except that p-cumene ruthenium chloride dimer was used instead of pentamethylcyclopentadienyl iridium chloride dimer. This compound was identified from the analysis results shown below.
1 H NMR (DMSO-d 6 , δ): 13.2 (bs, 2 H), 9.43 (d, J = 6.2 Hz, 2 H), 8.14 (s, 2 H), 7.33 (d, J = 6.2 Hz, 2H), 6.13 (d, J = 6.2 Hz, 2 H), 5.91 (d, J = 6.2 Hz, 2 H), 2.6 (m, 1 H), 2.15 (s, 3 H), 0.92 (d, J = 7.0 Hz, 6H);
13 C NMR (DMSO-d 6 , δ): 162.97, 153.34, 145.04, 120.61, 117.27, 108.58, 99.81, 99.16, 82.82, 80.58, 28.37, 19.70, 16.29;
Anal.Calcd for C 22 H 22 Cl 2 N 2 O 2 Ru: C, 50.97; H, 4.28; N, 5.40%. Found: C, 50.68; H, 4.02; N, 5.74%;
FABMS m / z 483 [M-Cl] + .


(Example 12)
(Synthesis of iridium complex)

(イリジウム錯体の合成)
4,7-ジヒドロキシ-1,10-フェナントロリンに代えて4,4’-ジヒドロキシ-2,2’-ビピリジン臭化水素塩を用いたほかは実施例1とほぼ同様にしてイリジウム錯体を合成した。この化合物は以下に示す分析結果から同定した。
1H NMR (KOD/D2O, δ): 8.26 (d, J = 6.6 Hz, 2 H), 7.14 (d, J = 2.4 Hz, 2 H), 6.63 (dd, J = 6.5, 2.4 Hz, 2 H), 1.58 (s, 15 H).
FABMS m/z 595 [M+-X].

(実施例13)
(ルテニウム錯体の合成)
(Synthesis of iridium complex)
An iridium complex was synthesized in substantially the same manner as in Example 1 except that 4,4′-dihydroxy-2,2′-bipyridine hydrobromide was used instead of 4,7-dihydroxy-1,10-phenanthroline. This compound was identified from the analysis results shown below.
1 H NMR (KOD / D 2 O, δ): 8.26 (d, J = 6.6 Hz, 2 H), 7.14 (d, J = 2.4 Hz, 2 H), 6.63 (dd, J = 6.5, 2.4 Hz, 2 H), 1.58 (s, 15 H).
FABMS m / z 595 [M + -X].

(Example 13)
(Synthesis of ruthenium complex)

(ルテニウム錯体の合成)
4,7-ジヒドロキシ-1,10-フェナントロリンに代えて4,4’-ジヒドロキシ-2,2’-ビピリジン臭化水素塩を用いたほかは実施例1とほぼ同様にしてルテニウム錯体を合成した。この化合物は以下に示す分析結果から同定した。
1H NMR (KOD/D2O, δ): 8.18 (d, J = 6.6 Hz, 2 H), 7.05 (d, J = 2.5 Hz, 2 H), 6.63 (dd, J = 6.6, 2.5 Hz, 2 H), 1.98 (s, 18 H).
13C NMR (KOD/D2O, δ): 178.55, 159.11, 154.99, 120.93, 115.60, 95.17, 17.25;
FABMS m/z 533 [M+-X].
(Synthesis of ruthenium complex)
A ruthenium complex was synthesized in substantially the same manner as in Example 1, except that 4,4′-dihydroxy-2,2′-bipyridine hydrobromide was used instead of 4,7-dihydroxy-1,10-phenanthroline. This compound was identified from the analysis results shown below.
1 H NMR (KOD / D 2 O, δ): 8.18 (d, J = 6.6 Hz, 2 H), 7.05 (d, J = 2.5 Hz, 2 H), 6.63 (dd, J = 6.6, 2.5 Hz, 2 H), 1.98 (s, 18 H).
13 C NMR (KOD / D 2 O, δ): 178.55, 159.11, 154.99, 120.93, 115.60, 95.17, 17.25;
FABMS m / z 533 [M + -X].

