JP2004207575A - Solar battery panel and manufacturing method thereof - Google Patents

Solar battery panel and manufacturing method thereof Download PDF

Info

Publication number
JP2004207575A
JP2004207575A JP2002376312A JP2002376312A JP2004207575A JP 2004207575 A JP2004207575 A JP 2004207575A JP 2002376312 A JP2002376312 A JP 2002376312A JP 2002376312 A JP2002376312 A JP 2002376312A JP 2004207575 A JP2004207575 A JP 2004207575A
Authority
JP
Japan
Prior art keywords
substrate
solar cell
cell panel
manufacturing
thermal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002376312A
Other languages
Japanese (ja)
Inventor
Masafumi Yamauchi
雅文 山内
Hiroshi Tsukuda
洋 佃
Yoshimi Kagimoto
良美 鍵本
Katsuaki Inoue
克明 井上
Akira Yamada
山田  明
Kazuo Uchihashi
一雄 内橋
Eishiro Sasagawa
英四郎 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002376312A priority Critical patent/JP2004207575A/en
Publication of JP2004207575A publication Critical patent/JP2004207575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery panel with high productivity by obtaining a substrate for ensuring the strength withstanding a stress caused by the self-weight of the substrate itself and a thermal stress acting on the substrate so as to reduce the probability of destruction, and also to provide a manufacturing method of the solar battery panel. <P>SOLUTION: In the solar battery panel wherein a plurality of solar battery films are layered on the substrate 1, semi-cylindrical R-chamfer process is applied to an end of the substrate 1 so as to ensure the strength withstanding self-weight deformation and a thermal stress acting on the substrate 1. Further, the manufacturing method of the solar battery panel is built up, wherein the substrate receiving the R-chamfer process is subjected to film forming processing and thereafter the resulting substrate is split as required. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、太陽光発電に用いられる太陽電池パネル及びその製造方法に関する。
【0002】
【従来の技術】
従来より、環境や生態系に悪影響を与えないクリーンなエネルギーとして太陽エネルギーが知られている。そして、太陽エネルギーを利用するに当たり、太陽の光を電気に変換する太陽電池が近年多く利用されている。このような太陽電池は、一般に太陽光による発電効率を高められるように板状に構成された太陽電池パネルとして知られている。
【0003】
太陽電池パネルの構造を簡単に説明すると、太陽電池パネルは、ソーダガラス等の透明な基板上に、透明電極膜、半導体膜、及び金属電極膜などの複数の膜を積層した構造からなり、その周端部にはこれらの太陽電池膜(透明電極膜、半導体膜、金属電極膜)を封止する保護用のシール剤が設けられている。また、上記それぞれに言う太陽電池膜は、接着シートやカバーガラスなどで覆われることが一般的である。
【0004】
このような太陽電池パネルを製造する上で、基板の端部に欠けがあると半導体層を除去する際にガラス等の基板が欠けてしまう問題がある。したがって、このことを回避すべく、半導体層が形成された面の角部に実質的に直角あるいは鋭角部分がないように多角形形状あるいは円弧状に形成することが望ましいとして既に開示されている(特許文献1参照。)。
【0005】
【特許文献1】
特許第3243229号公報(第18,第21段落、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術にて開示された基板端部を面取り加工することは、製膜処理がなされた基板面を機械的に除去する場合において、基板端部が面取りされていないと該端部に欠陥となる欠けが生じてしまう問題があるため行われるものである。基板の端部に欠陥が生じると、太陽電池パネルの温度分布のばらつきによって生じる熱応力が要因で欠陥部分から基板を割ってしまう可能性がある。ここに言う熱応力は、太陽光による使用状況下での入熱に起因して発生するものであり、製膜処理などの製造工程において必要とされる加熱処理での熱応力とは大きく異なる。
【0007】
ここで、図を用いて、基板加熱用のヒータでの加熱処理にて基板に生じる熱応力について説明する。図5のグラフ線図に示すように、基板の外周部が固定されることで変形が拘束された場合、基板の延在方向である平面における最大温度差と発生する熱応力との関係は、基板面の温度差が大きくなるにしたがって基板に生じる熱応力は比例して増大する。なお、グラフ線図に示す解析に用いられた基板厚みは4mmであり、大きさは約1m四方である。
【0008】
太陽光を受けて加熱された場合の太陽電池パネルの温度の計測結果では、夏の場合には朝の約30℃から真昼で約80℃まで50℃上昇し、冬の場合は朝の約0℃から昼の50℃まで50℃上昇する。このように上昇温度は夏冬で変わらず、パネルが受ける熱負荷は同等と考えられる。この温度上昇は真昼の日射を突然受けるわけではなく加熱は緩やかなため、基板面内の温度差はほとんど生じない。但し、太陽光が雲で突然遮られた場合もパネル温度は変化する。この場合の太陽電池パネルの温度変化は真夏で約20℃、真冬で約10℃であり、この温度変化により発生する基板面内の温度差は20℃以下である。この温度差を図5のグラフ線図に照らし合わせると、基板に発生する応力は、1kgf/mm2以下である。
