JP2004209347A - Water modification unit using electrolysis - Google Patents

Water modification unit using electrolysis Download PDF

Info

Publication number
JP2004209347A
JP2004209347A JP2002380357A JP2002380357A JP2004209347A JP 2004209347 A JP2004209347 A JP 2004209347A JP 2002380357 A JP2002380357 A JP 2002380357A JP 2002380357 A JP2002380357 A JP 2002380357A JP 2004209347 A JP2004209347 A JP 2004209347A
Authority
JP
Japan
Prior art keywords
water
electrolytic
electrolysis
electrode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380357A
Other languages
Japanese (ja)
Other versions
JP3711501B2 (en
Inventor
Jutaro Kobayashi
林 重 太 郎 小
Hiroyuki Hayashi
宏 幸 林
Hitoshi Yamada
田 均 山
Kazunori Nagamura
村 和 典 長
Teruyoshi Yamaguchi
口 照 喜 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AWI KK
Alone World KK
Tobishima Corp
E&CS Co Ltd
Original Assignee
AWI KK
Alone World KK
Tobishima Corp
E&CS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AWI KK, Alone World KK, Tobishima Corp, E&CS Co Ltd filed Critical AWI KK
Priority to JP2002380357A priority Critical patent/JP3711501B2/en
Publication of JP2004209347A publication Critical patent/JP2004209347A/en
Application granted granted Critical
Publication of JP3711501B2 publication Critical patent/JP3711501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water modification unit which is formed in a prescribed dimensional unit capable of being connected if necessary and uses an electrolysis. <P>SOLUTION: A 1st plate like electrode 3 and 2nd electrodes 4 provided with a prescribed distance from the 1st electrode respectively to face each other inside a rectangular shaped electrolytic cell 10. The electrolytic cell 10 is partitioned into 2 electrolyte chambers 2 in the front side and the back side of the electrolytic cell 10 and an electrolysis chamber 1 in the center by providing respectively 2 pieces of ion exchange membranes between the electrodes. Both side surfaces of the electrolysis chamber 1 in the traverse direction are opened and one and another side surfaces are used as water feed port 8 for raw water and a drain port 9. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原水を電気分解してイオン化することによりアルカリ又は酸性水に改質する電気分解を用いる水改質ユニットに関する。
【0002】
【従来の技術】
従来、密閉された電解槽に原水を供給し、電解槽内の陽極及び陰極間に直流電圧を印加して電気分解し、陽極側に多く集まるマイナスイオンを多く含んだ酸性水と、陰極側に多く集まるプラスイオンを多く含んだアルカリ水を連続して得る水処理方法や装置が種々提案されている。
【0003】
効率のよい電気分解による水の改質装置としては、処理水の電解室の周囲に電解質溶液室を配置して、電解質溶液を循環させると共に、電気分解により生じる電気分解ガスを外気に放出することにより捨て水を発生させない方法及び装置が開示されている。(特許文献1)
【0004】
しかし、これらの家庭用イオン水製造装置は、イオン交換膜の性能、その構造から弱酸性(pH4.5前後)或いは弱アルカリ(pH9.5前後)のイオン水を生成することはできるが、強酸性或いは強アルカリ性のイオン水を連続的に、長期間生成することはできなかった。 また、生成されたイオン水は、数時間〜数日でpH値が変化し中性化してしまう問題があった。
【0005】
長期間にわたり安定したpH値を保つイオン水の製造方法及び製造装置として、モンモリロナイトなどの結晶性粘土鉱物を主成分とするセラミックのイオン交換膜を用いて、その成分を溶解させることにより安定したpH値を保つイオン水を生成する方法、および複数の電解槽に処理水を導き、電気分解処理を複数回にわたり繰り返して強酸性或いは強アルカリ性のイオン水を製造する方法及びその装置が開示されている。(特許文献2)
【0006】
しかし、これらの装置は、電解槽或いは電気分解処理室が密閉されており、処理容量も限られている。このため、廃坑から出る強い酸性水や、酸性河川水などの大量な流水、または、金属表面処理廃液、メッキ廃液などの産業廃液を連続的に中和処理することはできなかった。
【0007】
また、汚染水の中和処理に於いては、中和処理に伴って反応物(沈殿物)が生成されるため、密閉式の従来の方法・装置では槽内に沈殿してしまう為、処理できない問題があった。さらに、処理水の水量、酸・アルカリの強さに応じた電気分解槽をその都度設計・製造することはコスト面で問題があった。
【0008】
【特許文献1】
特開平9−220572号公報(第2、3、4頁、第1図)
【特許文献2】
特開平8−24865号公報(第2、3、4頁、第1図)
【0009】
【発明が解決しようとする課題】
本発明は、これらの問題を解決するため、必要に応じて連結可能な所定寸法のユニットに形成した電気分解を用いる水改質ユニットを提供することを課題とする。
【0010】
また、強酸性或いは強アルカリ性を長期にわたり保持する処理水(イオン水)を製造可能な電気分解を用いる水改質ユニットを提供することを課題とする。
【0011】
【課題を解決するための手段】
前記課題を解決するため、本発明の電気分解を用いる水改質ユニットは、所定横幅及び所定奥行の長さの底面と、所定高さとからなる絶縁部材により形成される直方体形状の電解槽において、
前記電解槽底面の横方向に平行な中心線に沿って配設された前記電解槽の略所定奥行長と所定高さの第1の電極と、
その第1の電極との間に水の電気分解を可能とする電界が得られるように前記第1の電極の両側から所定の間隔長の位置にそれぞれ対向して配設された前記第1の電極と略同寸法の第2の電極と、
前記第1の電極と第2の電極の中間にそれぞれ設けられる2枚のイオン交換隔膜と、
前記イオン交換隔膜の周縁部を挟み込むように、それぞれ前記電解槽の絶縁部材の両側面及び底面部との間に少なくとも設けられた弾性部材からなるパッキング機構部と、
そのパッキング機構部により立設されたイオン交換隔膜によって原水の流入が阻止され、その中に第2の電極が設けられた状態が形成された電解槽の前面側及び裏面側の電解溶液室と、
前記2枚のイオン交換隔膜によって、その中に第1の電極が設けられた状態が形成された電解槽中央の電解処理室とを備え、
前記電解処理室の少なくとも横方向両側面は開放され、その一方及び他方の側面は、それぞれ原水の給水口及び排水口となり、
電解溶液室に電解質溶液を充填し、第一及び第2の電極に直流電圧を印加することにより、前記原水が電気分解されることを特徴とする。
【0012】
この発明の電気分解を用いる水改質ユニットは、直方体形状の電解槽であり、その中央両側に給水口及び排水口を備えることから、流路の幅に応じて並列に並べて配置したり、改質程度に応じて直列に連結して配置することができる。また、原水を改質する電解処理室が両側の電解溶液室に挟まれて配置されているため、大きな電流を流すことができ、高い電気分解効率を得ることができる。このため、流水のイオン化(アルカリ或いは酸性化)性能を高めることができる。
【0013】
また、前記電解槽の一方の両側面には、他のユニット或いは設置現場の支持構造に連結するための連結部を備え、前記電解処理室の上面は、開放されているか、或いは水素ガス排気口を有する上面蓋が設けられていることを特徴とする。
【0014】
