JP2004211156A - Method for manufacturing metal microparticle, substance containing metal microparticle, and electroconductive coating composition - Google Patents

Method for manufacturing metal microparticle, substance containing metal microparticle, and electroconductive coating composition Download PDF

Info

Publication number
JP2004211156A
JP2004211156A JP2002382191A JP2002382191A JP2004211156A JP 2004211156 A JP2004211156 A JP 2004211156A JP 2002382191 A JP2002382191 A JP 2002382191A JP 2002382191 A JP2002382191 A JP 2002382191A JP 2004211156 A JP2004211156 A JP 2004211156A
Authority
JP
Japan
Prior art keywords
metal
powder
board
particles
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002382191A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Takahashi
義之 高橋
Yuji Ohashi
勇司 大橋
Takao Ono
隆生 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Kaken Corp
Original Assignee
Tamura Kaken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Kaken Corp filed Critical Tamura Kaken Corp
Priority to JP2002382191A priority Critical patent/JP2004211156A/en
Publication of JP2004211156A publication Critical patent/JP2004211156A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture ultra-fine metal particles with a nanometric size not more than several micrometers, and to form a fine conductor circuit pattern on a circuit board with the use of the ultrafine metal particles. <P>SOLUTION: The method for manufacturing the metal microparticles comprises arranging a pair of discs so as to make the disc faces oppose each other and approach each other into a touchable distance; radially arranging dimple-shaped channels in the face of one disc; while rotating the other disc at a high speed, introducing the metal particles to the dimple-shaped channels; and pulverizing the metal particles at the end of the channels by shear stress due to a difference of a rotational speed between both discs. The substance containing the metal microparticles and the electroconductive coating composition containing the metal microparticles are disclosed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、例えばはんだ等の金属微粒子の製造方法、金属微粒子含有物及び導電性塗布組成物に関する。
【0002】
【従来の技術】
IC、LSI等の半導体素子その他の各種電子部品の回路基板への搭載等には、その接合材料として、はんだはSn−Pb系の共晶はんだが主として用いられている。このいわゆる有鉛はんだは、これがはんだ付材料として使用された回路基板のような電子部品が電子機器の廃棄に伴って外界に投棄されるような場合には、酸性雨等によって有害な鉛が地下水等に溶出し、飲食に使用されれば人体に有害である。他方、いわゆる鉛フリーの例えばSn−Agを基本とした無鉛はんだ合金が用いる試みもあるが、Sn−Pb系の共晶はんだに比べて溶融温度が30〜40℃も高いことから、この無鉛はんだ合金を含むソルダーペーストを用いて電子部品をリフローはんだ付した場合には、耐熱性のない電子部品の機能を損ねるという問題がある。
【0003】
そこで、IC、LSI等の半導体素子その他の各種電子部品の組み立てや、これらの回路基板への搭載、さらには回路基板における配線等には、ソルダーペーストを用いたリフローはんだ付のように金属を溶融しないで金属粉末を有機バインダーで接着させた導電体を形成することができる塗膜型の導電性ペーストが導電性接着剤や塗布材料として用いられている。この導電性接着剤を用いれば120〜200℃で電子部品を電子回路基板に接着することができことから、有鉛はんだにかわる接着材料として期待されている。既に、半導体素子を電子回路基板に直接接続するフリップチップ(FC)接続、マルチチップモジュール(MCM)接続、チップサイズパッケージ(CSP)接続等の電子部品の接続等に用いられている。
【0004】
これらの導電性接着剤や塗布材料に使用されている導電性粒子は、還元法、電解法、粉砕法(ボールミル法、クラッシャー法等)、アトマイズ法等によって、製造されている。ところで、導電性接着剤や塗布材料が適用される回路基板の導体回路パターンは益々微細化される傾向にあり、これまでのものに使用されている導電性粒子よりも更に微細な粒子の使用が必要となってきている。
ところが、従来から使用されている粒子の製造方法においては、さらに粒子を小さくするのには限界がある。このような背景から、最近では、平均粒子径がナノレベルの超微粒子の研究が盛んになってきており、またそれを用いた導電性接着剤も開発され始めている。
現在のところ、ナノレベルの超微粒子は、主として液中還元法(金属化合物の水溶液において薬剤により金属を還元して微粒子化させる方法)、高周波プラズマ法(プラズマを金属に当てて蒸発させ、冷却して微粒子化する方法)(例えば特開平6−340906号公報参照)、アーク放電法(金属を真空中に気化させてアーク放電を行う方法)、レーザー法(金属にレーザー光を照射して蒸発した粒子を回収する方法)、ビーズミル法(金属粗粒子をビーズを用いて機械的に粉砕する方法)等の製造方法によって製造されている。
【0005】
【特許文献1】
特開平6−340906号公報
【0006】
【発明が解決しようとする課題】
しかしながら、液中還元法は、銀、金、銅、ニッケル等の金属を簡単にナノレベルの超微粒子にすることができる特徴を有しているが、単一金属に限定されており、金属合金の超微粒子化は困難である。また、高周波プラズマ法、アーク放電法、レーザー法においては、金属にプラズマ、アーク放電、レーザー照射の処理を行って、気相中の粒子を冷却して回収する方法であり、いずれの金属でも処理が可能である特徴を有しているが、装置が高価であり、生産性が低く、さらに金属合金の超微粒子化は困難である。その理由は、金属合金の場合には、各組成金属の蒸気圧の違いによって蒸発速度が異なり、冷却時に目的とした金属組成の粒子ができ難いからである。また、ビーズミル法は、簡便な工法である反面、時間を費やすこと、コンタミネーションの問題があり、さらに粒子の粒度分布が広くなる欠点を有している。ナノレベルの超微粒子は、ミクロンレベルの粒子に比較して特異的な物理的性質を有することから、各産業界において大変興味深い新規材料となっているにも関わらず、その生産性の問題が大きいことから、量産における課題の解決が望まれている。
また、本発明者らは、これらの製造方法とは異にする金属または金属合金の微粉末製造方法として、溶融はんだを高沸点の液体中で高速で攪拌することによって、溶融はんだを微小の液滴にし、その後冷却によって固化させ、乾燥させることによって微粒子粉末を得ることができる液中アトマイズ法について、特願2001−395566号明細書で提案している。しかしながら、この製造方法においても、得られる平均粒子径は数μm程度のものに適し、これ以下の超微粒子といえる微粒子を容易に得られるような金属微粒子の製造方法の開発が望まれていた。
【0007】
本発明の第1の目的は、平均粒子径が例えば数μm未満であって、かつ粒度分布の幅をより狭くすることができる超微粒子その他の微粒子が得られる金属微粒子の製造方法、その微粒子を用いた金属微粒子含有物及び導電性塗布組成物を提供することにある。
本発明の第2の目的は、配線基板のファインピッチのパターンの微細のはんだ付部にも適用できる金属微粒子を製造することができる金属微粒子の製造方法、その微粒子を用いた金属微粒子含有物及び導電性塗布組成物を提供することにある。
本発明の第3の目的は、比較的簡単な設備で製造が容易、低コストの金属微粒子の製造方法、金属微粒子含有物及び導電性塗布組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく、鋭意研究を行った結果、一対の盤体の盤面を互いに近接させ、いずれか一方の盤面には放射状に先細りの凹窪状溝を形成し、一方の盤面を他方の盤面に対して高速で回転可能に設けた微粒子化装置において、例えば液中アトマイズ法により製造した50μm以下の金属微粒子粉末を、その一対の盤面の間の凹窪状溝に中央側から導入すると、加速度的な遠心力によってその凹窪状溝の先端に粉末が集積し、これに両盤面の回転速度差による大きな剪断応力が作用して微粒子が更に効率良く微細に粉砕されて超微粒子になり易いことを見出し、本発明をするに至った。
すなわち、本発明は、(1)、一対の盤体の各盤面を対向させてそれぞれの盤面を互いに接触可能に近接して設け、該一対の盤面の少なくともいずれか一方には放射状に先細りの凹窪状溝を形成し、かつ一方の盤面を他方の盤面に対して高速で回転可能に設け、その回転による両方の盤面による剪断応力により粉砕を可能にした微粒子化装置において、金属粉末又は金属の溶融物を上記凹窪状溝に中央から導入して上記の剪断応力で粉砕する金属微粒子の製造方法を提供するものである。
また、本発明は、(2)、凹窪状溝は先端が一対の互いに接触可能な盤面内に位置し、非開放であり、金属粉末又は金属の溶融物は行き止まりと近接する盤面の閉鎖的空間により集積が促進され近接する盤面による粉砕が促進される上記(1)の金属微粒子の製造方法、(3)、一対の盤面の少なくとも一方は背面を押圧されるクッションを有し、両盤面の静止時は該押圧力により両盤面は接触し、一方の盤面を他方の盤面に対して高速で回転するときは両盤面は近接し、一対の両盤面間の空間が不変的に保持可能に設けられている上記(1)又は(2)の金属微粒子の製造方法、(4)、一対の互いに接触可能な盤面は鏡面加工されていて接触するときは密接し、金属粉末又は金属の溶融物は凹窪状溝の両側に流出し難い上記(1)ないし(3)のいずれかの金属微粒子の製造方法、(5)、一対の盤面の互いに近接する盤面間の間隙が2μm〜10μmである上記(1)ないし(4)のいずれかの金属微粒子の製造方法、(6)、金属粉末又は金属の溶融物を上記凹窪状溝に中央から導入して剪断応力で粉砕する処理は不活性雰囲気下で行なう上記(1)ないし(5)のいずれかの金属微粒子の製造方法、(7)、金属粉末の平均粒子径が50μmより大きくない上記(1)ないし(6)のいずれかの金属微粒子の製造方法、(8)、粉砕された粒子は平均粒子径が10nm〜1000nmの超微粒子である上記(7)の金属微粒子の製造方法、(9)、上記(1)ないし(8)のいずれかの金属微粒子の製造方法により得られた金属微粒子又は金属超微粒子を含有する金属微粒子含有物、(10)、上記(9)の金属微粒子含有物がはんだに用いる金属微粒子粉末又は金属超微粒子粉末であり、該金属微粒子粉末又は金属超微粒子粉末を含有する導電性塗布組成物を提供するものである。
【0009】
【発明の実態の形態】
本発明の金属の微粒子の製造方法について、その一例を図1ないし図7を参照しながら詳細に説明する。
金属の微粒子として、その超微粒子を製造するのに用いられる装置としては、図1に示すように、一次加工物貯留槽A、再微粒子化処理装置B及び超微粒子回収装置Cがそれぞれ配管により接続され、それぞれの配管aにはバルブbが設けられている。一次加工物貯留槽Aは、再微粒子化処理装置Bに供給する一次加工粉末又は金属の溶融物を貯留する貯留槽であり、不活性ガス導入管が付設されている。また、金属の溶融物を貯留した際に保温するためのヒータ等の保温設備が設けられている。
