JP2004208588A - Method and system and facility for producing saline solution - Google Patents

Method and system and facility for producing saline solution Download PDF

Info

Publication number
JP2004208588A
JP2004208588A JP2002381616A JP2002381616A JP2004208588A JP 2004208588 A JP2004208588 A JP 2004208588A JP 2002381616 A JP2002381616 A JP 2002381616A JP 2002381616 A JP2002381616 A JP 2002381616A JP 2004208588 A JP2004208588 A JP 2004208588A
Authority
JP
Japan
Prior art keywords
salt
concentration
water
seawater
supply means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002381616A
Other languages
Japanese (ja)
Inventor
Yoshinari Watanabe
佳成 渡邊
Katsuyoshi Kawai
克佳 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watanabe Kikai Kogyo KK
Original Assignee
Watanabe Kikai Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watanabe Kikai Kogyo KK filed Critical Watanabe Kikai Kogyo KK
Priority to JP2002381616A priority Critical patent/JP2004208588A/en
Publication of JP2004208588A publication Critical patent/JP2004208588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Edible Seaweed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system and a facility for producing a saline solution for setting the salt concentration of seawater( the saline solution ) at a specified level in treating raw laver. <P>SOLUTION: The method for producing the saline solution comprises the following procedure: A salt concentration is set in advance, the salt concentration of a saline solution is measured, salt granules are then fed to and dissolved in the saline solution until the salt concentration of the saline solution comes to the specified level, and at this point, the resultant saline solution is transferred to a site for its use. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、使用目的に合致した濃度の塩水を連続的に製造することを目的とした塩水製造方法及び製造システム並びに装置に関する。
【0002】
【従来の技術】
従来、塩水を製造するには、定量の水に定量の塩粒を溶解して定濃度の塩水を定量宛又は連続的に製造していた。
【0003】
【特許文献1】特開平8−160000号公報
【0004】
【発明により解決しようとする課題】
前記従来の塩水製造方法は、定量の水に定量の塩粒を溶解する方式であって、その多くは淡水に塩化ナトリウム(NaCl)を溶解するものであった。
【0005】
一方、海水(1リットル、塩素量19.0%)中には、NaCl 23.47g、MgCl 4.98g、NaSO 3.91g、CaCl 1.90g、その他少量のKCl、NaWCO、KBr、HBO、SrCl、NaFなどが溶解しているので、単に塩粒を溶解した塩水とは異なっている。
【0006】
例えば、生海苔を取り扱う場合に、海水を使用すると、生海苔の活性を保ち、良質の海苔を得ることが知られているが、淡水に塩粒を溶解した塩水よりも、海水を使用した方が有効とされている。
【0007】
しかしながら、生海苔採取地近辺の海岸の海水は、塩分濃度が変動し、最適濃度(生海苔生育海場の塩分濃度)と差があることが知られている(特に河川口付近での、降雨時に塩分濃度の低下が著しい)。また、海水の入手が困難な場合には、海水を再利用、再々利用するけれども、再利用の場合には必然的に塩分濃度が低下するなどの問題点があった。
【0008】
【課題を解決するための手段】
この発明は、淡水を使用する場合には岩塩粒を溶解し、海水を使用する場合にもなるべく岩塩粒を溶解して、溶解成分を自然海水に近接させ、海より採取した海水との成分差を極力小さくして、前記従来の問題点を解決したのである。
【0009】
即ち、方法の発明は、予め塩分濃度を設定すると共に、塩水の塩分濃度を測定して、前記水の塩分が設定濃度に達するまで塩粒を供給して溶解し、又は淡水を加入して濃度を低くし、前記水の塩分濃度が設定濃度に達したならば、前記塩水を使用場所へ給送することを特徴とした塩水製造方法である。
【0010】
また、システムの発明は、海水と淡水の供給手段と、塩粒の定量供給手段と、塩粒溶解手段と、塩分濃度測定手段と、調整海水供給手段及び前記各部の制御手段を結合させたことを特徴とする塩水製造システムであり、塩粒の定量供給手段は、塩粒の計測手段に供給手段を組み合わせたものである。
【0011】
次に、塩粒溶解手段は、水槽中へ塩粒を供給し、水を撹拌して溶解したものであり、制御手段は、塩分濃度測定手段の出力を設定濃度と比較すると共に、比較の結果の出力により塩水供給手段をON・OFFし、塩水給送手段をON・OFFするものである。
【0012】
更に、装置の発明は、塩粒溶解槽の一側に給水系を設置すると共に、塩粒供給器を設置し、前記溶解槽を濾過板で仕切り、その一側に撹拌機を架設し、他側に塩分の濃度測定器を設置して、該濃度測定器の出力に、濃度設定器及び給送制御器を連結したことを特徴とする塩水製造装置である。
【0013】
この発明は、主として海水(海から採取した)の状態を、生海苔養殖場近辺の状態に近似させることを目途としている。
【0014】
特に塩分濃度の変化が、生海苔に与える影響が大きいので、塩濃度の調整が主であるが、岩塩その他未精製塩を使用すれば、塩分のみならず他の微小成分も調整される。
【0015】
一般に生海苔の処理(特に洗浄、切断)においては、海水を使用することがよいとされているが、使用可能な海水の採取が困難な地域においては、井戸水に岩塩を溶解させて海水を作ることが考えられるが、このような場合にもこの発明を応用することができる。
【0016】
また、海水を再使用(2回、3回使用すること)する場合においても、塩分調整をすることは、より好ましいので、このような場合にもこの発明を使用することが好ましい。
【0017】
この発明は、予め塩分濃度を設定し、海水の塩分濃度の濃淡に応じて塩を添加したり、淡水を給送し、設定塩分濃度の海水ができたときに、自動的に使用場所(又は貯槽)へ給送するようになっているので、作業はきわめて簡単であり、しかも好ましい塩分濃度の海水を常時使用することができる。
【0018】
このようにして生海苔の活性が保たれた状態で良好に処理されるので、最良の海苔製品が期待できる。
【0019】
【発明の実施の形態】
この発明は、主として採取した海水等の塩分濃度を測定し、予め設定した塩分濃度と比較して、両濃度が一致した場合には、調整した海水等を自動的に使用場所へ給送する塩水製造方法である。
【0020】