(実施例14)
(イリジウム錯体の合成)
(Example 14)
(Synthesis of iridium complex)

(イリジウム錯体の合成)
4,7-ジヒドロキシ-1,10-フェナントロリンに代えて3,3’-ジヒドロキシ-2,2’-ビピリジンを用いたほかは実施例1とほぼ同様にしてイリジウム錯体を合成した。本化合物の場合、2つのヒドロキシ間で分子内水素結合しているため、上記の構造と取っていると考えられる。この化合物は以下に示す分析結果から同定した。
IR (Nujol) 2726, 2673, 1582, 1533, 1258;
1H NMR (DMSO-d6, δ): 18.1 (bs, 1 H, H-O-H), 8.06 (dd, J = 5.2, 1.3 Hz, 2 H), 7.26 (dd, J = 8.4, 5.2Hz, 2 H), 7.06 (dd, J = 8.4, 1.3Hz, 2 H), 1.56 (s, 15 H);
13C NMR (DMSO-d6, δ): 159.06, 143.74, 137.80, 127.14, 124.99, 86.16, 6.04;
Anal. Calcd for C20H22ClIrN2O2:C, 43.67; H, 4.03; N, 5.09. Found: C, 43.60; H, 3.86; N, 4.86;
FABMS m/z 551 [M + H]+, 515 [M - Cl]+.
(Synthesis of iridium complex)
An iridium complex was synthesized in substantially the same manner as in Example 1, except that 3,3′-dihydroxy-2,2′-bipyridine was used instead of 4,7-dihydroxy-1,10-phenanthroline. In the case of the present compound, it is considered that the compound has the above structure because of intramolecular hydrogen bonding between two hydroxy groups. This compound was identified from the analysis results shown below.
IR (Nujol) 2726, 2673, 1582, 1533, 1258;
1 H NMR (DMSO-d 6 , δ): 18.1 (bs, 1 H, HOH), 8.06 (dd, J = 5.2, 1.3 Hz, 2 H), 7.26 (dd, J = 8.4, 5.2 Hz, 2 H ), 7.06 (dd, J = 8.4, 1.3Hz, 2H), 1.56 (s, 15H);
13 C NMR (DMSO-d 6 , δ): 159.06, 143.74, 137.80, 127.14, 124.99, 86.16, 6.04;
Anal.Calcd for C 20 H 22 ClIrN 2 O 2 : C, 43.67; H, 4.03; N, 5.09. Found: C, 43.60; H, 3.86; N, 4.86;
FABMS m / z 551 [M + H] + , 515 [M-Cl] + .

内容積100 ml オートクレーブに所定の金属錯体触媒と充分に脱気した無機塩の水溶液(50 ml)を仕込み、二酸化炭素と水素ガスの1対1の混合ガスを所定の圧力で圧入又はバブリングし、所定の温度、時間で反応を行った。生成したギ酸の分析は液体クロマトグラフィーにより行なった。すなわち、反応生成物の一部を採取し、これを2mMリン酸水溶液を展開液とするカラム(TSKgel SCX(H+):TOSOH)に通し、流出する液について波長210 nmにおける吸光度を測定し、得られた測定値と検量線から算出した。 An autoclave is charged with a predetermined metal complex catalyst and an aqueous solution (50 ml) of a sufficiently degassed inorganic salt in an autoclave, and a mixed gas of one to one of carbon dioxide and hydrogen gas is injected or bubbled at a predetermined pressure, The reaction was performed at a predetermined temperature and time. Analysis of the formed formic acid was performed by liquid chromatography. That is, a part of the reaction product was collected and passed through a column (TSKgel SCX (H + ): TOSOH) using a 2 mM phosphoric acid aqueous solution as a developing solution, and the absorbance of the effluent at a wavelength of 210 nm was measured. It was calculated from the obtained measured values and a calibration curve.

実施例1〜14について反応条件等についてまとめて表1に示す。
Table 1 summarizes the reaction conditions and the like for Examples 1 to 14.