【0009】
しかし、基板の製膜時における200℃近傍の加熱処理では、基板面における温度差が容易に50℃を超えるような状態となり得、この場合、基板に発生する熱応力は、太陽光の入熱による熱応力よりも多大な約3kgf/mm2も作用する可能性が高い。すなわち、製膜処理等の製造工程では、加熱される前の常温域と加熱された後の温度域との差が大きいため、基板面の温度分布にも大きなばらつきが生じやすく、結果として基板に多大な熱応力が発生しやすい。もちろん、基板加熱用のヒータ等による加熱方法、及び構成を改善して基板の温度差を低下させることも1つの手段であるが、より大面積化された基板を均一に加熱する加熱手段の加熱方法及び構成は、装置の大型化やコストの増大ともなりうる。
【0010】
また、図6の基板表裏温度差と発生熱応力との関係を示したグラフ線図のように、基板が加熱された場合に基板の表面と裏面とに温度に差が生じると、温度分布のばらつきによって基板を反らせようとする熱応力が発生することが考えられる。この熱応力は、図に示すように表面と裏面との温度差が大きくなるにしたがい比例して増大する。
【0011】
この場合でも、太陽光の入熱により太陽電池パネルの表裏に生じる温度差は小さく、よって発生熱応力は小さい。一方、製膜処理等による約200℃の加熱では、基板の温度差が50℃を超えるようなことが考えられ、このことによって、上記発生応力よりも多大な約2kgf/mm2強の熱応力が基板に作用する可能性が高い。
【0012】
さらに、製膜処理を行うために加熱された基板は、ある段階で常温に戻されることになるが、その際、基板の端部では基板の中心側に比べて多大な放熱が生じるため、基板の端部と中心側とでは大きな温度差が生じやすい。このことは加熱する際にも言えることである。
【0013】
このことについて、図7のグラフ線図に示す解析結果に基づいて説明する。図7では、180℃まで均一に加熱された基板を常温(20℃)の環境下に放置した場合での時間経過による軸方向(基板端部の延在方向)の発生応力の変化を示したものである。
【0014】
これによると、時間経過毎に軸方向の応力が急激に上昇することが読み取れ、60秒経過後には熱応力の最大値である約0.7kgf/mm2の熱応力が基板の端部に発生している。このことは、基板端部が基板の中心側に比べて放熱速度が早いために基板端部と中心側との温度差が多大に生じることで引き起こされるものである。
【0015】
このように、製膜等の太陽電池パネルの製造過程における加熱処理では、基板に対する加熱量も多大となるために、基板の各部分で温度差が多大に生じやすく、この温度差によって発生する応力に耐えうる強度を有した基板が必要とされている。
【0016】
また、太陽電池パネルの製造工程おける基板の搬送に際して、基板の自重等によって作用する荷重で基板端部に欠陥が生じないようにする加工形状については従来技術では開示されていない。
【0017】
また、基板の大面積化を実施しようとすると、基板自体の重さが増大することになるので、搬送過程にておいて基板の下端部に自らの自重による多大な応力が作用することとなり、基板が割れるような破損を来す可能性も高くなる。
【0018】
本発明は上記事情に鑑みて成されたものであり、基板自らの自重によって生じる応力や、基板に作用する熱応力に耐えうる強度を確保した基板を得ることで破壊確率を低減させ、生産性の高い太陽電池パネル及び太陽電池パネルの製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明は、上記課題を解決するため、以下の手段を採用する。
請求項1に記載の発明は、基板上に複数の膜からなる太陽電池膜が積層される太陽電池パネルにおいて、前記基板の端部にR面取り加工を施すことを特徴としている。
【0020】
また、請求項2に記載の発明は、請求項1記載の太陽電池パネルにおいて、前記R面取り加工による形状が、かまぼこ状とされていることを特徴としている。
【0021】
このような構成によれば、基板に、自重によって生じる応力や、製膜を施す場合などの製造過程での加熱処理における温度分布のばらつきによる熱応力、あるいは放熱作用における温度分布のばらつきによる熱応力、などが生じても、基板はこれらの応力に耐えうる強度を端部側で確保することとなり、割れなどの破損が回避される。また、R面取り加工による基板端部における断面形状がかまぼこ状に形成されることで、強度を的確に確保することになり、また、端部に欠陥が生じにくくなる。
【0022】
請求項3に記載の発明は、基板上に複数の膜からなる太陽電池膜が積層される太陽電池パネルの製造方法において、前記基板の端部にR面取り加工を施した後に太陽電池膜の製膜を施すことを特徴としている。
【0023】
このような製造方法によれば、製膜時において基板を加熱する際に基板の温度分布の差によって基板に熱応力が生じても、端部のR面取り加工によってこの熱応力に耐えうる強度を基板が有することになり、製膜時における加熱処理によって基板が破損することはない。すなわち、製膜時の熱影響に耐えうる基板を予め形成して太陽電池パネルを製造することで、加熱処理での問題が除去される。このことは、製膜が施された後の基板にR面取り加工を施し、太陽光による入熱に対する強度や、製膜後の製造過程にて欠陥の発生を回避する目的として形成される場合と大きく異なる。
【0024】
請求項4に記載の発明は、請求項3記載の太陽電池パネルの製造方法において、太陽電池膜の製膜が施された太陽電池パネルを分割して小型の太陽電池パネルを形成することを特徴としている。
【0025】
このような製造方法によれば、R面取り加工を行って強度を確保した基板に製膜を施し、製膜が施された基板を分割して小型の太陽電池パネルを形成することになる。したがって、小型な太陽電池パネルを製造するために比較的大きな基板を用いる場合であっても、この基板を破損させることなく製膜処理された状態で分割することができる。
【0026】
【発明の実施の形態】
次に、本発明の一実施形態について、図面を用いて説明する。図1に示される符号1は太陽電池パネルの一要素である材質がソーダガラスの基板である。この基板1は、図1(a)に示すように、大きさが1.1m×1.4mとされた大面積型の基板1であり、基板厚みは4mmである。
そして、図1(a)の矢視断面A−A、及び矢視断面B−Bのそれぞれを示した図1(b)(A−A断面と、B−B断面における基板端部の断面形状は同一である。)に示すように、この基板1の4辺全ての端部には半径rにて丸め形状とされたR面取り加工が施されている。
【0027】
図1(b)に示されるR面取りを詳細に説明すると、この丸め形状の中心は基板1の厚み方向の中心線上にあり、丸め半径rは、基板厚みの4mmに準じてr=2.5〜3mmとされている。すなわち、基板厚みの4mmよりも大きい丸め半径r=2.5〜3mmと規定されることによって、基板1の端部の断面形状が「かまぼこ状」に形成される。
【0028】
なお、上記のR面取り加工は、例えば、上記に設定した半径rの円弧状の凹所を外周部に有する円盤状研磨治具を当接させて研磨することで得られるものであるが、これに限定されるものではない。
【0029】