また、前記方法を達成するために、水の供給手段と、塩粒の定量供給手段と、塩粒溶解手段と、塩分測定手段と、塩数位供給手段及び各部制御手段を結合させて構成したシステムである。
【0021】
更に具体的には、塩粒溶解槽の一側に給水系を設置すると共に、塩粒供給器を設置し、前記溶解槽を濾過板で仕切り、その一側に撹拌機を架設し、他側に塩分の濃度測定器を設置して、前記濃度測定器の出力に濃度測定器及び給送制御器を連結したことを特徴とする塩水製造装置である。
【0022】
【実施例1】
この発明の実施例を図1について説明すると、海岸から汲み上げた海水(又は再使用海水)の塩分を濃度測定器で測定し、該濃度測定器の出力を設定値と比較し、塩分濃度が設定値よりも低い場合には、塩粒を計量給送し、塩分濃度が設定値になったときに、塩粒の給送を中止すると共に、前記調整した海水を海水槽又は使用場所へ給送する。
【0023】
前記において、海水を連続的に給送し、塩粒を連続的に自動供給し、前記海水量に対する塩粒の給送量が適量になったとき(塩分濃度一定)の状態を継続すれば、好適な塩分濃度の海水を連続製造することができる。
【0024】
前記実施例は、海から採取した海水について説明したが、再利用海水(一度使用した排水を浄化して再び使用すること)の塩分濃度調整の場合にも同様である。
【0025】
【実施例2】
この発明の他の実施例を図2について説明する。この実施例は、実施例1において給送する海水に代えて淡水(例えば井戸水、水道水等)を使用した場合を示し、本質的には、海水と淡水を置き換えたものに相当する。但し、淡水には塩分が含まれていないので、塩粒を多量(水の塩分濃度を海水とほぼ等しい3%前後にするため)に給送する必要がある。
【0026】
前記においては、淡水を定量供給し、所定の塩水を得るのにれに見合う塩粒を計量給送すれば、設定塩分濃度の塩水を得ることができるが、温度計の数値が濃度過大を示す場合には、ポンプを始動して淡水を給送させることもできる。このようにすれば、比較的早く、設定塩分濃度の塩水を得ることができる。
【0027】
【実施例3】
この発明の装置の実施例を図3、4について説明する。図3中、溶解槽1の左側上に、給水パイプ2、29(ホース3に接続)を架設し、給水パイプ2は海水を給送し、給水パイプ29は淡水を給送し、前記溶解槽1を並列したパンチングメタル板4、4で撹拌槽6と給送槽7に仕切り、パンチングメタル板4、4に濾過板5を挿入する。前記濾過板5は、例えば多数の連続気孔を有するウレタン板とする。
【0028】
前記撹拌槽6の底部には、撹拌羽根8が架設されると共に、案内板9を縦設し、撹拌槽6の上部には、塩粒を収容するホッパー11と、定量計量するための分割車12、及び回転ならし板13などよりなる定量給送装置10が架設してある。図中13aはならし板13と同一回転する撹拌杆、14は調整海水の給送パイプ、24は塩粒の落下口である。
【0029】
前記実施例において、海水を撹拌槽6に給送すると共に、回転軸15を回転して、撹拌羽根8を矢示25のように回転し、回転軸16、17を回転し、分割車12と、ならし板13及び撹拌杆13aを回転すると、一定時間毎に分割車12の区画12a内の岩塩18が矢示19のように撹拌水中へ落下するので、急速に溶解し、案内板9に案内されて、パンチングメタル板4、4及び濾過板5を矢示21、22のように通過して給送槽7に入り、濃度測定器20で塩分濃度が測定される。前記塩分の濃度測定器20の出力回路には、比較器23が介装され、比較器23には設定器26の出力が入力しているので、前記濃度値が設定器26の設定値と等しければ、制御器28の出力が調整海水の給送ポンプ27を駆動して給送槽7の海水を使用場所(又は海水貯槽)に送り、設定値に達しない場合には、前記給送ポンプ27は始動しないので、給送槽7内に止まり塩分を供給されて、海水の濃度を必要な点まで上昇させる。
【0030】
前記のようにして、海水の塩分濃度が自動的に調整されるので、そのまま使用場所に供給したり、原藻タンクへ給送したり、又は海水貯槽へ給送する。
【0031】
【発明の効果】
この発明によれば、海水の塩分濃度を調整して、生海苔の処理に好適な濃度の海水(又は塩水)を必要な場所へ連続的に供給し得る効果がある。また、塩分濃度は設定できるので、生海苔の養殖海水の塩分濃度にしたり、該濃度より若干大きくし、又は小さくすることにより製品海苔の品質をコントロールし得る効果がある。
【0032】
また、海水の入手が難しい場所においては、海水の再使用、又は再々使用に際し、好適の塩分濃度に調整し得ると共に、淡水に岩塩を溶解することによって海水とほぼ等しい成分の塩水を作り出すこともできる効果がある。
【図面の簡単な説明】
【図1】この発明の実施例のブロック図。
【図2】同じく他の実施例のブロック図。
【図3】同じく溶解槽の実施例の一部を省略した平面図。
【図4】同じく一部縦断図。
【図5】同じく制御系を示すブロック図。
【図6】(a)同じく塩粒の定量供給装置の実施例の一部断面図。
(b)同じく一部を省略した分割車の平面図。
【符号の説明】
1 溶解槽
2 給水パイプ
3 ホース
4 パンチングメタル板
5 濾過板
6 撹拌槽
7 供給槽
8 撹拌羽根
9 案内板
10 定量給送装置
11 ホッパー
12 分割車
13 回転ならし板
14 給送パイプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method, a production system and an apparatus for producing brine, which are intended to continuously produce brine having a concentration suitable for a purpose of use.
[0002]
[Prior art]
Conventionally, when producing salt water, a fixed amount of salt water has been dissolved in a fixed amount of water to produce a constant concentration of salt water continuously or continuously.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 8-1600000
Problems to be solved by the present invention
The conventional salt water production method is a method of dissolving a fixed amount of salt grains in a fixed amount of water, and in many cases, dissolving sodium chloride (NaCl) in fresh water.
[0005]
On the other hand, in seawater (1 liter, chlorine content 19.0%), 23.47 g of NaCl, 4.98 g of MgCl 2 , 3.91 g of Na 2 SO 4 , 1.90 g of CaCl 2 , and a small amount of other KCl and NaWCO 3 , KBr, H 3 BO 3 , SrCl 2 , NaF, and the like are dissolved, and thus are different from salt water in which salt grains are simply dissolved.
[0006]
For example, when handling raw seaweed, it is known that the use of seawater maintains the activity of raw seaweed and obtains high quality seaweed, but it is better to use seawater than saltwater in which salt grains are dissolved in freshwater. Is valid.
[0007]