(下記の化学構造式を有するオキシアニオン錯体の存在の確認)
一般式(1)で表わされるイリジウム錯体 (62 mg, 0.1 mmol) の無水エタノール溶液(10 ml)に0.5 M KOHのエタノール溶液 (400 μl, 0.2mmol) を加えて、10分間攪拌した。この溶液に無水エーテル (100 ml) を加えると、単黄色固体が析出する。これを瀘取し、エーテルで洗った。さらに、メタノール/エーテルで再結晶し、吸湿性単黄色固体(23 mg, 37%) を得た。この化合物は以下に示す分析結果から同定した。また、一般式(1)で表わされるイリジウム錯体をKOD/D2Oで測定したものと同一であることを確認した。
IR (KBr) 1602, 1559, 1497;
1H NMR (DMSO-d6, δ): 7.86 (d, J = 6.9 Hz, 2 H), 7.62 (s, 2 H), 6.22 (d, J = 6.9 Hz, 2 H), 1.69 (s, 15 H);
13C NMR (DMSO-d6, δ): 175.40, 149.34, 149.22, 129.44, 118.46, 115.31, 95.05, 8.69;
1H NMR (D2O, δ): 8.56 (d, J = 6.5 Hz, 2 H), 7.94 (s, 2 H), 6.78(d, J = 6.5 Hz, 2 H), 1.63 (s, 15 H);
Anal. Calcd for C22H21ClIrKN2O2・H2O: C, 41.93; H, 3.68; N, 4.45. Found: C, 42.02;H, 3.89; N, 4.20;
FABMS(glycerol) m/z 613 [M + H]+,575 [M - K + 2H]+, 539 [M - K- Cl + H]+.





(Confirmation of existence of oxyanion complex having the following chemical structural formula)
A solution of 0.5 M KOH in ethanol (400 μl, 0.2 mmol) was added to an anhydrous ethanol solution (10 ml) of the iridium complex (62 mg, 0.1 mmol) represented by the general formula (1), and the mixture was stirred for 10 minutes. When anhydrous ether (100 ml) is added to this solution, a single yellow solid precipitates. This was filtered and washed with ether. The solid was recrystallized from methanol / ether to obtain a hygroscopic single yellow solid (23 mg, 37%). This compound was identified from the analysis results shown below. In addition, it was confirmed that the iridium complex represented by the general formula (1) was the same as that measured by KOD / D 2 O.
IR (KBr) 1602, 1559, 1497;
1 H NMR (DMSO-d 6 , δ): 7.86 (d, J = 6.9 Hz, 2 H), 7.62 (s, 2 H), 6.22 (d, J = 6.9 Hz, 2 H), 1.69 (s, 15 H);
13 C NMR (DMSO-d 6 , δ): 175.40, 149.34, 149.22, 129.44, 118.46, 115.31, 95.05, 8.69;
1 H NMR (D 2 O, δ): 8.56 (d, J = 6.5 Hz, 2 H), 7.94 (s, 2 H), 6.78 (d, J = 6.5 Hz, 2 H), 1.63 (s, 15 H);
Anal.Calcd for C 22 H 21 ClIrKN 2 O 2・ H 2 O: C, 41.93; H, 3.68; N, 4.45. Found: C, 42.02; H, 3.89; N, 4.20;
FABMS (glycerol) m / z 613 [M + H] + , 575 [M-K + 2H] + , 539 [M-K- Cl + H] + .





(下記の化学構造式を有するイリジウムヒドリド錯体の存在の確認)
一般式(1)で表わされるイリジウム錯体 2 mg とリン酸3ナトリウム塩 6 mg を重水素 5 ml に溶解し、0.4 MPa の水素ガス下3日放置した後、1H NMR でヒドリド錯体の生成を1H NMRで確認した。
1H NMR (D2O, δ) 8.40 (d, J = 6.5 Hz, 2 H), 7.92 (s, 2H), 6.75 (d, J = 6.5 Hz, 2 H), 1.69 (s, 15 H), -11.10 (s, 1H).
(Confirmation of existence of iridium hydride complex having the following chemical structural formula)
After dissolving 2 mg of the iridium complex represented by the general formula (1) and 6 mg of trisodium phosphate in 5 ml of deuterium, and allowing the mixture to stand under 0.4 MPa of hydrogen gas for 3 days, the formation of a hydride complex was determined by 1 H NMR. Confirmed by 1 H NMR.
1 H NMR (D 2 O, δ) 8.40 (d, J = 6.5 Hz, 2 H), 7.92 (s, 2H), 6.75 (d, J = 6.5 Hz, 2 H), 1.69 (s, 15 H) , -11.10 (s, 1H).