なお、上述したそれぞれの基板端部のR面取り加工において、加工後の端部と、この端部に相対する加工後の端部との距離は、製品となる太陽電池パネルの基板1の寸法(この場合、1.1mあるいは1.4mの寸法を指す。)を満たすように形成されることは言うまでもない。
【0030】
さて、このように基板端部に、かまぼこ状のR面取り加工が施された基板1の特性について、該基板1と、C面取り寸法1mmのC面取り加工が施された基板とを比較しながら以下に説明する。
【0031】
図2は、上述した各基板に見立てた2つの試験用基板1a,1b(R面取りの試験用基板1a、及びC面取りの試験用基板1b)の端部の摩擦抵抗を計測するとともに、この摩擦抵抗によって生じる各試験用基板1a,1bの端部に欠陥や欠陥となる欠け(「はま欠け」とも呼ばれる。)を形成するための試験装置を示した構成の概略図である。なお、(a)は正面図であり、(b)は(a)の側面図である。
【0032】
各試験用基板1a,1bは、この延在方向が定盤21の面に対して直立となるように定盤21上に配置されるとともに、この定盤21上に設置された押さえ金具22に狭持される。そして、試験用基板1a,1bの上方側の端部には、真空中での摩擦係数0.7程度を模擬した窒化珪素板23(20mm×20mm×6mm)が当接される。さらに、この窒化珪素板23の上面には、この上方に位置する押さえ治具26が押し当てられ、この押さえ治具26によって垂直方向下向きの荷重Fが、窒化珪素板23を介して基板1a,1bに負荷される。
【0033】
さらに、窒化珪素板23の側面には、左右方向に配置された連結棒25が連結され、この連結棒25にはロードセル24を介して横荷重Fが与えられる。すなわち、上下方向にて押さえ付けられた窒化珪素板23に横荷重Fが作用することで、窒化珪素板23の下面と試験用基板1a,1bの上端部との接触部がこすれ、摩擦力が生じる。
なお、定盤21に対して垂直方向下向きに負荷する荷重Fは、147Nと294Nとした。これらの数値は、前者が基板質量15kgを考慮したものであり、後者が基板質量の2倍を考慮したものである。
【0034】
摩擦抵抗の試験結果については端部表面の研磨処理の程度によって変化することも考えられるため省略とするが、この試験におけるR面取りがなされた試験用基板1aと、C面取りがなされた試験用基板1bとのそれぞれの端部には、目視できない程度のごく僅かな「はま欠け」(欠陥)が発生した。はま欠けの程度を顕微鏡写真で観察すると、R面取りの試験用基板1aの方がはま欠けの度合いが小さく、C面取りの試験用基板1bでは、鈍角とされた角部に鋭利な欠けが比較的大きく生じていることが確認された。
つまり、R面取りの端部形状であることによれば、C面取りの端部形状に比べて欠陥の度合いが小さくなることが確認された。
【0035】
さて、このような摩擦抵抗を計測する試験にて得られた各試験用基板1a,1bを、図3の概略図に示すような4点曲げ試験にて強度を確認する。本試験では、試験用基板1a,1bの面取り加工が施されてなお且つ窒化珪素板23とこすり合わされた端部を下側にして配置し、この180mmとされた端部を160mmの離間間隔とされた両支持部S1,S2上に設置する。そして、両支持部S1,S2の間にて試験用基板1a,1bの上方から2つの力点で合計荷重が荷重Pとなる負荷を試験用基板1a,1bに与える。なお、図3(b),(c)は、同図(a)の矢視Cにおける試験用基板1b,1aの寸法形状を示している。
【0036】
そして、上述した4点曲げ試験における結果は、図4に示す応力と破壊確率との関係を示したグラフ線図に表されることとなり、この結果について以下にまとめる。
【0037】
既に本発明が解決しようとする課題にて説明した熱応力を考慮し、この応力値が3kgf/mm2である場合を仮定して比較すると、かまぼこ状にR面取りされた太実線で示される素材(試験用基板1a)では、破壊確率が4×10−4であることが読み取れる。
これに対し、C面取りされた太破線で示される素材(試験用基板1b)では、同応力値で破壊確率が1.5×10−2であることが読み取れる。
このように、R面取りが施された基板は、C面取りが施された基板よりも破壊する確率が格段に小さくなり、熱応力がさらに作用する場合であってもこの関係が読み取れる。
【0038】
また、R面取りが施された基板は、C面取りが施された基板よりも、欠陥であるはま欠けが生じにくい、あるいは、はま欠けの度合いが小さいことを実験により確認できたことを既に説明した。このことを考慮しつつ図4のグラフ線図を参照すると、摩擦抵抗の計測試験を終えてはま欠けが生じた試験用基板1a,1bの4点曲げ試験における破壊確率は、はま欠けの形成による破壊確率の若干の上昇が認められつつも、C面取りが施された素材よりも低く抑えられることが確認できる。
【0039】
さらに、図4のグラフ線図を参照すると、摩擦抵抗の計測試験で147Nの垂直荷重が負荷された場合は、2〜6kgf/mm2の応力が作用しても、はま欠けが存在しない場合とほぼ同等な破壊確率が確認でき、C面取りが施された場合よりも破壊確率が遥かに下回る良好な結果が得られた。
また、搬送時等動的に作用する荷重を考慮した294Nの垂直荷重が負荷された場合では、3kgf/mm2の応力が基板に作用しても、破壊確率が3×10−3となり、C面取りが施された場合よりも破壊確率が下回る良好な結果が得られた。
【0040】
以上説明したように、半径r=2.5〜3mmとされたかまぼこ状のR面取り加工が施された基板1によれば、この搬送時における自重によって基板自らに比較的大きな応力が作用したり、製造過程における製膜等の加熱処理で大きな熱応力が作用したりすることによって破損しかねない状態におかれた基板1に対して、この応力に耐えうる強度を確保させて破壊の確率を大幅に低減させることが可能となった。したがって、基板の大面積化を図ることが可能となり、また、太陽電池パネルの生産性を大幅に向上させることが可能となる。
【0041】
そして、小型の太陽電池パネルを製造するにあたって、一辺が1mを超えるような大面積型の基板に製膜処理、さらにはカバーガラスなどの取り付けを行った後に分割して小型の太陽電池パネルを形成することも容易に可能となる。すなわち、大面積型であるために割れなどによる破損しやすい基板を、安定して製造することが可能となり、小型の太陽電池パネルをこの大型基板の分割による容易で且つ工程の削減を図って製造することができるようになる。
【0042】
【発明の効果】
以上説明した本発明の太陽電池パネルにおいては以下の効果を奏する。
請求項1及び請求項2記載の発明によれば、基板の端部にR面取りがなされることで、基板の強度が高められることになり、太陽電池パネルを製造する上での搬送・設置の状況や、加熱処理等における応力の発生に耐えうる高い強度を確保した破壊確率が低減された良好な太陽電池パネルを得ることができる。このことは、特に基板の破壊確率が大きくなりやすい大型化された基板に関して最も効果的である。また、R面取り加工として、かまぼこ状に形成されることによれば、強度を的確に確保することができるとともに、欠陥の発生を防いで強度の低下をより的確に回避することができる。
【0043】
請求項3記載の発明によれば、基板の端部にR面取り加工を施した後に太陽電池膜の製膜を施す太陽電池パネルの製造方法であるので、製膜時での基板の温度分布に差が生じて基板に熱応力が作用する場合であっても、この熱応力に耐えうる強度の確保によって基板を破損させずに太陽電池パネルを的確且つ確実に製造することが可能となる。また、製膜前の段階でR面取りがなされることで、製膜処理を行う際の搬送過程にて基板に欠陥が発生することが回避され、基板を破損させずに太陽電池パネルを的確且つ確実に製造することが可能となる。さらに、このように基板の強度の向上により、基板を大型化して大面積型の太陽電池パネルを製造することも可能となる。