However, it is known that the seawater on the coast near the fresh seaweed collection site has a fluctuating salinity, which is different from the optimum concentration (salinity at the live seaweed growing seabed) (especially in the vicinity of the river mouth, rainfall). Sometimes the salinity drops significantly). In addition, when it is difficult to obtain seawater, the seawater is reused and reused. However, in the case of reuse, there is a problem that the salt concentration inevitably decreases.
[0008]
[Means for Solving the Problems]
The present invention dissolves rock salt grains when using fresh water, dissolves rock salt grains as much as possible when using seawater, brings dissolved components close to natural seawater, and makes a difference between seawater and seawater sampled from seawater. Is reduced as much as possible to solve the conventional problem.
[0009]
That is, the invention of the method comprises setting the salt concentration in advance, measuring the salt concentration of the salt water, supplying and dissolving salt particles until the salt of the water reaches the set concentration, or adding fresh water to increase the concentration. And the salt water is fed to a place of use when the salt concentration of the water reaches a set concentration.
[0010]
In addition, the invention of the system combines seawater and freshwater supply means, salt particle quantitative supply means, salt particle dissolution means, salt concentration measurement means, adjusted seawater supply means, and control means for each section. The salt water production system is characterized in that the means for quantitatively supplying salt particles is a combination of a means for measuring salt particles and a supplying means.
[0011]
Next, the salt particle dissolving means supplies salt particles into the water tank and dissolves the water by stirring, and the control means compares the output of the salt concentration measuring means with the set concentration and the result of the comparison. The salt water supply means is turned on / off by the output of (1), and the salt water supply means is turned on / off.
[0012]
Further, the invention of the apparatus, the water supply system is installed on one side of the salt particle dissolving tank, a salt particle feeder is installed, the dissolving tank is separated by a filter plate, a stirrer is installed on one side, and the other. A salt water concentration measuring device is installed on the side, and a concentration setting device and a feed controller are connected to an output of the concentration measuring device.
[0013]
The present invention aims at approximating the state of seawater (collected from the sea) mainly to the state near a raw laver farm.
[0014]
Particularly, since the change in the salt concentration greatly affects the raw seaweed, adjustment of the salt concentration is mainly performed. However, if rock salt or other unpurified salt is used, not only the salt but also other minute components are adjusted.
[0015]
In general, it is said that seawater should be used in the processing of raw laver (especially washing and cutting), but in areas where it is difficult to collect usable seawater, rock salt is dissolved in well water to produce seawater. However, the present invention can be applied to such a case.
[0016]
Also, in the case of reusing (using twice or three times) seawater, it is more preferable to adjust the salt content. Therefore, the present invention is preferably used in such a case.
[0017]
According to the present invention, the salt concentration is set in advance, salt is added in accordance with the concentration of the salt concentration in the seawater, or fresh water is fed. Since the feed is supplied to the storage tank, the operation is extremely simple, and seawater having a preferable salt concentration can always be used.
[0018]