この発明によれば、電解槽に連結部を備えていることにより、複数のユニットを並列あるいは直列に連結する事ができる。また、電気分解により陰極に発生する水素ガスを大気中に放散させ、水素ガスが電極表面に付着し、分極現象により電気分解が停止するのを防止する事ができる。また、水素ガス排気口を有する上面蓋によれば、電気分解による水素ガスを回収して資源として利用する事ができる。
【0015】
また、前記電解溶液室の両側面には、それぞれ電解室溶液を循環させるための給水口、排水口を有することを特徴とする。
【0016】
この発明によれば、電気分解により酸性或いはアルカリ性にイオン化された電解質溶液を回収し、中性の電解質溶液を補充して、大きな電流で電気分解を行うことができる。
【0017】
また、本発明の電気分解を用いる水改質ユニットは、所定横幅及び所定奥行の長さの底面と、所定高さとからなる絶縁部材により形成される直方体形状の電解槽において、
前記電解槽底面の横方向に平行に所定のピッチ間隔長で配列し、その電解槽内に配設された前記電解槽の略所定横幅と所定高さの複数N枚の第2の電極群と、
その第2の電極群のそれぞれの中間に配列し、その電解槽内に配設された第2の電極と略同寸法の複数N−1枚の第1の電極群と、
前記第1及び第2の電極の中間に、それぞれ設けられた複数(Nー1)×2枚のイオン交換隔膜と、
前記イオン交換隔膜の周縁部を挟み込むように、それぞれ前記電解槽の絶縁部材の両側面及び底面部との間に設けられた弾性部材からなるパッキング機構部と、
そのパッキング機構部により立設されたイオン交換隔膜によって原水の流入が阻止されるように区画され、その中に第2の電極と第1の電極が交互に設けられた状態がそれぞれ形成されたN個の電解溶液室と、N−1個の電解処理室とを備え、
前記電解溶液室及び電解処理室の最前列と最後列の側面部には、それぞれ電解質溶液または原水の給水口及び排水口とを設け、中間列の側面部には、それぞれ中間給水口及び中間排水口を設け、
最前列の電解処理室で改質処理された原水を、下流の電解処理室に給水させるための連結配管がN−2本と、最前列の電解溶液室に充填された電解室溶液を、下流の電解溶液室に循環させるための連結配管がN−1本設けられ、
最前列の給水口から原水を注入し、電解溶液室に電解質溶液を循環させながら、第1及び第2の電極に直流電圧を印加することにより、前記原水が複数の電解処理室で複数回連続的に電気分解されることを特徴とする。
【0018】
この発明によれば、一つの電解槽が区画され、複数の電解処理室がすべて、両側に電解溶液室に挟まれた状態に形成されている。このため、それぞれの電解処理室に流れる電気分解電流を大きくすることができる。また、第二の電極が両側の電解処理室の第一の電極に対向して共用されるため、ユニットの製造コストを低減させる事ができる。
また、複数の電解処理室を直方体の電解槽内に設け、原水が複数の電解処理室で複数回連続的に電気分解されることにより、強酸性或は強アルカリ性のイオン化水を得ることができる。
【0019】
また、前記連結配管は、上流側の電解処理室の上部に設けられた中間排出口から中間処理された原水を取り入れ、下流側の電解処理室の底面近くの下部に設けられた前記中間給水口に流入するようにして電解処理室の水位差により最後の電解処理室まで処理原水を導くことを特徴とする。
【0020】
この発明によれば、電気分解による発生ガスの上昇に伴い電気分解によりイオン化された原水は上部に循環される。電解処理室の上部に設けられた中間排出口から、イオン化された原水を下流側の電解処理室の底面近くの下部に設けられた前記中間給水口に流入することにより、電気分解効率を高くする事ができる。
【0021】
また、前記連結配管は、上流側の電解溶液室の上部に設けられた中間排出口から中間処理された電解質溶液を取り入れ、下流側の電解溶液室の底面近くの下部に設けられた前記中間給水口に流入するようにして電解溶液室の水位差により最後の電解溶液室まで電解質溶液を導くことを特徴とする。
【0022】
この発明によれば、電気分解による発生ガスの上昇に伴い電気分解によりイオン化されたは電解質溶液上部に循環される。電解溶液室の上部に設けられた中間排出口から、イオン化された電解質溶液を下流側の電解溶液室の底面近くの下部に設けられた前記中間給水口に流入することにより、電解質溶液の回収・補充を促し電気分解効率を高くする事ができる。
【0023】
また、前記イオン交換隔膜は、珪酸4面体とアルミナ8面体とが結合した結晶性粘土鉱物を主体とするセラミック製の板であることを特徴とする。
【0024】
この発明によれば、イオン交換隔膜から溶解する結晶性粘土鉱物の微量の粘土鉱物分子が、マイナスイオン或いはプラスイオンを安定状態に保つため、長期に亘り、安定したアルカリ或いは酸性の改質された水を得ることができる。したがって、このユニットにより生成した改質水を、貯蔵しておき、利用が必要な場所に輸送して、必要な量を、必要な時期に提供する事ができる。すなわち、工業的利用或いは商業的な販売を可能にする事ができる。
【0025】
また、前記電解処理室には、珪酸4面体とアルミナ8面体とが結合した結晶性粘土鉱物を含むセラミック粒状物が、原水に浸漬される状態で配置され/或いはイオン交換隔膜に塗布された状態で配置されていることを特徴とする。
【0026】
この発明によれば、稀少鉱物である結晶性粘土鉱物を、イオン安定化に必要な量だけ溶解させることができる。このため、セラミック製の板からなるイオン交換隔膜に対し、より安価に安定した改質水を得ることができる。
【0027】
また、前記第1の電極及び第2の電極は、表面に凹凸又は溝が形成され液体との接触表面積を増加させた板状の電極であることを特徴とする。
【0028】
この発明によれば、処理される原水、或いは電解質溶液と電極との接触面積を広くする事ができる。このため高い電気分解効率を得ることができる。
【0029】
また、前記第1及び第2の電極は、電解処理室または電解溶液室に引き抜き可能に挿入配設されており、前記イオン交換隔膜は、電解処理室と電解溶液室の境に設けられた弾性部材からなる密封機構部(パッキン)に嵌挿されて、それぞれ上部に引き抜き可能に保持されていることを特徴とする。
【0030】
この発明によれば、電気分解により分解・消耗される電極及びイオン交換隔膜の交換が容易に行えるため、長期に亘る運用でのコストを低くする事ができる。
【0031】
また、前記第1の電極は、上部が開口した箱状に形成された耐錆性金属のパンチングメタル材であることを特徴とする。
【0032】
この発明によれば、電極が箱状に形成されていることから、電解処理室の両側面のイオン交換隔膜近傍に第一の電極が配設される形態となり、処理する原水の容量を減らすことなく、第2の電極と第一の電極との間隙を少なくする構造とする事ができる。このため、電極間の電流量を高く保ち、電気分解効率を高めることができる。
【0033】
また、請求項1記載の電気分解を用いる水改質ユニットの給水口・排水口を電解処理室と同一断面に形成し、複数の電気分解を用いる水改質ユニットの給水口を並列に並べ、または/及び給水口と排水口を直列に接続し、廃水・河川・湖沼・海面等の現場で流水状態の原水を連続的に改質処理することを特徴とする。
【0034】
この発明によれば、流水を最小限遮ることなく、連続して改質する事ができる。また、改質に伴い発生する化合・反応物が電解処理室内に沈殿しない構造を得ることができる。
【0035】
また、請求項1または4記載の電気分解を用いる水改質ユニットに、改質処理室又は電解溶液室を覆うガス回収カバーと燃料電池とを備え、電気分解により発生する水素ガスを回収し、燃料電池原料として電力エネルギーに変換すると共に、改質処理現場の河川・湖沼に設置された太陽電池パネルを備え、それぞれで変換された電力エネルギーを電気分解用電力として用いることを特徴とする。
【0036】
この発明によれば、電気分解のためのエネルギーの一部を水素ガスとして回収し、燃料電池により電気エネルギーに変換して再利用する事ができる。また、改質対象の河川或いは湖沼・海面で太陽電池パネルにより変換された直流電流を用いて電気分解することによれば、電力供給設備(送電線)のない場所、或いは発電設備のない環境であっても、電気分解による水の改質を行うことができる。
【0037】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳細に説明する。
【0038】
図1は、本発明の第1の実施の形態の斜視図である。この形態の電気分解を用いる水改質ユニット100は、所定横幅a及び所定奥行bの長さの底面10aと、所定高さcとからなる絶縁部材により形成される直方体形状の電解槽10であって、その電解槽10内部に、前記電解槽底面10aの横方向に平行な中心線に沿って配設された前記電解槽10の所定奥行長bと所定高さcより僅かに小さい板状の第1の電極3と、
その第1の電極3との間に水の電気分解を可能とする電界が得られるように前記第1の電極3の両側から所定の間隔長の位置にそれぞれ対向して配設された前記第1の電極3と略同寸法の第2の電極4とが配置されている。
【0039】
前記第1の電極3と第2の電極4の中間にはそれぞれ2枚のイオン交換隔膜5がパッキング機構6により設けられている。パッキング機構部6は、前記イオン交換隔膜5の周縁部を挟み込むように、それぞれ前記電解槽10の絶縁部材の両側面及び底面部との間に少なくとも設けられた弾性部材である。
【0040】
電解槽10は、パッキング機構部6により立設されたイオン交換隔膜5によって原水の流入が阻止され、その中に第2の電極4が設けられた状態が形成された電解槽10の前面側及び裏面側の2つの電解溶液室2と、前記2枚のイオン交換隔膜5によって、その中に第1の電極3が設けられた状態が形成された電解槽10中央の電解処理室1とに区画されている。
【0041】
また、前記電解処理室1の少なくとも横方向両側面は開放され、その一方及び他方の側面は、それぞれ原水の給水口8及び排水口9とされている。
【0042】
前記電解溶液室2には、電解溶液の注入口2aと、電解溶液排出口2bが設けられている。