【0044】
請求項4記載の発明によれば、R面取り加工された基板に製膜を施し、この基板を分割して小型の太陽電池パネルを形成することができるので、製膜が施された大型基板を損傷させることなく確実に得て分割することで、低コストで小型の太陽電池パネルを製造し提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態における太陽電池パネルに用いられる基板の概略図であって、(a)は基板の斜視図、(b)は(a)の断面A−A及び断面B−Bにおけるかまぼこ状のR面取りが施された基板端部の断面図である。
【図2】基板端部の摩擦抵抗を計測しつつ、基板端部の欠陥を形成する試験装置の概略構成を示した概略図であり、(a)は正面図、(b)は側面図である。
【図3】基板に対する4点曲げ試験の概略を示した概略図であり、(b),(c)は(a)の矢視Cにおける各試験用基板の寸法形状を示した投影図である。
【図4】基板に作用する応力と基板の破壊確率との関係を示したグラフ線図である。
【図5】基板面における温度差と発生熱応力との関係を示したグラフ線図である。
【図6】基板表裏温度差と発生熱応力との関係を示したグラフ線図である。
【図7】温度低下する基板端部の時間経過における軸方向応力の変化を示したグラフ線図である。
【符号の説明】
1 基板
1a かまぼこ状のR面取り加工が施された試験用基板
1b C面取り加工が施された試験用基板
r 丸め半径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell panel used for photovoltaic power generation and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, solar energy has been known as clean energy that does not adversely affect the environment and ecosystem. In using solar energy, solar cells that convert sunlight into electricity have been widely used in recent years. Such a solar cell is generally known as a solar cell panel configured in a plate shape so as to increase power generation efficiency by sunlight.
[0003]
To briefly explain the structure of a solar cell panel, a solar cell panel has a structure in which a plurality of films such as a transparent electrode film, a semiconductor film, and a metal electrode film are stacked on a transparent substrate such as soda glass. A protective sealant for sealing these solar cell films (transparent electrode film, semiconductor film, metal electrode film) is provided at the peripheral end. Also, the solar cell films referred to above are generally covered with an adhesive sheet, a cover glass, or the like.
[0004]
In manufacturing such a solar cell panel, if there is a chip at the edge of the substrate, there is a problem that the substrate such as glass is chipped when the semiconductor layer is removed. Therefore, in order to avoid this, it has already been disclosed that it is desirable to form the semiconductor layer in a polygonal shape or an arc shape so that the corners of the surface on which the semiconductor layer is formed have substantially no right angle or acute angle portion ( See Patent Document 1.).
[0005]
[Patent Document 1]
Japanese Patent No. 3243229 (18th and 21st paragraphs, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the chamfering of the substrate end disclosed in the above-mentioned conventional technique is difficult to mechanically remove the substrate surface on which the film forming process has been performed, if the substrate end is not chamfered. This is performed because there is a problem that chipping becomes a defect. When a defect occurs at the edge of the substrate, there is a possibility that the substrate may be split from the defective portion due to a thermal stress caused by a variation in the temperature distribution of the solar cell panel. The thermal stress referred to here is generated due to heat input in a usage condition by sunlight, and is greatly different from a thermal stress in a heat treatment required in a manufacturing process such as a film forming process.
