【0001】
【発明の属する技術分野】
本発明は、水溶性樹脂とゴム系樹脂の2種類の樹脂を必須成分とするバインダー樹組成物、合剤スラリー、電極及びこれらを用いて作製した非水電解液系二次電池に関する。
【0002】
【従来の技術】
電子技術の進歩により、電子機器の性能が向上して小型化、ポータブル化が進み、その電源としてエネルギー密度の高い二次電池が望まれている。従来の二次電池としては、電解液に水を使用する鉛蓄電他、ニッケル−カドミウム電池等が挙げられるが、高エネルギー密度の電池という点では末だ不十分である。そこで、これらの電池に替わるものとして、近年、エネルギー密度を大幅に向上できる非水電解液系二次電池、すなわち、有機電解液系リチウムイオン二次電池(以下、単に「リチウム電池」と記す)が開発され、急速に普及している。
【0003】
リチウム電池には、正極の活物質として主にリチウムコバルト複合酸化物等のリチウム含有金属複合酸化物が用いられ、負極の活物質としてはリチウムイオンの層間への挿入(リチウム層間化合物の形成)及び層間からのリチウムイオンの放出が可能な多層構造を有する炭素材料が主に用いられている。正・負極の電極板は、これらの活物質とバインダー樹脂組成物(バインダー樹脂+N−メチル−2−ピロリドンあるいは水等の溶剤)とを、混練して合剤スラリーを調合し、これを集電体である金属箔上に両面塗布し、溶剤を乾燥除去して合剤層を形成後、ロールプレス機で圧縮成形して作製されている。この際のバインダー樹脂としては、両極ともポリフッ化ビニリデン(以下、「PVDF」と略す)が多用されている。しかしながら、PVDFをバインダー樹脂として使用した場合、集電体と合剤層との界面の密着性、合剤層中の活物質間の密着性のうち、特に前者の密着性が劣るため、各極の極板の裁断あるいは両極の極板を、セパレータを介して渦巻き状に捲く捲回といった電池製造工程時に合剤層の一部又は全部が集電体から剥離・脱落する、(2)負極活物質の炭素材料が電池の充放電によるリチウムイオンの挿入・放出にともない膨張・収縮するため、充放電を繰り返すことによって合剤層の一部又は全部が集電体から剥離・脱落する、といった問題があり、このような密着性不足が電池の充放電サイクル特性低下を招く一因となっていた。
【0004】
上記PVDFの密着性の問題を解決できる含フッ素系バインダー樹脂として、フッ化ビニリデンを主成分とし、これに少量の不飽和二塩基酸モノエステルを共重合して得られたフッ化ビニリデン系共重合体を用いることが提案されているが(例えば、特許文献1参照)、このようなフッ化ビニリデン系共重合体をバインダー樹脂とした場合、集電体と合剤層との界面の密着性は大幅に向上する反面、(1)結晶性の低下により捲回後に注液される電解液に対する耐性(以下、「耐電解液性」と記す)が低下して膨潤しやすくなり、集電体と合剤層との界面の接触及び合剤層中の活物質間の接触がルーズになる。このことが極板全体の導電ネットワークの崩壊につながって、電池の容量が低下する、(2)高電圧下では腐食性の強いフッ化水素の脱離・生成をともなう分解が起こりやすくなり、内圧が上昇して電池が機能しなくなる、といった弊害が指摘されており、本質的な問題解決には至っていない。
また、負極材に活物質として黒鉛とPVDF等の含フッ素系バインダー樹脂を使用した電池では、初回の充電時に、黒鉛と電解質が反応して電解質が分解し、多量のガスが発生する(2回目のサイクルからはガス発生はほとんど起こらない)。これにより、初回の充放電効率の低下をはじめ、サイクル特性の低下及び電池の安全性低下といった問題が生ずる。
【0005】
【特許文献1】特開平6−172452号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記バインダー樹脂の種々の問題点を解決するために鋭意検討したものであり、本発明の目的は、活物質と集電体及び活物質同士の接着性に優れるバインダー樹脂組成物を提供することにある。
本発明の他の目的は、少なくとも、上記バインダー樹脂組成物と正極活物質又は負極活物質を有する合剤スラリーを提供することにある。
また、本発明の他の目的は、上記合剤スラリーを集電体に塗布、乾燥して得られる電極を提供することにある。
また、本発明の他の目的は、上記電極を用いて、初回充放電効率の低下を低減し、且つ充放電サイクルにおける容量低下を低減できる長寿命の非水電解液系二次電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、以下のバインダー樹組成物、合剤スラリー、電極及びこれらを用いて作製した非水電解液系二次電池を提供するものである。
1.(A)水溶性樹脂と、(B)ゴム系樹脂を含有するバインダー樹脂組成物。
2.(A)成分の水溶性樹脂が、側鎖に水酸基、カルボキシル基、アミノ基及びエーテル基からなる群から選ばれる少なくとも1種の基を有する上記1記載のバインダー樹脂組成物。
3.(A)成分の水溶性樹脂が、ポリビニルアルコール又はその誘導体である上記1又は2記載のバインダー樹脂組成物。
4.ポリビニルアルコール誘導体が、一般式(I)で示される構造を含むことを特徴とする上記3記載のバインダー樹脂組成物。
【0008】
【化3】
(式中、Rは二価の有機基を表す)
5.(B)成分のゴム系樹脂が、スチレン−ブタジエン共重合体である上記1〜4のいずれか1項記載のバインダー樹脂組成物。
6.上記1〜5のいずれか1項記載のバインダ樹脂組成物と正極活物質又は負極活物質を含んでなる合剤スラリー。
7.正極活物質が、充放電により可逆的にリチウムイオンを挿入・放出できるリチウム含有金属複合酸化物であることを特徴とする上記6記載の合剤スラリー。
8.負極活物質が、充放電により可逆的にリチウムイオンを挿入・放出できる炭素材料であることを特徴とする上記6記載の合剤スラリー。
9.上記6〜8のいずれか1項記載の合剤スラリーを集電体に塗布、乾燥して得られる電極。
10.上記9記載の電極を用いて作製した非水電解液系二次電池。
11.リチウムを吸蔵・放出可能な活物質と、少なくとも一方がハロゲン原子を有し、且つ、お互いに非相溶の関係にある2種類の樹脂を含むことを特徴とする非水電解液系二次電池用電極。
12.(A)水溶性樹脂と(B)ゴム系樹脂を含有するバインダー樹脂組成物における一方の樹脂として使用される水溶性樹脂。
13.(A)成分の水溶性樹脂が、側鎖に水酸基、カルボキシル基、アミノ基及びエーテル基からなる群から選ばれる少なくとも1種の基を有する上記12記載の水溶性樹脂。
14.(A)成分の水溶性樹脂が、ポリビニルアルコール又はその誘導体である上記12又は13記載の水溶性樹脂。
15.ポリビニルアルコール誘導体が、一般式(I)で示される構造を含むことを特徴とする上記14記載の水溶性樹脂。
【0009】
【化4】
(式中、Rは二価の有機基を表す)
16.(A)水溶性樹脂と(B)ゴム系樹脂を含有するバインダー樹脂組成物における一方の樹脂として使用されるゴム系樹脂。
17.(B)成分のゴム系樹脂が、スチレン−ブタジエン共重合体である上記16記載のゴム系樹脂。
【0010】
【発明の実施の形態】
以下、本発明について詳述する。
本発明のバインダー樹脂組成物は、(A)水溶性樹脂と(B)ゴム系樹脂の2種類の樹脂を必須成分とする。ここでゴム系樹脂とは、以下の(1)及び(2)のように定義する。
(1)架橋結合によって不可逆的に非熱可塑性物質に変化することができる合成物質であって、最適条件で架橋結合したとき(架橋結合に必要なもの以外の可塑剤のような物質を付加しないで)、15〜25℃の温度で次の性能を示すような物質を生ずるもの。
a)もとの長さの3倍まで伸ばした時、破断しない。
b)1分間もとの長さの2倍に伸ばしたのち10分以内にもとの長さの1.5倍以下の長さにもどる。
c)0〜100%伸びの間で300kg/cm2(29.4Mpa)未満の力が働く。
(2)合成物質で架橋結合に準ずる効果(例えば、水素結合やファンデルワールス結合できるような極性の高い官能基を樹脂中に導入することにより生ずると考えられる架橋に準ずる効果)を与えたとき、15〜25℃の温度でa)、b)、c)の性能を示すもの。
【0011】
本発明における(A)成分の水溶性樹脂としては特に制限はなく、例えば、水酸基、カルボキシル基、アミノ基、エーテル基を含有する樹脂が挙げられる。
水酸基を含有する樹脂としては特に制限はなく、例えば、ポリビニルアルコール又はその誘導体等が挙げられる。カルボキシル基を含有する樹脂としては特に制限はなく、例えば、ポリ(メタ)アクリル酸又はその誘導体等が挙げられる。アミノ基を含有する樹脂としては特に制限はなく、例えば、ポリアクリルアミド又はその誘導体等が挙げられる。エーテル基を含有する樹脂としては特に制限はなく、例えば、ポリエチレングリコール又はその誘導体等が挙げられる。
これらの(A)成分の水溶性樹脂は、単独で又は二種類以上組み合わせて用いられる。このうち、水酸基を含有するポリビニルアルコール誘導体が、活物質と集電体及び活物質同士の接着性に優れる点で好ましい。
【0012】
ポリビニルアルコールは、水には可溶であるが、ほとんどの有機溶媒に難溶であるため、有機溶媒を用いて合剤スラリーを調製する方法には不適である。しかし、ポリビニルアルコールに、一般式(I)で示す構造単位を導入することで、有機溶剤への溶解性を向上できる。
【0013】
【化5】
(式中、Rは二価の有機基を表す)
ポリビニルアルコールへの上記一般式(I)で示される構造単位の導入は、通常、ポリビニルアルコールに環状酸無水物を反応させて行う。
ポリビニルアルコールとしては、特に制限はないが、耐電解液性等の点で、けん化度(JIS K 6726:ポリビニルアルコールの試験方法に準拠)が85モル%以上であるものが好ましく、90モル%以上であるものがより好ましく、95モル%以上であるものが特に好ましく、98モル%以上であるものが極めて好ましい。また、平均重合度(JIS K 6726:ポリビニルアルコールの試験方法に準拠)は、500〜5,000であることが好ましく、1,000〜3,000であることがより好ましく、1,500〜2,500であることが特に好ましい。平均重合度が500未満であると、合剤スラリー中の活物質が沈降しやすく、安定性に劣る傾向があり、一方、平均重合度が5,000を超えると、溶剤への溶解性が低下し、取扱いが困難になる傾向がある。