【0043】
前記第1の電極3及び第2の電極4は、電解槽10内に上部から挿入され、倒れないように絶縁部材の支持構造(図示せず)で保持されている。支持構造は底面10aに設けてもよいし、電極側面と電解槽10或はイオン交換隔膜5の間に絶縁部材をはさみこむ方法のいずれでも良い。この、第1及び第2の電極3,4は、直流電源(図示せず)と電線で連結する電極端子7をそれぞれ備えている。
【0044】
また、電解槽10の給水口8及び排水口9の開口している横方向側面には、水改質ユニットを流水中に設置或は、ユニット同士を連結する為の連結部20が備えられている。
【0045】
ここで、本発明の電気分解による水改質ユニット100を用いた水改質の実施の形態を説明する。図4は、本発明の電気分解を用いた水改質ユニット100の設置の形態を示す模式図で,(a)は平面図、(B)は断面図である。
【0046】
図4(a)、(b)に示すように、本発明の電気分解を用いた水改質ユニット100を、給水口8が上流に向き、排水口9が下流となるように河川50の流路50Aに配置する。このとき電解槽10の上部は、水面上になるようにする。
【0047】
この状態で、前記電解溶液室2に電解質溶液(食塩或は水酸化カリウムなどの水溶液)を充填し、第1の電極3と第2の電極4に電圧を印加する。流水は、電解処理室1内を通過するとき第1の電極3と第2の電極4との間に流れる電流により電気分解され、第1の電極3が負極の場合流水がマイナスイオン化(アルカリ性化)され、反対に正極の場合流水がプラスイオン化(酸性化)されることにより、流水の改質がなされる。
【0048】
例えば、強い酸性の流水を中和させたい場合は、第1の電極を負極として電圧を印加すれば、電気分解により電解処理室1はマイナスイオン(OHが多い状態)となり流水が下流の排水口9に達するまでに中和される。
【0049】
このとき、中和により発生する化合物があれば、排水口9の外に流れ出る。これらの沈殿物が発生する場合は、排水口9の外に沈殿物回収機構を設けて回収することができる。
【0050】
図4の実施例は、流水中に水改質ユニット100を設置した場合を示したが、例えば、廃坑からポンプアップされた排水を改質浄化する場合などは、水改質ユニット100を地上に設置し、その連結部20に廃坑からの排水ホース或は排水管を連結する塞ぎ板(図示せず)を取り付けて排水を給水させて改質し、処理された水を流路に排出させる方法を取ることができる。
【0051】
電気分解を用いた水改質ユニット100の、負極に接続された電極からは、水素ガスが発生する。この水素ガスを回収する為、電解処理室或は電解溶液室の上部に水素ガス排気口を有する蓋を設け、水素ガスを資源として回収し燃料電池の原料にすることができる。
【0052】
また、電解処理室1では流水が連続的に改質される一方、電解質溶液室2では、電解質溶液が電気分解によりイオン化される。イオン化が進むに従って、電流が流れにくくなり電気分解が停止する。これを防ぐ為、前記電解質溶液の注入口2aから電解質溶液を補充し、電解溶液排出口2bから回収する。
【0053】
図2は、本発明の第2の実施の形態の電気分解を用いる水改質ユニットの一部断面を示す正面図である。
【0054】
図において、電気分解を用いる水改質ユニット100Aは、絶縁部材により形成された直方体形状の電解槽10A内部に、前記電解槽10A底面の横方向に平行に所定のピッチ間隔長で配列した複数N枚の第2電極4と、その第2の電極4群のそれぞれの中間に配列し、その電解槽10A内に配設された複数N−1枚の第1の電極3群と、前記第1及び第2の電極3,4の中間に、それぞれ設けられた複数(Nー1)×2枚のイオン交換隔膜5と、 前記イオン交換隔膜5の周縁部を挟み込むように、それぞれ前記電解槽10Aの絶縁部材の両側面及び底面部との間に設けられた弾性部材からなるパッキング機構部6と、
そのパッキング機構部6により立設されたイオン交換隔膜5によって原水の流入が阻止されるように区画され、その中に第2の電極と第1の電極が交互に設けられた状態がそれぞれ形成されたN個の電解溶液室2と、N−1個の電解処理室1とが交互に形成されている。
【0055】
前記電解溶液室2及び電解処理室1の最前列と最後列の側面部には、それぞれ電解質溶液または原水の給水口8及び排水口9とを設け、中間列の側面部には、それぞれ中間給水口8a及び中間排水口9aを設け、
最前列の電解処理室1で改質処理された原水15を、下流の電解処理室1に給水させるための連結配管9bがN−2本と、最前列の電解溶液室2に充填された電解室溶液30を、下流の電解溶液室2に循環させるための連結配管2c(図示せず)がN−1本設けられている。なお、連結配管2cは、図示した原水の連結配管9bと同様の構造で連結される。
【0056】
ここで、最前列の給水口8から原水15を注入し、電解溶液室2に電解質溶液30を循環させながら、第1及び第2の電極3,4に直流電圧を印加することにより、前記原水15が複数の電解処理室1で複数回連続的に電気分解される。
【0057】
図3は、本発明の電気分解を用いた水改質ユニットの設置の形態を示す模式図であり、(a)は直列接続、(b)は並列接続、(c)は横方向多層型、(d)は直並列多段多層型を示す。
【0058】
(a)の直列接続は、原水槽の支持構造8Aの流水口に第1の電解槽10の連結部20を接続固定し、その排水口9側の連結部20に、第2の電解槽10の連結部を接続し、同様に、順次直列に第n番目の電解槽10を接続し、最後の電解槽の排水口9の連結部20に処理水槽の支持構造9Aを連結する形態である。この様に直列接続することによれば、原水を繰り返し連続的に改質或いは、中和させることができる。このため、強い酸性水あるいはアルカリ水を中和させることができる。
【0059】
(b)の並列接続は、電解槽10を並列に並べ、給水口8側の連結部20を、流路に並列の開口を有する支持構造部材8Bに固定して連結する形態である。この形態では、幅の或る流路の流水を改質する事ができる。
【0060】
(c)の横方向多層型は、第2の実施の形態の電気分解を用いた水改質ユニット100A、すなわちn個の電解溶液室2とn−1個の電解処理室1を備えた電解槽10Aにより幅の或る流路の流水を改質する形態である。
【0061】
(d)の直並列多段多層型は、電解槽10を連結して処理水を導く処理水ヘッダー8Cにより(c)に示した電解槽10Aを直列に連結した形態である。この形態では、多量の原水を一度に改質する事が可能となる。
【0062】
図5は、本発明の電気分解を用いた水改質ユニット100の湖沼・海への設置の形態を示す模式図で,(a)は正面図、(b)は平面図である。
【0063】
(a)、(b)に示すように、湖沼・海に浮かべた浮体70(船、はしけ等)の床面から電気分解を用いる水改質ユニット100を水面下に配置して、湖沼・海の水域を走行させながら湖水・海水の改質を行う。このとき、浮体70の上面にソーラパネル60を設けることにより、電気分解用の直流電力を確保する事が望ましい。
海などの海流がある場合は、係留しておくだけで、流水50Aが電解槽10に取り込まれて改質されるが、静水面では、浮体に推進動力を設けて浮遊移動させる。
【0064】
以上、本発明の電気分解を用いる水改質ユニットの構成及び構造を説明してきたが、前記第1の電極及び第2の電極は、表面に凹凸または溝を形成して、表面積を増加させた板状電極とすることで、さらに、電気分解効率を高めることができる。
【0065】
また、第1の電極を、箱状のパンチングメタルとすることによれば、電解処理室1の両側に配置された電解溶液室2により近い位置に電極が配設されることになるため、さらに、電気分解効率を高めることができる。
【0066】
【発明の効果】
本発明によれば、水の改質処理を行う現場に応じて、必要な性能を確保する事ができる連結使用可能な電気分解を用いた水改質ユニットを得ることができる。また、所定寸法に規格化されたユニットとすることにより、製造コストを低減する事ができる。さらに、直列或いは並列に連結して利用することにより処理水量に対応する事ができる。
【0067】
また、電極間の間隙が少なく、結晶性粘土鉱物を含むイオン交換隔膜を使用することにより、強い酸・アルカリのpH値の、安定したイオン水を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電気分解を用いる水改質ユニットの斜視図である。
【図2】本発明の第2の実施の形態の電気分解を用いる水改質ユニットの一部断面を示す正面図である。
【図3】図3は、本発明の電気分解を用いた水改質ユニットの設置の形態を示す模式図であり、(a)は直列接続、(b)は並列接続、(c)は横方向多層型、〔d〕は直並列多段多層型を示す。
【図4】本発明の電気分解を用いた水改質ユニット100の河川への設置の形態を示す模式図で,(a)は平面図、(b)は断面図である。
【図5】本発明の電気分解を用いた水改質ユニット100の湖沼・海への設置の形態を示す模式図で,(a)は正面図、(b)は平面図である。
【符号の説明】
1 電解処理室
2 電解溶液室
2a 電解質溶液注入口
2b 電解質溶液排出口
2c 連結配管
3 第1の電極
4 第2の電極
5 イオン交換隔膜
6 パッキング機構部
7 電極端子
8、8a 給水口
8A、8B、8C 支持構造
9、9a 排水口
9A,9B 支持構造
9b 連結配管
10、10A 電解槽
10a 底面
10b 側面
15 原水
20 連結部
30 電解質溶液
50 河川
50A 流路
50B 堤体
51 土手
60 ソーラパネル
70 浮体
100,100A 電気分解を用いる水改質ユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water reforming unit using electrolysis in which raw water is electrolyzed and ionized to be reformed into alkali or acidic water.