[0007]
Here, with reference to the drawings, a description will be given of the thermal stress generated on the substrate by the heat treatment with the substrate heating heater. As shown in the graph of FIG. 5, when the deformation is constrained by fixing the outer peripheral portion of the substrate, the relationship between the maximum temperature difference in the plane that is the extending direction of the substrate and the generated thermal stress is as follows. As the temperature difference on the substrate surface increases, the thermal stress generated on the substrate increases proportionately. The thickness of the substrate used in the analysis shown in the graph was 4 mm, and the size was about 1 m square.
[0008]
According to the measurement result of the temperature of the solar cell panel when heated by receiving sunlight, the temperature rises by about 50 ° C. from about 30 ° C. in the morning to about 80 ° C. in the noon in summer, and about 0 ° C. in the morning in winter. 50 ° C. increase from 50 ° C. to 50 ° C. during the day. Thus, the temperature rise does not change in summer and winter, and the heat load applied to the panel is considered to be equivalent. This temperature rise does not mean that the solar radiation at midday is suddenly received, and the heating is moderate, so that the temperature difference in the substrate surface hardly occurs. However, the panel temperature also changes when the sunlight is suddenly blocked by the clouds. In this case, the temperature change of the solar cell panel is about 20 ° C. in midsummer and about 10 ° C. in midwinter, and the temperature difference in the substrate surface caused by this temperature change is 20 ° C. or less. When this temperature difference is compared with the graph of FIG. 5, the stress generated in the substrate is 1 kgf / mm 2 or less.
[0009]
However, in the heat treatment at around 200 ° C. during the film formation of the substrate, the temperature difference on the substrate surface can easily exceed 50 ° C. In this case, the thermal stress generated on the substrate is caused by the heat input of sunlight. It is likely that about 3 kgf / mm 2, which is larger than the thermal stress caused by the above, will also act. That is, in a manufacturing process such as a film forming process, since a difference between a normal temperature range before heating and a temperature range after heating is large, a large variation easily occurs in a temperature distribution on a substrate surface, and as a result, Large thermal stress is likely to occur. Of course, one method is to reduce the temperature difference between the substrates by improving the heating method using a heater for heating the substrate and the like, and to heat the heating means for uniformly heating the substrate having a larger area. The method and configuration can also increase the size and cost of the device.
[0010]
Further, as shown in a graph showing the relationship between the temperature difference between the front and back surfaces of the substrate and the generated thermal stress in FIG. 6, when a difference in temperature occurs between the front surface and the back surface of the substrate when the substrate is heated, the temperature distribution is reduced. It is conceivable that the variation causes a thermal stress to warp the substrate. This thermal stress increases proportionally as the temperature difference between the front and back surfaces increases as shown in the figure.
[0011]
Even in this case, the temperature difference generated between the front and back of the solar cell panel due to the heat input of sunlight is small, and the generated thermal stress is small. On the other hand, in the heating of about 200 ° C. by deposition process or the like, the temperature difference of the substrate is likely that exceeding 50 ° C., by this, thermal stress of great about 2 kgf / mm 2 strength than the generation stress Is likely to act on the substrate.
[0012]
Further, the substrate heated for performing the film forming process is returned to room temperature at a certain stage, but at this time, a large amount of heat is generated at the edge of the substrate as compared with the center side of the substrate. A large temperature difference is likely to occur between the end and the center. This is also true when heating.
[0013]
This will be described based on the analysis result shown in the graph of FIG. FIG. 7 shows a change in generated stress in the axial direction (extending direction of the substrate edge) with time when a substrate uniformly heated to 180 ° C. is left in an environment at normal temperature (20 ° C.). Things.
[0014]
According to this, read that axial stress increases rapidly every time, after lapse of 60 seconds generated in an end portion about 0.7 kgf / mm 2 of the thermal stress is the maximum value of the substrate of the thermal stress are doing. This is caused by a large difference in temperature between the end of the substrate and the center because the heat dissipation speed of the end of the substrate is higher than that of the center of the substrate.
[0015]
As described above, in the heat treatment in the process of manufacturing a solar cell panel such as film formation, a large amount of heat is applied to the substrate. There is a need for a substrate having a strength that can withstand the above.
[0016]
Further, the prior art does not disclose a processing shape for preventing a defect at an end portion of a substrate from being caused by a load applied by the substrate's own weight or the like when the substrate is transported in a solar cell panel manufacturing process.
[0017]
Also, when trying to increase the area of the substrate, the weight of the substrate itself increases, so that a large amount of stress due to its own weight acts on the lower end of the substrate in the transfer process, There is a high possibility that the substrate will be broken such that the substrate is cracked.
[0018]
The present invention has been made in view of the above circumstances, and reduces the probability of destruction by obtaining a substrate that has sufficient strength to withstand the stress generated by the substrate's own weight and the thermal stress acting on the substrate, thereby reducing productivity. It is an object of the present invention to provide a solar cell panel with high reliability and a method for manufacturing a solar cell panel.
[0019]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
The invention according to claim 1 is characterized in that in a solar cell panel in which a solar cell film composed of a plurality of films is laminated on a substrate, an R-chamfering process is performed on an end of the substrate.
[0020]
According to a second aspect of the present invention, in the solar cell panel according to the first aspect, the shape obtained by the R-chamfering processing is a semi-cylindrical shape.