In this way, the raw seaweed is processed well with its activity maintained, so that the best seaweed product can be expected.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention mainly measures the salt concentration of seawater or the like collected, compares it with a preset salt concentration, and when both the concentrations match, the saltwater that automatically feeds the adjusted seawater to the place of use. It is a manufacturing method.
[0020]
Also, in order to achieve the above method, a system configured by combining water supply means, salt particle quantitative supply means, salt particle dissolution means, salt measurement means, salt number supply means and each part control means. It is.
[0021]
More specifically, a water supply system is installed on one side of the salt particle dissolving tank, a salt particle dispenser is installed, the dissolving tank is partitioned by a filter plate, a stirrer is installed on one side, and the other side is installed. A salt concentration measuring device is installed in the apparatus, and a concentration measuring device and a feed controller are connected to an output of the concentration measuring device.
[0022]
Embodiment 1
Referring to FIG. 1, an embodiment of the present invention will be described. The salinity of seawater (or reused seawater) pumped from a coast is measured with a concentration meter, and the output of the concentration meter is compared with a set value to set a salt concentration. If the value is lower than the value, the salt grains are metered and fed, and when the salt concentration reaches the set value, the feeding of the salt grains is stopped and the adjusted seawater is fed to a seawater tank or a place of use. I do.
[0023]
In the above, if the seawater is continuously fed, the salt particles are continuously and automatically supplied, and when the feed amount of the salt particles with respect to the seawater amount becomes an appropriate amount (the salt concentration is constant), Seawater with a suitable salt concentration can be continuously produced.
[0024]
In the above-described embodiment, seawater collected from the sea has been described, but the same applies to the case of adjusting the salt concentration of reused seawater (purifying wastewater that has been used once and reusing it).
[0025]
Embodiment 2
Another embodiment of the present invention will be described with reference to FIG. This embodiment shows a case in which fresh water (for example, well water, tap water, etc.) is used in place of seawater to be fed in the first embodiment, and essentially corresponds to a case where seawater is replaced with freshwater. However, since freshwater contains no salt, it is necessary to feed a large amount of salt grains (to make the salt concentration of water approximately 3%, which is almost equal to that of seawater).
[0026]
In the above, a constant amount of fresh water is supplied, and if the salt particles suitable for obtaining a predetermined salt water are metered and fed, a salt water having a set salt concentration can be obtained, but the numerical value of the thermometer indicates an excessive concentration. In such a case, the pump can be started to supply fresh water. By doing so, it is possible to obtain the salt water having the set salt concentration relatively quickly.
[0027]
Embodiment 3
An embodiment of the apparatus of the present invention will be described with reference to FIGS. In FIG. 3, water supply pipes 2 and 29 (connected to the hose 3) are erected on the left side of the dissolution tank 1, the water supply pipe 2 supplies seawater, the water supply pipe 29 supplies fresh water, and 1 is divided into a stirring tank 6 and a feeding tank 7 by punching metal plates 4 and 4 in parallel, and a filter plate 5 is inserted into the punching metal plates 4 and 4. The filter plate 5 is, for example, a urethane plate having a large number of continuous pores.