[0002]
[Prior art]
Conventionally, raw water is supplied to a sealed electrolytic cell, and a direct current voltage is applied between the anode and cathode in the electrolytic cell to perform electrolysis, and acidic water containing a large amount of negative ions gathered on the anode side and on the cathode side. Various water treatment methods and apparatuses for continuously obtaining alkaline water containing a large amount of positive ions gathered have been proposed.
[0003]
As an efficient water reforming device by electrolysis, an electrolytic solution chamber is arranged around the electrolytic chamber of treated water to circulate the electrolyte solution and to release the electrolysis gas generated by electrolysis to the outside air. Discloses a method and apparatus that does not generate waste water. (Patent Document 1)
[0004]
However, these household ionic water production apparatuses can generate weakly acidic (pH around 4.5) or weakly alkaline (about pH 9.5) ionic water from the performance and structure of the ion exchange membrane. Or strong alkaline ionic water could not be produced continuously for a long period of time. Moreover, the produced ionic water has a problem that the pH value changes in several hours to several days and becomes neutral.
[0005]
As a method and apparatus for producing ionic water that maintains a stable pH value over a long period of time, a stable ion pH is obtained by dissolving the components using a ceramic ion exchange membrane whose main component is a crystalline clay mineral such as montmorillonite. Disclosed are a method for producing ionic water that maintains a value, and a method and apparatus for producing strongly acidic or strongly alkaline ionic water by introducing treated water to a plurality of electrolytic cells and repeating electrolysis treatment a plurality of times. . (Patent Document 2)
[0006]
However, in these apparatuses, the electrolytic cell or the electrolysis processing chamber is sealed, and the processing capacity is limited. For this reason, it was not possible to continuously neutralize strong acid water from the abandoned mine, large quantities of running water such as acid river water, or industrial waste liquids such as metal surface treatment waste liquid and plating waste liquid.
[0007]
In addition, in the neutralization treatment of contaminated water, a reaction product (precipitate) is generated along with the neutralization treatment. There was a problem that could not be done. Furthermore, designing and manufacturing an electrolytic cell according to the amount of treated water and the strength of acid / alkali each time has a problem in terms of cost.
[0008]
[Patent Document 1]
JP-A-9-220572 (2nd, 3rd, 4th pages, Fig. 1)
[Patent Document 2]
JP-A-8-24865 (2nd, 3rd, 4th pages, Fig. 1)
[0009]
[Problems to be solved by the invention]
In order to solve these problems, an object of the present invention is to provide a water reforming unit using electrolysis formed into units of a predetermined size that can be connected as necessary.
[0010]
It is another object of the present invention to provide a water reforming unit using electrolysis capable of producing treated water (ionic water) that retains strong acidity or strong alkalinity for a long time.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, a water reforming unit using electrolysis according to the present invention is a rectangular parallelepiped electrolytic cell formed by an insulating member having a predetermined width and a predetermined depth, and a predetermined height.
A first electrode having a substantially predetermined depth length and a predetermined height of the electrolytic cell disposed along a center line parallel to the lateral direction of the bottom surface of the electrolytic cell;
The first electrodes disposed opposite to each other at a predetermined distance from both sides of the first electrode so as to obtain an electric field that enables electrolysis of water between the first electrode and the first electrode. A second electrode having substantially the same dimensions as the electrode;
Two ion exchange diaphragms respectively provided between the first electrode and the second electrode;
A packing mechanism portion formed of an elastic member provided at least between both side surfaces and a bottom surface portion of the insulating member of the electrolytic cell so as to sandwich the peripheral edge portion of the ion exchange membrane;
Electrolytic solution chambers on the front side and back side of the electrolytic cell in which the inflow of raw water is blocked by the ion exchange diaphragm erected by the packing mechanism, and the second electrode is provided therein,
An electrolytic treatment chamber in the center of the electrolytic cell in which a state in which the first electrode is provided therein is formed by the two ion exchange diaphragms;
At least the lateral side surfaces of the electrolytic treatment chamber are open, and one and the other side surfaces thereof are a raw water supply port and a drain port, respectively.
The raw water is electrolyzed by filling the electrolytic solution chamber with an electrolyte solution and applying a DC voltage to the first and second electrodes.
[0012]
The water reforming unit using electrolysis of the present invention is a rectangular parallelepiped electrolytic cell, and has a water supply port and a drain port on both sides of the center thereof, so that it can be arranged in parallel or modified according to the width of the flow path. Depending on the quality, they can be connected in series. In addition, since the electrolytic treatment chamber for modifying the raw water is disposed between the electrolytic solution chambers on both sides, a large current can be passed and high electrolysis efficiency can be obtained. For this reason, the ionization (alkali or acidification) performance of flowing water can be improved.
[0013]
Further, one side surface of the electrolytic cell is provided with a connecting portion for connecting to another unit or a support structure at the installation site, and the upper surface of the electrolytic treatment chamber is open or a hydrogen gas exhaust port The upper surface lid | cover which has is provided, It is characterized by the above-mentioned.
[0014]
According to this invention, a plurality of units can be connected in parallel or in series by providing the electrolytic cell with the connecting portion. Further, it is possible to prevent hydrogen gas generated at the cathode by electrolysis from being diffused into the atmosphere, so that the hydrogen gas adheres to the electrode surface and the electrolysis is stopped due to a polarization phenomenon. Moreover, according to the top cover having a hydrogen gas exhaust port, hydrogen gas obtained by electrolysis can be recovered and used as a resource.
[0015]
Further, the both sides of the electrolytic solution chamber have a water supply port and a drain port for circulating the electrolytic chamber solution, respectively.
[0016]
According to the present invention, an electrolytic solution ionized acidic or alkaline by electrolysis can be collected and supplemented with a neutral electrolytic solution, and electrolysis can be performed with a large current.
[0017]
Further, the water reforming unit using electrolysis of the present invention is a rectangular parallelepiped electrolytic cell formed by an insulating member having a predetermined width and a depth of a predetermined depth and a predetermined height.
A plurality of N second electrode groups arranged in a predetermined pitch interval length parallel to the lateral direction of the bottom surface of the electrolytic cell and having a substantially predetermined lateral width and a predetermined height of the electrolytic cell disposed in the electrolytic cell; ,
A plurality of N-1 first electrode groups arranged in the middle of each of the second electrode groups and having substantially the same dimensions as the second electrodes disposed in the electrolytic cell;
A plurality of (N-1) × 2 ion exchange diaphragms provided between the first and second electrodes, respectively;
A packing mechanism portion made of an elastic member provided between both side surfaces and a bottom surface portion of the insulating member of the electrolytic cell so as to sandwich the peripheral edge portion of the ion exchange diaphragm,
N is formed so that inflow of raw water is blocked by the ion exchange diaphragm provided upright by the packing mechanism, and the second electrode and the first electrode are alternately provided in each of them. Comprising an electrolytic solution chamber and N-1 electrolytic treatment chambers,
The electrolyte solution chamber and the electrolytic treatment chamber are respectively provided with a water supply port and a drain port for the electrolyte solution or raw water on the front and rear side surfaces of the last row, respectively, and an intermediate water supply port and an intermediate drain are respectively provided on the side surfaces of the intermediate row Make a mouth,
N-2 connecting pipes for feeding the raw water modified in the front row electrolysis chamber to the downstream electrolysis chamber and the electrolysis chamber solution filled in the front electrolysis chamber, downstream N-1 connecting pipes for circulation to the electrolyte solution chamber are provided,
By injecting raw water from the water supply port in the front row and circulating the electrolyte solution in the electrolytic solution chamber, a direct current voltage is applied to the first and second electrodes, so that the raw water is continuously applied in a plurality of electrolytic treatment chambers a plurality of times. It is characterized by being electrolyzed.
[0018]
According to the present invention, one electrolytic cell is partitioned and a plurality of electrolytic treatment chambers are all formed in a state sandwiched between electrolytic solution chambers on both sides. For this reason, the electrolysis electric current which flows into each electrolytic treatment chamber can be enlarged. In addition, since the second electrode is shared with the first electrode of the electrolytic treatment chambers on both sides, the manufacturing cost of the unit can be reduced.
Further, by providing a plurality of electrolytic treatment chambers in a rectangular electrolytic cell and continuously electrolyzing the raw water a plurality of times in the plurality of electrolytic treatment chambers, strongly acidic or strongly alkaline ionized water can be obtained. .
[0019]
Further, the connecting pipe takes in raw water subjected to intermediate treatment from an intermediate discharge port provided in the upper part of the upstream electrolytic treatment chamber, and the intermediate water supply port provided in the lower part near the bottom surface of the downstream electrolytic treatment chamber. The raw water for treatment is guided to the last electrolytic treatment chamber by the difference in water level in the electrolytic treatment chamber.