[0021]
According to such a configuration, the thermal stress due to the weight caused by the weight of the substrate, the thermal stress due to the variation in the temperature distribution in the heat treatment in the manufacturing process such as the case of forming a film, or the thermal stress due to the variation in the temperature distribution in the heat radiation action. , Etc., the substrate has sufficient strength on the end side to withstand these stresses, and breakage such as cracking is avoided. In addition, since the cross-sectional shape at the end of the substrate is formed in a semi-cylindrical shape by the R chamfering, the strength is accurately secured, and defects are less likely to occur at the end.
[0022]
The invention according to claim 3 is a method for manufacturing a solar cell panel in which a solar cell film including a plurality of films is stacked on a substrate, wherein the edge of the substrate is subjected to an R chamfering process, and then the solar cell film is manufactured. It is characterized by applying a film.
[0023]
According to such a manufacturing method, even if a thermal stress occurs in the substrate due to a difference in the temperature distribution of the substrate when the substrate is heated during film formation, the strength capable of withstanding the thermal stress by the R chamfering process of the end portion is increased. Since the substrate has the substrate, the substrate is not damaged by heat treatment during film formation. That is, the problem in the heat treatment can be eliminated by manufacturing a solar cell panel by forming a substrate that can withstand the thermal influence during film formation in advance. This means that the substrate after the film is formed is subjected to a R-chamfering process so that the substrate is formed for the purpose of avoiding generation of defects in the strength against heat input by sunlight and the manufacturing process after the film formation. to differ greatly.
[0024]
According to a fourth aspect of the present invention, in the method for manufacturing a solar cell panel according to the third aspect, the solar cell panel on which the solar cell film is formed is divided to form a small solar cell panel. And
[0025]
According to such a manufacturing method, a film is formed on a substrate whose strength is ensured by performing R chamfering, and the substrate on which the film is formed is divided to form a small solar cell panel. Therefore, even when a relatively large substrate is used to manufacture a small solar cell panel, the substrate can be divided in a film-formed state without damaging the substrate.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. Reference numeral 1 shown in FIG. 1 is a soda glass substrate, which is a component of a solar cell panel. As shown in FIG. 1A, the substrate 1 is a large-area substrate 1 having a size of 1.1 m × 1.4 m and a thickness of 4 mm.
FIG. 1B shows a cross section taken along line AA of FIG. 1 (a) and a cross section taken along line BB of FIG. 1 (b). Are the same.) As shown in the figure, the edges of all four sides of the substrate 1 are subjected to an R chamfering process with a radius r.
[0027]
Describing the R chamfering shown in FIG. 1B in detail, the center of this rounded shape is on the center line in the thickness direction of the substrate 1, and the rounding radius r is r = 2.5 according to 4 mm of the substrate thickness. 33 mm. That is, by defining the rounding radius r = 2.5 to 3 mm larger than the substrate thickness of 4 mm, the cross-sectional shape of the end portion of the substrate 1 is formed in a “kamaboko shape”.
[0028]
In addition, the above-mentioned R chamfering process is obtained, for example, by abutting a disc-shaped polishing jig having an arc-shaped concave portion having a radius r set on the outer periphery thereof and polishing the same. However, the present invention is not limited to this.
[0029]
In the above-described R-chamfering processing of the substrate end, the distance between the processed end and the processed end opposite to this end is determined by the dimension of the substrate 1 of the solar cell panel as a product ( In this case, it is needless to say that it is formed so as to satisfy the dimension of 1.1 m or 1.4 m.).
[0030]
Now, regarding the characteristics of the substrate 1 on which the edge of the substrate has been subjected to the rounded chamfering process, a comparison between the substrate 1 and the substrate subjected to the C chamfering process with the C chamfering dimension of 1 mm will be described below. Will be described.
[0031]
FIG. 2 measures the frictional resistance of the ends of the two test substrates 1a and 1b (the R-chamfered test substrate 1a and the C-chamfered test substrate 1b), which are assumed to be the above-described respective substrates. It is the schematic of the structure which showed the test apparatus for forming a defect | defect and the chip | tip which becomes a defect in the edge part of each test board | substrate 1a and 1b produced by resistance (it is also called "a chip | chip"). (A) is a front view, and (b) is a side view of (a).
[0032]
Each of the test substrates 1a and 1b is arranged on the surface plate 21 so that the extending direction is upright with respect to the surface of the surface plate 21, and the holding metal fittings 22 installed on the surface plate 21 are attached to the test substrates 1a and 1b. Be pinched. A silicon nitride plate 23 (20 mm × 20 mm × 6 mm) simulating a friction coefficient of about 0.7 in a vacuum is brought into contact with upper ends of the test substrates 1 a and 1 b. Further, on the upper surface of the silicon nitride plate 23, the pressing jig 26 is pressed against located this upward load F N in the vertically downward by the pressing jig 26, the substrate 1a through the silicon nitride plate 23 , 1b.
[0033]
Further, the side surface of the silicon nitride plate 23, connecting rod 25 disposed in the lateral direction are connected, the lateral load F H is applied through the load cell 24 to the connecting rod 25. That is, by acting lateral load F H silicon nitride plate 23 which is pressed in the vertical direction, rubbing the contact portion between the lower surface of the silicon nitride plates 23 test substrate 1a, an upper end 1b, the frictional force Occurs.
Incidentally, the load F N to load vertically downward relative to the surface plate 21 was set to 147N and 294 N. These figures take the former into account for a substrate mass of 15 kg, and the latter take into account twice the substrate mass.
[0034]
The test results of the frictional resistance may be changed depending on the degree of the polishing process on the end surface, and thus the description is omitted. However, the test substrate 1a with the R chamfered in this test and the test substrate with the C chamfered are used. At each of the end portions 1b and 1b, a very slight "chip" (defect) was generated to the extent that it was not visible. When observing the degree of the chipping with a micrograph, the degree of the chipping is smaller in the test substrate 1a with the R chamfering, and the sharp chipping is formed at the obtuse corner in the test substrate 1b with the C chamfering. It was confirmed that the occurrence was relatively large.