既知化合物である[Cp*Rh(bpy)Cl]Cl, [Cp*Ir(bpy)Cl]Cl, (C6Me6)Ru(bpy)Cl]Cl は、本発明者によって水溶液中容易にギ酸分解反応が進行することを既に報告している (J. Mol. Catl., A Vol. 195, p. 95 (2003))。さらに、本発明者らはこれらの錯体がギ酸分解反応の逆反応である二酸化炭素の水素化によるギ酸の製造に応用しうるのではないかと考えた。鋭意研究を重ねた結果、ビピリジン又はフェナントロリン等のポリピリジン配位子上に水酸基を有する錯体が極めて高い触媒活性を有することを見いだした。
ジヒドロキシポリピリジン配位子をもつ金属錯体を触媒とする二酸化炭素の水素化の結果を表1に示す。
ここに示した錯体を用いた二酸化炭素の水素化反応は、従来の方法に比べてはるかに高い触媒能(触媒回転数、回転効率、最終ギ酸濃度)を示していることがわかる。
興味深いことに、均一系金属触媒を用いた従来法では達成できなかった極めて温和な条件(混合ガス圧が1 MPa又は常圧)でも十分な反応速度で二酸化炭素の水素化が進行する(実施例4-6)。同様に一般式(1)で表わされるにロジウム錯体でも充分に高い触媒能を示した(実施例7)。一方、一般式(2)で表わされるルテニウム錯体を用いた場合、高濃度ギ酸水溶液を与えた(実施例8-10)。この場合、図2、3で示すように、反応温度を変化させても触媒が劣化することなく、ガスに依存した平衡濃度に達することができた。
また、本触媒は反応終了後濾取することで容易に回収することが可能である。回収した錯体は再度触媒として利用することができる。
本反応は、以下のような反応機構を持っていると推察される。すなわち、一般式(1)および(2)で表わされる金属錯体はアルカリ性水溶液中脱プロトン化が起こり、一般式(1)からは(化27)に示すようなジアニオンを生じる。ついで水素ガス存在下、(化28)に示すようなヒドリド錯体を生じ、これが触媒として作用していると考えている。さらに、二酸化炭素もしくは炭酸水素イオンが金属-水素結合に挿入反応を経由してギ酸が生成するものと考えている。ここで示したようなヒドリド錯体は、還元能が高く他の基質にも応用できる可能性が高いと考えられる。
The known compounds [Cp * Rh (bpy) Cl] Cl, [Cp * Ir (bpy) Cl] Cl and (C 6 Me 6 ) Ru (bpy) Cl] Cl can be easily converted into aqueous solution by the present inventor. It has already been reported that the decomposition reaction proceeds (J. Mol. Catl., A Vol. 195, p. 95 (2003)). Furthermore, the present inventors thought that these complexes could be applied to the production of formic acid by hydrogenation of carbon dioxide, which is the reverse reaction of the formic acid decomposition reaction. As a result of intensive studies, it has been found that a complex having a hydroxyl group on a polypyridine ligand such as bipyridine or phenanthroline has extremely high catalytic activity.
Table 1 shows the results of hydrogenation of carbon dioxide using a metal complex having a dihydroxypolypyridine ligand as a catalyst.
It can be seen that the hydrogenation reaction of carbon dioxide using the complex shown here shows much higher catalytic activity (catalyst rotation speed, rotation efficiency, final formic acid concentration) than the conventional method.
Interestingly, the hydrogenation of carbon dioxide proceeds at a sufficient reaction rate even under extremely mild conditions (mixed gas pressure of 1 MPa or normal pressure), which could not be achieved by the conventional method using a homogeneous metal catalyst (Example 1). 4-6). Similarly, the rhodium complex represented by the general formula (1) showed a sufficiently high catalytic activity (Example 7). On the other hand, when the ruthenium complex represented by the general formula (2) was used, a high-concentration formic acid aqueous solution was given (Examples 8-10). In this case, as shown in FIGS. 2 and 3, even when the reaction temperature was changed, the catalyst did not deteriorate, and the equilibrium concentration depending on the gas could be reached.
Further, the present catalyst can be easily recovered by filtration after the completion of the reaction. The recovered complex can be reused as a catalyst.
This reaction is presumed to have the following reaction mechanism. That is, the metal complexes represented by the general formulas (1) and (2) undergo deprotonation in an alkaline aqueous solution, and from the general formula (1), a dianion as shown in (Chemical Formula 27) is generated. Then, in the presence of hydrogen gas, a hydride complex as shown in (Formula 28) is produced, and it is considered that this acts as a catalyst. In addition, it is thought that formic acid is generated through insertion reaction of carbon dioxide or hydrogen carbonate ion into metal-hydrogen bond. It is considered that the hydride complex as shown here has high reducing ability and is likely to be applicable to other substrates.