一次加工粉末としては、例えば図2〜4に示すような液中アトマイズ装置Dによって金属の微粉末を製造することができる。すなわち、金属と有機分散媒の混合液中でその金属を溶融し(金属粉末を溶融し有機分散媒と混合してもよい)、溶融した金属を有機分散媒中において、高速攪拌させることによって微粒子化させる。この液中アトマイズ装置Dは、不活性ガス導入管と排出管の配管aをそれぞれバルブbを介して設けた攪拌処理槽1にジェネレーター2がモータ3と連結して設けられ、ジェネレーター2は図3、4に示すように、倒立した截頭円錐状筒体の周壁に放射状に切り溝4、4・・を有する固定子5に対して回転子6(軸の両側の2枚翼)をモータ3により高速回転させ、被処理液を吸い込ませ、固定子5と回転子6との間で働く高剪断作用によりその被処理液中の金属の溶融体を分断して微粒子化し、その溶融金属微粒子の分散液を切り溝4、4・・から排出させるものである。なお、図示省略したが加熱手段が設けられている。この溶融金属微粒子分散液は攪拌処理槽1より配管aを通してバルブbの操作により取り出し、冷却させた後、遠心分離装置等により金属微粒子を分別し、洗浄して乾燥させ、固体金属微粒子粉末を得ることができる。得られた固体金属微粒子粉末は上記の一次加工物貯留槽Aに収容する。これらの処理は、特に上記の微粒子化処理は不活性ガス存在下に行って金属の酸化を防止することが好ましい。なお、微粒子化装置としては特許第2555715号公報に記載のケーディーミルも同様の目的に使用できる。また、以下に述べる再微粒子化処理装置Bをその仕様を変えて微粒子化処理装置として使用してもよく、この場合は金属の溶融物あるいは粉末も処理することができる。
【0010】
また、再微粒子化処理装置Bは、図1に示すようにモータ7bを備えた再微粒子化処理部からなり、図5〜7に示すように、一対の円盤7(回転円盤)、8(固定円盤)がそれぞれの盤面(直径30mm〜300mm)が対向されて接触可能に近接して設けられ、円盤7は支持台7aに支持され、その支持台が軸7aを介してモータ7bにより回転されることにより高速回転(例えば少なくとも15000rpm(毎分の回転数))が可能であり、いわゆるターンテーブルのように設けられている。円盤8はスプリング9、9・・によりフレーム10に固定され、その中央に設けられた貫通孔に導入管11が液密に嵌合され、その導入管11には上記の液中アトマイズ装置Dで製造された溶融金属微粒子分散液から得られた金属微粒子粉末、あるいは他の装置で得られた金属微粒子粉末あるいは溶融炉中で溶融された溶融金属が上記一次加工粉末貯留槽Aから導入されるようになっており、さらにその上部は密閉され、その密閉空間にはガス導入管(図示省略)が連結されている。これにより円盤8は上記スプリングに加えてガス圧(クッション)によりその背面が押圧され、円盤7が回転しないときは、その対向する盤面が上記円盤7の盤面に密接し、シールすることができるが、それが回転するときは振動や芯振れ等を吸収できるフローティング構造(浮動構造)となっている。
【0011】
図6〜7に示すように、円盤7はその盤面に放射状に先端に行く程先細で回転方向にやや湾曲する弧状の凹窪状溝7c、7c・・・が形成され、円盤8は接触する側の面の中央側がややせりあがるように形成されており、その盤面は平滑に仕上げられている。両盤面が接触することにより凹窪状溝7c、7c・・・は中央程大きく開口され先端が行き止まりの閉鎖溝となっており、導入管11を通して導入された上記の金属微粒子粉末又は金属の溶融物がその開口より導入されて、金属微粒子粉末R又は金属の溶融物は遠心力により加速度的に先端部に誘導され、先端に行くほど集積され、その先端で粒子又は金属の溶融物ははみ出るが、一対の円盤によって作用するバランスライン(円盤7の回転で円盤8が開く(浮動する)上向きの力V1とスプリング9、9・・とガス圧による押付け力V2により決まるV3)によって両盤面の間隙に導入されて両盤面による回転差による剪断力を先端部のものほど大きく受け、すなわち摩擦により粉砕されて超微粒子rが生じ、これがさらに遠心力により超微粒子ドレイン12に放出されるようになっている(溶融金属を処理した場合にはその粉砕の後に冷却して固体金属超微粒子とする)。この際上記のフローティング構造によりその摩擦力も緩和され、また、その調整もすることができる。両盤面間の間隙は2μm〜10μmが好ましく、小さ過ぎると両平面による摩擦抵抗が大きくなり過ぎ、大き過ぎると被処理液が凹窪状溝7c、7c・・・の両側部に流出し易くなる。いずれの円盤の盤面も鏡面に仕上げて密接できるようにし、上記の金属粒子が溝の両側に流出しないようにすることが好ましい。また、円盤7,8の周囲の雰囲気は不活性ガス下におくことが好ましく、図示省略したがそのガスの導入管が設けられている。
再微粒子化処理装置Bにより処理されて得られた金属の超微粒子は超微粒子回収装置Cにより回収される。この超微粒子回収装置Cは必要に応じて不活性ガス存在下で金属の超微粒子を捕集することができ、配管を通してバルブの操作により取り出すことができ、これにより固体金属微粒子粉末を得ることができる。
【0012】
このように溶融金属あるいは液中アトマイズ装置D等で得られた固体金属微粒子粉末は、再微粒子化処理装置Bにより再微粒子化されて、いわゆる超微粒子化が行われるが、固体金属微粒子粉末の平均粒子径は一対の盤面によって形成される狭い間隙を効率良く通過させるために、大きくても50μm(50μm以下)が好ましく、これより大きいと上記の再微粒子化における効率が低下することがある。そして、再微粒子化処理装置Bにより処理されて得られる金属超微粒子は、凹窪状溝7c、7c・・の形状、先端の絞り方、円盤の背面の圧力、円盤7の回転速度等の調整により平均粒子径は7μm未満、例えば10nm〜1000nmとすることができる。
上記は円盤7に凹窪状溝を設けたが、円盤8の盤面に設け、円盤7の盤面は平滑にしてもよく、上記と同様の効果が得られるが、両方の円盤の盤面に凹窪状溝を設けてもよい。また、凹窪状溝の絞った先端は両盤面の接触できる範囲内に位置させたが、例えば比較的粒子径の大きい微粒子を得る場合には、外方に開放する開口を設けもよく、また、両円盤の盤面の面積を変え、その接触しない範囲に位置させても良い。また、上記液中アトマイズ装置Dの代わりに、あるいは上記一次加工物貯留槽Aの代わりに、再微粒子化処理装置Bにおいて凹窪状溝7c、7c・・の形状、先端の絞り方、円盤の背面の圧力、円盤7の回転速度等を調整した仕様のこと以外は同様の微粒子化処理装置を用いて、溶融金属あるいは固体金属粗粒子粉末から固体金属微粒子粉末を製造し、さらに再微粒子化処理装置Bにより固体金属超微粒子粉末を得るようにしてもよい。また、円盤7を回転させたが、円盤8も速度差を設けて回転させてもよく、また、両者は逆回転させてもよく、後者の場合は回転速度を上げない割には高い剪断力を得たい場合に有効である。
【0013】
上記液中アトマイズ装置Dあるいは再微粒子化処理装置Bと同様の微粒子化処理装置を用いて、粒子分散用媒体に金属の微粒子を分散させて金属微粒子分散液を調製し、さらに冷却させて遠心分離装置等により固体金属微粒子粉末を得ることができ、その固体金属微粒子粉末を用いて再微粒子化処理装置Bにより金属超微粒子を製造することができるが、粒子分散用媒体としては有機分散媒が挙げられるが、その他の分散媒でもよい。
有機分散媒としては、微粒子化しようとする金属の溶融温度以上の沸点あるいは分解温度の使用可能上限温度を有し、かつその溶融金属の微粒子を分散することができる有機化合物が使用できる。具体的には、シリコンオイル類、石油精製鉱油類、工業用潤滑油類、植物油類、鯨油、牛脂等の動物油類あるいは化学的に合成された合成潤滑油類、高級炭化水素化合物類、グリコール誘導体類の有機熱媒体等が挙げられる。なお、有機分散媒は、引火性のないものが、火災の危険性がない点で特に好ましい。
【0014】
更に、有機分散媒には、加熱時の酸化を防止するために酸化防止剤を加えることが好ましい。酸化防止剤としては、例えば油脂、ゴム或いは合成樹脂等に使用されているものが使用でき、例えばフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリマー型フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。その他、酸化抑制効果のあるイミダゾール類を併用しても良く、また単独で使用しても良い。これらの化合物の具体的な例は、特開平9−49007号公報に記載されているものを挙げることができる。
【0015】
また、金属微粒子分散液を調製するには、微粒子化された溶融金属が再度融合によって合一することを防止する作用を有する粒子合一防止剤を使用することが好ましい。この粒子合一防止剤としては、具体的には、ロジンまたは誘導体類、トリアゾール類、イミダゾール類、アミン化合物類、脂肪酸類、ヒドラジン類、ピラゾール類、アゾ化合物類、熱可塑性樹脂類、アルコール類、イソシアネート類、含硫黄系化合物類、高分子アミン系化合物類等が挙げられ、単独もしくは複数混合して使用することができる。
【0016】
本発明において、金属とは、純金属及び金属合金の少なくとも1種が挙げられ、純金属のみ、合金のみ、もしくは両者を併用する場合がある。純金属としては、Ag、Au、Cu、W、Ni、Ta、Pt、Pd、Ti、Cr、Fe、Co、Ga、In、Li、Se、Sn、Bi、Tl、Pb、Zn、Te等が挙げられる。また、金属合金としてはんだは良く知られており、特にSn/Pb共晶はんだは電子機器工業やその他の多くの分野で電子部品の接合用材料として使用されている。具体的には、例えば、2元系合金としては63Sn/37Pb、60Sn/40Pb、56Sn/44Pb、50Sn/50Pb等のSn−Pb系、95.3Ag/4.7Bi等のAg−Bi系、66Ag/34Li等のAg−Li系、95.3Pb/4.7Ag、97.5Pb/2.5Ag等のPb−Ag系、3Ag/97In等のAg−In系、67Ag/33Te等のAg−Te系、97.2Ag/2.8Tl等のAg−Tl系、45.6Ag/54.4Zn等のAg−Zn系、80Au/20Sn等のAu−Sn系、52.7Bi/47.3In系のBi−In系、35In/65Sn、51In/49Sn、52In/48Sn等のIn−Sn系、50Pb/50In等のPb−In系、8.1Bi/91.9Zn等のBi−Zn系、43Sn/57Bi、42Sn/58Bi等のSn−Bi系、98Sn/2Ag、96.5Sn/3.5Ag、96Sn/4Ag、95Sn/5Ag等のSn−Ag系、91Sn/9Zn、30Sn/70Zn等のSn−Zn系、99.3Sn/0.7Cu等のSn−Cu系、95Sn/5Sb等のSn−Sb系等が挙げられる。また、3元系合金としては、95.5Sn/3.5Ag/1In等のSn−Ag−In系、86Sn/9Zn/5In、81Sn/9Zn/10In等のSn−Zn−In系、95.5Sn/0.5Ag/4Cu、96.5Sn/3.0Ag/0.5Cu等のSn−Ag−Cu系、16Sn/32Pb/52Bi、19Sn/31Pb/50Bi、34Sn/20Pb/46Bi、43Sn/43Pb/14Bi等のSn−Pb−Bi系、35Sn/64.5Pb/0.5Sb、32Sn/66Pb/2Sb等のSn−Pb−Sb系、90.5Sn/7.5Bi/2Ag、41.0Sn/58Bi/1,0Ag等のSn−Bi−Ag系、89.0Sn/8.0Zn/3.0Bi等のSn−Zn−Bi系等を挙げることができる。
これらの金属は、溶融金属分散液を調製するときは、溶融してから粒子分散用媒体に加え、あるいは粒子分散用媒体に加えてから加熱して溶融してもよいが、粒子分散用媒体中において溶融状態で分散エネルギーを付与されて溶融金属微粒子分散液が調製される。
本発明において、金属または金属合金を微粒子化又は超微粒子化する雰囲気として不活性ガスを使用する目的は、微粒子又は超微粒子の酸化防止及び微粒子化処理装置又は超微粒子化装置内において、微粒子又は超微粒子を効率良く冷却して固体粉末とする作用を持っている。不活性ガスの種類は、特に限定するものではないが、アルゴン、ヘリウム、窒素等のガスが使用され、窒素ガスが好適に使用される。
【0017】
【実施例】
以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例になんら限定されるものではない。なお、「部」は「質量部」を意味する。
実施例1
96.5Sn/3.5Agの鉛フリーはんだ合金100部と、精製ヒマシ油980部及び粒子合一防止剤(商品名:ステアリン酸スズ、日東化成社製)20部の混合有機分散媒を、図2〜4に示す液中アトマイズ装置Dとしての分散機(装置名:クレアミックスCLM−0.8S、エム・テクニック社製)の攪拌槽内に仕込み、230℃に加熱して攪拌速度20000rpmで10分間攪拌した。その後攪拌と加熱を止め、得られた溶融金属微粒子分散液を攪拌槽周側に設けたジャケットに冷却水を流すことによって冷却し、固体金属微粒子分散液を得た。さらに高速遠心分離機(装置名:CR22F、日立工機社製)を用いて10000rpmで5分間処理し、上澄み液を除去後、酢酸エチルを加えて同様の操作を行って洗浄した。この操作を更に2回繰り返し、乾燥させた。固体金属微粒子粉末の平均粒径及び粒度分布をレーザ回折法で測定したところ、平均粒径(一次加工粉末の平均粒径)は6.1μm、分布のシャープさε〔=(D90−D10/D50)〕(D90 、D10 、D50 は順に粒子がその直径を小さい方から数えた場合に90%、10%、50%になったときの粒子の直径を表す) は0.75であった(以下、各測定値は同様の方法による測定値である。)。
得られた平均粒子径6.1μmの固体金属微粒子粉末(一次加工粉末)を図1に示す一次加工物貯留槽Aに貯留し、ここから再微粒子化装置B(円盤7、8の鏡面仕上げの各盤面は直径150mm、円盤7に形成した弧状の凹窪状溝は放射状に6個設け、各凹窪状溝は中心部の弧の長さが100mm、深さが2μm、幅が中央側が14mmで順次先端に行く程先細りで先端で0になっている)に導入し、窒素ガス下で供給量200g/min(分)(一次加工粉末の供給量)、円盤7の回転速度(円盤回転速度)15000rpmで処理した。