[0020]
According to this invention, the raw water ionized by electrolysis is circulated in the upper part as the generated gas rises by electrolysis. Electrolytic efficiency is increased by flowing ionized raw water from the intermediate discharge port provided in the upper part of the electrolytic treatment chamber into the intermediate water supply port provided in the lower part near the bottom surface of the downstream electrolytic treatment chamber. I can do things.
[0021]
Further, the connecting pipe takes in the intermediately treated electrolyte solution from an intermediate outlet provided in the upper part of the upstream electrolytic solution chamber, and the intermediate water supply provided in the lower part near the bottom surface of the downstream electrolytic solution chamber. The electrolyte solution is guided to the last electrolyte solution chamber by the difference in water level of the electrolyte solution chamber so as to flow into the mouth.
[0022]
According to the present invention, the ionized ionization by the electrolysis accompanying the rise of the generated gas by the electrolysis is circulated in the upper part of the electrolyte solution. By flowing the ionized electrolyte solution from the intermediate outlet provided in the upper part of the electrolytic solution chamber into the intermediate water supply port provided in the lower part near the bottom of the electrolytic solution chamber on the downstream side, Replenishment can be promoted and electrolysis efficiency can be increased.
[0023]
The ion exchange diaphragm is a ceramic plate mainly composed of a crystalline clay mineral in which a silicic acid tetrahedron and an alumina octahedron are combined.
[0024]
According to the present invention, a small amount of the clay mineral molecule of the crystalline clay mineral that dissolves from the ion exchange diaphragm is maintained in a stable state of negative ions or positive ions. You can get water. Therefore, the reformed water generated by this unit can be stored and transported to a place where it is necessary to provide the required amount at the required time. That is, industrial use or commercial sales can be made possible.
[0025]
Further, in the electrolytic treatment chamber, a ceramic granular material containing a crystalline clay mineral in which silicic acid tetrahedron and alumina octahedron are bonded is arranged in a state of being immersed in raw water and / or applied to an ion exchange diaphragm. It is characterized by being arranged by.
[0026]
According to this invention, the crystalline clay mineral that is a rare mineral can be dissolved in an amount necessary for ion stabilization. For this reason, it is possible to obtain stable modified water at a lower cost than an ion exchange diaphragm made of a ceramic plate.
[0027]
In addition, the first electrode and the second electrode are plate-shaped electrodes in which irregularities or grooves are formed on the surface to increase the contact surface area with the liquid.
[0028]
According to the present invention, the contact area between the raw water to be treated or the electrolyte solution and the electrode can be increased. For this reason, high electrolysis efficiency can be obtained.
[0029]
In addition, the first and second electrodes are inserted and disposed in the electrolytic treatment chamber or the electrolytic solution chamber so that they can be pulled out, and the ion exchange diaphragm is provided at the boundary between the electrolytic treatment chamber and the electrolytic solution chamber. It is characterized by being fitted into a sealing mechanism part (packing) made of a member and held at the top so that it can be pulled out.
[0030]
According to the present invention, since the electrode and the ion exchange diaphragm that are decomposed and consumed by electrolysis can be easily exchanged, the cost for long-term operation can be reduced.
[0031]
Further, the first electrode is a punching metal material made of a rust-resistant metal formed in a box shape having an upper opening.
[0032]
According to this invention, since the electrode is formed in a box shape, the first electrode is disposed in the vicinity of the ion exchange diaphragm on both sides of the electrolytic treatment chamber, and the capacity of raw water to be treated is reduced. In addition, the gap between the second electrode and the first electrode can be reduced. For this reason, the electric current amount between electrodes can be kept high and electrolysis efficiency can be improved.
[0033]
Moreover, the water inlet / drain port of the water reforming unit using electrolysis according to claim 1 is formed in the same cross section as the electrolytic treatment chamber, and the water inlets of the water reforming unit using electrolysis are arranged in parallel, Alternatively, the water supply port and the water discharge port are connected in series, and the raw water in a running state is continuously reformed at a site such as waste water, rivers, lakes, and the sea surface.
[0034]
According to this invention, continuous reforming can be performed without blocking the running water to a minimum. Further, it is possible to obtain a structure in which the compound / reactant generated with the reforming does not precipitate in the electrolytic treatment chamber.
[0035]
Further, the water reforming unit using electrolysis according to claim 1 or 4 includes a gas recovery cover and a fuel cell covering the reforming treatment chamber or the electrolytic solution chamber, and recovers hydrogen gas generated by electrolysis, While converting into electric power energy as a fuel cell raw material, it is equipped with the solar cell panel installed in the river and lake in the reforming process field, and uses the electric energy converted in each as electric power for electrolysis.
[0036]
According to the present invention, part of the energy for electrolysis can be recovered as hydrogen gas, converted into electric energy by the fuel cell, and reused. Moreover, according to the electrolysis using the direct current converted by the solar cell panel in the river or lake / sea surface to be reformed, it can be used in a place where there is no power supply facility (transmission line) or in an environment where there is no power generation facility. Even if it exists, the modification | reformation of the water by electrolysis can be performed.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0038]
FIG. 1 is a perspective view of a first embodiment of the present invention. The water reforming unit 100 using electrolysis in this form is a rectangular parallelepiped electrolytic cell 10 formed by an insulating member having a bottom surface 10a having a predetermined lateral width a and a predetermined depth b, and a predetermined height c. In the electrolytic cell 10, a plate-like shape slightly smaller than a predetermined depth length b and a predetermined height c of the electrolytic cell 10 disposed along a center line parallel to the lateral direction of the electrolytic cell bottom surface 10 a. A first electrode 3;
The first electrodes 3 are arranged opposite to each other at a predetermined distance from both sides of the first electrode 3 so as to obtain an electric field that enables electrolysis of water between the first electrode 3 and the first electrode 3. A first electrode 3 and a second electrode 4 having substantially the same dimensions are arranged.
[0039]
Two ion exchange diaphragms 5 are provided by a packing mechanism 6 between the first electrode 3 and the second electrode 4, respectively. The packing mechanism portion 6 is an elastic member provided at least between both side surfaces and the bottom surface portion of the insulating member of the electrolytic cell 10 so as to sandwich the peripheral edge portion of the ion exchange diaphragm 5.
[0040]
The electrolytic cell 10 has a front side of the electrolytic cell 10 in which the inflow of raw water is blocked by the ion exchange diaphragm 5 erected by the packing mechanism unit 6 and the second electrode 4 is provided therein. It is divided into two electrolytic solution chambers 2 on the back side and an electrolytic treatment chamber 1 in the center of the electrolytic cell 10 in which the two electrode exchange diaphragms 5 are provided with the first electrode 3 provided therein. Has been.
[0041]
In addition, at least both lateral sides of the electrolytic treatment chamber 1 are opened, and one and the other side surfaces thereof are a raw water supply port 8 and a drain port 9, respectively.
[0042]
The electrolytic solution chamber 2 is provided with an electrolytic solution inlet 2a and an electrolytic solution outlet 2b.
[0043]
The first electrode 3 and the second electrode 4 are inserted into the electrolytic cell 10 from above and are held by an insulating member support structure (not shown) so as not to fall down. The support structure may be provided on the bottom surface 10a, or may be any method in which an insulating member is sandwiched between the electrode side surface and the electrolytic cell 10 or the ion exchange diaphragm 5. Each of the first and second electrodes 3 and 4 includes an electrode terminal 7 connected to a DC power source (not shown) by an electric wire.
[0044]
In addition, on the lateral side surface of the electrolytic tank 10 where the water supply port 8 and the drain port 9 are open, a water reforming unit is installed in running water or a connecting portion 20 for connecting the units is provided. Yes.
[0045]
Here, an embodiment of water reforming using the water reforming unit 100 by electrolysis of the present invention will be described. FIGS. 4A and 4B are schematic views showing an installation mode of the water reforming unit 100 using electrolysis according to the present invention, where FIG. 4A is a plan view and FIG. 4B is a cross-sectional view.
[0046]
As shown in FIGS. 4 (a) and 4 (b), the water reforming unit 100 using the electrolysis of the present invention is flown through the river 50 so that the water supply port 8 faces upstream and the drain port 9 becomes downstream. It arrange | positions to the path 50A. At this time, the upper part of the electrolytic cell 10 is set on the water surface.
[0047]
In this state, the electrolytic solution chamber 2 is filled with an electrolyte solution (aqueous solution such as sodium chloride or potassium hydroxide), and a voltage is applied to the first electrode 3 and the second electrode 4. The flowing water is electrolyzed by a current flowing between the first electrode 3 and the second electrode 4 when passing through the electrolytic treatment chamber 1, and when the first electrode 3 is a negative electrode, the flowing water is negatively ionized (alkalineized). On the other hand, in the case of the positive electrode, the flowing water is positively ionized (acidified), thereby reforming the flowing water.