本発明は、二酸化炭素と水素を反応させる触媒として有用な新規化合物及びそれを用いた触媒、二酸化炭素と水素を反応させる蟻酸の製造方法、及び二酸化炭素の固定化方法を提供することができ、火力発電所やセメント工場から大量に排出される二酸化炭素を固定化することができるので、地球温暖化防止技術としても有用であるばかりか、生産された蟻酸は、化学原料として利用することが出来る。
The present invention can provide a novel compound useful as a catalyst for reacting carbon dioxide and hydrogen and a catalyst using the same, a method for producing formic acid by reacting carbon dioxide and hydrogen, and a method for immobilizing carbon dioxide, It can fix a large amount of carbon dioxide emitted from thermal power plants and cement plants, so it is not only useful as a technology to prevent global warming, but the formic acid produced can be used as a chemical raw material .

実施例1,3,7,8,9について、時間経過によるギ酸の発生量を調べた結果を示す。The results of examining the amount of formic acid generated over time for Examples 1, 3, 7, 8, and 9 are shown. 実施例8について、ガス圧4MPaで反応温度を変化させた場合の時間経過によるギ酸の発生量を調べた結果を示す。The results of examining the amount of formic acid generated over time in Example 8 when the reaction temperature was changed at a gas pressure of 4 MPa are shown. 実施例9について、ガス圧6 MPaで反応温度を変化させた場合の時間経過によるギ酸の発生量を調べた結果を示す。The results of examining the amount of formic acid generated over time in Example 9 when the reaction temperature was changed at a gas pressure of 6 MPa are shown.

Claims (8)

一般式(1)

(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(2)

(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物。
General formula (1)

(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (2)

(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A polypyridine compound having a hydroxyl group represented by the following formula:
一般式(3)
(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(4)
(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物。
General formula (3)
(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (4)
(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A polypyridine compound having a hydroxyl group represented by the following formula:
二酸化炭素と水素を反応させるに際して、水と一般式(1)
(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(2)
(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物である二酸化炭素還元反応触媒。
When reacting carbon dioxide and hydrogen, water and general formula (1)
(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (2)
(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A carbon dioxide reduction reaction represented by the following formula: catalyst.
二酸化炭素と水素を反応させるに際して、水と一般式(3)

(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(4)

(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物である二酸化炭素還元反応触媒。
When reacting carbon dioxide and hydrogen, water and general formula (3)

(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (4)

(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A carbon dioxide reduction reaction represented by the following formula: catalyst.
一般式(1)

(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(2)

(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物の存在下で、二酸化炭素と水素を反応させる蟻酸の製造方法。
General formula (1)

(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (2)

(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A method for producing formic acid by reacting carbon and hydrogen.
一般式(3)

(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(4)

(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物の存在下で、二酸化炭素と水素を反応させる蟻酸の製造方法。
General formula (3)

(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (4)

(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A method for producing formic acid by reacting carbon and hydrogen.
一般式(1)

(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(2)

(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物の存在下で、二酸化炭素と水素を反応させて蟻酸とする二酸化炭素固定化方法。
General formula (1)

(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (2)

(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A carbon dioxide fixing method in which carbon and hydrogen are reacted to form formic acid.
一般式(3)

(式中、Rは水素及び又はアルキル基であり、MはIr、Rh若しくはRuであり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物または一般式(4)

(式中、Rは水素及び又はアルキル基であり、Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で示される水酸基を有するポリピリジン化合物の存在下で、二酸化炭素と水素を反応させて蟻酸とする二酸化炭素固定化方法。

General formula (3)

(Wherein, R 1 is hydrogen and / or an alkyl group, M 1 is Ir, Rh, or Ru, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex). Polypyridine compound having hydroxyl group or general formula (4)

(Wherein, R 1 is hydrogen and / or an alkyl group, Y is halogen or hydrogen, and X represents a counter anion that forms a metal complex.) A carbon dioxide fixing method in which carbon and hydrogen are reacted to form formic acid.