窒素ガス下で冷却されて超微粒子粉末が超微粒子ドレイン12に排出され、ここから超微粒子回収装置Cに送られる。ここで回収された鉛フリーのはんだ超微粒子粉末は、回収率91%であり、平均粒径は84nm、分布のシャープさεは0.63であった。
その処理条件と測定結果を表1に示す。
【0018】
実施例2
実施例1において、円盤回転速度を20000rpmにしたこと以外は同様にして鉛フリーのはんだ超微粒子粉末を得た。その処理条件と実施例1と同様に測定した結果を表1に示す。
【0019】
実施例3、4
実施例1において、96.5Sn/3.5Agの鉛フリーはんだ合金粉末の代わりに、Ag粉末(平均粒子径2.1μm)を用い、その他は表1に示す条件にしたこと以外は実施例1と同様にして銀の超微粒子粉末を得た。その処理条件と実施例1と同様に測定した結果を表1に示す。
【0020】
実施例5、6
実施例1において、96.5Sn/3.5Agの鉛フリーはんだ粉末の代わりに、Sn粉末(平均粒子径11μm)を用い、その他は表1に示す条件にしたこと以外は実施例1と同様にして銀の超微粒子粉末を得た。その処理条件と実施例1と同様に測定した結果を表1に示す。
【0021】
実施例7
63Sn/37Pb(質量%)共晶はんだ合金1200gを溶融炉中で窒素置換した後、200℃に加熱して溶融した。その溶融物を図1に示す一次加工物貯留槽Aに貯留した。また、実施例1で使用した再微粒子化装置Bも同様に窒素ガスによって置換するとともに冷却した。円盤回転速度15000rpmに調整した後、一次加工物貯留槽Aから溶融した63Pb/37Pb共晶はんだを供給量(一次加工物の供給量)100g/minで供給し、周速100m/秒で超微粒子化処理を行った。
超微粒子回収装置Cに集められたはんだの超微粒子は、走査型電子顕微鏡によって得られた微粒子を観察したところ、サテライト粒子の付着は認められなかった。
また、実施例1と同様に測定した。処理条件とその測定結果を表1に示す。
【0022】
実施例8
実施例7おいて、円盤回転速度を20000rpmにしたこと以外は同様にしてはんだ超微粒子粉末を得た。走査型電子顕微鏡によって得られた微粒子を観察したところ、サテライト粒子の付着は認められなかった。
処理条件と実施例1と同様に測定した結果を表1に示す。
【0023】
実施例9
実施例7において、63Sn/37Pb(質量%)共晶はんだ合金1200gの代わりに、96.5Sn/3.5Ag(質量%)の鉛フリーのはんだ合金1000gを用いたこと、加熱温度を230℃にしたこと、その他は表1に示す条件にしたこと以外は実施例1と同様にして鉛フリーのはんだの超微粒子粉末を得た。走査型電子顕微鏡によって得られた微粒子を観察したところ、サテライト粒子の付着は認められなかった。
処理条件と実施例1と同様に測定した結果を表1に示す。
【0024】
実施例10
実施例9において、96.5Sn/3.5Ag(質量%)の鉛フリーのはんだ合金1000gの代わりに、96.5Sn/3.0Ag/0.5Cu(質量%)の鉛フリーのはんだ合金1000gを用いたこと以外は実施例1と同様にして鉛フリーのはんだの超微粒子粉末を得た。走査型電子顕微鏡によって得られた微粒子を観察したところ、サテライト粒子の付着は認められなかった。
処理条件と実施例1と同様に測定した結果を表1に示す。
【0025】
比較例1
63Sn/37Pb(重量%)共晶はんだ合金を溶融炉中で窒素置換した後、200℃まで加熱して溶融した。これを窒素ガスによって置換した遠心アトマイズ装置の円盤上に滴下して微粒子化した。この時、ディスク径は20mmφ、ディスク回転速度は50000rpmで行った。得られた粉末は、分級装置によって分級した。
処理条件と実施例1と同様に測定した結果を表1に示す。
【0026】
比較例2
96.5Sn/3.5Ag(質量%)鉛フリーはんだ合金を溶融炉中で窒素置換した後、300℃まで加熱して溶融した。これを窒素ガスによって置換した遠心アトマイズ装置によって、比較例1と同様の条件下で微粒化を行った。得られた粉末は、分級装置によって分級した。
処理条件と実施例1と同様に測定した結果を表1に示す。
【0027】
比較例3
Sn金属(純度99.99%)を300℃まで加熱して溶融し、これを窒素ガスによって置換した遠心アトマイズ装置によって、ディスク径20mmφ、ディスク回転速度50000rpmで、微粒化を行った。得られた粉末は、分級装置によって分級した。
処理条件と実施例1と同様に測定した結果を表1に示す。
【0028】
【表1】

Figure 2004211156
【0029】表1の結果から、得られた粉末の平均粒径は、比較例のものが11,000〜17,000nmであるのに対し、実施例1〜6のものは56〜150nmであって1/100以下と小さい超微粒子を得ることができ、実施例7〜10のものは3,200〜6,100nmであって約1/2.8以下と小さい超微粒子を得ることができ、再微粒化装置Bを使用する効果が優れることがわかるが、液中アトマイズ装置Dを併用すると更にその効果が顕著であることがわかる。また、εについては小さくすることができ、分布をシャープにすることもできる。
このことから、得られる微粒子粉末又は超微粒子粉末について7μm未満の微粒子粉末、1μm(1000nm)未満、例えば50nm〜200nmの超微粒子粉末の限定を設けてもよく、また、金属粉末又は金属微粒子粉末を、「金属粒子分散液は粒子分散用媒体に低融点金属を混合することと、加熱と、該粒子分散用媒体に粒子を分散させる分散エネルギーを付与することとを少なくとも行なって、上記粒子分散用媒体中に金属を溶融させて溶融金属粒子を分散させることにより得られる溶融金属粒子分散液より得られる金属微粒子粉末」としてもよい。
【0030】
実施例11
(導電性ペーストの製造及びその評価)
(導電性ペーストの製造)
銀超微粒子(実施例3で得られた平均粒径110nm のもの) 88部
樹脂(エピコート828 、ジャパンエポキシレジン社製) 6.2部
硬化剤(キュアゾール2P4MHZ、四国化成工業社製) 1.2部
溶剤(エポライトM−1230、共栄社化学社製) 4.6部
合計 100部
上記配合において、予め樹脂、硬化剤及び溶剤を混合して接着剤を調製しておき、これをビヒクルとしてこれに銀超微粒子をプラネタリーミキサーにより攪拌・混練し、、真空脱泡して導電性ペーストを得た。その粘度は72Pa・sであった。
(評価)
アルミナセラミック基板上にメッシュスクリーンによって、上記組成の導電性ペーストを用いて最小ピッチ100μmの導体回路パターンを印刷した。
その後、この導体回路パターンを印刷した基板を窒素ガス雰囲気下、150℃、10分間乾燥処理を行ない、さらに窒素ガス雰囲気下210℃の温度で1時間加熱処理を行った。
このようにして、アルミナセラミック基板上に導体回路パターンを銀からなる導電体により形成することができたが、100μmのピッチの導体回路パターンを欠損なく形成することができた。また、導体回路パターンの配線部分の導電体の抵抗値をデジタルマルチメータにより測定したところ、2.5mΩ/□であり、銀からなる導電体として十分な性能であることが確認された。
【0031】
【発明の効果】
本発明によれば、平均粒子径が10μm未満、例えば数μm未満であって、かつ粒度分布の幅をより狭くすることができる超微粒子その他の微粒子が得られ、配線基板のファインピッチのパターンの微細のはんだ付部にも適用できる金属微粒子を製造することができる金属微粒子の製造方法、その微粒子を用いた金属微粒子含有物及び導電性塗布組成物を提供することができる。
そして、比較的簡単な設備で製造容易、低コストの金属微粒子の製造方法、金属微粒子含有物及び導電性塗布組成物を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の金属微粒子の製造方法において使用する装置の一例を示す概略図である。
【図2】その実施例に使用する液中アトマイズ装置の一例を示す概略図である。
【図3】その分散機の一部の正面の概略図である。
【図4】その分散機の一部の縦断面の概略図である。
【図5】その実施例の他の一部の再微粒子化処理装置の断面の概略図である。
【図6】その装置の一部の一対の円盤の対向面を示す図である。
【図7】その一対の円盤による粉砕機構を示す説明図である。
【符号の説明】
A・・・一次加工物貯留槽
B・・・再微粒子化処理装置
7・・・回転円盤
8・・・固定円盤
7c・・・凹窪状溝[0001]
[Industrial applications]
The present invention relates to a method for producing metal fine particles such as solder, a metal fine particle-containing material, and a conductive coating composition.
[0002]
[Prior art]
For mounting semiconductor elements such as ICs and LSIs and other various electronic components on a circuit board, Sn-Pb eutectic solder is mainly used as a bonding material. This so-called leaded solder is used in cases where electronic components such as circuit boards, which are used as soldering materials, are discarded to the outside world with the disposal of electronic devices, and harmful lead due to acid rain or the like is removed from groundwater. It is harmful to the human body if used for eating and drinking. On the other hand, there has been an attempt to use a lead-free solder alloy based on, for example, Sn-Ag. However, since the melting temperature is higher by 30 to 40 ° C. than that of a Sn-Pb eutectic solder, this lead-free solder is not used. When an electronic component is reflow-soldered using a solder paste containing an alloy, there is a problem in that the function of the electronic component having no heat resistance is impaired.
[0003]
Therefore, in assembling semiconductor elements such as ICs and LSIs and other various electronic components, mounting these components on circuit boards, and wiring on the circuit boards, the metal is melted as in reflow soldering using solder paste. A coating type conductive paste capable of forming a conductor in which metal powder is adhered with an organic binder without using an organic binder is used as a conductive adhesive or a coating material. If this conductive adhesive is used, an electronic component can be bonded to an electronic circuit board at 120 to 200 ° C., so that it is expected as an adhesive material replacing leaded solder. It has already been used for connecting electronic components such as flip chip (FC) connection for directly connecting a semiconductor element to an electronic circuit board, multi-chip module (MCM) connection, and chip size package (CSP) connection.
[0004]
The conductive particles used in these conductive adhesives and coating materials are manufactured by a reduction method, an electrolytic method, a pulverizing method (such as a ball mill method or a crusher method), or an atomizing method. By the way, the conductive circuit pattern of a circuit board to which a conductive adhesive or a coating material is applied tends to be further miniaturized, and the use of finer particles than the conductive particles used in conventional ones has been increasing. It is becoming necessary.