That is, it was confirmed that the degree of the defect was smaller in the case of the end shape of the R chamfer than in the case of the end shape of the C chamfer.
[0035]
Now, the strength of each of the test substrates 1a and 1b obtained in the test for measuring such frictional resistance is confirmed by a four-point bending test as shown in the schematic diagram of FIG. In this test, the test substrates 1a and 1b were chamfered, and the ends rubbed with the silicon nitride plate 23 were placed on the lower side, and the 180 mm ends were separated by a spacing of 160 mm. It is installed on both support portions S1 and S2. Then, a load such that the total load becomes a load P at two force points from above the test substrates 1a and 1b is applied between the support portions S1 and S2 to the test substrates 1a and 1b. 3 (b) and 3 (c) show the dimensions and shapes of the test substrates 1b and 1a as viewed from arrow C in FIG. 3 (a).
[0036]
The results of the above-described four-point bending test are shown in a graph showing the relationship between stress and fracture probability shown in FIG. 4, and the results are summarized below.
[0037]
Considering the thermal stress already described in the problem to be solved by the present invention, and assuming that this stress value is 3 kgf / mm 2 , the material indicated by the thick solid line rounded in a semicircular shape is obtained. In (test substrate 1a), it can be seen that the destruction probability is 4 × 10 −4 .
On the other hand, in the material (test substrate 1b) indicated by the bold broken line with the C chamfer, it can be read that the fracture probability is 1.5 × 10 −2 at the same stress value.
In this way, the substrate that has been chamfered has a much lower probability of breaking than the substrate that has been chamfered, and this relationship can be read even when thermal stress is further applied.
[0038]
In addition, it has already been confirmed by experiments that the substrate subjected to the R chamfering is less likely to have a defect or a chipping as compared to the substrate subjected to the C chamfering, or that the degree of the chipping is small. explained. Considering this, referring to the graph of FIG. 4, the probability of destruction in the four-point bending test of the test substrates 1a and 1b in which the chipping has occurred after the measurement test of the frictional resistance has been determined. Although a slight increase in the probability of destruction due to the formation is recognized, it can be confirmed that the probability is lower than that of the C-chamfered material.
[0039]
Further, referring to the graph of FIG. 4, when a vertical load of 147 N is applied in the measurement test of the frictional resistance, even if a stress of 2 to 6 kgf / mm 2 is applied, no crack is present. It was confirmed that the fracture probability was almost the same as that of the case described above, and a favorable result was obtained in which the fracture probability was much lower than in the case where the C chamfer was performed.
Further, when a vertical load of 294N is applied in consideration of a load acting dynamically such as at the time of conveyance, even if a stress of 3 kgf / mm 2 is applied to the substrate, the probability of destruction is 3 × 10 −3 , and C Good results were obtained with a lower probability of failure than when chamfering was applied.
[0040]
As described above, according to the substrate 1 on which the radius r = 2.5 to 3 mm and the rounded chamfering process is performed, a relatively large stress acts on the substrate itself due to its own weight during the transfer. For the substrate 1 placed in a state where it may be damaged by a large thermal stress due to heat treatment such as film formation in a manufacturing process, a strength capable of withstanding this stress is secured to reduce the probability of destruction. It has become possible to greatly reduce it. Therefore, the area of the substrate can be increased, and the productivity of the solar cell panel can be greatly improved.
[0041]
When manufacturing a small-sized solar cell panel, a large-sized substrate whose one side exceeds 1 m is formed into a film, and a cover glass or the like is attached, and then divided to form a small-sized solar cell panel. Can be easily performed. In other words, it is possible to stably manufacture a substrate that is easily damaged due to cracking or the like because it is a large-area type, and manufactures a small-sized solar cell panel by dividing the large-sized substrate easily and by reducing steps. Will be able to
[0042]
【The invention's effect】
The solar cell panel of the present invention described above has the following effects.
According to the first and second aspects of the present invention, the edge of the substrate is rounded so that the strength of the substrate is increased. It is possible to obtain a favorable solar cell panel in which the probability of destruction is reduced while ensuring high strength that can withstand the occurrence of stress in a situation or heat treatment or the like. This is most effective especially for a large-sized substrate in which the probability of destruction of the substrate tends to increase. In addition, by forming the shape into a semi-cylindrical shape as the R-chamfering process, the strength can be accurately secured, and the occurrence of defects can be prevented, so that a decrease in the strength can be more accurately avoided.
[0043]
According to the third aspect of the present invention, a method of manufacturing a solar cell panel in which a solar cell film is formed after performing an R chamfering process on an end portion of the substrate. Even if a difference occurs and a thermal stress acts on the substrate, it is possible to manufacture the solar cell panel accurately and reliably without damaging the substrate by securing the strength that can withstand the thermal stress. In addition, by performing R chamfering at a stage before film formation, it is possible to avoid the occurrence of defects in the substrate during the transport process when performing the film forming process, and to accurately and correctly mount the solar cell panel without damaging the substrate. It is possible to reliably manufacture. Further, by improving the strength of the substrate as described above, it is possible to manufacture a large-area solar cell panel by increasing the size of the substrate.
[0044]
According to the fourth aspect of the present invention, a film is formed on the substrate subjected to the chamfering process, and the substrate can be divided to form a small solar cell panel. By reliably obtaining and dividing without causing damage, it is possible to manufacture and provide a small-sized solar cell panel at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic view of a substrate used for a solar cell panel according to an embodiment of the present invention, wherein (a) is a perspective view of the substrate, and (b) is a cross section AA and a cross section B- of (a). It is sectional drawing of the board | substrate edge part in which the rounded chamfer shape in B was given.