JP2003423034A 2002-12-25 2003-12-19 Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide Expired - Lifetime JP4009728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423034A JP4009728B2 (en) 2002-12-25 2003-12-19 Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002374877 2002-12-25
JP2003423034A JP4009728B2 (en) 2002-12-25 2003-12-19 Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide

Publications (2)

Publication Number Publication Date
JP2004217632A true JP2004217632A (en) 2004-08-05
JP4009728B2 JP4009728B2 (en) 2007-11-21

Family

ID=32911082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423034A Expired - Lifetime JP4009728B2 (en) 2002-12-25 2003-12-19 Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide

Country Status (1)

Country Link
JP (1) JP4009728B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028408A1 (en) * 2003-09-17 2005-03-31 Japan Science And Technology Agency Process for reduction of carbon dioxide with organometallic complex
JP2007055915A (en) * 2005-08-23 2007-03-08 National Institute Of Advanced Industrial & Technology Method for producing formic acid from carbon dioxide and hydrogen
WO2008059630A1 (en) * 2006-11-17 2008-05-22 Osaka University Catalyst for decomposition of formic acid, method for decomposition of formic acid, process for production of hydrogen, apparatus for production or decomposition of formic acid, and method for storage or generation of hydrogen
JP2009078200A (en) * 2007-09-25 2009-04-16 Japan Science & Technology Agency Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
JP2013193056A (en) * 2012-03-22 2013-09-30 Toyota Central R&D Labs Inc Reduction catalyst
JP2014193457A (en) * 2013-02-28 2014-10-09 Toyota Central R&D Labs Inc Solid catalyst
CN104204301A (en) * 2012-03-06 2014-12-10 液体光有限公司 Reducing carbon dioxide to products
WO2016056562A1 (en) * 2014-10-07 2016-04-14 コニカミノルタ株式会社 Iridium complex, organic electroluminescence material, organic electroluminescence element, display device, and illumination device
US20160121318A1 (en) * 2013-02-20 2016-05-05 University Of Washington Through Its Center For Commercialization Hydrogenation and disproportionation catalysis
WO2018135506A1 (en) * 2017-01-19 2018-07-26 日本曹達株式会社 Reduction method using ruthenium complex
WO2021187057A1 (en) * 2020-03-17 2021-09-23 日東電工株式会社 Formate production method and formate production system
US11878279B2 (en) 2015-02-27 2024-01-23 Japan Science And Technology Agency Electrochemical reduction of carbon dioxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111860A1 (en) 2012-01-27 2013-08-01 独立行政法人産業技術総合研究所 Dehydrogenation catalyst for formic acid, method for producing hydrogen, and method for producing deuterium gas or deuterated hydrogen
JPWO2015053317A1 (en) 2013-10-11 2017-03-09 国立研究開発法人産業技術総合研究所 Catalyst used for formic acid dehydrogenation, formic acid dehydrogenation method, hydrogen production method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479570B2 (en) 2003-09-17 2009-01-20 Japan Science And Technology Agency Process for reduction of carbon dioxide with organometallic complex
JPWO2005028408A1 (en) * 2003-09-17 2007-11-15 独立行政法人科学技術振興機構 Reduction method of carbon dioxide using organometallic complex
WO2005028408A1 (en) * 2003-09-17 2005-03-31 Japan Science And Technology Agency Process for reduction of carbon dioxide with organometallic complex
JP2007055915A (en) * 2005-08-23 2007-03-08 National Institute Of Advanced Industrial & Technology Method for producing formic acid from carbon dioxide and hydrogen
US7939461B2 (en) 2006-11-17 2011-05-10 Osaka University Catalyst for decomposition of formic acid, method for decomposing formic acid, process for producing hydrogen, apparatus for producing and decomposing formic acid, and method for storing and generating hydrogen
JPWO2008059630A1 (en) * 2006-11-17 2010-02-25 国立大学法人大阪大学 Catalyst for formic acid decomposition, formic acid decomposition method, hydrogen production method, formic acid production and decomposition apparatus, hydrogen storage and generation method
JP4572393B2 (en) * 2006-11-17 2010-11-04 国立大学法人大阪大学 Catalyst for formic acid decomposition, formic acid decomposition method, hydrogen production method, formic acid production and decomposition apparatus, hydrogen storage and generation method
WO2008059630A1 (en) * 2006-11-17 2008-05-22 Osaka University Catalyst for decomposition of formic acid, method for decomposition of formic acid, process for production of hydrogen, apparatus for production or decomposition of formic acid, and method for storage or generation of hydrogen
JP2009078200A (en) * 2007-09-25 2009-04-16 Japan Science & Technology Agency Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
CN104204301A (en) * 2012-03-06 2014-12-10 液体光有限公司 Reducing carbon dioxide to products
JP2013193056A (en) * 2012-03-22 2013-09-30 Toyota Central R&D Labs Inc Reduction catalyst
US20160121318A1 (en) * 2013-02-20 2016-05-05 University Of Washington Through Its Center For Commercialization Hydrogenation and disproportionation catalysis
US9770710B2 (en) * 2013-02-20 2017-09-26 University Of Washington Through Its Center For Commercialization Hydrogenation and disproportionation catalysis
JP2014193457A (en) * 2013-02-28 2014-10-09 Toyota Central R&D Labs Inc Solid catalyst
WO2016056562A1 (en) * 2014-10-07 2016-04-14 コニカミノルタ株式会社 Iridium complex, organic electroluminescence material, organic electroluminescence element, display device, and illumination device
JPWO2016056562A1 (en) * 2014-10-07 2017-07-27 コニカミノルタ株式会社 Iridium complex, organic electroluminescent material, organic electroluminescent element, display device and lighting device
US11878279B2 (en) 2015-02-27 2024-01-23 Japan Science And Technology Agency Electrochemical reduction of carbon dioxide
WO2018135506A1 (en) * 2017-01-19 2018-07-26 日本曹達株式会社 Reduction method using ruthenium complex
WO2021187057A1 (en) * 2020-03-17 2021-09-23 日東電工株式会社 Formate production method and formate production system