However, in the method of producing particles conventionally used, there is a limit in further reducing the size of the particles. Against this background, research on ultrafine particles having an average particle diameter of nano-level has been actively conducted recently, and conductive adhesives using the same have begun to be developed.
At present, nano-level ultrafine particles are mainly reduced in liquid (method of reducing metal with an agent in an aqueous solution of a metal compound to form fine particles), high-frequency plasma method (evaporation by applying plasma to metal, and cooling). (For example, see JP-A-6-340906), an arc discharge method (a method in which a metal is vaporized in a vacuum to perform an arc discharge), and a laser method (a metal is irradiated with laser light to evaporate it. It is manufactured by a manufacturing method such as a method of recovering particles) or a bead mill method (a method of mechanically pulverizing metal coarse particles using beads).
[0005]
[Patent Document 1]
JP-A-6-340906
[0006]
[Problems to be solved by the invention]
However, the in-liquid reduction method has the feature that metals such as silver, gold, copper, and nickel can be easily converted into ultra-fine particles at the nanometer level. It is difficult to make ultrafine particles. In the high-frequency plasma method, arc discharge method, and laser method, metal is subjected to plasma, arc discharge, and laser irradiation to cool and collect particles in the gas phase. However, the apparatus is expensive, the productivity is low, and it is difficult to make the metal alloy into ultrafine particles. The reason is that, in the case of a metal alloy, the evaporation rate differs depending on the vapor pressure of each composition metal, and it is difficult to form particles of the target metal composition during cooling. In addition, the bead mill method is a simple method, but has a problem of spending time, contamination, and has a drawback that the particle size distribution of the particles is widened. Nano-level ultrafine particles have unique physical properties compared to micron-level particles, so they are a very interesting new material in each industry, but their productivity is a major problem. Therefore, it is desired to solve the problem in mass production.
In addition, the present inventors, as a method of producing a fine powder of metal or metal alloy different from these production methods, by stirring the molten solder at a high speed in a high boiling point liquid, the molten solder Japanese Patent Application No. 2001-395566 proposes a submerged atomization method in which fine particles can be obtained by dropping, solidifying by cooling, and drying. However, also in this production method, an average particle diameter to be obtained is suitable for those having a size of about several μm, and there has been a demand for development of a method for producing metal fine particles capable of easily obtaining ultrafine particles of less than this.
[0007]
A first object of the present invention is to provide a method for producing metal fine particles capable of obtaining ultrafine particles or other fine particles having an average particle diameter of, for example, less than several μm, and capable of narrowing the width of the particle size distribution. An object of the present invention is to provide a metal fine particle-containing material and a conductive coating composition used.
A second object of the present invention is to provide a method for producing metal fine particles capable of producing fine metal particles that can be applied to fine soldered portions of fine pitch patterns on a wiring board, a metal fine particle-containing material using the fine particles, and An object of the present invention is to provide a conductive coating composition.
A third object of the present invention is to provide a method for producing metal fine particles, a metal fine particle-containing material, and a conductive coating composition which can be easily manufactured with relatively simple equipment at low cost.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above problems, as a result of bringing the board surfaces of a pair of board bodies closer to each other, and forming a radially tapered concave recessed groove on one of the board faces, In a micronization device in which one board surface is rotatably provided at a high speed with respect to the other board surface, for example, 50 μm or less metal fine particle powder produced by a submerged atomization method is formed into a concave groove between the pair of board surfaces. When introduced from the center side, powder accumulates at the tip of the concave groove due to accelerated centrifugal force, and a large shear stress acts on this due to the difference in rotation speed between the two disk surfaces, and fine particles are further finely crushed more efficiently. Thus, the present invention was found to be easy to become ultrafine particles, and led to the present invention.
That is, according to the present invention, (1) the respective board surfaces of a pair of board members are opposed to each other, and the respective board surfaces are provided so as to be in contact with each other, and at least one of the pair of board surfaces has a radially tapered concave portion. In a micronization device in which a concave groove is formed and one board surface is rotatably provided at a high speed with respect to the other board surface, and pulverization is enabled by shearing stress of both board surfaces due to the rotation, a metal powder or a metal powder is used. An object of the present invention is to provide a method for producing metal fine particles in which a melt is introduced into the concave groove from the center and pulverized by the shear stress.