[0028]
A stirring blade 8 is erected at the bottom of the stirring tank 6, and a guide plate 9 is installed vertically. A hopper 11 for accommodating salt grains is provided at an upper part of the stirring tank 6, and a divided wheel for quantitative measurement is provided. A fixed-quantity feeding device 10 including a rotary plate 12 and a rotating leveling plate 13 is installed. In the figure, reference numeral 13a denotes a stirring rod which rotates in the same direction as the leveling plate 13, 14 denotes a feed pipe for the adjusted seawater, and 24 denotes a drop of salt grains.
[0029]
In the above-described embodiment, the seawater is fed to the stirring tank 6, the rotating shaft 15 is rotated, the stirring blade 8 is rotated as indicated by an arrow 25, the rotating shafts 16 and 17 are rotated, and the divided wheel 12 is rotated. When the leveling plate 13 and the stirring rod 13a are rotated, the rock salt 18 in the section 12a of the divided vehicle 12 falls into the stirring water as indicated by an arrow 19 at regular intervals, so that the salt is rapidly dissolved and It is guided and passes through the punched metal plates 4 and 4 and the filter plate 5 as shown by arrows 21 and 22 and enters the feed tank 7, and the salt concentration is measured by the concentration measuring device 20. A comparator 23 is interposed in the output circuit of the salt concentration measuring device 20. Since the output of the setting device 26 is input to the comparator 23, the concentration value is equal to the setting value of the setting device 26. For example, when the output of the controller 28 drives the feed pump 27 of the regulated seawater to send the seawater in the feed tank 7 to the place of use (or the seawater storage tank) and does not reach the set value, the feed pump 27 Does not start, so it stops in the feed tank 7 and is supplied with salt to raise the concentration of seawater to a required point.
[0030]
As described above, since the salt concentration of seawater is automatically adjusted, it is supplied as it is to a place of use, fed to a raw algae tank, or fed to a seawater storage tank.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, there exists an effect which can adjust the salt concentration of seawater, and can supply seawater (or saltwater) of the density suitable for the processing of raw laver continuously to a required place. In addition, since the salt concentration can be set, there is an effect that the quality of the product seaweed can be controlled by setting the salt concentration in the seawater for cultivation of the raw seaweed, or slightly increasing or decreasing it.
[0032]
In addition, in places where seawater is difficult to obtain, it is possible to adjust the salt concentration to a suitable level when reusing or reusing seawater, and it is also possible to dissolve rock salt in freshwater to produce saltwater having a component substantially equal to seawater. There is an effect that can be done.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is a block diagram of another embodiment.
FIG. 3 is a plan view in which a part of the embodiment of the dissolving tank is omitted.
FIG. 4 is a partial longitudinal sectional view of the same.
FIG. 5 is a block diagram showing a control system.
FIG. 6 (a) is a partial sectional view of an embodiment of the apparatus for quantitatively supplying salt particles.
(B) The top view of the division | segmentation vehicle which also partially omitted.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dissolution tank 2 Water supply pipe 3 Hose 4 Punched metal plate 5 Filtration plate 6 Stirring tank 7 Supply tank 8 Stirring blade 9 Guide plate 10 Quantitative feeding device 11 Hopper 12 Divider 13 Rotating leveling plate 14 Feeding pipe