なお、上記ポリビニルアルコールは、各種の変性が施されたもの(例えば、側鎖として長鎖アルキル基等が部分的に導入されたものなど)であってもよい。これらのポリビニルアルコールは、単独で又は二種類以上組み合わせて用いられる。
【0014】
上記環状酸無水物としては、特に制限はないが、例えば、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、トリアルキルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、メチル2置換ブテニルテトラヒドロフタル酸無水物、イタコン酸無水物、コハク酸無水物、シトラコン酸無水物、ドデセニルコハク酸無水物、マレイン酸無水物、メチルシクロペンタジエンのマレイン酸無水物付加物、アルキル化エンドアルキレンテトラヒドロフタル酸無水物、フタル酸無水物、クロレンド酸無水物、テトラクロロフタル酸無水物、テトラブロモフタル酸無水物、トリカルバリル酸無水物、マレイン酸無水物のリノレイン酸付加物、マレイン酸無水物のソルビン酸付加物、トリメリット酸無水物などが挙げられる。これらのうちではポリビニルアルコール中のアルコール性ヒドロキシル基との反応性等の点でコハク酸無水物が好ましい。これらの環状酸無水物は、単独で又は二種類以上組み合わせて用いられる。
【0015】
ポリビニルアルコールと環状酸無水物の反応割合としては、特に制限はないが、ポリビニルアルコールのアルコール性ヒドロキシル基1当量に対して、環状酸無水物の酸無水物基が0.01〜0.50当量であることが好ましく、0.03〜0.30当量であることがより好ましく、0.05〜0.20当量であることが特に好ましい。環状酸無水物の酸無水物基が0.01当量未満であると、得られる(A)成分の有機溶剤への溶解性が低下する傾向があり、一方、0.50当量を超えると、活物質と集電体及び活物質同士の接着性が低下し、電池製造工程での合剤層の割れ、剥離・脱落が発生して、正常な電池が作製しにくくなる傾向があり、また、環状酸無水物が未反応物として残留する傾向がある。
【0016】
上記ポリビニルアルコールと環状酸無水物との反応は、有機溶剤中、実質的に無水の状態で行う。有機溶剤としては、特に制限はなく、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等のアミド類、N,N−ジメチルエチレンウレア、N,N−ジメチルプロピレンウレア、テトラメチルウレア等のウレア類、γ−ブチロラクトン、γ−カプロラクトン等のラクトン類、プロピレンカーボネート等のカーボネート類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸n−ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、トルエン、キシレン、シクロヘキサン等の炭化水素類、スルホラン等のスルホン類などが挙げられる。これらのうちでは、ポリビニルアルコールに対する高溶解性、ポリビニルアルコール系樹脂と環状酸無水物との高反応促進性等の点で含窒素系有機溶剤のアミド類、ウレア類が好ましく、ポリビニルアルコールと環状酸無水物との反応を阻害しやすい活性水素をもっていない等の点で、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルエチレンウレア、N,N−ジメチルプロピレンウレア、テトラメチルウレアがより好ましく、中でもN−メチル−2−ピロリドンが特に好ましい。これらの有機溶剤は、単独で又は二種類以上組み合わせて用いられる。
【0017】
有機溶剤の使用量は、ポリビニルアルコールと環状酸無水物との総量100質量部に対して、50〜10,000質量部とすることが好ましく、200〜5,000質量部とすることがより好ましく、300〜3,000質量部とすることが特に好ましい。この使用量が50質量部未満では溶解性が乏しく、反応系の不均一化や高粘度化を起こしやすい傾向があり、10,000質量部を超えると反応が進みにくく、反応が完結しにくい傾向がある。
ポリビニルアルコールと環状酸無水物との反応温度は、40〜250℃とすることが好ましく、60〜200℃とすることがより好ましく、80〜150℃とすることが特に好ましい。また、反応時間は、10分以上とすることが好ましく、30分〜10時間とすることがより好ましく、1〜5時間とすることが特に好ましい。反応温度が40℃未満では反応が進みにくく、反応が完結しにくい傾向があり、反応温度が250℃を超えると副反応により系がゲル化することがあり、反応が制御しにくい傾向がある。また、反応時間が10分未満では反応が進みにくく、反応が完結しにくい傾向がある。
【0018】
ポリビニルアルコールと環状酸無水物との反応においては、必要に応じて触媒を用いることができる。触媒としては、特に制限はなく、例えば、トリエチルアミン、トリエチレンジアミン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、N,N−ジメチルベンジルアミン、N−メチルモルホリン、N−エチルモルホリン、N,N−ジメチルピペラジン、ビリジン、ピコリン、1,8−ジアザビシクロ[5,4,0]ウンデセン−7等の三級アミン類、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−メチル−4−メチルイミダゾール,1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、2−フェニル−4−メチル一5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール,1−アジン−2−メチルイミダゾール等のイミダゾール類、ジブチルチンジラウレート、1,3−ジアセトキシテトラブチルジスタノキサン等の有機スズ類、臭化テトラエチルアンモニウム、臭化テトラブチルアンモニウム、塩化ベンジルトリエチルアンモニウム、塩化トリオクチルメチルアンモニウム、臭化セチルトリメチルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化ドデシルトリメチルアンモニウム、ベンジルジメチルテトラデシルアンモニウムアセテート、塩化テトラフェルホスホニウム、塩化トリフェニルメチルホスホニウム、臭化テトラメチルホスホニウム等の四級オニウム塩類、3−メチル−1−フェニル−2−ホスホレン−1−オキシド等の有機リン化合物類、安息香酸ナトリウム、安息香酸カリウム等の有機酸アルカリ金属塩類、塩化亜鉛、塩化鉄、塩化リチウム、臭化リチウム等の無機塩類、オクタカルボニル二コバルト(コバルトカルボニル)等の金属カルボニル化合物類、テトラブトキシチタン等の金属エーテル化合物類などが挙げられる。これらの触媒は、単独で又は二種類以上組み合わせて用いることができる。これらの触媒の使用量は、反応系の固形分に対して0.01〜10質量%程度である。
【0019】
本発明における(B)成分のゴム系樹脂としては、特に制限はないが、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ニトリル−ブタジエンゴム(NBR)、クロロプレンゴム(CR)、アクリルゴム(ABR)、ブチルゴム(IIR)、チオコール、ウレタンゴム、ケイ素ゴム、フッ素ゴム等が挙げられる。これらの(B)成分のゴム系樹脂は、単独で又は二種類以上組み合わせて用いられる。このうち、スチレン−ブタジエンゴム(SBR)が、合剤と集電体との接着性及び電池のサイクル寿命に優れる点で好ましい。
【0020】
本発明に用いるバインダー樹脂は、合剤スラリーを調製する際に、溶媒に分散あるいは溶解して使用できる。溶媒としては特に制限はないが、例えば、水、アルコール類の他、先に述べたポリビニルアルコール系樹脂と環状酸無水物との反応に使用できる有機溶剤がそのまま挙げられる。これらのうちではアミド類、ウレア類といった含窒素系有機溶剤が好ましく、中でもN−メチル−2−ピロリドン又はそれを含む混合溶剤がより好ましい。これらの溶媒は、単独で又は二種類以上組み合わせて用いられる。
【0021】
本発明のバインダー樹脂組成物中の(A)成分である水溶性樹脂の配合量は、(A)成分と(B)成分の固形分総量中1〜90質量%とすることが好ましく、3〜60質量%とすることがより好ましく、5〜40質量%とすることが特に好ましい。(A)成分が1質量%未満であると、電池の初回充放電効率が低下する傾向があり、90質量%を超えると、急速放電特性(ハイレート特性)が低下する傾向がある。尚、溶媒の配合量については、合剤スラリー調合工程で、必要に応じて溶媒を足すため、希釈しすぎない任意の量とされる。通常は、(A)成分と(B)成分の固形分総量100質量部に対して500〜2000質量部が適当である。
【0022】
本発明のバインダー樹脂組成物には、必要に応じて(A)成分、(B)成分以外の材料、例えば、ポリイミド、ポリウレタン、ポリアミドイミド、シリコン含有ポリマー等を配合することもできる。
本発明の合剤スラリーは、少なくとも、以上に述べたバインダー樹脂組成物と正極活物質又は負極活物質を有する。
上記正極及び負極活物質としては、充放電により可逆的にリチウムイオンを挿入・放出できるものであれば特に制限はない。
正極活物質としては、例えば、リチウム及び鉄、コバルト、ニッケル、マンガンから選ばれる1種類以上の金属を少なくとも含有するリチウム含有金属複合酸化物が好ましい。
一方、負極活物質としては、リチウムを吸蔵・放出可能な材料であれば特に制限はないが、例えば、黒鉛、非晶質炭素、炭素繊維、コークス、活性炭等の炭素材料、シリコン、すず、銀等の金属又はこれらの酸化物等が好ましく、これらの活物質は単独又は二種類以上組合わせて用いられる。負極活物質を二種類以上組合わせて用いる場合、二種類以上の活物質を混合しても良く、粒子単位で複合化させても良い。作製する非水電解液二次電池のサイクル特性の点で炭素材料を含む材料が好ましい。また、負極活物質として炭素材料を使用する場合には、作製する非水電解液系二次電池の放電容量の点で黒鉛を含むことが好ましい。