Further, according to the present invention, (2) the recessed groove is positioned in a pair of mutually contactable board surfaces, and the tip thereof is not opened, and the metal powder or the molten metal is closed on the board surface close to a dead end. (1) the method for producing fine metal particles according to the above (1), wherein the accumulation is promoted by the space and the pulverization by the adjacent board surface is promoted; (3) at least one of the pair of board surfaces has a cushion whose rear surface is pressed, When stationary, the two surfaces contact each other due to the pressing force, and when one surface rotates at a high speed with respect to the other surface, the two surfaces are close to each other, and the space between the pair of both surfaces is provided so as to be able to be held invariably. (1) or (2), wherein the pair of mutually contactable board surfaces are mirror-finished and are in close contact when they come into contact with each other; (1) or above, which is difficult to flow out to both sides of the concave groove 3) The method for producing metal fine particles according to any one of (5) and the method for producing fine metal particles according to any one of the above (1) to (4), wherein the gap between the pair of disk surfaces adjacent to each other is 2 μm to 10 μm. , (6), the process of introducing a metal powder or a molten metal into the concave groove from the center and pulverizing it with a shearing stress is performed in an inert atmosphere under any of the above (1) to (5). (7) The method for producing metal fine particles according to any one of (1) to (6), wherein the average particle diameter of the metal powder is not larger than 50 μm, (8), the pulverized particles have an average particle diameter Is ultrafine particles having a diameter of 10 nm to 1000 nm, and (9) the metal fine particles or metal ultrafine particles obtained by the method for producing metal fine particles according to any one of (1) to (8). Fine metal particles containing fine particles The present invention provides a conductive coating composition containing the metal fine particle powder or the metal ultra fine particle powder used in soldering, wherein the metal fine particle content of (10) and (9) is a metal fine particle powder or a metal ultra fine particle powder used for soldering. Is what you do.
[0009]
Embodiment of the present invention
One example of the method for producing metal fine particles of the present invention will be described in detail with reference to FIGS.
As shown in FIG. 1, a primary work storage tank A, a re-particulation processing apparatus B, and an ultra-fine particle recovery apparatus C are connected by pipes as apparatuses used for producing ultra-fine particles as metal fine particles. Each pipe a is provided with a valve b. The primary processed product storage tank A is a storage tank for storing a primary processed powder or a molten metal to be supplied to the re-particulation processing apparatus B, and is provided with an inert gas introduction pipe. Further, a heat retaining facility such as a heater for retaining the temperature when the molten metal is stored is provided.
As the primary processing powder, for example, a fine metal powder can be produced by a submerged atomizing device D as shown in FIGS. That is, the metal is melted in a mixed liquid of the metal and the organic dispersion medium (the metal powder may be melted and mixed with the organic dispersion medium), and the molten metal is stirred at a high speed in the organic dispersion medium to produce fine particles. To This submerged atomizing apparatus D is provided with a generator 2 connected to a motor 3 in a stirring tank 1 provided with a pipe a for an inert gas introduction pipe and a discharge pipe via a valve b. As shown in FIG. 4, a rotor 6 (two blades on both sides of the shaft) is connected to a motor 3 with respect to a stator 5 having radially cut grooves 4 on the peripheral wall of an inverted frustoconical cylindrical body. , The liquid to be treated is sucked in, and the high-shear action acting between the stator 5 and the rotor 6 divides the metal melt in the liquid to be processed into fine particles. The dispersion liquid is discharged from the kerfs 4, 4,.... Although not shown, a heating means is provided. The molten metal fine particle dispersion is taken out of the stirring treatment tank 1 through the pipe a by operating the valve b, cooled, and then separated by a centrifugal separator or the like, and the metal fine particles are separated, washed and dried to obtain solid metal fine particle powder. be able to. The obtained solid metal fine particle powder is stored in the above-mentioned primary processed product storage tank A. In these treatments, it is particularly preferable that the above-mentioned fine particle treatment is performed in the presence of an inert gas to prevent oxidation of the metal. In addition, as a micronization apparatus, a K-D mill described in Japanese Patent No. 25555515 can be used for the same purpose. Further, the re-particulation processing apparatus B described below may be used as a fine-particulation processing apparatus with different specifications. In this case, a molten metal or a powder of a metal can also be processed.
[0010]
Further, the re-particulation processing apparatus B comprises a re-particulation processing section provided with a motor 7b as shown in FIG. 1, and as shown in FIGS. 5 to 7, a pair of disks 7 (rotating disk) and 8 (fixed disk). The discs are provided so as to be close to each other with their respective faces (diameter: 30 mm to 300 mm) facing each other. The disc 7 is supported by a support 7a, and the support is rotated by a motor 7b via a shaft 7a. This enables high-speed rotation (for example, at least 15000 rpm (rotation speed per minute)), and is provided like a so-called turntable. The disk 8 is fixed to the frame 10 by springs 9, 9,..., And the introduction pipe 11 is fitted in a through hole provided at the center thereof in a liquid-tight manner. The metal fine-particle powder obtained from the manufactured molten metal fine-particle dispersion, or the metal fine-particle powder obtained by another apparatus or the molten metal melted in the melting furnace is introduced from the primary processing powder storage tank A. The upper part is hermetically sealed, and a gas introduction pipe (not shown) is connected to the sealed space. As a result, the back surface of the disk 8 is pressed by gas pressure (cushion) in addition to the spring, and when the disk 7 does not rotate, the opposing disk surface comes into close contact with the disk surface of the disk 7 and can be sealed. When it rotates, it has a floating structure (floating structure) capable of absorbing vibrations, center runout, and the like.
[0011]
As shown in FIGS. 6 and 7, the disk 7 has arcuate concave grooves 7 c, 7 c,... Which are tapered and slightly curved in the rotational direction toward the tip thereof in a radial direction, and the disk 8 comes into contact with the disk 7. The center side of the side surface is formed so as to be slightly slender, and the board surface is finished smoothly. The concave grooves 7c, 7c... Are opened toward the center so that the ends thereof are dead ends, and the metal fine particles powder or the metal introduced through the introduction pipe 11 is melted. An object is introduced through the opening, and the metal fine-particle powder R or the molten metal is accelerated by the centrifugal force to the tip, and is accumulated toward the tip. At the tip, the particles or the molten metal protrude. And a balance line (V3 determined by the upward force V1 that opens (floats) the disk 8 by the rotation of the disk 7, the upward force V1, the springs 9, 9,..., And the pressing force V2 due to the gas pressure). And the shear force due to the rotation difference between the two disk surfaces is more greatly applied to the tip portion, that is, the particles are pulverized by friction to generate ultrafine particles r, which are further superimposed by centrifugal force. (A solid metal ultrafine particles is cooled after the grinding with by molten metal) which are adapted to be emitted into particles drain 12. At this time, the frictional force is reduced by the floating structure, and the adjustment can be performed. The gap between the two disk surfaces is preferably 2 μm to 10 μm. If it is too small, the frictional resistance due to both the surfaces becomes too large, and if it is too large, the liquid to be treated easily flows out to both sides of the concave grooves 7c. . It is preferable that the surface of any disk is finished to a mirror surface so that it can be in close contact with the disk so that the metal particles do not flow out to both sides of the groove. The atmosphere around the disks 7 and 8 is preferably placed under an inert gas, and although not shown, an introduction pipe for the gas is provided.
The ultrafine metal particles obtained by the treatment by the re-particulation processing device B are collected by the ultrafine particle collection device C. The ultrafine particle recovery device C can collect ultrafine metal particles in the presence of an inert gas if necessary, and can extract the ultrafine metal particles through a pipe by operating a valve, whereby solid metal fine particle powder can be obtained. it can.
[0012]
The solid metal fine-particle powder obtained by the molten metal or the in-liquid atomizing device D is re-particulated by the re-particulation processing device B, so-called ultrafine-particulation is performed. The particle diameter is preferably at most 50 μm (50 μm or less) in order to efficiently pass through a narrow gap formed by the pair of board surfaces, and if it is larger than this, the efficiency in the above-mentioned re-particulation may decrease. Then, the ultrafine metal particles obtained by the processing by the re-particulation processing device B are adjusted in the shape of the concave grooves 7c, 7c,... The average particle diameter can be less than 7 μm, for example, 10 nm to 1000 nm.
In the above, the concave groove is provided on the disk 7, but it may be provided on the disk surface of the disk 8 and the disk surface of the disk 7 may be smoothed, and the same effect as described above can be obtained. A groove may be provided. Also, the narrowed tip of the concave groove is located within a range in which both surfaces can be in contact with each other.For example, in the case of obtaining fine particles having a relatively large particle diameter, an opening that opens outward may be provided. Alternatively, the area of the disk surfaces of both disks may be changed so that they are located in a range where they do not touch each other. Further, instead of the submerged atomizing device D or the primary work storage tank A, in the re-micronizing device B, the shape of the concave grooves 7c, 7c,. Except for the specifications in which the pressure on the back surface, the rotation speed of the disk 7, etc. are adjusted, the same fine particle processing apparatus is used to produce solid metal fine particle powder from molten metal or solid metal coarse particle powder, and further re-fine processing. The apparatus B may be used to obtain ultrafine solid metal powder. Although the disk 7 is rotated, the disk 8 may be rotated with a difference in speed, or both may be rotated in the opposite direction. In the latter case, the shearing force is high even if the rotation speed is not increased. It is effective when you want to get.
[0013]
Using a submicronizing device D or a micronizing device similar to the re-micronizing device B, metal fine particles are dispersed in a particle dispersing medium to prepare a metal fine particle dispersion, which is further cooled and centrifuged. The solid metal fine particle powder can be obtained by an apparatus or the like, and the metal ultrafine particles can be produced by the re-particulation processing device B using the solid metal fine particle powder. However, other dispersion media may be used.
As the organic dispersion medium, an organic compound having a boiling point higher than the melting temperature of the metal to be formed into fine particles or a usable upper limit temperature of a decomposition temperature and capable of dispersing the fine particles of the molten metal can be used. Specifically, silicone oils, refined mineral oils, industrial lubricating oils, vegetable oils, whale oil, animal oils such as tallow, chemically synthesized synthetic lubricating oils, higher hydrocarbon compounds, glycol derivatives Organic heating mediums and the like. The organic dispersion medium is preferably non-flammable because it has no danger of fire.