Claims (6)

予め塩分濃度を設定すると共に、塩水の塩分濃度を測定して、前記水の塩分が設定濃度に達するまで塩粒を供給して溶解し、又は淡水を加入して濃度を低くし、前記水の塩分濃度が設定濃度になったならば、前記塩水を使用場所へ給送することを特徴とした塩水製造方法。The salt concentration is set in advance, and the salt concentration of the salt water is measured, and the salt is supplied and dissolved until the salt of the water reaches the set concentration, or the concentration is reduced by adding fresh water to reduce the concentration of the water. When the salt concentration reaches a set concentration, the salt water is fed to a place of use. 海水と淡水の供給手段と、塩粒の定量供給手段と、塩粒溶解手段と、塩分濃度測定手段と、調整海水供給手段及び前記各部の制御手段を結合させたことを特徴とする塩水製造システム。A saltwater production system, comprising a combination of seawater and freshwater supply means, salt particle quantitative supply means, salt particle dissolution means, salt concentration measurement means, adjusted seawater supply means, and control means for each section. . 塩粒の定量供給手段は、塩粒の計測手段に供給手段を組み合わせたことを特徴とする請求項2記載の塩水製造システム。3. The salt water production system according to claim 2, wherein the constant-quantity supply means for salt particles is a combination of a supply means and a measurement means for salt particles. 塩粒溶解手段は、水槽中へ塩粒を供給し、水を撹拌して溶解したことを特徴とする請求項2記載の塩水製造システム。3. The salt water producing system according to claim 2, wherein the salt particle dissolving means supplies the salt particles into the water tank and stirs and dissolves the water. 制御手段は、塩分濃度測定手段の出力を設定濃度と比較すると共に、比較の結果の出力により塩水供給手段をON・OFFし、塩水給送手段をON・OFFすることを特徴とした請求項2記載の塩水製造システム。The control means compares the output of the salt concentration measuring means with the set concentration, and turns on / off the salt water supply means and turns on / off the salt water supply means based on the output of the comparison result. The salt water production system according to the above. 塩粒溶解槽の一側に給水系を設置すると共に、塩粒供給器を設置し、前記溶解槽を濾過板で仕切り、その一側に撹拌機を架設し、他側に塩分の濃度測定器を設置して、該濃度測定器の出力に、濃度設定器及び給送制御器を連結したことを特徴とする塩水製造装置。A water supply system is installed on one side of the salt particle dissolving tank, a salt particle feeder is installed, the dissolving tank is partitioned by a filter plate, a stirrer is installed on one side, and a salt concentration measuring instrument is installed on the other side. And a concentration setting device and a feed controller connected to the output of the concentration measuring device.
JP2002381616A 2002-12-27 2002-12-27 Method and system and facility for producing saline solution Pending JP2004208588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381616A JP2004208588A (en) 2002-12-27 2002-12-27 Method and system and facility for producing saline solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381616A JP2004208588A (en) 2002-12-27 2002-12-27 Method and system and facility for producing saline solution