[0048]
For example, when neutralizing strong acidic flowing water, if a voltage is applied with the first electrode as a negative electrode, the electrolytic treatment chamber 1 becomes negative ions (in a state where there is a lot of OH ) by electrolysis, and the flowing water is drained downstream. Neutralize until mouth 9 is reached.
[0049]
At this time, if there is a compound generated by neutralization, it flows out of the drain port 9. When these precipitates are generated, they can be recovered by providing a precipitate recovery mechanism outside the drain port 9.
[0050]
The embodiment of FIG. 4 shows the case where the water reforming unit 100 is installed in running water. For example, when the wastewater pumped up from the abandoned mine is reformed and purified, the water reforming unit 100 is placed on the ground. A method of installing, attaching a drainage hose or drainage pipe (not shown) connecting the drainage pipe to the connecting part 20 to feed the wastewater for reforming, and discharging the treated water to the flow path Can take.
[0051]
Hydrogen gas is generated from the electrode connected to the negative electrode of the water reforming unit 100 using electrolysis. In order to recover the hydrogen gas, a lid having a hydrogen gas exhaust port is provided at the top of the electrolytic treatment chamber or the electrolytic solution chamber, and the hydrogen gas can be recovered as a resource and used as a raw material for the fuel cell.
[0052]
Moreover, while flowing water is continuously modified in the electrolytic treatment chamber 1, the electrolytic solution is ionized by electrolysis in the electrolytic solution chamber 2. As ionization progresses, current becomes difficult to flow and electrolysis stops. In order to prevent this, the electrolyte solution is replenished from the electrolyte solution inlet 2a and recovered from the electrolyte solution outlet 2b.
[0053]
FIG. 2 is a front view showing a partial cross section of a water reforming unit using electrolysis according to the second embodiment of the present invention.
[0054]
In the figure, a water reforming unit 100A using electrolysis has a plurality of N arranged in a rectangular parallelepiped electrolytic cell 10A formed of an insulating member at a predetermined pitch interval length parallel to the lateral direction of the bottom surface of the electrolytic cell 10A. A plurality of N-1 first electrode 3 groups arranged in the middle of each of the second electrode 4 and the second electrode 4 group, and disposed in the electrolytic cell 10A, and the first electrode A plurality of (N-1) × 2 ion exchange diaphragms 5 provided between the second electrodes 3 and 4, respectively, and the electrolytic cell 10A so as to sandwich the peripheral portion of the ion exchange diaphragm 5 A packing mechanism portion 6 made of an elastic member provided between both side surfaces and a bottom surface portion of the insulating member;
The ion exchange diaphragm 5 erected by the packing mechanism unit 6 is partitioned so as to prevent the inflow of raw water, and the state in which the second electrode and the first electrode are alternately provided is formed therein. N electrolytic solution chambers 2 and N-1 electrolytic treatment chambers 1 are alternately formed.
[0055]
The electrolyte solution chamber 2 and the electrolytic treatment chamber 1 are respectively provided with a water supply port 8 and a water discharge port 9 for the electrolyte solution or raw water at the front and rear side surfaces of the electrolytic solution chamber 1, respectively. Provided with a mouth 8a and an intermediate drain 9a,
Electrolysis in which N-2 connecting pipes 9b for supplying the raw water 15 modified in the frontmost electrolytic treatment chamber 1 to the downstream electrolytic treatment chamber 1 and the frontmost electrolytic solution chamber 2 are filled. N-1 connecting pipes 2c (not shown) for circulating the chamber solution 30 to the electrolytic solution chamber 2 downstream are provided. The connecting pipe 2c is connected with the same structure as the raw water connecting pipe 9b shown in the figure.
[0056]
Here, the raw water 15 is injected from the water supply port 8 in the front row, and a DC voltage is applied to the first and second electrodes 3 and 4 while circulating the electrolytic solution 30 in the electrolytic solution chamber 2, whereby the raw water is added. 15 is continuously electrolyzed a plurality of times in the plurality of electrolytic treatment chambers 1.
[0057]
FIG. 3 is a schematic diagram showing a form of installation of a water reforming unit using electrolysis according to the present invention, where (a) is a series connection, (b) is a parallel connection, (c) is a lateral multilayer type, (D) shows a series-parallel multi-stage multilayer type.
[0058]
In the series connection of (a), the connecting portion 20 of the first electrolytic cell 10 is connected and fixed to the water inlet of the support structure 8A of the raw water tank, and the second electrolytic cell 10 is connected to the connecting portion 20 on the drain port 9 side. Similarly, the nth electrolytic cell 10 is sequentially connected in series, and the support structure 9A of the treated water tank is connected to the connection part 20 of the drain port 9 of the last electrolytic cell. By connecting in series in this way, raw water can be continuously reformed or neutralized repeatedly. For this reason, strong acidic water or alkaline water can be neutralized.
[0059]
The parallel connection (b) is a form in which the electrolytic cells 10 are arranged in parallel, and the connecting portion 20 on the water supply port 8 side is fixedly connected to the support structure member 8B having an opening parallel to the flow path. In this form, it is possible to modify the flowing water of a certain flow path.
[0060]
The lateral multilayer type shown in (c) is a water reforming unit 100A using electrolysis according to the second embodiment, that is, an electrolysis comprising n electrolytic solution chambers 2 and n-1 electrolytic treatment chambers 1. In this embodiment, the flowing water in the channel having a width is modified by the tank 10A.
[0061]
The series-parallel multistage multilayer type of (d) is a form in which the electrolytic cells 10A shown in (c) are connected in series by a treated water header 8C that connects the electrolytic cells 10 and guides treated water. In this form, a large amount of raw water can be reformed at once.
[0062]
FIGS. 5A and 5B are schematic views showing a form of installation of the water reforming unit 100 using electrolysis of the present invention in a lake / marsh, where FIG. 5A is a front view and FIG. 5B is a plan view.
[0063]
As shown in (a) and (b), a water reforming unit 100 that uses electrolysis from the floor surface of a floating body 70 (ship, barge, etc.) floated on a lake or sea is arranged below the water surface. The lake water and seawater are reformed while traveling in the water area. At this time, it is desirable to secure DC power for electrolysis by providing the solar panel 60 on the upper surface of the floating body 70.
When there is an ocean current such as the sea, the flowing water 50A is taken into the electrolytic cell 10 and reformed simply by mooring, but on the static water surface, the floating body is floated and moved by providing propulsion power.
[0064]
As described above, the configuration and structure of the water reforming unit using electrolysis according to the present invention have been described. However, the first electrode and the second electrode have surface areas increased by forming irregularities or grooves on the surface. By using a plate electrode, the electrolysis efficiency can be further increased.
[0065]
Further, if the first electrode is a box-shaped punching metal, the electrode is disposed at a position closer to the electrolytic solution chamber 2 disposed on both sides of the electrolytic treatment chamber 1. , Electrolysis efficiency can be increased.
[0066]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the water reforming unit using the electrolysis which can be connected and can ensure required performance according to the site | part which performs the water reforming process can be obtained. Moreover, manufacturing cost can be reduced by using a unit standardized to a predetermined size. Furthermore, it can respond to the amount of treated water by using it connected in series or in parallel.
[0067]
Further, by using an ion-exchange membrane having a small gap between the electrodes and containing a crystalline clay mineral, stable ionic water having a strong acid / alkali pH value can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a water reforming unit using electrolysis according to a first embodiment of the present invention.
FIG. 2 is a front view showing a partial cross section of a water reforming unit using electrolysis according to a second embodiment of the present invention.
FIGS. 3A and 3B are schematic views showing a form of installation of a water reforming unit using electrolysis according to the present invention, where FIG. 3A is a series connection, FIG. 3B is a parallel connection, and FIG. Directional multilayer type, [d] indicates a series-parallel multi-stage multilayer type.
FIGS. 4A and 4B are schematic views showing a form of installation of a water reforming unit 100 using electrolysis according to the present invention in a river, where FIG. 4A is a plan view and FIG. 4B is a cross-sectional view.