[0014]
Further, it is preferable to add an antioxidant to the organic dispersion medium in order to prevent oxidation during heating. As the antioxidant, for example, those used in fats and oils, rubbers, synthetic resins, and the like can be used. For example, phenol-based antioxidants, bisphenol-based antioxidants, polymer-type phenol-based antioxidants, and phosphorus-based antioxidants And the like. In addition, imidazoles having an oxidation inhibiting effect may be used in combination, or may be used alone. Specific examples of these compounds include those described in JP-A-9-49007.
[0015]
In addition, in order to prepare a metal fine particle dispersion, it is preferable to use a particle coalescence inhibitor having an action of preventing the molten metal that has been made into fine particles from coalescing again by fusion. As the particle coalescing agent, specifically, rosin or derivatives, triazoles, imidazoles, amine compounds, fatty acids, hydrazines, pyrazoles, azo compounds, thermoplastic resins, alcohols, Examples thereof include isocyanates, sulfur-containing compounds, and high-molecular-weight amine compounds, which can be used alone or as a mixture of two or more.
[0016]
In the present invention, the metal includes at least one of a pure metal and a metal alloy, and may include only a pure metal, only an alloy, or a combination of both. Examples of the pure metal include Ag, Au, Cu, W, Ni, Ta, Pt, Pd, Ti, Cr, Fe, Co, Ga, In, Li, Se, Sn, Bi, Tl, Pb, Zn, and Te. No. Solder is well known as a metal alloy. In particular, Sn / Pb eutectic solder is used as a material for joining electronic components in the electronic equipment industry and many other fields. Specifically, for example, as a binary alloy, an Sn-Pb system such as 63Sn / 37Pb, 60Sn / 40Pb, 56Sn / 44Pb, and 50Sn / 50Pb; an Ag-Bi system such as 95.3Ag / 4.7Bi; Ag-Li system such as / 34Li, Pb-Ag system such as 95.3Pb / 4.7Ag and 97.5Pb / 2.5Ag, Ag-In system such as 3Ag / 97In, and Ag-Te system such as 67Ag / 33Te. , 97.2Ag / 2.8Tl, etc., Ag-Tl system such as 45.6Ag / 54.4Zn, Au-Sn system such as 80Au / 20Sn, 52.7Bi / 47.3In system Bi-. In-based, In-Sn-based such as 35In / 65Sn, 51In / 49Sn, 52In / 48Sn, Pb-In-based such as 50Pb / 50In, Bi-Zn such as 8.1Bi / 91.9Zn , 43Sn / 57Bi, 42Sn / 58Bi, etc., Sn-Bi type, 98Sn / 2Ag, 96.5Sn / 3.5Ag, 96Sn / 4Ag, 95Sn / 5Ag etc., 91Sn / 9Zn, 30Sn / 70Zn etc. Examples include Sn-Zn based, Sn-Cu based such as 99.3Sn / 0.7Cu, and Sn-Sb based such as 95Sn / 5Sb. Examples of the ternary alloy include Sn-Ag-In based on 95.5Sn / 3.5Ag / 1In, Sn-Zn-In based on 86Sn / 9Zn / 5In, 81Sn / 9Zn / 10In, and 95.5Sn. /0.5Ag/4Cu, 96.5Sn / 3.0Ag / 0.5Cu, etc., Sn-Ag-Cu system, 16Sn / 32Pb / 52Bi, 19Sn / 31Pb / 50Bi, 34Sn / 20Pb / 46Bi, 43Sn / 43Pb / 14Bi Sn-Pb-Bi system such as 35Sn / 64.5Pb / 0.5Sb, 32Sn / 66Pb / 2Sb, etc., 90.5Sn / 7.5Bi / 2Ag, 41.0Sn / 58Bi / 1 , 0Ag and the like, and Sn-Zn-Bi system such as 89.0Sn / 8.0Zn / 3.0Bi.
When preparing a molten metal dispersion, these metals may be melted and then added to the particle dispersion medium, or added to the particle dispersion medium and then heated and melted. In the above, dispersion energy is applied in a molten state to prepare a molten metal fine particle dispersion.
In the present invention, the purpose of using an inert gas as an atmosphere for atomizing or ultra-fine particles of a metal or a metal alloy is to prevent the oxidation of fine particles or ultra-fine particles and to produce fine particles or ultra-fine It has the effect of efficiently cooling the fine particles into a solid powder. The type of the inert gas is not particularly limited, but a gas such as argon, helium, or nitrogen is used, and nitrogen gas is preferably used.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, "part" means "part by mass".
Example 1
A mixed organic dispersion medium comprising 100 parts of a 96.5Sn / 3.5Ag lead-free solder alloy, 980 parts of purified castor oil and 20 parts of a particle coalescence inhibitor (trade name: tin stearate, manufactured by Nitto Kasei Co., Ltd.) Charged into a stirring tank of a dispersing machine (device name: CLEARMIX CLM-0.8S, manufactured by M Technic Co.) as an in-liquid atomizing device D shown in 2 to 4, heated to 230 ° C, and stirred at 20,000 rpm for 10 minutes. Stirred for minutes. Thereafter, stirring and heating were stopped, and the obtained molten metal fine particle dispersion was cooled by flowing cooling water through a jacket provided on the peripheral side of the stirring tank to obtain a solid metal fine particle dispersion. Further, the mixture was treated at 10,000 rpm for 5 minutes using a high-speed centrifuge (apparatus name: CR22F, manufactured by Hitachi Koki Co., Ltd.), and after removing the supernatant, ethyl acetate was added and the same operation was performed for washing. This operation was repeated two more times and dried. When the average particle size and the particle size distribution of the solid metal fine particle powder were measured by a laser diffraction method, the average particle size (the average particle size of the primary processed powder) was 6.1 μm, and the distribution sharpness ε [= (D 90 -D 10 / D 50 )] (D 90 , D 10 , D 50 Is 90%, 10%, and 50% when the particles are counted in order from the smallest diameter, and the particle diameter is 0.75. This is a measured value according to.).
The obtained solid metal fine-particle powder (primary processed powder) having an average particle diameter of 6.1 μm is stored in a primary processed product storage tank A shown in FIG. Each disk surface has a diameter of 150 mm, and six arc-shaped concave grooves formed on the disk 7 are radially provided. Each concave groove has a central arc length of 100 mm, a depth of 2 μm, and a width of 14 mm at the center. , The taper is gradually tapered toward the tip and becomes zero at the tip), the supply rate under nitrogen gas is 200 g / min (minute) (supply rate of the primary processing powder), and the rotation speed of the disk 7 (disk rotation speed) ) Processed at 15000 rpm.
After cooling under nitrogen gas, the ultrafine particle powder is discharged to the ultrafine particle drain 12, and is sent to the ultrafine particle recovery device C from here. The recovered ultrafine lead-free solder particles had a recovery rate of 91%, an average particle diameter of 84 nm, and a distribution sharpness ε of 0.63.
Table 1 shows the processing conditions and measurement results.
[0018]
Example 2
A lead-free ultrafine solder powder was obtained in the same manner as in Example 1, except that the disk rotation speed was set to 20,000 rpm. Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0019]
Examples 3 and 4
In Example 1, an Ag powder (average particle diameter: 2.1 μm) was used instead of the 96.5Sn / 3.5Ag lead-free solder alloy powder, and the other conditions were the same as those shown in Table 1. Ultrafine silver powder was obtained in the same manner as described above. Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0020]
Examples 5 and 6
In Example 1, Sn powder (average particle diameter: 11 μm) was used instead of the 96.5Sn / 3.5Ag lead-free solder powder, and the other conditions were the same as in Example 1 except that the conditions shown in Table 1 were used. Thus, ultrafine silver powder was obtained. Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0021]
Example 7
1200 g of a 63Sn / 37Pb (mass%) eutectic solder alloy was purged with nitrogen in a melting furnace, and then heated to 200 ° C. and melted. The melt was stored in a primary work storage tank A shown in FIG. Further, the re-particulation apparatus B used in Example 1 was similarly replaced with nitrogen gas and cooled. After adjusting the disk rotation speed to 15000 rpm, the molten 63Pb / 37Pb eutectic solder is supplied from the primary workpiece storage tank A at a supply rate (primary workpiece supply rate) of 100 g / min. Treatment.
As for the ultra-fine particles of the solder collected in the ultra-fine particle collecting apparatus C, observation of the fine particles obtained by a scanning electron microscope showed that no satellite particles adhered.
The measurement was performed in the same manner as in Example 1. Table 1 shows the processing conditions and the measurement results.
[0022]
Example 8
Ultrafine solder powder was obtained in the same manner as in Example 7, except that the disk rotation speed was set to 20,000 rpm. Observation of the obtained fine particles with a scanning electron microscope revealed that no satellite particles were attached.
Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0023]
Example 9
In Example 7, instead of 1200 g of the 63Sn / 37Pb (mass%) eutectic solder alloy, 1000 g of a 96.5Sn / 3.5Ag (mass%) lead-free solder alloy was used. Ultra-fine powder of lead-free solder was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were used and other conditions were used. Observation of the obtained fine particles with a scanning electron microscope revealed that no satellite particles were attached.
Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0024]
Example 10
In Example 9, instead of 1000 g of a 96.5Sn / 3.5Ag (mass%) lead-free solder alloy, 1000 g of a 96.5Sn / 3.0Ag / 0.5Cu (mass%) lead-free solder alloy was used. Except that it was used, an ultrafine powder of lead-free solder was obtained in the same manner as in Example 1. Observation of the obtained fine particles with a scanning electron microscope revealed that no satellite particles were attached.
Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0025]
Comparative Example 1
After the 63Sn / 37Pb (wt%) eutectic solder alloy was replaced with nitrogen in a melting furnace, it was heated to 200 ° C and melted. This was dropped on a disk of a centrifugal atomizer replaced with nitrogen gas to make fine particles. At this time, the disk diameter was 20 mmφ, and the disk rotation speed was 50,000 rpm. The obtained powder was classified by a classifier.
Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0026]
Comparative Example 2
After 96.5Sn / 3.5Ag (mass%) lead-free solder alloy was replaced with nitrogen in a melting furnace, it was heated to 300 ° C. and melted. The particles were atomized under the same conditions as in Comparative Example 1 by using a centrifugal atomizing device in which this was replaced with nitrogen gas. The obtained powder was classified by a classifier.
Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0027]
Comparative Example 3
Sn metal (purity 99.99%) was heated to 300 ° C. and melted, and atomized at a disk diameter of 20 mmφ and a disk rotation speed of 50,000 rpm by a centrifugal atomizing device in which this was replaced with nitrogen gas. The obtained powder was classified by a classifier.
Table 1 shows the processing conditions and the results measured in the same manner as in Example 1.
[0028]
[Table 1]
Figure 2004211156
From the results shown in Table 1, the average particle size of the obtained powder was 11,000 to 17,000 nm in the comparative example, and 56 to 150 nm in Examples 1 to 6. And ultrafine particles as small as 1/100 or less can be obtained. In Examples 7 to 10, ultrafine particles as small as 3,200 to 6,100 nm and as small as about 1 / 2.8 or less can be obtained. It can be seen that the effect of using the re-atomizing device B is excellent, but the effect is more remarkable when the atomizing device D in liquid is used together. Further, ε can be reduced, and the distribution can be sharpened.
For this reason, the obtained fine particle powder or ultrafine particle powder may be limited to a fine particle powder of less than 7 μm, an ultrafine particle powder of less than 1 μm (1000 nm), for example, 50 nm to 200 nm. "The metal particle dispersion is obtained by mixing a low melting point metal in a particle dispersion medium, heating and applying a dispersion energy for dispersing the particles in the particle dispersion medium. Metal fine particle powder obtained from a molten metal particle dispersion obtained by melting a metal in a medium and dispersing the molten metal particles ”may be used.
[0030]
Example 11
(Production of conductive paste and its evaluation)
(Production of conductive paste)
88 parts of ultrafine silver particles (with an average particle diameter of 110 nm obtained in Example 3)
6.2 parts of resin (Epicoat 828, manufactured by Japan Epoxy Resin)
Hardener (Curesol 2P4MHZ, Shikoku Chemicals) 1.2 parts
4.6 parts of solvent (Epolite M-1230, manufactured by Kyoeisha Chemical Co., Ltd.)
100 copies in total
In the above formulation, an adhesive is prepared by previously mixing a resin, a curing agent and a solvent, and using this as a vehicle, silver ultrafine particles are agitated and kneaded by a planetary mixer, and then deaerated in a vacuum to obtain a conductive material. A paste was obtained. Its viscosity was 72 Pa · s.
(Evaluation)
A conductive circuit pattern having a minimum pitch of 100 μm was printed on an alumina ceramic substrate using a conductive paste having the above composition by a mesh screen.
Thereafter, the substrate on which the conductive circuit pattern was printed was dried at 150 ° C. for 10 minutes in a nitrogen gas atmosphere, and further heated at 210 ° C. for 1 hour in a nitrogen gas atmosphere.
In this way, the conductor circuit pattern could be formed on the alumina ceramic substrate by the conductor made of silver, but the conductor circuit pattern having a pitch of 100 μm could be formed without loss. The resistance value of the conductor in the wiring portion of the conductor circuit pattern was measured by a digital multimeter, and it was 2.5 mΩ / □, which was confirmed to be sufficient performance as a conductor made of silver.
[0031]
【The invention's effect】
According to the present invention, ultrafine particles or other fine particles having an average particle diameter of less than 10 μm, for example, less than several μm, and capable of narrowing the width of the particle size distribution are obtained, and the fine pitch pattern of the wiring board is obtained. It is possible to provide a method for producing metal fine particles capable of producing metal fine particles applicable to a fine soldered portion, a metal fine particle-containing material using the fine particles, and a conductive coating composition.
In addition, it is possible to provide a method for producing metal fine particles, a metal fine particle-containing material, and a conductive coating composition, which can be easily manufactured with relatively simple equipment at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an apparatus used in a method for producing metal fine particles according to one embodiment of the present invention.
FIG. 2 is a schematic view showing an example of a submerged atomizing device used in the embodiment.
FIG. 3 is a schematic front view of a part of the dispersing machine.
FIG. 4 is a schematic view of a longitudinal section of a part of the dispersing machine.
FIG. 5 is a schematic cross-sectional view of another part of the re-particulation processing apparatus of the embodiment.
FIG. 6 is a view showing opposing surfaces of a pair of disks of a part of the device.
FIG. 7 is an explanatory view showing a grinding mechanism using the pair of disks.
[Explanation of symbols]
A: Primary work storage tank
B: Refine particle processing equipment
7 ... Rotating disk
8 ... fixed disk
7c: concave groove

Claims (10)

一対の盤体の各盤面を対向させてそれぞれの盤面を互いに接触可能に近接して設け、該一対の盤面の少なくともいずれか一方には放射状に先細りの凹窪状溝を形成し、かつ一方の盤面を他方の盤面に対して高速で回転可能に設け、その回転による両方の盤面による剪断応力により粉砕を可能にした微粒子化装置において、金属粉末又は金属の溶融物を上記凹窪状溝に中央から導入して上記の剪断応力で粉砕する金属微粒子の製造方法。The respective board surfaces of the pair of board bodies are opposed to each other, and the respective board surfaces are provided close to each other so as to be in contact with each other, and at least one of the pair of board surfaces is formed with a radially tapered concave concave groove, and In a micronization apparatus in which a board surface is rotatably provided at a high speed with respect to the other board surface and pulverization is enabled by shearing stress of both board surfaces due to the rotation, a metal powder or a molten metal is centrally placed in the concave groove. And pulverizing with the above-mentioned shear stress. 凹窪状溝は先端が一対の互いに接触可能な盤面内に位置し、非開放であり、金属粉末又は金属の溶融物は行き止まりと近接する盤面の閉鎖的空間により集積が促進され近接する盤面による粉砕が促進される請求項1に記載の金属微粒子の製造方法。The concave recessed groove is located in a pair of mutually contactable board surfaces and is not open, and the metal powder or the molten metal is accumulated at a dead end and the closed space of the adjacent board surface is promoted by the adjacent board surface. The method for producing metal fine particles according to claim 1, wherein pulverization is promoted. 一対の盤面の少なくとも一方は背面を押圧されるクッションを有し、両盤面の静止時は該押圧力により両盤面は接触し、一方の盤面を他方の盤面に対して高速で回転するときは両盤面は近接し、一対の両盤面間の空間が不変的に保持可能に設けられている請求項1又は2に記載の金属微粒子の製造方法。At least one of the pair of boards has a cushion whose back is pressed, and when both boards are stationary, the two boards come into contact with each other by the pressing force, and when one board rotates at a high speed with respect to the other board, both the boards are rotated. The method for producing fine metal particles according to claim 1, wherein the board surfaces are close to each other, and a space between the pair of board surfaces is provided so as to be able to be held invariably. 一対の互いに接触可能な盤面は鏡面加工されていて接触するときは密接し、金属粉末又は金属の溶融物は凹窪状溝の両側に流出し難い請求項1ないし3のいずれかに記載の金属微粒子の製造方法。The metal according to any one of claims 1 to 3, wherein the pair of mutually contactable board surfaces are mirror-finished and are in close contact when they come into contact with each other, and metal powder or molten metal is unlikely to flow to both sides of the concave groove. A method for producing fine particles. 一対の盤面の互いに近接する盤面間の間隙が2μm〜10μmである請求項1ないし4のいずれかに記載の金属微粒子の製造方法。The method for producing metal fine particles according to any one of claims 1 to 4, wherein a gap between the adjacent board surfaces of the pair of board surfaces is 2 µm to 10 µm. 金属粉末又は金属の溶融物を上記凹窪状溝に中央から導入して剪断応力で粉砕する処理は不活性雰囲気下で行なう請求項1ないし5のいずれかに記載の金属微粒子の製造方法。The method for producing fine metal particles according to any one of claims 1 to 5, wherein the treatment of introducing a metal powder or a molten metal into the concave groove from the center and pulverizing the same with shear stress is performed in an inert atmosphere. 金属粉末の平均粒子径が50μmより大きくない請求項1ないし6のいずれかに記載の金属微粒子の製造方法。The method for producing fine metal particles according to any one of claims 1 to 6, wherein the average particle diameter of the metal powder is not larger than 50 µm. 粉砕された粒子は平均粒子径が10nm〜1000nmの超微粒子である請求項7に記載の金属微粒子の製造方法。The method for producing metal fine particles according to claim 7, wherein the pulverized particles are ultrafine particles having an average particle diameter of 10 nm to 1000 nm. 請求項1ないし8のいずれかに記載の金属微粒子の製造方法により得られた金属微粒子又は金属超微粒子を含有する金属微粒子含有物。A metal fine particle-containing material containing metal fine particles or metal ultrafine particles obtained by the method for producing metal fine particles according to any one of claims 1 to 8. 請求項9に記載の金属微粒子含有物がはんだに用いる金属微粒子粉末又は金属超微粒子粉末であり、該金属微粒子粉末又は金属超微粒子粉末を含有する導電性塗布組成物。A conductive coating composition containing the metal fine particle powder or the metal ultra fine particle powder according to claim 9, which is a metal fine particle powder or a metal ultra fine particle powder used for soldering.
JP2002382191A 2002-12-27 2002-12-27 Method for manufacturing metal microparticle, substance containing metal microparticle, and electroconductive coating composition Pending JP2004211156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382191A JP2004211156A (en) 2002-12-27 2002-12-27 Method for manufacturing metal microparticle, substance containing metal microparticle, and electroconductive coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382191A JP2004211156A (en) 2002-12-27 2002-12-27 Method for manufacturing metal microparticle, substance containing metal microparticle, and electroconductive coating composition

Publications (1)

Publication Number Publication Date
JP2004211156A true JP2004211156A (en) 2004-07-29

Family

ID=32817836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382191A Pending JP2004211156A (en) 2002-12-27 2002-12-27 Method for manufacturing metal microparticle, substance containing metal microparticle, and electroconductive coating composition

Country Status (1)

Country Link
JP (1) JP2004211156A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118182A1 (en) * 2005-04-27 2006-11-09 Mitsui Mining & Smelting Co., Ltd Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
WO2009008390A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
WO2009041274A1 (en) * 2007-09-27 2009-04-02 M.Technique Co., Ltd. Process for producing fine magnetic-substance particle, fine magnetic-substance particle obtained by the same, and process for producing magnetic fluid or magnetic-substance product
JP2009082902A (en) * 2007-07-06 2009-04-23 M Technique Co Ltd Nanoparticle production method using forced ultrathin film rotating treatment method
JP2009132994A (en) * 2007-11-09 2009-06-18 M Technique Co Ltd Method for producing fine magnetic-substance particle, fine magnetic-substance particle and magnetic fluid obtained by the same, and method for producing magnetic-substance product
JP2009190024A (en) * 2007-12-19 2009-08-27 Bayer Materialscience Ag Process and mixing unit for preparation of isocyanate by phosgenation of primary amine
JP2010278440A (en) * 2009-05-27 2010-12-09 Qinghua Univ Thermally conductive member and method of manufacturing thermally conductive member
JP2011088198A (en) * 2009-09-01 2011-05-06 Dowa Holdings Co Ltd Solder powder and method for producing the solder powder
CN102205470A (en) * 2010-03-29 2011-10-05 韩国电子通信研究院 Filling composition, semiconductor device including the same, and method of fabricating the semiconductor device
CN103506628A (en) * 2013-10-11 2014-01-15 上海交通大学 Nano-structure metal powder and preparation method thereof
JP2014167156A (en) * 2013-01-31 2014-09-11 Nippon Handa Kk Method of producing solder alloy fine particle, solder alloy particle, solder paste, and electronic apparatus
JPWO2012164999A1 (en) * 2011-05-28 2015-02-23 エム・テクニック株式会社 Method for increasing production of fine particles using forced thin film type fluid treatment system
KR20150085923A (en) * 2014-01-17 2015-07-27 주식회사 엘지화학 Apparatus for Improving Dispersibility of Carbon nanotubes
KR20150088510A (en) * 2014-01-24 2015-08-03 주식회사 엘지화학 Apparatus for Improving Dispersibility of Carbon nanotubes
US9132514B2 (en) 2010-11-18 2015-09-15 Dowa Holdings Co., Ltd. Solder powder and method of producing solder powder
JP2019044222A (en) * 2017-08-31 2019-03-22 三菱マテリアル株式会社 In-Cu ALLOY POWDER, METHOD FOR PRODUCING In-Cu ALLOY POWDER, In-Cu ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING In-Cu ALLOY SPUTTERING TARGET
KR102294406B1 (en) * 2020-12-08 2021-08-27 (주)엔오엔그리드 Metal nano powder manufacturing device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327974B1 (en) * 2005-04-27 2013-11-13 미쓰이 긴조꾸 고교 가부시키가이샤 Tin powder, process for producing tin powder, and tin powder-containing electrically conductive paste
JP2006307264A (en) * 2005-04-27 2006-11-09 Mitsui Mining & Smelting Co Ltd Tin powder, method for producing tin powder and electroconductive paste containing tin powder
WO2006118182A1 (en) * 2005-04-27 2006-11-09 Mitsui Mining & Smelting Co., Ltd Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
WO2009008390A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
US9211510B2 (en) 2007-07-06 2015-12-15 M. Technique Co., Ltd. Method for producing nanoparticles by forced ultrathin film rotary processing
JP2009082902A (en) * 2007-07-06 2009-04-23 M Technique Co Ltd Nanoparticle production method using forced ultrathin film rotating treatment method
US8747699B2 (en) 2007-07-06 2014-06-10 M. Technique Co., Ltd. Method for producing metal microparticles, and metal colloidal solution containing the metal microparticles
JP2009144250A (en) * 2007-07-06 2009-07-02 M Technique Co Ltd Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
KR101378048B1 (en) 2007-07-06 2014-03-27 엠. 테크닉 가부시키가이샤 Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
JP4534098B2 (en) * 2007-07-06 2010-09-01 エム・テクニック株式会社 Method for producing metal fine particles
JPWO2009008390A1 (en) * 2007-07-06 2010-09-09 エム・テクニック株式会社 Method for producing metal fine particles and metal colloid solution containing the metal fine particles
CN102343442B (en) * 2007-07-06 2014-02-19 M技术株式会社 Method for production of metal microparticle
EP2193865A1 (en) * 2007-09-27 2010-06-09 M Technique Co., Ltd. Process for producing fine magnetic-substance particle, fine magnetic-substance particle obtained by the same, and process for producing magnetic fluid or magnetic-substance product
US8118905B2 (en) 2007-09-27 2012-02-21 M Technique Co., Ltd. Method for producing magnetic microparticles, magnetic microparticles obtained therefrom, magnetic fluid, and method for producing magnetic product
EP2193865A4 (en) * 2007-09-27 2012-07-04 M Tech Co Ltd Process for producing fine magnetic-substance particle, fine magnetic-substance particle obtained by the same, and process for producing magnetic fluid or magnetic-substance product
WO2009041274A1 (en) * 2007-09-27 2009-04-02 M.Technique Co., Ltd. Process for producing fine magnetic-substance particle, fine magnetic-substance particle obtained by the same, and process for producing magnetic fluid or magnetic-substance product
JP2009132994A (en) * 2007-11-09 2009-06-18 M Technique Co Ltd Method for producing fine magnetic-substance particle, fine magnetic-substance particle and magnetic fluid obtained by the same, and method for producing magnetic-substance product
JP2009190024A (en) * 2007-12-19 2009-08-27 Bayer Materialscience Ag Process and mixing unit for preparation of isocyanate by phosgenation of primary amine
JP2010278440A (en) * 2009-05-27 2010-12-09 Qinghua Univ Thermally conductive member and method of manufacturing thermally conductive member
JP2011088198A (en) * 2009-09-01 2011-05-06 Dowa Holdings Co Ltd Solder powder and method for producing the solder powder
CN102205470A (en) * 2010-03-29 2011-10-05 韩国电子通信研究院 Filling composition, semiconductor device including the same, and method of fabricating the semiconductor device
KR101381249B1 (en) * 2010-03-29 2014-04-04 한국전자통신연구원 Filling composition, Semiconductor device including the same and Method of fabricating the semiconductor device
US9132514B2 (en) 2010-11-18 2015-09-15 Dowa Holdings Co., Ltd. Solder powder and method of producing solder powder
JPWO2012164999A1 (en) * 2011-05-28 2015-02-23 エム・テクニック株式会社 Method for increasing production of fine particles using forced thin film type fluid treatment system
US9539642B2 (en) 2011-05-28 2017-01-10 M. Technique Co., Ltd. Method for increasing production volume of fine particles using forced thin film fluid treatment apparatus
JP2014167156A (en) * 2013-01-31 2014-09-11 Nippon Handa Kk Method of producing solder alloy fine particle, solder alloy particle, solder paste, and electronic apparatus
CN103506628A (en) * 2013-10-11 2014-01-15 上海交通大学 Nano-structure metal powder and preparation method thereof
KR20150085923A (en) * 2014-01-17 2015-07-27 주식회사 엘지화학 Apparatus for Improving Dispersibility of Carbon nanotubes
KR101661387B1 (en) * 2014-01-17 2016-09-29 주식회사 엘지화학 Apparatus for Improving Dispersibility of Carbon nanotubes
KR20150088510A (en) * 2014-01-24 2015-08-03 주식회사 엘지화학 Apparatus for Improving Dispersibility of Carbon nanotubes
KR101661388B1 (en) * 2014-01-24 2016-10-10 주식회사 엘지화학 Apparatus for Improving Dispersibility of Carbon nanotubes
JP2019044222A (en) * 2017-08-31 2019-03-22 三菱マテリアル株式会社 In-Cu ALLOY POWDER, METHOD FOR PRODUCING In-Cu ALLOY POWDER, In-Cu ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING In-Cu ALLOY SPUTTERING TARGET
KR102294406B1 (en) * 2020-12-08 2021-08-27 (주)엔오엔그리드 Metal nano powder manufacturing device

Similar Documents

Publication Publication Date Title
JP2004211156A (en) Method for manufacturing metal microparticle, substance containing metal microparticle, and electroconductive coating composition
US9095936B2 (en) Variable melting point solders
EP0655961B1 (en) Tin-bismuth solder paste and method of use
JP2005319470A (en) Lead-free solder material, electronic circuit board and their production method
WO2006126564A1 (en) Lead-free solder paste
US20030047034A1 (en) Method of manufacturing fine metal particles, substance containing fine metal particles, and paste solder composition
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
EP1857216B1 (en) Method of producing particles of low melting point metal and apparatus therefor
JP6782406B2 (en) Metal nanoparticle dispersion liquid for solder paste and its manufacturing method, and solder paste and its manufacturing method
JP5042017B2 (en) Silver-coated ball and method for producing the same
WO2017154330A1 (en) Joining material and joined body production method
JP2010149185A (en) Metal filler, solder paste and joint structure
JP2004211155A (en) Method for manufacturing metal microparticle, substance containing metal microparticle, and soldering paste composition
KR101166790B1 (en) Manufacturing process of sn or sac nano solder paste with low melting temperature and the solder paste manufactured by the method
JP2018047489A (en) Solder material and electronic component
JP6002947B2 (en) Metal filler, solder paste, and connection structure
JP2011104649A (en) Solder paste using lead-free solder nanoparticle
JP5975377B2 (en) Metal filler, solder paste, and connection structure
JP5188999B2 (en) Metal filler and solder paste
CN107511603A (en) A kind of compound welding powder of core shell structure bimetallic and preparation method thereof
WO2012066664A1 (en) Solder powder and process for producing solder powder
JP2005254254A (en) Lead-free solder, its manufacturing method and electronic component
JP2001267730A (en) Solder ball
JP6428409B2 (en) Solder powder and solder paste using this powder
JP6888900B2 (en) Au-Sn alloy solder paste, method of manufacturing Au-Sn alloy solder layer, and Au-Sn alloy solder layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030