FIGS. 2A and 2B are schematic diagrams showing a schematic configuration of a test apparatus for forming a defect at a substrate end while measuring a frictional resistance at the substrate end; FIG. 2A is a front view, and FIG. is there.
FIGS. 3A and 3B are schematic diagrams schematically showing a four-point bending test on the substrate, and FIGS. 3B and 3C are projection views showing the dimensions and shapes of the test substrates in the direction of arrow C in FIG. .
FIG. 4 is a graph showing the relationship between the stress acting on the substrate and the probability of destruction of the substrate.
FIG. 5 is a graph showing a relationship between a temperature difference on a substrate surface and a generated thermal stress.
FIG. 6 is a graph showing a relationship between a temperature difference between front and back surfaces of a substrate and a generated thermal stress.
FIG. 7 is a graph showing a change in axial stress over time at the end of the substrate where the temperature decreases.
[Explanation of symbols]
Reference Signs List 1 substrate 1a test substrate 1b subjected to rounded chamfering test substrate b test substrate r subjected to C chamfering rounding radius

Claims (4)

基板上に複数の膜からなる太陽電池膜が積層される太陽電池パネルにおいて、
前記基板の端部には、第1の面からこれに対向する第2の面に渡ってR面取り加工が施されてなることを特徴とする太陽電池パネル。
In a solar cell panel in which a solar cell film composed of a plurality of films is laminated on a substrate,
A solar cell panel, wherein an end of the substrate is subjected to R chamfering from a first surface to a second surface facing the first surface.
請求項1記載の太陽電池パネルにおいて、
前記R面取り加工による形状は、かまぼこ状とされてなることを特徴とする太陽電池パネル。
The solar cell panel according to claim 1,
The solar cell panel is characterized in that the shape obtained by the R chamfering processing is a semi-cylindrical shape.
基板上に複数の膜からなる太陽電池膜が積層される太陽電池パネルの製造方法において、
前記基板の端部の第1の面からこれに対向する第2の面に渡ってR面取り加工を施した後に太陽電池膜の製膜を施すことを特徴とする太陽電池パネルの製造方法。
In a method for manufacturing a solar cell panel in which a plurality of solar cell films are stacked on a substrate,
A method of manufacturing a solar cell panel, comprising: forming a solar cell film after performing an R-chamfering process from a first surface at an end of the substrate to a second surface facing the first surface.
請求項3記載の太陽電池パネルの製造方法において、
太陽電池膜の製膜が施された太陽電池パネルを分割して小型の太陽電池パネルを形成することを特徴とする太陽電池パネルの製造方法。
The method for manufacturing a solar cell panel according to claim 3,
A method for manufacturing a solar cell panel, comprising dividing a solar cell panel on which a solar cell film is formed to form a small-sized solar cell panel.
JP2002376312A 2002-12-26 2002-12-26 Solar battery panel and manufacturing method thereof Pending JP2004207575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376312A JP2004207575A (en) 2002-12-26 2002-12-26 Solar battery panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376312A JP2004207575A (en) 2002-12-26 2002-12-26 Solar battery panel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004207575A true JP2004207575A (en) 2004-07-22

Family

ID=32813805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376312A Pending JP2004207575A (en) 2002-12-26 2002-12-26 Solar battery panel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004207575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278705A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar cell module
JP2009065030A (en) * 2007-09-07 2009-03-26 Mitsubishi Heavy Ind Ltd Photoelectric converting device, and manufacturing method for the photoelectric converting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278705A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar cell module
JP2009065030A (en) * 2007-09-07 2009-03-26 Mitsubishi Heavy Ind Ltd Photoelectric converting device, and manufacturing method for the photoelectric converting device

Similar Documents

Publication Publication Date Title
US20030098060A1 (en) Solar battery sealing film and method of manufacturing solar battery panel using the same
WO1999007022A1 (en) Solar cell module
JP5879537B2 (en) Solar cell panel, solar cell module, and method for manufacturing solar cell module
JPH11312820A (en) Solar cell module and its manufacture
EP2485267A1 (en) Solar cell module, solar cell panel, solar cell module manufacturing method, and solar cell panel manufacturing method
EP2639835A1 (en) Solar battery module and manufacturing method thereof
EP2590227A1 (en) Method for manufacturing solar cell module, and solar cell module manufactured by the method
Niepelt et al. High-quality exfoliated crystalline silicon foils for solar cell applications
JPWO2012176419A1 (en) Solar cell module and manufacturing method thereof
JP2002039631A (en) Photothermal hybrid panel, hybrid panel main body using it, and method of manufacturing it
JP2002280579A (en) Integrated thin film solar cell manufacturing method
JP4091310B2 (en) Method for producing silicon thin film solar cell
JP2004207575A (en) Solar battery panel and manufacturing method thereof
JP2009267034A (en) Thin-film solar battery module, production method and installation method thereof
JP2000174311A (en) Thin-film type solar cell module
EP2538456B1 (en) Hybrid photovoltaic/thermal solar module
JP5013039B2 (en) Heat treatment method, heat treatment apparatus and heat treatment jig for plate glass
KR101428841B1 (en) Solar-cell comprising back-side electrode with grid structure
US20230026617A1 (en) Photovoltaic module
JP2006156873A (en) Resin film and method of manufacturing semiconductor module using the same
CN102422182A (en) Solar reflecting mirror having a protective coating and method of making same
JP2005236217A (en) Sealing material for solar cell module, and manufacturing method for solar cell module using the same
JP4245131B2 (en) Method for manufacturing thin film solar cell
JP2003273374A (en) Solar cell module and method of manufacturing the same
WO2012067163A1 (en) Solar cell module and method for producing solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115