【0023】
これらの負極活物質は、粉末状であることが必要とされ、平均粒径は0.1〜100μmが好ましく、1〜70μmがより好ましく、5〜50μmが特に好ましい。平均粒径が0.1μm未満では、作製する負極の密着強度を確保するために本発明に係るバインダー樹脂が多く必要となり、その結果作製された非水電解液系二次電池の充放電容量やレート特性が低下する傾向がある。また平均粒径が100μm以上では、作製する負極の表面に凹凸ができやすく、その結果作製された非水電解液系二次電池がサイクル中に短絡による充放電容量低下を起こしやすくなる。平均粒径はレーザー回折式粒度測定器により測定できる。
【0024】
負極活物質に黒鉛を使用する場合は、使用する黒鉛の比表面積は0.1〜10m2/gの範囲が好ましく、0.3〜8m2/gがより好ましく、0.5〜5m2/gが特に好ましい。黒鉛の比表面積が0.1m2/g未満では、作製された非水電解液二次電池のレート特性やサイクル特性が低下する傾向があり、10m2/g以上では作製された電極の密着強度が低下する傾向があるばかりでなく、作製された非水電解液系二次電池の初回充放電効率が低下する傾向がある。比表面積は、窒素ガス吸着のBETにより測定できる。
【0025】
本発明の電極を作製する時のバインダー樹脂の配合量は、正又は負極活物質及びバインダー樹脂の総量中0.5〜20質量%とすることが好ましく、1〜10質量%とすることがより好ましく、2〜5質量%とすることが特に好ましい。バインダー樹脂の配合量が5質量%未満であると、活物質と集電体及び活物質同士の接着性が低下する傾向があり、20質量%を超えると、充放電容量が低下する傾向がある。
【0026】
本発明の合剤スラリーの作製法は、特に制限されない。例えば、(1)先に正極活物質又は負極活物質と樹脂(A)を混合した後、樹脂(B)を添加して混合する、(2)先に正極活物質又は負極活物質と樹脂(B)を混合した後、樹脂(A)を添加して混合する、(3)先に樹脂(A)と樹脂(B)を混合した後、正極活物質又は負極活物質を加えて混合する等いずれの方法も用いられる。なお、正極の合剤スラリーには、カーボンブラックやアセチレンブラック等の導電助剤を単独で又は二種以上組み合わせて添加することもできる。導電助剤の添加量は、好ましくは正極活物質100質量部に対して3〜10質量部程度である。
【0027】
本発明の電極は、上記合剤スラリーを集電体に塗布、乾燥して得られ、その電極を用いて本発明の非水電解液系二次電池が作製される。
本発明のバインダー樹脂を用いた電極は、加熱することで、より耐電解液性を向上することがでる。
本発明の電極の加熱・乾燥する温度は、30〜300℃で1〜24時間の間で適宜選択することができ、60〜200℃で2〜12時間が好ましい。
【0028】
本発明の正極集電体としては、例えば、アルミニウム箔、ニッケル箔、金箔、銀箔、チタン箔等が挙げられるが、高電位に対する安定性の見地からはアルミニウム箔であることが好ましい。また、本発明の負極集電体としては、例えば、銅箔、ニッケル箔、金箔、銀箔等が挙げられ、良好な電子導電性、及び廉価性の見地からは銅箔であることが好ましい。
【0029】
本発明の非水電解液系二次電池の非水電解液としては、二次電池としての機能を発揮させるものであれば特に制限はないが、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類、γ−ブチロラクトン等のラクトン類、トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類、アセトニトリル、ニトロメタン、N−メチル−2−ピロリドン等の含窒素類、ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、スルホラン等のスルホラン類、3−メチル−2−オキサゾリジノン等のオキサゾリジノン類、1,3−プロパンサルトン、4−ブタンスルトン、ナフタスルトン等のスルトン類などの有機溶剤に、LiClO4、LiBF4、LiI、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、LiCl、LiBr、LiB(C2H5)4、LiCH3SO3、LiC4F9SO3、Li(CF3SO2)2Nなどのアルカリ金属塩を溶解した溶液が挙げられる。これらのうちでは、カーボネート類にLiPF6を溶解した非水電解液が好ましい。非水電解液の有機溶剤は、単独で又は二種類以上組み合わせて用いられる。
【0030】
本発明の電極並びに非水電解液系二次電池の作製方法については、特に制約はなく、いずれも公知の方法を利用できる。
【0031】
【実施例】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらによって制限されるものではない。
【0032】
合成例1[ポリビニルアルコールへの一般式(I)の構造単位導入反応]
撹拌機、温度計、冷却管、留出管及び窒素ガス導入管を装備した1リットルのセパラブルフラスコに、ポリビニルアルコール(ユニチカ(株)製商品名:ユニチカポバールUF200G、平均重合度:2000、けん化度:98〜99モル%、吸着水分他(150℃熱板上/30分間乾燥減量):5.3wt%)51.01g、NMP644g及びトルエン10gを仕込み、窒素通気下、攪拌しながら30分間かけて195℃に昇温した。途中、185℃を超えた付近から、系内の水分がトルエンと共沸しながら留出しはじめた。同温度で1〜2時間保温し、トルエンを還流させながら系内の水分を実質的になくなるまで留去させた後、系内のトルエンを留去して120℃まで冷却した。留出液(水分他)は約3mlであった。次いで、120℃保温状態にあるポリビニルアルコールの脱水溶液に、コハク酸無水物7.69g(ポリビニルアルコールのアルコール性ヒドロキシル基1当量に対し、酸無水物基として0.07当量)を添加し、同温度で1時間反応を進めた後、室温まで冷却し、(A)成分8wt%のNMP溶液を得た。得られた(A)成分の重量平均分子量(GPCで測定、緩和剤として塩化ナトリウムを0.1モル/リットルの濃度になるように調合した水溶液を溶離液として用い、標準ポリエチレンオキサイド・ポリエチレングリコールを用いて作成した検量線からポリエチレンオキサイド・ポリエチレングリコール換算値として算出した値)は150000、酸価は84KOHmg/gであった。
【0033】
合成例2[スチレン−ブタジエンゴムの合成反応]
撹拌機を備えたオートクレーブに、イオン交換水300質量部と過硫酸アンモニウム1.2質量部を入れ、窒素雰囲気下、80〜85℃に加熱した。次にブタジエン57質量部、スチレン30質量部、メタクリル酸メチル10質量部アクリル酸3質量部を12時間かけてオートクレーブ中に滴下し、滴下終了後更に6時間撹拌保温する。室温まで冷却後、水酸化カリウムにてpHを7に調整した。その後、スチームを導入して残留モノマーを除去し、(B)成分35wt%の水分散液を得た。
【0034】
(電極の作製)
実施例1
正極活物質として平均粒径10μmのコバルト酸リチウム(日本化学工業社製)、導電助剤として平均粒径3μmの黒鉛(日本黒鉛社製)、バインダー樹脂として合成例1で得たコハク酸無水物変性ポリビニルアルコール8%NMP溶液及びフッ素ゴム(デュポンダウエラストマージャパン社製)4%NMP分散液を正極活物質:導電助剤:バインダー樹脂=88:10:2の固形分質量比率で混合し、必要に応じてNMPを足しながら混練して正極合剤スラリーを調製した。ここで、コハク酸無水物変性ポリビニルアルコールとフッ素ゴムの混合割合は、固形分質量比で1:1とした。この正極合剤スラリーを、厚さ20μmのアルミニウム箔に塗布、乾燥した。合剤塗布量は、290g/m2であった。合剤かさ密度が2.6g/cm3になるようにプレスし、54mm幅に切断して短冊状の正極シートを作製した。正極シートの端部にアルミニウム製の集電体タブを超音波溶着した後、残留溶媒や吸着水分といった揮発成分を完全に除去するため、120℃で3時間真空乾燥して実施例1による正極シートを得た。
本実施例で得られた正極シートの評価方法を以下に示し、結果を表2に示す。
【0035】
<密着性>
正極合剤スラリーを、集電体に塗布・乾燥後、ロールプレス機で規定の密度までプレスした時の状態を以下のように評価した。
○:合剤が集電体から剥離せず、4mmφの円柱状の形状物に合剤と集電体から成る合剤シートを巻き取っても、ひび割れ・剥離しない。
△:合剤が集電体から剥離しないが、4mmφの円柱状の形状物に合剤と集電体から成る合剤シートを巻き取るとひび割れ・剥離する。
×:プレスした時点で、合剤が集電体から剥離する。
【0036】
実施例2〜4、比較例1〜3
表1に示す組成で、実施例1と同様にして正極シートを作製した。密着性の評価結果を表2に示す。
【0037】
【表1】
【0038】
【表2】
【0039】
表2から、成分(A)及び(B)の両者を含む実施例1〜4の正極シートは優れた接着性を示すこと、これに対してPVDF単独で作製した比較例1の正極シートは接着性が劣ること、換言すれば、比較例1において接着性を「○」にするためには実施例1〜4よりも多量のPVDFを使用する必要があることが分かる。
一方、ゴム系樹脂(フッ素ゴム)単独で作製した比較例2の正極シートは、本発明のバインダー樹脂組成物相当量(2質量%)の添加では活物質との分散安定性が悪く、電極の作製が出来なかった。また、水溶性樹脂(合成例1の樹脂)単独で作製した比較例3の正極シートは、本発明のバインダー樹脂組成物相当量(2質量%)の添加では捲回時にひび割れ・剥離が生ずる。なお、比較例3において合成例1の樹脂の使用量を3質量%にすると、接着性評価は「○」となるが、これを用いた非水電解液系二次電池のハイレート特性が低下する。
【0040】
実施例5
負極活物質として平均粒径20μmの黒鉛(日立化成工業社製)とバインダー樹脂として合成例1で得たコハク酸無水物変性ポリビニルアルコール8%NMP溶液及びスチレン−ブタジエンゴム35%水分散液を負極活物質:バインダー樹脂=96:4の固形分質量比率で混合し、必要に応じてイオン交換水を足しながら混練して負極合剤スラリーを調製した。ここで、コハク酸無水物変性ポリビニルアルコールとスチレン−ブタジエンゴムの混合割合は、固形分質量比で1:1とした。この負極合剤スラリーを、厚さ10μmの銅箔に塗布、乾燥した。合剤塗布量は、65g/m2であった。合剤かさ密度が1.5g/cm3になるようにプレスし、56mm幅に切断して短冊状の負極シートを作製した。負極シートの端部にニッケル製の集電体タブを超音波溶着した後、残留溶媒や吸着水分といった揮発成分を完全に除去するため、120℃で3時間真空乾燥して実施例5による負極シートを得た。
本実施例で得られた負極シートの評価方法は、正極シートの評価方法と同様に行った。結果を表4に示す。
【0041】
実施例6〜8、比較例4〜6
表3に示す組成で、実施例5と同様にして負極シートを作製した。密着性の評価結果を表4に示す。
【0042】
【表3】
【0043】
【表4】
【0044】
表4から、成分(A)及び(B)の両者を含む実施例5〜8の負極シートは優れた接着性を示すこと、これに対してPVDF単独で作製した比較例4の負極シートは接着性が劣ること、換言すれば、比較例4において接着性を「○」にするためには実施例5〜8よりも多量のPVDFを使用する必要があることが分かる。一方、ゴム系樹脂(合成例2の樹脂)単独で作製した比較例5の負極シートは、本発明のバインダー樹脂組成物相当量(3質量%)の添加では活物質との分散安定性が悪く、電極の作製が出来なかった。また、水溶性樹脂(合成例1の樹脂)単独で作製した比較例6の負極シートは、本発明のバインダー樹脂組成物相当量(3質量%)の添加では捲回時にひび割れ・剥離が生ずる。なお、比較例6において合成例1の樹脂の使用量を5質量%にすると、接着性評価は「○」となるが、これを用いた非水電解液系二次電池のハイレート特性が低下する。
【0045】
(リチウム二次電池の作製)
実施例9
正極活物質として平均粒径10μmのコバルト酸リチウム(日本化学工業社製)、導電助剤として平均粒径3μmの黒鉛(日本黒鉛社製)、バインダー樹脂としてポリフッ化ビニリデン(呉羽化学工業社製)12%NMP溶液を85:10:5の固形分質量比率で混合し、正極合剤スラリーを調合した以外は、実施例1と同様に正極シートを作製した。この正極シートと実施例5で得た負極シートを、厚さ25μm、幅58mmのポリエチレン微多孔膜セパレータを介して捲回し、スパイラル状の捲回群を作製した後、これを電池缶に挿入し、予め負極集電体の銅箔に溶接しておいたニッケルタブ端子を電池缶底に溶接し、正極集電体のアルミニウム箔に溶接したアルミニウムタブ端子を蓋に溶接した。次いで、アルゴン雰囲気下、1M LiPF6 のエチレンカーボネートとジメチルカーボネート(体積比:
1/2)電解液を電池容器に5ml注入した後、この部分をかしめて密閉し、直径18mm、高さ65mmの円筒形電池を作製した。
本実施例で得られたリチウム二次電池の評価方法を以下に示し、結果を表6に示す。
【0046】
<初回充放電効率>
20℃において、充電電流400mAで4.2Vまで定電流充電を行い、電圧が4.2Vに達した時点で定電圧充電に切り替え、さらに充電電流値が40mAに減衰するまで充電を続けた後、放電電流400mAで放電終止電圧2.7Vに至るまで定電流放電を行った。ここで得られた放電容量を充電容量で割った値を初回充放電効率とした。
【0047】
<サイクル特性>
20℃において、充電電流800mAで4.2Vまで定電流充電を行い、電圧が4.2Vに達した時点で定電圧充電に切り替え、さらに充電電流値が40mAに減衰するまで充電を続けた後、放電電流800mAで放電終止電圧2.7Vに至るまで定電流放電を行った。この条件での充電・放電を1サイクルとして、初回放電容量の70%以下に至るまで充放電を繰り返し、その繰り返し回数をサイクル寿命とした。
【0048】
<ハイレート特性>
20℃において、充電電流400mAで4.2Vまで定電流充電を行い、電圧が4.2Vに達した後、放電電流400mAで放電終止電圧3.5Vに至るまで定電流放電を行った。上記充電条件で再度充電を行い、2000mAで放電終止電圧2.7Vに至るまで定電流放電を行った。ここで、400mAで放電した時の容量を100%とした場合に対し、2000mAで放電した時の容量を相対比較したものを、ハイレート特性とした。
【0049】
実施例10〜14
表5に示す正極及び負極シートの組み合わせにより、実施例10〜14によるリチウム二次電池を作製して、初回充放電効率、サイクル特性及びハイレート特性を評価した。評価結果を表6に示す。
【0050】
比較例7
負極活物質として平均粒径20μmの黒鉛(日立化成工業社製)及びバインダー樹脂としてポリフッ化ビニリデン(呉羽化学工業社製)12%NMP溶液を92:8の固形分質量比率で混合し、負極合剤スラリーを調製した以外は、実施例5と同様に負極シートを作製した。この負極シートと実施例9で得た正極シートを組み合わせた以外は、実施例9と同様にしてリチウム二次電池を作製した。比較例7によるリチウム二次電池の初回充放電効率、サイクル特性及びハイレート特性を評価した。評価結果を表6に示す。
【0051】
比較例8
正極活物質として平均粒径10μmのコバルト酸リチウム(日本化学工業社製)、導電助剤として平均粒径3μmの黒鉛(日本黒鉛社製)、バインダー樹脂として合成例1で得たコハク酸無水物変性ポリビニルアルコール8%NMP溶液を87:10:3の固形分質量比率で混合し、正極合剤スラリーを調合した以外は、実施例1と同様に正極シートを作製した。負極活物質として平均粒径20μmの黒鉛(日立化成工業社製)及びバインダー樹脂として合成例1で得たコハク酸無水物変性ポリビニルアルコール8%NMP溶液を95:5の固形分質量比率で混合し、負極合剤スラリーを調製した以外は、実施例5と同様に負極シートを作製した。これら正極シートと負極シートを組み合わせた以外は、実施例9と同様にしてリチウム二次電池を作製した。比較例8によるリチウム二次電池の初回充放電効率、サイクル特性及びハイレート特性を評価した。評価結果を表6に示す。
【0052】
比較例9、10
表5に示す正極及び負極シートの組み合わせにより、実施例9と同様にしてリチウム二次電池を作製して、初回充放電効率、サイクル特性及びハイレート特性を評価した。評価結果を表6に示す。
【0053】
【表5】
【0054】
【表6】
【0055】
表6から、実施例9〜14の正極か負極の少なくとも一方あるいは両方の電極に、本発明のバインダー樹脂組成物を用いて作製したリチウム二次電池は、初回充放電効率、サイクル特性、ハイレート特性に優れることが分かる。
これに対し、比較例7の正極及び負極の両方に、PVDF単独で活物質と集電体及び活物質同士の接着性が確保できる添加量により作製したリチウム二次電池は、ハイレート特性には優れるが、初回充放電効率、サイクル特性に劣ることが分かる。
また、比較例8の正極及び負極の両方に、水溶性樹脂単独で活物質と集電体及び活物質同士の接着性が確保できる添加量により作製したリチウム二次電池は、初回充放電効率には優れるが、サイクル特性、ハイレート特性に劣ることが分かる。
また、比較例9〜10の正極あるいは負極の一方にPVDF、もう一方に水溶性樹脂単独で作製したリチウム二次電池は、本発明のバインダー樹脂を用いて作製したリチウム二次電池に較べ、初回充放電効率、サイクル特性、ハイレート特性に劣ることが分かる。
【0056】
【発明の効果】
本発明のバインダー樹脂を用いて作製した電極は、PVDFを用いて作製した電極と比べ、少ない添加量で活物質と集電体及び活物質同士の接着性に優れる。また、本発明のバインダー樹脂を用いて作製したリチウム二次電池は、PVDFを用いて作製した従来電池に比べ、初回充放電効率、サイクル特性に優れる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a binder tree composition, a mixture slurry, an electrode, and a nonaqueous electrolyte secondary battery produced using the same, comprising two types of resins, a water-soluble resin and a rubber-based resin, as essential components.
[0002]
[Prior art]
With the advance of electronic technology, the performance of electronic devices has been improved, miniaturization and portability have been advanced, and a secondary battery having a high energy density has been desired as a power source thereof. Conventional secondary batteries include nickel-cadmium batteries and the like, as well as lead-acid storage using water as an electrolyte, but these batteries are still insufficient in terms of high energy density. Therefore, as an alternative to these batteries, in recent years, non-aqueous electrolyte secondary batteries capable of greatly improving energy density, that is, organic electrolyte lithium ion secondary batteries (hereinafter simply referred to as “lithium batteries”) Has been developed and is rapidly spreading.
[0003]
In lithium batteries, a lithium-containing metal composite oxide such as a lithium-cobalt composite oxide is mainly used as a positive electrode active material, and lithium ions are inserted between layers (formation of a lithium intercalation compound) as a negative electrode active material. Carbon materials having a multilayer structure capable of releasing lithium ions from between layers are mainly used. For the positive and negative electrode plates, these active materials and a binder resin composition (a binder resin + a solvent such as N-methyl-2-pyrrolidone or water) are kneaded to prepare a mixture slurry, which is then collected. It is produced by applying both surfaces onto a metal foil as a body, drying and removing the solvent to form a mixture layer, and then compression-molding with a roll press. As the binder resin at this time, polyvinylidene fluoride (hereinafter abbreviated as “PVDF”) is frequently used for both electrodes. However, when PVDF is used as the binder resin, the adhesiveness of the interface between the current collector and the mixture layer and the adhesiveness between the active materials in the mixture layer are particularly poor in the former adhesiveness. Part or all of the mixture layer peels or falls off from the current collector during the battery manufacturing process such as cutting the electrode plate or winding the two electrode plates spirally through a separator. Since the carbon material expands and contracts due to the insertion and release of lithium ions due to battery charge and discharge, repeated charge and discharge may cause part or all of the mixture layer to peel off or fall off the current collector. This lack of adhesion has been one of the causes of lowering the charge / discharge cycle characteristics of the battery.
[0004]
As a fluorine-containing binder resin capable of solving the above-mentioned problem of adhesion of PVDF, vinylidene fluoride is used as a main component, and a vinylidene fluoride copolymer obtained by copolymerizing a small amount of an unsaturated dibasic acid monoester with the vinylidene fluoride. It has been proposed to use a coalescence (for example, see Patent Document 1). When such a vinylidene fluoride copolymer is used as a binder resin, the adhesion at the interface between the current collector and the mixture layer becomes poor. On the other hand, while greatly improving, (1) resistance to an electrolyte injected after winding (hereinafter referred to as “electrolyte resistance”) is reduced due to a decrease in crystallinity, and swelling is likely to occur. The contact at the interface with the mixture layer and the contact between the active materials in the mixture layer become loose. This leads to the collapse of the conductive network of the entire electrode plate, which lowers the capacity of the battery. (2) Under a high voltage, decomposition accompanied by desorption and generation of highly corrosive hydrogen fluoride is likely to occur, and the internal pressure is reduced. However, it has been pointed out that the battery does not function due to a rise in the temperature, and the problem has not yet been solved.
Also, in a battery using graphite and a fluorinated binder resin such as PVDF as an active material for the negative electrode material, at the time of the first charge, the graphite reacts with the electrolyte to decompose the electrolyte and generate a large amount of gas (second time). Almost no gas is generated from the cycle (1). This causes problems such as a decrease in the initial charge / discharge efficiency, a decrease in cycle characteristics, and a decrease in battery safety.
[0005]
[Patent Document 1] JP-A-6-172452
[0006]
[Problems to be solved by the invention]
The present invention has been intensively studied in order to solve the various problems of the binder resin, and an object of the present invention is to provide a binder resin composition having excellent adhesion between an active material, a current collector, and an active material. To provide.
Another object of the present invention is to provide a mixture slurry having at least the binder resin composition and a positive electrode active material or a negative electrode active material.
Another object of the present invention is to provide an electrode obtained by applying the mixture slurry to a current collector and drying it.
Further, another object of the present invention is to provide a long-life non-aqueous electrolyte secondary battery that can reduce a decrease in initial charge / discharge efficiency and reduce a capacity decrease in a charge / discharge cycle using the above-described electrode. It is in.
[0007]
[Means for Solving the Problems]
The present invention provides a binder tree composition, a mixture slurry, an electrode, and a non-aqueous electrolyte secondary battery manufactured using the following.
1. A binder resin composition containing (A) a water-soluble resin and (B) a rubber-based resin.
2. 2. The binder resin composition according to the above 1, wherein the water-soluble resin as the component (A) has at least one group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group and an ether group in a side chain.
3. 3. The binder resin composition according to the above 1 or 2, wherein the water-soluble resin as the component (A) is polyvinyl alcohol or a derivative thereof.
4. 4. The binder resin composition according to the above item 3, wherein the polyvinyl alcohol derivative has a structure represented by the general formula (I).
[0008]
Embedded image
(Wherein, R represents a divalent organic group)
5. The binder resin composition according to any one of the above items 1 to 4, wherein the rubber resin as the component (B) is a styrene-butadiene copolymer.
6. 6. A mixture slurry comprising the binder resin composition according to any one of the above items 1 to 5 and a positive electrode active material or a negative electrode active material.
7. 7. The mixture slurry according to the above item 6, wherein the positive electrode active material is a lithium-containing metal composite oxide capable of reversibly inserting and releasing lithium ions by charging and discharging.
8. 7. The mixture slurry according to the above item 6, wherein the negative electrode active material is a carbon material capable of reversibly inserting and releasing lithium ions by charging and discharging.
9. An electrode obtained by applying the mixture slurry according to any one of the above items 6 to 8 to a current collector and drying.
10. A non-aqueous electrolyte secondary battery manufactured using the electrode according to the above item 9.
11. A non-aqueous electrolyte secondary battery comprising an active material capable of inserting and extracting lithium, and at least one of which has a halogen atom and is incompatible with each other. Electrodes.
12. A water-soluble resin used as one resin in a binder resin composition containing (A) a water-soluble resin and (B) a rubber-based resin.
13. 13. The water-soluble resin according to the above 12, wherein the water-soluble resin as the component (A) has at least one group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group and an ether group in a side chain.
14. 14. The water-soluble resin according to the above item 12 or 13, wherein the water-soluble resin as the component (A) is polyvinyl alcohol or a derivative thereof.
15. 15. The water-soluble resin according to the above 14, wherein the polyvinyl alcohol derivative has a structure represented by the general formula (I).
[0009]
Embedded image
(Wherein, R represents a divalent organic group)
16. A rubber resin used as one resin in a binder resin composition containing (A) a water-soluble resin and (B) a rubber resin.
17. 17. The rubber resin according to the above item 16, wherein the rubber resin as the component (B) is a styrene-butadiene copolymer.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The binder resin composition of the present invention contains two types of resins, (A) a water-soluble resin and (B) a rubber-based resin, as essential components. Here, the rubber-based resin is defined as in the following (1) and (2).
(1) Synthetic material that can be irreversibly changed into a non-thermoplastic material by cross-linking, and when cross-linked under optimal conditions (do not add substances such as plasticizers other than those necessary for cross-linking) At a temperature of 15 to 25 [deg.] C. yielding a material which exhibits the following performance:
a) Does not break when stretched to three times its original length.
b) After extending to twice the original length for 1 minute, return to a length of 1.5 times or less the original length within 10 minutes.
c) 300 kg / cm between 0 and 100% elongation 2 A force of less than (29.4 Mpa) acts.
(2) When a synthetic substance gives an effect equivalent to a crosslink bond (for example, an effect equivalent to a crosslink considered to be caused by introducing a highly polar functional group capable of forming a hydrogen bond or a Van der Waals bond into a resin). A), b) and c) at a temperature of 15 to 25 ° C.
[0011]
The water-soluble resin of the component (A) in the present invention is not particularly limited, and examples thereof include a resin containing a hydroxyl group, a carboxyl group, an amino group, and an ether group.
The resin containing a hydroxyl group is not particularly limited, and examples thereof include polyvinyl alcohol and derivatives thereof. The resin containing a carboxyl group is not particularly limited, and examples thereof include poly (meth) acrylic acid or a derivative thereof. The resin containing an amino group is not particularly limited, and examples thereof include polyacrylamide or a derivative thereof. The resin containing an ether group is not particularly limited, and examples thereof include polyethylene glycol or a derivative thereof.
These water-soluble resins of the component (A) are used alone or in combination of two or more. Among these, a polyvinyl alcohol derivative containing a hydroxyl group is preferable because of excellent adhesiveness between the active material and the current collector and between the active materials.
[0012]
Polyvinyl alcohol is soluble in water, but hardly soluble in most organic solvents, and thus is unsuitable for a method of preparing a mixture slurry using an organic solvent. However, the solubility in an organic solvent can be improved by introducing the structural unit represented by the general formula (I) into polyvinyl alcohol.
[0013]
Embedded image
(Wherein, R represents a divalent organic group)
The introduction of the structural unit represented by the above general formula (I) into polyvinyl alcohol is usually performed by reacting polyvinyl alcohol with a cyclic acid anhydride.
The polyvinyl alcohol is not particularly limited, but preferably has a degree of saponification of 85 mol% or more (JIS K 6726: in accordance with the test method for polyvinyl alcohol), and preferably 90 mol% or more from the viewpoint of resistance to electrolytic solution and the like. Are more preferable, those having 95 mol% or more are particularly preferable, and those having 98 mol% or more are very preferable. The average degree of polymerization (JIS K 6726: based on the test method for polyvinyl alcohol) is preferably from 500 to 5,000, more preferably from 1,000 to 3,000, and from 1,500 to 2,000. , 500 is particularly preferred. When the average degree of polymerization is less than 500, the active material in the mixture slurry tends to settle and tends to be inferior in stability. On the other hand, when the average degree of polymerization exceeds 5,000, the solubility in the solvent decreases. However, handling tends to be difficult.
The above-mentioned polyvinyl alcohol may have been subjected to various modifications (for example, those into which a long-chain alkyl group or the like is partially introduced as a side chain). These polyvinyl alcohols are used alone or in combination of two or more.
[0014]
The cyclic acid anhydride is not particularly limited, for example, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride Anhydride, nadic anhydride, methylnadic anhydride, methyl 2-substituted butenyltetrahydrophthalic anhydride, itaconic anhydride, succinic anhydride, citraconic anhydride, dodecenylsuccinic anhydride, maleic anhydride, methyl Maleic anhydride adduct of cyclopentadiene, alkylated endoalkylenetetrahydrophthalic anhydride, phthalic anhydride, chlorendic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, tricarballylic anhydride, Linoleic acid adduct of maleic anhydride, male Sorbic acid adducts of phosphate anhydride include trimellitic anhydride. Among them, succinic anhydride is preferred in terms of reactivity with an alcoholic hydroxyl group in polyvinyl alcohol. These cyclic acid anhydrides are used alone or in combination of two or more.
[0015]
The reaction ratio of the polyvinyl alcohol and the cyclic acid anhydride is not particularly limited, but the acid anhydride group of the cyclic acid anhydride is 0.01 to 0.50 equivalent to 1 equivalent of the alcoholic hydroxyl group of the polyvinyl alcohol. Is preferred, more preferably 0.03 to 0.30 equivalents, and particularly preferably 0.05 to 0.20 equivalents. If the acid anhydride group of the cyclic acid anhydride is less than 0.01 equivalent, the solubility of the obtained component (A) in the organic solvent tends to decrease, while if it exceeds 0.50 equivalent, the activity becomes lower. The adhesiveness between the substance, the current collector and the active material decreases, and the mixture layer in the battery manufacturing process tends to crack, peel off or fall off, making it difficult to produce a normal battery. Acid anhydrides tend to remain as unreacted materials.
[0016]
The reaction between the polyvinyl alcohol and the cyclic acid anhydride is performed in an organic solvent in a substantially anhydrous state. The organic solvent is not particularly limited, and for example, amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N- Ureas such as dimethylpropylene urea and tetramethyl urea, lactones such as γ-butyrolactone and γ-caprolactone, carbonates such as propylene carbonate, methyl ethyl ketone, methyl isobutyl ketone, ketones such as cyclohexanone, ethyl acetate, and n-butyl acetate , Esters such as butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate, glymes such as diglyme, triglyme, tetraglyme, and hydrocarbons such as toluene, xylene and cyclohexane. And sulfones such as sulfolane. Among these, amides and ureas of nitrogen-containing organic solvents are preferable in terms of high solubility in polyvinyl alcohol, high reaction promoting property between a polyvinyl alcohol resin and a cyclic acid anhydride, and polyvinyl alcohol and a cyclic acid. N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethylene urea, N, N-dimethylpropylene urea, Methylurea is more preferred, and N-methyl-2-pyrrolidone is particularly preferred. These organic solvents are used alone or in combination of two or more.
[0017]
The amount of the organic solvent used is preferably 50 to 10,000 parts by mass, more preferably 200 to 5,000 parts by mass, based on 100 parts by mass of the total of polyvinyl alcohol and cyclic acid anhydride. , 300 to 3,000 parts by mass. If the amount is less than 50 parts by mass, the solubility is poor, the reaction system tends to be non-uniform and the viscosity tends to be increased. If the amount exceeds 10,000 parts by mass, the reaction does not easily proceed and the reaction is difficult to complete. There is.
The reaction temperature between the polyvinyl alcohol and the cyclic acid anhydride is preferably from 40 to 250 ° C, more preferably from 60 to 200 ° C, and particularly preferably from 80 to 150 ° C. The reaction time is preferably 10 minutes or more, more preferably 30 minutes to 10 hours, particularly preferably 1 to 5 hours. When the reaction temperature is lower than 40 ° C., the reaction does not easily proceed and the reaction tends to be difficult to be completed. When the reaction temperature exceeds 250 ° C., the system may be gelled by a side reaction, and the reaction tends to be difficult to control. If the reaction time is less than 10 minutes, the reaction does not easily proceed and the reaction tends to be difficult to complete.
[0018]
In the reaction between the polyvinyl alcohol and the cyclic acid anhydride, a catalyst can be used if necessary. The catalyst is not particularly limited. For example, triethylamine, triethylenediamine, N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethylbenzylamine, N-methylmorpholine, N-ethylmorpholine, Tertiary amines such as N-dimethylpiperazine, pyridine, picoline, 1,8-diazabicyclo [5,4,0] undecene-7, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-methyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4-methyl-15-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxy Methylimidazole, 1-azine-2-methyli Imidazoles such as dazole, organic tins such as dibutyltin dilaurate, 1,3-diacetoxytetrabutyldistannoxane, tetraethylammonium bromide, tetrabutylammonium bromide, benzyltriethylammonium chloride, trioctylmethylammonium chloride, odor Quaternary onium salts such as cetyltrimethylammonium iodide, tetrabutylammonium iodide, dodecyltrimethylammonium iodide, benzyldimethyltetradecylammonium acetate, tetraferphosphonium chloride, triphenylmethylphosphonium chloride, tetramethylphosphonium bromide, 3-methyl Organic phosphorus compounds such as -1-phenyl-2-phospholene-1-oxide; alkali metal salts of organic acids such as sodium benzoate and potassium benzoate; Lead, iron chloride, lithium chloride, inorganic salts lithium bromide, etc., metal carbonyl compounds such as octacarbonyl dicobalt (cobalt carbonyl), metal ether compounds such as titanium tetrabutoxide and the like. These catalysts can be used alone or in combination of two or more. The use amount of these catalysts is about 0.01 to 10% by mass based on the solid content of the reaction system.
[0019]
The rubber-based resin as the component (B) in the present invention is not particularly limited, butadiene rubber (BR), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), chloroprene rubber (CR), acrylic rubber (ABR), butyl rubber (IIR), thiocol, urethane rubber, silicon rubber, fluorine rubber and the like. These rubber resins (B) may be used alone or in combination of two or more. Among them, styrene-butadiene rubber (SBR) is preferable in terms of excellent adhesiveness between the mixture and the current collector and excellent cycle life of the battery.
[0020]
The binder resin used in the present invention can be used by dispersing or dissolving in a solvent when preparing a mixture slurry. The solvent is not particularly limited, but examples thereof include water, alcohols, and organic solvents that can be used for the reaction between the above-described polyvinyl alcohol-based resin and the cyclic acid anhydride. Of these, nitrogen-containing organic solvents such as amides and ureas are preferable, and among them, N-methyl-2-pyrrolidone or a mixed solvent containing the same is more preferable. These solvents are used alone or in combination of two or more.
[0021]
The compounding amount of the water-soluble resin as the component (A) in the binder resin composition of the present invention is preferably 1 to 90% by mass based on the total solid content of the components (A) and (B). The content is more preferably 60% by mass, and particularly preferably 5 to 40% by mass. If the component (A) is less than 1% by mass, the initial charge / discharge efficiency of the battery tends to decrease, and if it exceeds 90% by mass, the rapid discharge characteristics (high-rate characteristics) tend to decrease. The amount of the solvent is an arbitrary amount that is not excessively diluted in order to add a solvent if necessary in the mixture slurry preparation step. Usually, 500 to 2,000 parts by mass is appropriate for 100 parts by mass of the total solid content of the components (A) and (B).
[0022]
The binder resin composition of the present invention may optionally contain a material other than the component (A) and the component (B), such as polyimide, polyurethane, polyamideimide, and a silicon-containing polymer.
The mixture slurry of the present invention has at least the binder resin composition described above and a positive electrode active material or a negative electrode active material.
The positive and negative electrode active materials are not particularly limited as long as they can reversibly insert and release lithium ions by charge and discharge.
As the positive electrode active material, for example, a lithium-containing metal composite oxide containing at least one of lithium and one or more metals selected from iron, cobalt, nickel, and manganese is preferable.
On the other hand, the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, for example, carbon materials such as graphite, amorphous carbon, carbon fiber, coke, activated carbon, silicon, tin, and silver. And the like, or their oxides, etc., and these active materials are used alone or in combination of two or more. When two or more types of the negative electrode active materials are used in combination, two or more types of the active materials may be mixed, or may be composited in a particle unit. A material containing a carbon material is preferable in terms of cycle characteristics of the nonaqueous electrolyte secondary battery to be manufactured. When a carbon material is used as the negative electrode active material, it is preferable that graphite is included from the viewpoint of the discharge capacity of the produced nonaqueous electrolyte secondary battery.
[0023]
These negative electrode active materials are required to be in a powder form, and the average particle diameter is preferably 0.1 to 100 μm, more preferably 1 to 70 μm, and particularly preferably 5 to 50 μm. When the average particle size is less than 0.1 μm, a large amount of the binder resin according to the present invention is required to secure the adhesion strength of the negative electrode to be produced, and as a result, the charge / discharge capacity and the like of the produced nonaqueous electrolyte secondary battery are reduced. Rate characteristics tend to decrease. When the average particle size is 100 μm or more, the surface of the negative electrode to be produced tends to have irregularities, and as a result, the produced non-aqueous electrolyte secondary battery is liable to cause a decrease in charge / discharge capacity due to a short circuit during a cycle. The average particle size can be measured by a laser diffraction type particle size analyzer.
[0024]
When graphite is used for the negative electrode active material, the specific surface area of the graphite used is 0.1 to 10 m. 2 / G is preferable, and 0.3 to 8 m 2 / G is more preferable, and 0.5 to 5 m 2 / G is particularly preferred. 0.1m specific surface area of graphite 2 If it is less than / g, the rate characteristics and cycle characteristics of the produced non-aqueous electrolyte secondary battery tend to decrease, and 2 / G or more, not only the adhesion strength of the produced electrode tends to decrease, but also the initial charge / discharge efficiency of the produced non-aqueous electrolyte secondary battery tends to decrease. The specific surface area can be measured by BET of nitrogen gas adsorption.
[0025]
The compounding amount of the binder resin when preparing the electrode of the present invention is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass based on the total amount of the positive or negative electrode active material and the binder resin. Preferably, it is particularly preferably 2 to 5% by mass. When the amount of the binder resin is less than 5% by mass, the adhesiveness between the active material and the current collector and between the active materials tends to decrease, and when the amount exceeds 20% by mass, the charge / discharge capacity tends to decrease. .
[0026]
The method for preparing the mixture slurry of the present invention is not particularly limited. For example, (1) first mix the positive electrode active material or the negative electrode active material with the resin (A), then add and mix the resin (B); (2) first mix the positive electrode active material or the negative electrode active material with the resin ( After mixing B), add resin (A) and mix. (3) Mix resin (A) and resin (B) first, then add and mix positive electrode active material or negative electrode active material. Either method is used. Note that a conductive additive such as carbon black or acetylene black may be added to the positive electrode mixture slurry alone or in combination of two or more. The amount of the conductive additive is preferably about 3 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
[0027]
The electrode of the present invention is obtained by applying the mixture slurry to a current collector and drying, and the non-aqueous electrolyte secondary battery of the present invention is manufactured using the electrode.
The electrode using the binder resin of the present invention can be further improved in electrolyte resistance by heating.
The heating / drying temperature of the electrode of the present invention can be appropriately selected from 30 to 300 ° C for 1 to 24 hours, and preferably from 60 to 200 ° C for 2 to 12 hours.
[0028]
Examples of the positive electrode current collector of the present invention include an aluminum foil, a nickel foil, a gold foil, a silver foil, and a titanium foil. From the viewpoint of stability against high potential, an aluminum foil is preferable. Further, examples of the negative electrode current collector of the present invention include a copper foil, a nickel foil, a gold foil, and a silver foil. From the viewpoint of good electronic conductivity and low cost, a copper foil is preferable.
[0029]
The non-aqueous electrolyte of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it functions as a secondary battery.For example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate Carbonates such as carbonate, diethyl carbonate and methyl ethyl carbonate; lactones such as γ-butyrolactone; ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran , Sulfoxides such as dimethyl sulfoxide, oxolanes such as 1,3-dioxolan, 4-methyl-1,3-dioxolan, nitrogen-containing compounds such as acetonitrile, nitromethane, N-methyl-2-pyrrolidone, methyl formate, methyl acetate ,vinegar Esters such as butyl, methyl propionate, ethyl propionate and phosphoric acid triester; glymes such as diglyme, triglyme and tetraglyme; ketones such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone; sulfolanes such as sulfolane Organic solvents such as oxazolidinones such as, 3-methyl-2-oxazolidinone and sultones such as 1,3-propane sultone, 4-butane sultone and naphtha sultone; 4 , LiBF 4 , LiI, LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 A solution in which an alkali metal salt such as N is dissolved is exemplified. Among these, carbonates include LiPF 6 Is preferable. The organic solvent of the non-aqueous electrolyte is used alone or in combination of two or more.
[0030]
The method for producing the electrode and the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and any known method can be used.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[0032]
Synthesis Example 1 [Introduction reaction of structural unit of general formula (I) into polyvinyl alcohol]
In a 1 liter separable flask equipped with a stirrer, a thermometer, a cooling pipe, a distilling pipe and a nitrogen gas introducing pipe, polyvinyl alcohol (product name: Unitika Poval UF200G, manufactured by Unitika Ltd., average polymerization degree: 2,000, saponification) Degree: 98-99 mol%, adsorbed moisture, etc. (on a hot plate at 150 ° C./loss for drying for 30 minutes: 5.3 wt%) 51.01 g, NMP 644 g and toluene 10 g were charged, and the mixture was stirred for 30 minutes under nitrogen aeration. To 195 ° C. On the way, from around 185 ° C., water in the system started to distill while azeotroping with toluene. After keeping the temperature at the same temperature for 1 to 2 hours and distilling off the water in the system while refluxing the toluene until the water in the system was substantially eliminated, the toluene in the system was distilled off and cooled to 120 ° C. The distillate (water and the like) was about 3 ml. Then, 7.69 g of succinic anhydride (0.07 equivalent as an acid anhydride group to 1 equivalent of alcoholic hydroxyl group of polyvinyl alcohol) was added to the dewatered aqueous solution of polyvinyl alcohol kept at 120 ° C. After the reaction was allowed to proceed for 1 hour at a temperature, the mixture was cooled to room temperature to obtain an NMP solution containing 8 wt% of the component (A). The weight average molecular weight of the obtained component (A) (measured by GPC, using as an eluent an aqueous solution prepared by adjusting sodium chloride to a concentration of 0.1 mol / liter as a moderating agent), and using standard polyethylene oxide / polyethylene glycol as an eluent. The value calculated as a polyethylene oxide / polyethylene glycol conversion value from a calibration curve prepared using the same was 150,000, and the acid value was 84 KOHmg / g.
[0033]
Synthesis Example 2 [Synthesis reaction of styrene-butadiene rubber]
An autoclave equipped with a stirrer was charged with 300 parts by mass of ion-exchanged water and 1.2 parts by mass of ammonium persulfate, and heated to 80 to 85 ° C. under a nitrogen atmosphere. Next, 57 parts by mass of butadiene, 30 parts by mass of styrene, 10 parts by mass of methyl methacrylate, and 3 parts by mass of acrylic acid are dropped into the autoclave over 12 hours. After cooling to room temperature, the pH was adjusted to 7 with potassium hydroxide. Thereafter, steam was introduced to remove residual monomers, thereby obtaining an aqueous dispersion of 35% by weight of the component (B).
[0034]
(Preparation of electrode)
Example 1
Lithium cobaltate having an average particle size of 10 μm (manufactured by Nippon Chemical Industry Co., Ltd.) as a positive electrode active material, graphite having an average particle size of 3 μm (manufactured by Nippon Graphite Co., Ltd.) as a conductive additive, and succinic anhydride obtained in Synthesis Example 1 as a binder resin A mixture of a modified polyvinyl alcohol 8% NMP solution and a 4% NMP dispersion of fluoro rubber (manufactured by Dupont Dow Elastomers Japan) in a positive electrode active material: conductive auxiliary agent: binder resin = 88: 10: 2 solid content mass ratio is required. The mixture was kneaded while adding NMP to prepare a positive electrode mixture slurry. Here, the mixing ratio of the succinic anhydride-modified polyvinyl alcohol and the fluororubber was 1: 1 in terms of a solid content mass ratio. This positive electrode mixture slurry was applied to an aluminum foil having a thickness of 20 μm and dried. The mixture application amount is 290 g / m 2 Met. The bulk density of the mixture is 2.6 g / cm 3 And cut to a width of 54 mm to produce a strip-shaped positive electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode sheet, and then vacuum-dried at 120 ° C. for 3 hours to completely remove volatile components such as residual solvent and adsorbed moisture. Got.
The evaluation method of the positive electrode sheet obtained in this example is shown below, and the results are shown in Table 2.
[0035]
<Adhesion>
The state when the positive electrode mixture slurry was applied to a current collector and dried and then pressed to a specified density by a roll press machine was evaluated as follows.
:: The mixture did not peel off from the current collector, and no cracking or peeling occurred even when the mixture sheet composed of the mixture and the current collector was wound around a 4 mmφ cylindrical shape.
Δ: The mixture does not peel off from the current collector, but cracks and peels off when the mixture sheet composed of the mixture and the current collector is wound around a 4 mmφ cylindrical body.
×: The mixture is separated from the current collector at the time of pressing.
[0036]
Examples 2 to 4, Comparative Examples 1 to 3
With the composition shown in Table 1, a positive electrode sheet was produced in the same manner as in Example 1. Table 2 shows the evaluation results of the adhesion.
[0037]
[Table 1]
[0038]
[Table 2]
[0039]
From Table 2, it can be seen that the positive electrode sheets of Examples 1 to 4 containing both the components (A) and (B) show excellent adhesiveness, whereas the positive electrode sheets of Comparative Example 1 made of PVDF alone showed an adhesion. In other words, it is found that in order to make the adhesiveness “換” in Comparative Example 1, it is necessary to use a larger amount of PVDF than in Examples 1 to 4.
On the other hand, the positive electrode sheet of Comparative Example 2, which was made of a rubber-based resin (fluororubber) alone, had poor dispersion stability with the active material when a binder resin composition equivalent amount (2% by mass) of the present invention was added. It could not be made. In addition, the positive electrode sheet of Comparative Example 3, which was prepared using only the water-soluble resin (the resin of Synthesis Example 1), cracked and peeled when being rolled when an equivalent amount (2% by mass) of the binder resin composition of the present invention was added. In Comparative Example 3, when the amount of the resin of Synthesis Example 1 was set to 3% by mass, the adhesiveness evaluation was “「 ”, but the high-rate characteristics of the non-aqueous electrolyte secondary battery using the same deteriorated. .
[0040]
Example 5
Graphite having an average particle diameter of 20 μm (manufactured by Hitachi Chemical Co., Ltd.) as a negative electrode active material, an 8% NMP solution of succinic anhydride-modified polyvinyl alcohol obtained in Synthesis Example 1 and a 35% aqueous dispersion of styrene-butadiene rubber obtained in Synthesis Example 1 as a binder resin were used as negative electrodes. The active material: the binder resin was mixed at a solid content mass ratio of 96: 4, and kneaded while adding ion-exchanged water as needed to prepare a negative electrode mixture slurry. Here, the mixing ratio of the succinic anhydride-modified polyvinyl alcohol and the styrene-butadiene rubber was set to 1: 1 in terms of solid content mass ratio. This negative electrode mixture slurry was applied to a copper foil having a thickness of 10 μm and dried. The amount of the mixture applied is 65 g / m 2 Met. The mixture bulk density is 1.5g / cm 3 And cut to a width of 56 mm to produce a strip-shaped negative electrode sheet. A nickel current collector tab was ultrasonically welded to the end of the negative electrode sheet, and then vacuum dried at 120 ° C. for 3 hours to completely remove volatile components such as residual solvent and adsorbed moisture. Got.
The method for evaluating the negative electrode sheet obtained in this example was the same as the method for evaluating the positive electrode sheet. Table 4 shows the results.
[0041]
Examples 6 to 8, Comparative Examples 4 to 6
With the composition shown in Table 3, a negative electrode sheet was produced in the same manner as in Example 5. Table 4 shows the evaluation results of the adhesion.
[0042]
[Table 3]
[0043]
[Table 4]
[0044]
From Table 4, it can be seen that the negative electrode sheets of Examples 5 to 8 containing both the components (A) and (B) show excellent adhesiveness, whereas the negative electrode sheets of Comparative Example 4 made of PVDF alone showed no adhesion. In other words, in order to make the adhesiveness “接着” in Comparative Example 4, it is necessary to use a larger amount of PVDF than in Examples 5 to 8. On the other hand, the negative electrode sheet of Comparative Example 5, which was produced using only the rubber-based resin (the resin of Synthesis Example 2), had poor dispersion stability with the active material when the equivalent amount (3% by mass) of the binder resin composition of the present invention was added. The electrode could not be produced. In addition, the negative electrode sheet of Comparative Example 6, which was prepared using only the water-soluble resin (the resin of Synthesis Example 1), cracked and peeled when being rolled when an equivalent amount (3% by mass) of the binder resin composition of the present invention was added. In Comparative Example 6, when the amount of the resin of Synthesis Example 1 was set to 5% by mass, the adhesiveness evaluation was “性”, but the high-rate characteristics of the non-aqueous electrolyte secondary battery using the same deteriorated. .
[0045]
(Production of lithium secondary battery)
Example 9
Lithium cobalt oxide having an average particle size of 10 μm (manufactured by Nippon Chemical Industry Co., Ltd.) as a positive electrode active material, graphite having an average particle size of 3 μm (manufactured by Nippon Graphite Co., Ltd.) as a conductive additive, and polyvinylidene fluoride as a binder resin (manufactured by Kureha Chemical Industry Co., Ltd.) A positive electrode sheet was prepared in the same manner as in Example 1, except that a 12% NMP solution was mixed at a solid content mass ratio of 85: 10: 5 to prepare a positive electrode mixture slurry. This positive electrode sheet and the negative electrode sheet obtained in Example 5 were wound through a polyethylene microporous membrane separator having a thickness of 25 μm and a width of 58 mm to form a spiral wound group, which was inserted into a battery can. A nickel tab terminal previously welded to the copper foil of the negative electrode current collector was welded to the bottom of the battery can, and an aluminum tab terminal welded to the aluminum foil of the positive electrode current collector was welded to the lid. Then, under an argon atmosphere, 1M LiPF 6 Of ethylene carbonate and dimethyl carbonate (volume ratio:
1/2) After injecting 5 ml of the electrolytic solution into the battery container, this portion was caulked and hermetically sealed to produce a cylindrical battery having a diameter of 18 mm and a height of 65 mm.
The evaluation method of the lithium secondary battery obtained in this example is shown below, and the results are shown in Table 6.
[0046]
<First charge / discharge efficiency>
At 20 ° C., constant-current charging was performed at a charging current of 400 mA to 4.2 V, switching to constant-voltage charging was performed when the voltage reached 4.2 V, and charging was continued until the charging current value attenuated to 40 mA. Constant current discharge was performed at a discharge current of 400 mA until the discharge end voltage reached 2.7 V. The value obtained by dividing the obtained discharge capacity by the charge capacity was defined as the initial charge / discharge efficiency.
[0047]
<Cycle characteristics>
At 20 ° C., constant-current charging was performed up to 4.2 V at a charging current of 800 mA, switching to constant-voltage charging was performed when the voltage reached 4.2 V, and charging was continued until the charging current value attenuated to 40 mA. A constant current discharge was performed at a discharge current of 800 mA until the discharge end voltage reached 2.7 V. The charge / discharge under these conditions was defined as one cycle, and charge / discharge was repeated until the discharge capacity reached 70% or less of the initial discharge capacity, and the number of repetitions was defined as the cycle life.
[0048]
<High-rate characteristics>
At 20 ° C., constant current charging was performed at a charging current of 400 mA to 4.2 V, and after the voltage reached 4.2 V, constant current discharging was performed at a discharging current of 400 mA until the discharge end voltage reached 3.5 V. The battery was charged again under the above charging conditions, and was discharged at a constant current of 2000 mA until the discharge end voltage reached 2.7 V. Here, a high-rate characteristic was obtained by comparing the capacity at the time of discharging at 2000 mA with the capacity at the time of discharging at 400 mA being 100%.
[0049]
Examples 10 to 14
Using the combination of the positive electrode and the negative electrode sheet shown in Table 5, lithium secondary batteries according to Examples 10 to 14 were produced, and the initial charge / discharge efficiency, cycle characteristics, and high-rate characteristics were evaluated. Table 6 shows the evaluation results.
[0050]
Comparative Example 7
A graphite having an average particle size of 20 μm (manufactured by Hitachi Chemical Co., Ltd.) as a negative electrode active material and a 12% NMP solution of polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd.) as a binder resin were mixed at a solid content mass ratio of 92: 8. A negative electrode sheet was prepared in the same manner as in Example 5, except that a slurry for the agent was prepared. A lithium secondary battery was produced in the same manner as in Example 9, except that this negative electrode sheet was combined with the positive electrode sheet obtained in Example 9. The initial charge / discharge efficiency, cycle characteristics, and high rate characteristics of the lithium secondary battery according to Comparative Example 7 were evaluated. Table 6 shows the evaluation results.
[0051]
Comparative Example 8
Lithium cobaltate having an average particle size of 10 μm (manufactured by Nippon Chemical Industry Co., Ltd.) as a positive electrode active material, graphite having an average particle size of 3 μm (manufactured by Nippon Graphite Co., Ltd.) as a conductive additive, and succinic anhydride obtained in Synthesis Example 1 as a binder resin A positive electrode sheet was prepared in the same manner as in Example 1 except that a modified polyvinyl alcohol 8% NMP solution was mixed at a solid content mass ratio of 87: 10: 3 to prepare a positive electrode mixture slurry. Graphite having an average particle diameter of 20 μm (manufactured by Hitachi Chemical Co., Ltd.) as a negative electrode active material and an 8% NMP solution of succinic anhydride-modified polyvinyl alcohol obtained in Synthesis Example 1 as a binder resin were mixed at a solid content mass ratio of 95: 5. A negative electrode sheet was prepared in the same manner as in Example 5, except that a negative electrode mixture slurry was prepared. A lithium secondary battery was produced in the same manner as in Example 9 except that the positive electrode sheet and the negative electrode sheet were combined. The initial charge / discharge efficiency, cycle characteristics, and high-rate characteristics of the lithium secondary battery according to Comparative Example 8 were evaluated. Table 6 shows the evaluation results.
[0052]
Comparative Examples 9 and 10
Using the combination of the positive electrode and the negative electrode sheet shown in Table 5, a lithium secondary battery was produced in the same manner as in Example 9, and the initial charge / discharge efficiency, cycle characteristics, and high-rate characteristics were evaluated. Table 6 shows the evaluation results.
[0053]
[Table 5]
[0054]
[Table 6]
[0055]
From Table 6, the lithium secondary batteries prepared by using the binder resin composition of the present invention for at least one or both of the positive electrode and the negative electrode of Examples 9 to 14 show the initial charge / discharge efficiency, cycle characteristics, and high-rate characteristics. It turns out that it is excellent.
On the other hand, the lithium secondary battery of Comparative Example 7 in which both the positive electrode and the negative electrode were prepared using PVDF alone with an addition amount capable of ensuring adhesion between the active material and the current collector and the active material was excellent in high-rate characteristics. However, it can be seen that the initial charge / discharge efficiency and cycle characteristics are inferior.
In addition, the lithium secondary battery prepared in both the positive electrode and the negative electrode of Comparative Example 8 with a water-soluble resin alone with an addition amount capable of securing the adhesiveness between the active material and the current collector and the active material has an initial charge / discharge efficiency. Is excellent, but the cycle characteristics and the high rate characteristics are inferior.
In addition, the lithium secondary batteries prepared using PVDF on one of the positive and negative electrodes and the water-soluble resin alone on the other of Comparative Examples 9 to 10 were different from the lithium secondary batteries prepared using the binder resin of the present invention in the first time. It can be seen that the charge / discharge efficiency, cycle characteristics, and high rate characteristics are inferior.
[0056]
【The invention's effect】
The electrode manufactured using the binder resin of the present invention is excellent in the adhesiveness between the active material and the current collector and between the active materials with a small amount of addition, as compared with the electrode manufactured using PVDF. Moreover, the lithium secondary battery manufactured using the binder resin of the present invention is superior in the initial charge / discharge efficiency and the cycle characteristics as compared with the conventional battery manufactured using PVDF.