FIGS. 5A and 5B are schematic views showing a form of installation of the water reforming unit 100 using electrolysis of the present invention in a lake / marsh, where FIG. 5A is a front view and FIG. 5B is a plan view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolytic processing chamber 2 Electrolytic solution chamber 2a Electrolyte solution injection port 2b Electrolyte solution discharge port 2c Connection piping 3 1st electrode 4 2nd electrode 5 Ion exchange diaphragm 6 Packing mechanism part 7 Electrode terminal 8, 8a Water supply port 8A, 8B , 8C Support structure 9, 9a Drain port 9A, 9B Support structure 9b Connection pipe 10, 10A Electrolytic tank 10a Bottom surface 10b Side surface 15 Raw water 20 Connection part 30 Electrolyte solution 50 River 50A Channel 50B Bank body 51 Bank 60 Solar panel 70 Floating body 100 , 100A Water reforming unit using electrolysis

Claims (13)

所定横幅及び所定奥行の長さの底面と、所定高さとからなる絶縁部材により形成される直方体形状の電解槽において、
前記電解槽底面の横方向に平行な中心線に沿って配設された前記電解槽の略所定奥行長と所定高さの第1の電極と、
その第1の電極との間に水の電気分解を可能とする電界が得られるように前記第1の電極の両側から所定の間隔長の位置にそれぞれ対向して配設された前記第1の電極と略同寸法の第2の電極と、
前記第1の電極と第2の電極の中間にそれぞれ設けられる2枚のイオン交換隔膜と、
前記イオン交換隔膜の周縁部を挟み込むように、それぞれ前記電解槽の絶縁部材の両側面及び底面部との間に少なくとも設けられた弾性部材からなるパッキング機構部と、
そのパッキング機構部により立設されたイオン交換隔膜によって原水の流入が阻止され、その中に第2の電極が設けられた状態が形成された電解槽の前面側及び裏面側の電解溶液室と、
前記2枚のイオン交換隔膜によって、その中に第1の電極が設けられた状態が形成された電解槽中央の電解処理室とを備え、
前記電解処理室の少なくとも横方向両側面は開放され、その一方及び他方の側面は、それぞれ原水の給水口及び排水口となり、
電解溶液室に電解質溶液を充填し、第一及び第2の電極に直流電圧を印加することにより、前記原水が電気分解されることを特徴とする電気分解を用いる水改質ユニット。
In a rectangular parallelepiped electrolytic cell formed by an insulating member having a predetermined width and a depth of a predetermined depth and a predetermined height,
A first electrode having a substantially predetermined depth length and a predetermined height of the electrolytic cell disposed along a center line parallel to the lateral direction of the bottom surface of the electrolytic cell;
The first electrodes disposed opposite to each other at a predetermined distance from both sides of the first electrode so as to obtain an electric field that enables electrolysis of water between the first electrode and the first electrode. A second electrode having substantially the same dimensions as the electrode;
Two ion exchange diaphragms respectively provided between the first electrode and the second electrode;
A packing mechanism portion formed of an elastic member provided at least between both side surfaces and a bottom surface portion of the insulating member of the electrolytic cell so as to sandwich the peripheral edge portion of the ion exchange membrane;
Electrolytic solution chambers on the front side and back side of the electrolytic cell in which the inflow of raw water is blocked by the ion exchange diaphragm erected by the packing mechanism and the second electrode is provided therein, and
An electrolytic treatment chamber in the center of the electrolytic cell in which a state in which the first electrode is provided therein is formed by the two ion exchange diaphragms;
At least the lateral side surfaces of the electrolytic treatment chamber are opened, and one and the other side surfaces thereof are a raw water supply port and a drain port, respectively.
A water reforming unit using electrolysis, wherein the raw water is electrolyzed by filling the electrolyte solution chamber with an electrolyte solution and applying a DC voltage to the first and second electrodes.
前記電解処理室の一方の両側面には、他のユニット或いは設置現場の支持構造に連結するための連結部を備え、前記電解処理室の上面は、開放されているか、或いは水素ガス排気口を有する上面蓋が設けられていることを特徴とする請求項1記載の電気分解を用いる水改質ユニット。One side surface of the electrolytic treatment chamber is provided with a connecting portion for connecting to another unit or a support structure at the installation site, and the upper surface of the electrolytic treatment chamber is open or a hydrogen gas exhaust port is provided. The water reforming unit using electrolysis according to claim 1, further comprising a top cover having a top surface. 前記電解溶液室の両側面には、それぞれ電解室溶液を循環させるための給水口、排水口を有することを特徴とする請求項1または2記載の電気分解を用いる水改質ユニット。The water reforming unit using electrolysis according to claim 1 or 2, wherein a water supply port and a drain port for circulating the electrolytic chamber solution are provided on both side surfaces of the electrolytic solution chamber. 所定横幅及び所定奥行の長さの底面と、所定高さとからなる絶縁部材により形成される直方体形状の電解槽において、
前記電解槽底面の横方向に平行に所定のピッチ間隔長で配列し、その電解槽内に配設された前記電解槽の略所定横幅と所定高さの複数N枚の第2の電極群と、
その第2の電極群のそれぞれの中間に配列し、その電解槽内に配設された第2の電極と略同寸法の複数N−1枚の第1の電極群と、
前記第1及び第2の電極の中間に、それぞれ設けられた複数(Nー1)×2枚のイオン交換隔膜と、
前記イオン交換隔膜の周縁部を挟み込むように、それぞれ前記電解槽の絶縁部材の両側面及び底面部との間に設けられた弾性部材からなるパッキング機構部と、
そのパッキング機構部により立設されたイオン交換隔膜によって原水の流入が阻止されるように区画され、その中に第2の電極と第1の電極が交互に設けられた状態がそれぞれ形成されたN個の電解溶液室と、N−1個の電解処理室とを備え、
前記電解溶液室及び電解処理室の最前列と最後列の側面部には、それぞれ電解質溶液または原水の給水口及び排水口とを設け、中間列の側面部には、それぞれ中間給水口及び中間排水口を設け、
最前列の電解処理室で改質処理された原水を、下流の電解処理室に給水させるための連結配管がN−2本と、最前列の電解溶液室に充填された電解室溶液を、下流の電解溶液室に循環させるための連結配管がN−1本設けられ、
最前列の給水口から原水を注入し、電解溶液室に電解質溶液を循環させながら、第1及び第2の電極に直流電圧を印加することにより、前記原水が複数の電解処理室で複数回連続的に電気分解されることを特徴とする電気分解を用いる水改質ユニット。
In a rectangular parallelepiped electrolytic cell formed by an insulating member having a predetermined width and a depth of a predetermined depth and a predetermined height,
A plurality of N second electrode groups arranged in a predetermined pitch interval length parallel to the lateral direction of the bottom surface of the electrolytic cell and having a substantially predetermined lateral width and a predetermined height of the electrolytic cell disposed in the electrolytic cell; ,
A plurality of N-1 first electrode groups arranged in the middle of each of the second electrode groups and having substantially the same dimensions as the second electrodes disposed in the electrolytic cell;
A plurality of (N-1) × 2 ion exchange diaphragms respectively provided between the first and second electrodes;
A packing mechanism portion made of an elastic member provided between both side surfaces and a bottom surface portion of the insulating member of the electrolytic cell so as to sandwich the peripheral edge portion of the ion exchange diaphragm,
N is formed so that inflow of raw water is blocked by an ion exchange diaphragm provided upright by the packing mechanism, and a state in which the second electrode and the first electrode are alternately provided is formed therein. Comprising an electrolytic solution chamber and N-1 electrolytic treatment chambers,
The electrolyte solution chamber and the electrolytic treatment chamber are respectively provided with a water supply port and a drain port for the electrolyte solution or raw water on the front and rear side surfaces of the last row, respectively, and an intermediate water supply port and an intermediate drain are respectively provided on the side surfaces of the intermediate row Provide a mouth,
N-2 connecting pipes for feeding the raw water modified in the front row electrolysis chamber to the downstream electrolysis chamber and the electrolysis chamber solution filled in the front electrolysis chamber, downstream N-1 connecting pipes for circulation to the electrolyte solution chamber are provided,
By injecting raw water from the water supply port in the front row and circulating the electrolyte solution in the electrolytic solution chamber, a direct current voltage is applied to the first and second electrodes, so that the raw water is continuously applied in a plurality of electrolytic treatment chambers a plurality of times. Water reforming unit using electrolysis, characterized by being electrolyzed.