Also Published As

Publication number Publication date
JP4009728B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4009728B2 (en) Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide
JP4875576B2 (en) Catalyst for formic acid decomposition, formic acid decomposition method, hydrogen production method, formic acid production and decomposition apparatus, hydrogen storage and generation method
Oldenhof et al. Base-Free Production of H 2 by Dehydrogenation of Formic Acid Using An Iridium-bisMETAMORPhos Complex.
JP5812290B2 (en) Catalyst for use in carbon dioxide hydrogenation or formic acid dehydrogenation, carbon dioxide hydrogenation method using the catalyst, formic acid dehydrogenation method, hydrogen storage and production method
JP6071079B2 (en) Bimetallic catalyst for CO2 hydrogenation and H2 production from formic acid and / or its salts
JP3968431B2 (en) Method for producing formic acid from carbon dioxide and hydrogen, method for immobilizing carbon dioxide and method for promoting them by irradiating light
JP4822253B2 (en) Method for producing formate from carbon dioxide and hydrogen
JP2010083730A (en) Method for producing at least either deuterium (d2) or hydrogen deuteride (hd) and catalyst for formic acid decomposition used therefor
JP5681985B2 (en) Production method of urea compounds by carbon dioxide fixation
WO2009125565A1 (en) Ruthenium compound and method for producing optically active aminoalcohol compound
JP2014062038A (en) Method for producing carbon monoxide and/or hydrogen
Ocansey et al. Chiral-at-Metal: Iridium (III) Tetrazole Complexes With Proton-Responsive P-OH Groups for CO2 Hydrogenation
JP2010063986A (en) Oxygen generation catalyst
JP2007245139A (en) Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP6289310B2 (en) Catalyst or precursor thereof, method for hydrogenating carbon dioxide using these, and method for producing formate
JP5593002B2 (en) Method for producing adamantanetriols
US9259725B2 (en) Acyclic aza-containing ligands for use as catalytic carbon capture systems
AU2018260727B2 (en) Process for the preparation of deuterated ethanol from D2O
JP6890320B2 (en) Catalyst used for hydrogenation of carbon dioxide, formic acid production method, hydrogen storage method
CN113754606A (en) Phenoxazinediamine derivatives and/or phenothiazine diamine derivatives and preparation method thereof
JP6579545B2 (en) Method for synthesizing indole derivatives
US9902743B2 (en) Copper complex for capturing carbon dioxide
JP2012001419A (en) Method for producing ammonia borane
CN115181132B (en) Metal organic catalyst and preparation method and application thereof
JP5659191B2 (en) Heterocyclic compounds, oxidation catalysts and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Ref document number: 4009728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term