Publications (1)

Publication Number Publication Date
JP2004208588A true JP2004208588A (en) 2004-07-29

Family

ID=32817487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381616A Pending JP2004208588A (en) 2002-12-27 2002-12-27 Method and system and facility for producing saline solution

Country Status (1)

Country Link
JP (1) JP2004208588A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328085B1 (en) 2013-02-18 2013-11-13 김종만 Method and system adjusting concentration
WO2014126372A1 (en) * 2013-02-18 2014-08-21 Kim Jong Man Method for controlling concentration and system therefor
KR101659468B1 (en) * 2016-02-24 2016-09-23 주식회사 이노체카 Method and System for Adjusting Concentration by use of Changed Concentration and for Adjusting Concentration of Materials of Non-Liquid State
JP2017192352A (en) * 2016-04-21 2017-10-26 株式会社イツワ工業 Laver raw alga supply system
JP2017192351A (en) * 2016-04-21 2017-10-26 株式会社イツワ工業 Laver raw alga supply system
KR101907076B1 (en) 2018-03-19 2018-10-11 주식회사 자동기 Hopper for dissolving snow remover and the driving method thereof
KR101907066B1 (en) * 2018-03-19 2018-10-11 주식회사 자동기 Solution manufacturing device and the driving method thereof
KR20190109989A (en) * 2018-03-19 2019-09-27 주식회사 자동기 Solution manufacturing device and the driving method thereof
JP7506396B2 (en) 2020-05-25 2024-06-26 光洋通商株式会社 Salt concentration adjustment equipment and dried seaweed manufacturing equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328085B1 (en) 2013-02-18 2013-11-13 김종만 Method and system adjusting concentration
WO2014126372A1 (en) * 2013-02-18 2014-08-21 Kim Jong Man Method for controlling concentration and system therefor
KR101659468B1 (en) * 2016-02-24 2016-09-23 주식회사 이노체카 Method and System for Adjusting Concentration by use of Changed Concentration and for Adjusting Concentration of Materials of Non-Liquid State
WO2017146521A1 (en) * 2016-02-24 2017-08-31 주식회사 이노체카 Method for controlling concentration using changed concentration information, and method and system for controlling concentration of non-liquid substance
JP2017192352A (en) * 2016-04-21 2017-10-26 株式会社イツワ工業 Laver raw alga supply system
JP2017192351A (en) * 2016-04-21 2017-10-26 株式会社イツワ工業 Laver raw alga supply system
KR101907076B1 (en) 2018-03-19 2018-10-11 주식회사 자동기 Hopper for dissolving snow remover and the driving method thereof
KR101907066B1 (en) * 2018-03-19 2018-10-11 주식회사 자동기 Solution manufacturing device and the driving method thereof
KR20190109989A (en) * 2018-03-19 2019-09-27 주식회사 자동기 Solution manufacturing device and the driving method thereof
KR102643015B1 (en) * 2018-03-19 2024-03-04 주식회사 자동기 Solution manufacturing device and the driving method thereof
JP7506396B2 (en) 2020-05-25 2024-06-26 光洋通商株式会社 Salt concentration adjustment equipment and dried seaweed manufacturing equipment

Similar Documents

Publication Publication Date Title
Shaddel et al. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality
RU2564336C2 (en) System for feed of suspension of finely-ground caco3 for remineralisation of desalted and sweet water
CA2840529C (en) Micronized caco3 slurry injection system for the remineralization of desalinated and fresh water
US10662094B2 (en) Method and apparatus for water treatment
JP2004208588A (en) Method and system and facility for producing saline solution
CN104556481A (en) Treatment system and method for preparing high-hardness underground water into domestic drinking water
CN105263870A (en) Installation for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of water
EP3539930B1 (en) Method for supplying activated carbon slurry
JP2009039683A (en) Turbid water treatment apparatus
Mavinic et al. Phosphorus recovery from anaerobic digester supernatants using a pilot-scale struvite crystallization process
RU2553100C2 (en) Gravity-magnetic separator
JP5103747B2 (en) Water treatment apparatus and water treatment method
JP5927216B2 (en) Phosphorus recovery equipment for phosphorus-containing water
JP3362276B2 (en) Wastewater treatment equipment
JP2006055804A (en) Coagulation device, coagulation method and controller for charging chemical
JP2007216201A (en) Natural flocculation precipitant for water purification
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
CN113860460B (en) Method and system for self-induced separation of fluorine and chlorine
JP2010207804A (en) Fresh water generator and fresh water generating method
JP2010082526A (en) Method for treating carbon dioxide gas
WO2005009586A1 (en) Coagulant, process for producing the same, and method of coagulation with the coagulant
Gao et al. Clogging mechanisms of biological aerobic filter in a petro-chemical wastewater treatment plant: A field study
WO2012082139A1 (en) Method and apparatus for water treatment
JP2004016996A (en) Method and device for treating sulfate ion and calcium ion-containing water
Britton Pilot scale struvite recovery trials from a full-scale anaerobic digester supernatant at the City of Penticton Advanced Wastewater Treatment Plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110