前記連結配管は、上流側の電解処理室の上部に設けられた中間排出口から中間処理された原水を取り入れ、下流側の電解処理室の底面近くの下部に設けられた前記中間給水口に流入するようにして電解処理室の水位差により最後の電解処理室まで処理原水を導くことを特徴とする請求項4記載の電気分解を用いる水改質ユニット。The connecting pipe takes in raw water that has been subjected to intermediate treatment from an intermediate discharge port provided in the upper part of the upstream electrolytic treatment chamber, and flows into the intermediate water supply port provided in the lower part near the bottom surface of the downstream electrolytic treatment chamber. The water reforming unit using electrolysis according to claim 4, wherein the raw water for treatment is led to the last electrolytic treatment chamber by the difference in water level of the electrolytic treatment chamber. 前記連結配管は、上流側の電解溶液室の上部に設けられた中間排出口から中間処理された電解質溶液を取り入れ、下流側の電解溶液室の底面近くの下部に設けられた前記中間給水口に流入するようにして電解溶液室の水位差により最後の電解溶液室まで電解質溶液を導くことを特徴とする請求項4記載の電気分解を用いる水改質ユニット。The connecting pipe takes in the intermediately treated electrolyte solution from an intermediate outlet provided in the upper part of the upstream electrolytic solution chamber, and connects to the intermediate water supply port provided in the lower part near the bottom of the downstream electrolytic solution chamber. 5. The water reforming unit using electrolysis according to claim 4, wherein the electrolyte solution is led to the last electrolyte solution chamber by the difference in water level of the electrolyte solution chamber so as to flow. 前記イオン交換隔膜は、珪酸4面体とアルミナ8面体とが結合した結晶性粘土鉱物を主体とするセラミック製の板であることを特徴とする請求項1または4記載の電気分解を用いる水改質ユニット。5. The water reforming using electrolysis according to claim 1, wherein the ion exchange diaphragm is a ceramic plate mainly composed of crystalline clay mineral in which silicic acid tetrahedron and alumina octahedron are combined. unit. 前記電解処理室には、珪酸4面体とアルミナ8面体とが結合した結晶性粘土鉱物を含むセラミック粒状物が、原水に浸漬される状態で配置され/或いはイオン交換隔膜に塗布された状態で配置されていることを特徴とする請求項1または4記載の電気分解を用いる水改質ユニット。In the electrolytic treatment chamber, ceramic particles containing crystalline clay mineral in which silicic acid tetrahedron and alumina octahedron are bonded are arranged so as to be immersed in raw water and / or applied to an ion exchange diaphragm. The water reforming unit using electrolysis according to claim 1 or 4, wherein the water reforming unit is used. 前記第1の電極及び第2の電極は、表面に凹凸又は溝が形成され液体との接触表面積を増加させた板状の電極であることを特徴とする請求項1または4記載の電気分解を用いる水改質ユニット。5. The electrolysis according to claim 1, wherein the first electrode and the second electrode are plate-like electrodes in which irregularities or grooves are formed on a surface and a contact surface area with a liquid is increased. Water reforming unit used. 前記第1及び第2の電極は、電解処理室または電解溶液室に引き抜き可能に挿入配設されており、前記イオン交換隔膜は、電解処理室と電解溶液室の境に設けられた弾性部材からなる密封機構部(パッキン)に嵌挿されて、それぞれ上部に引き抜き可能に保持されていることを特徴とする請求項1または4記載の電気分解を用いる水改質ユニット。The first and second electrodes are inserted and disposed in an electrolytic treatment chamber or an electrolytic solution chamber so that they can be pulled out, and the ion exchange diaphragm is formed from an elastic member provided at the boundary between the electrolytic treatment chamber and the electrolytic solution chamber. 5. The water reforming unit using electrolysis according to claim 1, wherein the water reforming unit is inserted into a sealing mechanism portion (packing) and is held at the top so that it can be pulled out. 前記第1の電極は、上部が開口した箱状に形成された耐錆性金属のパンチングメタル材であることを特徴とする請求項1または4記載の電気分解を用いる水改質ユニット。5. The water reforming unit using electrolysis according to claim 1, wherein the first electrode is a punching metal material made of a rust-resistant metal formed in a box shape having an upper portion opened. 6. 請求項1記載の電気分解を用いる水改質ユニットの給水口・排水口を電解処理室と同一断面に形成し、複数の電気分解を用いる水改質ユニットの給水口を並列に並べ、または/及び給水口と排水口を直列に接続し、廃水・河川・湖沼・海面等の現場で流水状態の原水を連続的に改質処理することを特徴とする請求項1記載の電気分解を用いる水改質ユニット。The water inlet / drain outlet of the water reforming unit using electrolysis according to claim 1 is formed in the same cross section as the electrolytic treatment chamber, and the water inlets of the water reforming unit using electrolysis are arranged in parallel, or / The water using electrolysis according to claim 1, wherein the water supply port and the drain port are connected in series, and the raw water in a running state is continuously reformed at a site such as waste water, a river, a lake, or the sea surface. Reforming unit. 請求項1または4記載の電気分解を用いる水改質ユニットに、改質処理室又は電解溶液室を覆うガス回収カバーと燃料電池とを備え、電気分解により発生する水素ガスを回収し、燃料電池原料として電力エネルギーに変換すると共に、改質処理現場の河川・湖沼に設置された太陽電池パネルを備え、それぞれで変換された電力エネルギーを電気分解用電力として用いることを特徴とする請求項1または4記載の電気分解を用いる水改質ユニット。5. The water reforming unit using electrolysis according to claim 1 or 4, comprising a gas recovery cover and a fuel cell covering the reforming treatment chamber or the electrolytic solution chamber, recovering hydrogen gas generated by electrolysis, and a fuel cell. The solar cell panel installed in the river and lake in the reforming treatment site is converted into electric power energy as a raw material, and the electric energy converted in each is used as electric power for electrolysis. A water reforming unit using electrolysis according to claim 4.
JP2002380357A 2002-12-27 2002-12-27 Water reforming unit using electrolysis Expired - Fee Related JP3711501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380357A JP3711501B2 (en) 2002-12-27 2002-12-27 Water reforming unit using electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380357A JP3711501B2 (en) 2002-12-27 2002-12-27 Water reforming unit using electrolysis

Publications (2)

Publication Number Publication Date
JP2004209347A true JP2004209347A (en) 2004-07-29
JP3711501B2 JP3711501B2 (en) 2005-11-02

Family

ID=32816607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380357A Expired - Fee Related JP3711501B2 (en) 2002-12-27 2002-12-27 Water reforming unit using electrolysis

Country Status (1)

Country Link
JP (1) JP3711501B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152237A1 (en) * 2010-05-31 2011-12-08 森永乳業株式会社 Electrolyzed water production device
WO2017135207A1 (en) * 2016-02-02 2017-08-10 株式会社日本トリム Electrolyzed water generation device and production device for water for dialysate preparation and method for electrolyzed water generation that use same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152237A1 (en) * 2010-05-31 2011-12-08 森永乳業株式会社 Electrolyzed water production device
JP2011251212A (en) * 2010-05-31 2011-12-15 Morinaga Milk Ind Co Ltd Device for producing electrolyzed water
CN102917983A (en) * 2010-05-31 2013-02-06 森永乳业株式会社 Electrolyzed water production device
US9440867B2 (en) 2010-05-31 2016-09-13 Morinaga Milk Industry Co., Ltd. Electrolysis water-making apparatus
WO2017135207A1 (en) * 2016-02-02 2017-08-10 株式会社日本トリム Electrolyzed water generation device and production device for water for dialysate preparation and method for electrolyzed water generation that use same
JP2017136531A (en) * 2016-02-02 2017-08-10 株式会社日本トリム Apparatus for producing electrolysis water, and apparatus for producing water for preparing dialysis liquid, and method for producing electrolysis water
CN108473344A (en) * 2016-02-02 2018-08-31 日本多宁股份有限公司 Electrolytic water generating device and the manufacturing device and electrolyzed water producing method for using its dialyzate preparation water
CN108473344B (en) * 2016-02-02 2022-03-29 日本多宁股份有限公司 Electrolyzed water production device and device for producing water for dialysate preparation using same

Also Published As

Publication number Publication date
JP3711501B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
KR102070243B1 (en) Sea water desalination system
JP4867720B2 (en) Pure water production method and apparatus
US20130306565A1 (en) Electrochemical Ion Exchange Water Treatment
JP4600924B2 (en) Hydrogen recovery type electrolytic water quality improvement device
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
CN202474102U (en) Power generating device utilizing salinity electric potential potential difference energy for reverse electroosmosis
CN102603040A (en) Processing method for electro-adsorption demineralized water
KR20090094161A (en) Method and apparatus for producing pure water
AU2011299918B2 (en) Magnesium recovery method and magnesium recovery apparatus
CN100500586C (en) Apparatus for electrolysis method water treatment
El-Bassuoni et al. Hydrogen and fresh water production from sea water
JP2021070615A (en) Carbon dioxide immobilization system and carbon dioxide immobilization method
CN100371259C (en) Electromagnetic desalination process of seawater and desalination cell
JP3711501B2 (en) Water reforming unit using electrolysis
US7955481B2 (en) Internal flow control in electrolytic cells
CN113144904A (en) Hydrogen recovery device, hydrogen recovery method, and carbon dioxide fixation system
KR101956049B1 (en) Apparatus for generating and capturing carbon dioxide
KR20180111229A (en) Salinity gradient power-desalination hybrid system with low energy cost
KR102433995B1 (en) Seawater electrolytic apparatus and a system interworiking between the apparatus and fuel cell
JPH022830A (en) Electric dialysis device
US20240141510A1 (en) Carbon Capture Using Electrochemically-Produced Acid and Base
US20240182340A1 (en) System and Method for Dual-Pathway System for Carbon Dioxide Capture from Ocean Water
CN216998596U (en) Device for directly producing hydrogen from seawater
WO2011038453A1 (en) Bioelectrochemical system
CN114337373A (en) Electrochemical method for flowing fluid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3711501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees