JP2004206383A - Contactless ic card reader-writer - Google Patents

Contactless ic card reader-writer Download PDF

Info

Publication number
JP2004206383A
JP2004206383A JP2002374383A JP2002374383A JP2004206383A JP 2004206383 A JP2004206383 A JP 2004206383A JP 2002374383 A JP2002374383 A JP 2002374383A JP 2002374383 A JP2002374383 A JP 2002374383A JP 2004206383 A JP2004206383 A JP 2004206383A
Authority
JP
Japan
Prior art keywords
frequency
contact
resonance circuit
card
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002374383A
Other languages
Japanese (ja)
Other versions
JP4657574B2 (en
Inventor
Futoshi Deguchi
太志 出口
Hiroshi Yoshinaga
洋 吉永
Akihiko Hirata
明彦 平田
Masahiko Tanaka
雅彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002374383A priority Critical patent/JP4657574B2/en
Priority to EP03029458A priority patent/EP1434160A3/en
Priority to EP05022151.4A priority patent/EP1615158B1/en
Priority to US10/743,899 priority patent/US7164344B2/en
Publication of JP2004206383A publication Critical patent/JP2004206383A/en
Application granted granted Critical
Publication of JP4657574B2 publication Critical patent/JP4657574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contactless IC card reader-writer having excellent transmission and reception characteristics. <P>SOLUTION: The contactless IC card reader-writer is provided with a loop antenna for supplying power and transmission signals to a contactless IC card by electromagnetic induction and acquiring reception signals from the contactless IC card by load fluctuation, a first resonance circuit part for resonating the loop antenna to a desired first frequency, and a radio transmission part for supplying the power and transmission data to the loop antenna through the first resonance circuit part. Further, it is provided with a radio reception part for acquiring the reception signals from the loop antenna through a second resonance circuit part resonated to a desired second frequency connected to the loop antenna by a coupling capacitor. From the reception signals, data from the contactless IC card are demodulated by a demodulation circuit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は非接触ICカードシステムで用いられる読取/書込装置に係り、特に非接触ICカードへの電力伝送効率、および非接触ICカードからのデータ受信効率を改良した非接触ICカード読取/書込装置に関するものである。
【0002】
【従来の技術】
従来、ICカードを用いた読取/書込システムは、一般に非接触ICカードシステムと呼ばれ、例えば13.56MHzの周波数帯を利用した物流システム、交通システム、航空貨物管理システム等々に実用化されつつある。ここで、図10は従来の非接触ICカードシステムの説明図である。このシステムは、図10に示すように、1枚の樹脂製カード上にICチップ103とアンテナコイル102を備えた非接触ICカード101と、この非接触ICカード101との通信を行う読取/書込装置105とを備え、この読取/書込装置105にはループアンテナ104が備えられている。このループアンテナ104により電力と送信データを常時または間欠に送信し、この電力と送信データを受信できる範囲内にある非接触ICカード101からの受信データを得るものである。
【0003】
一例として(特許文献1)に記載の非接触ICカードシステムの読取/書込装置を図11に示す。なお、図11は従来の非接触ICカードシステムの読取/書込装置と非接触ICカードの結合に関連する部分を示したブロック図である。以下、図10および図11を用いて、非接触ICカードシステムの動作を説明する。
【0004】
まず、送信データ伝送の場合は、前段の発振器からの搬送波を変調器へ入力し、送信データによりこれを変調する(図示せず)。そしてこの変調波を図11に示す電力増幅器106で増幅し、マッチング回路107を介してループアンテナ108から送信する。
【0005】
また、電力伝送のみの場合は、前段の発振器からの搬送波を無変調のままで送信する。この読取/書込装置から非接触ICカードへの送信は、電磁結合によりループアンテナ108が生成する磁束が非接触ICカードのアンテナコイル109と鎖交し、誘起電圧を励起することにより行われる。非接触ICカード側では、アンテナコイル109の誘起電圧をICチップ内の整流回路(図示せず)で整流し、非接触ICカード内の各回路の電源として用いる。また、同じ誘起電圧を復調回路(図示せず)へ導いて読取/書込装置からのデータを復調する。
【0006】
次に、非接触ICカードより読取/書込装置へのデータ伝送時には、読取/書込装置は無変調の搬送波を送信して、非接触ICカードへ電力供給のみを行っている。非接触ICカード側では、ICチップ内のメモリ(図示せず)から読み出されたデータに応じて、例えばアンテナコイル109に接続された負荷抵抗(図示せず)とスイッチ(図示せず)とからなる変調回路(図示せず)にて、データの“1”、“0”ビットに応じて、このスイッチがオン、オフされる。上記のようにスイッチがオン、オフすると、アンテナコイル109に対する負荷Zが変動し、この変動が読取/書込装置側のループアンテナ108へ電磁誘導により伝わり、ループアンテナ108側のインピーダンスが変動し、図11(a)の点Aに於ける電圧/電流すなわちインピーダンスが、非接触ICカードの送信データに応じて変化する。結果として高周波信号の振幅が変動する。即ち、この高周波信号はICカードのデータによって振幅変調される。この変調高周波信号が復調回路110で復調されて受信データが得られる。
【0007】
【特許文献1】
特開2002−007976号公報
【0008】
【発明が解決しようとする課題】
第一の従来例として図11(a)は並列共振を用いたときの復調回路110の周辺を詳細に示したもので、コンデンサ114がループアンテナ108と並列共振する。この場合、並列共振回路のインピーダンスはその共振点付近では大きな値となるから、マッチング回路107の出力側インピーダンスもそれに合わせて大きな値であり、このハイインピーダンス点の電圧Vを抵抗器113を介して復調回路110へ取り込み復調することとなる。この構成では、搬送波電流は抵抗器113と復調回路110の搬送波帯での入力インピーダンスとの直列インピーダンスが、ループアンテナ108とコンデンサ114からなる並列回路に並列に入ることになり、非接触ICカードからのデータ検出のために共振回路のQを低下させることとなってしまう。これは直ちに非接触ICカードへの電力伝送効率を低下させる。
【0009】
また、図11(b)は、第二の従来例として、直列共振を用いたときの復調回路110の周辺を示したもので、この場合にはループアンテナ108とコンデンサ114とからなる直列共振回路を形成している。直列共振時にはその回路のインピーダンスは小さい値となるので、この場合は電力増幅器106からの電流Iを抵抗器113へ流し、その電圧降下を復調回路110で検出する。従って、抵抗器113に於ける電力消費が生じ、さらにこの場合には直列共振回路に抵抗器113が直列に入ることになってQが低下し、非接触ICカードへの電力伝送効率を低下させる。
【0010】
上記のように第一から第二の従来例のいずれの回路においても、共振回路は一つであり、電力と送信信号を伝送する搬送波の周波数と、ICカード側からの受信信号の周波数に対し、両方の周波数をカバーする必要が有った。それゆえ従来の回路においては、アンテナのQ値を下げる必要が有り、Q値を下げるためループアンテナ108に直列または並列に抵抗を挿入していた(図示せず)。その特性を示したのが図4である。なお、図4はアンテナの周波数とQ値の関係を示すグラフである。図においてアンテナのQが低い場合、実線(Q=L)で示すように送信信号を伝送する搬送波の周波数を中心に、受信信号の周波数である±副搬送波周波数の範囲まで帯域を広げる必要があった。そのためQ値を下げる事により電力と送信信号を伝送する搬送波のレベルが大幅に低下し、その結果非接触ICカードへの電力伝送効率が大幅に低下するという課題があった。さらに受信データを取得する場合も、共振回路は一つであるがゆえに電力増幅器106からの大振幅の高周波信号が復調回路110へ流入する事になり、この大振幅の高周波信号をフィルタリングする為に、高性能な帯域阻止特性を有するフィルタ回路を復調回路110の前段に設けねばならないという課題があった。
【0011】
そこで、本発明は上記従来の課題を解決するものであり、良好な送受信特性を有する非接触ICカード読取/書込装置を提供する事を目的とする。
【0012】
【課題を解決するための手段】
本発明は、非接触ICカードに電磁誘導により電力と送信信号を供給し、非接触ICカードからの受信信号を負荷変動により取得するループアンテナと、このループアンテナを所望の第一の周波数に共振させるための第一の共振回路部と、第一の共振回路部を介しループアンテナに電力と送信データを供給する無線送信部を設け、さらにループアンテナにカップリングコンデンサにて接続された、所望の第二の周波数に共振した第二の共振回路部を介して、ループアンテナからの受信信号を取得する無線受信部を設け、その受信信号から復調回路により非接触ICカードからのデータを復調するように構成したものである。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の発明は、非接触ICカードに電磁誘導により電力と送信信号を供給し、非接触ICカードからの受信信号を負荷変動により取得するループアンテナと、このループアンテナを所望の第一の周波数に共振させるための第一の共振回路部と、第一の共振回路部を介しループアンテナに電力と送信データを供給する無線送信部を設け、さらにループアンテナにカップリングコンデンサにて接続された、所望の第二の周波数に共振した第二の共振回路部を介して、ループアンテナからの受信信号を取得する無線受信部を設け、その受信信号から復調回路により非接触ICカードからのデータを復調するように構成された非接触ICカードシステムの読取/書込装置である。この構成にする事により、送信周波数専用の共振回路と受信周波数専用の共振回路を設ける事ができる。
【0014】
請求項2に記載の発明は、第一の共振回路部の共振周波数を、電力と送信信号を伝送する搬送波の周波数に、第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される変調副搬送波の周波数に設定した構成にした非接触ICカードシステムの読取/書込装置である。この構成にする事により、読取/書込装置からの送信時において、電力と送信信号を伝送する搬送波周波数に特化した周波数に第一の共振回路部の共振周波数を設定する事により、Q値の最大化が計れ効率よく電力と送信信号を伝送できるため電力伝送効率が向上する。
【0015】
さらに非接触ICカード側からのデータの受信時において、負荷変調された受信変調側波帯に特化した周波数に第二の共振回路部の共振周波数を設定する事により、Q値の最大化が計れ搬送波の受信側への回り込みを大幅に低減でき、その結果効率よく受信信号を受信できるため受信効率が向上する。
【0016】
請求項3に記載の発明は、第二の共振回路部を構成する第一のコイルに近接設置され、相互誘導にて結合された第二のコイルを設け、第一のコイルの一端を第一のグランドに、第二のコイルの一端を第二のグランドに接地し、送信部およびアンテナ回路部と受信部のグランドを分離した構成にしたことにより、送信部からの大振幅の搬送波信号により受信側のグランドが振られる事を防止し受信性能を大幅に改善したものである。
【0017】
請求項4に記載の発明は、第二の共振回路部を構成する第一のコイルL3の巻数n1と、相互誘導にて結合された第二のコイルL4の巻数n2を、第二の共振回路部の出力インピーダンスZ1と前記無線受信部の入力インピーダンスZ2に夫々整合する様に選定した構成にしたことにより、第一のコイルL3と第二のコイルL4にインピーダンス変換機能を持たせたもので、不整合損失を低減でき受信性能を改善したものである。
【0018】
請求項5に記載の発明は、第二の共振回路部を構成する第二のコイルL4の一端と他端間に、第一のコンデンサC1および第二のコンデンサC2を直列に接続し、そのC1−C2の接合点より出力信号を取り出し、前記無線受信部の入力インピーダンスに整合する様に接続する構成にしたことにより、第二の共振回路機能と前記無線受信部とのインピーダンス変換機能を併用させ、回路規模の小型化および受信効率を向上させたものである。
【0019】
請求項6に記載の発明は、請求項4に記載の第二の共振回路部を構成する第一のコイルL3と、相互誘導にて結合された第二のコイルL4からなる構成において、第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される両側波帯のうち、下側の変調副搬送波の周波数に設定した構成にしたことにより、受信側から見れば搬送波は非希望波(U)、変調副搬送波は希望波(D)であり、それゆえDU比を大きくするためには、当然の事であるが希望波(D)を大きく、非希望波(U)を小さくする必要がある。L3とL4は誘導結合されている為、L3とL4は周波数が高い程結合度が低く、周波数が低い程結合度が高くなる。よって周波数が高い非希望波(U)より、周波数の低い希望波(D)の方が結合度が大きくなる。それゆえDU比の改善が計れ受信性能を向上させたものである。
【0020】
請求項7に記載の発明は、請求項5に記載の第二のコイルL4の一端と他端間に、第一のコンデンサC1および第二のコンデンサC2を直列に接続し、そのC1−C2の接合点より出力信号を取りす構成において、第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される両側波帯のうち、上側の変調副搬送波の周波数に設定した構成にしたことにより、受信側から見れば搬送波は非希望波(U)、変調副搬送波は希望波(D)であり、それゆえDU比を大きくするためには、当然の事であるが希望波(D)を大きく、非希望波(U)を小さくする必要がある。搬送波の周波数に共振している第一の共振回路と、上側の変調副搬送波に共振している第二の共振回路は結合コンデンサC3で結合している為、高い周波数では結合度が大きく、低い周波数では結合度が小さくなる。それゆえ周波数が高い希望波(D)の方が周波数の低い非希望波(U)より結合度が大きくなりそれゆえDU比の改善が計れ受信性能を向上させたものである。さらに受信部とインピーダンス整合する為に誘導結合での2次巻き線でのインピーダンス変換でははなく、共振回路のコンデンサによるタップダウン回路を用いることでこのDU比を確保したまま、インピーダンスの変換も可能となる。
【0021】
請求項8に記載の発明は、搬送波の周波数に共振している第一の共振回路と、変調副搬送波に共振している第二の共振回路を、結合コンデンサC3で結合し副同調回路を構成する。まず結合コンデンサC3の特性により、高い周波数では結合度が大きく、低い周波数では結合度が小さくなる。これとは逆に、第二の共振回路部を構成する第一のコイルL3と、相互誘導にて結合された第二のコイルL4の特性は、誘導結合されているがゆえに周波数が高い程結合度が小さく、周波数が低い程結合度が大きくなる。したがって、これら相反する特性を有する二つの回路を組み合わせた場合、各々の特性が相殺しあいフラットな周波数特性を有する広帯域な共振回路を得ることができる。その結果、周波数に関係無く変調副搬送波が212KHz、484KHz、847KHzと異なるシステムでも一つのハードウェアーでDU比が一定にとれ、回路規模のの小型化と共に安定した受信特性を得ることができる。
【0022】
請求項9に記載の発明は、前記第二の共振回路部と前記無線受信部間に中間周波トランスを設け、前記中間周波トランスの第一のコイルL5の一端を前記第二の共振回路部のグランドに、前記中間周波トランスの第二のコイルL6の一端を前記無線受信部のグランドに接地し、第二の共振回路部および無線受信部のグランドを分離しするとともに、中間周波トランスにより搬送波と受信信号波を周波数的に分離した構成にしたことにより、第二の共振回路部からの大振幅の搬送波にて無線受信部のグランドが振られる事を防止し、さらに無線受信部への搬送波周波数成分の流入を大幅に抑圧することが可能となり、受信性能を改善することができる。
【0023】
以下、本発明の実施の形態について、図1から図9を用いて説明する。なお、本発明における非接触ICカードの定義は、いわゆるカードに限定されるものではなく、非接触で読取/書込装置との通信を行うことができる無線通信媒体である。よって、用途によってはICタグ、IDタグ、識別ラベルと呼ばれるものを含む。
【0024】
まず、図3を用いて副搬送波を利用した変調方式について説明する。図3は周波数と信号強度の関係を示すグラフである。図3に示すように非接触ICカードシステムでは、副搬送波を利用した変調方式が主に周波数範囲13.56MHzでのシステムにおける非接触ICカード側から読取/書込装置へのデータ転送のための負荷変調に使用される。ここで、図9は13.56MHzシステム比較表を示す図である。13.56MHzでのシステムでは、図9に示すように副搬送波周波数847KHz(13.56MHz/16)、423KHz(13.56MHz/32)または212KHz(13.56MHz/64)が通常使用される。図3に示すように、副搬送波での負荷変調は、搬送波周波数の近傍の±副搬送波周波数fHの所に、2つのスペクトルを発生させる。結合度の弱い非接触ICカードシステムでは、読取/書込装置の搬送波信号と負荷変調された受信変調側波帯との差は、約80〜90dBの範囲で変動する。2つの副搬送波変調のうち情報はどちらの側波帯にも含まれるため周波数は下側副搬送波が使用されても、上側副搬送波が使用されても良い。
【0025】
(実施の形態1)
図1は本発明の実施の形態に係る非接触ICカード読取/書込装置を示すブロック図である。図1(a)は本発明の実施の形態に係る非接触ICカード読取/書込装置を示すブロック図、図1(b)は(a)の部分詳細図であり、共振回路の一例として直列共振回路を用いた場合の詳細図である。図1において送信データ伝送の場合は、発振器7からの搬送波を変調器8へ入力し、送信データによりこれを変調する。そしてこれを電力増幅器9で増幅し、マッチング回路10を経て、図1に示すC1、C2、L1から成る第一の共振回路4を介してループアンテナ3から送信する。また、電力伝送のみの場合は、発振器7からの搬送波を無変調のままで送信する。この読取/書込装置111から非接触ICカード112への送信は、電磁結合によりループアンテナ3が生成する磁束が非接触ICカード112のアンテナコイル12と鎖交し、誘起電圧を励起することにより行われる。非接触ICカード112では、アンテナコイル12の誘起電圧をICチップ13内の整流回路(図示せず)で整流して非接触ICカード内の各回路の電源として用いる。また、同じ誘起電圧を復調回路(図示せず)へ導いて読取/書込装置からのデータを復調する。
【0026】
次に、非接触ICカード112より読取/書込装置111へのデータ伝送時には、読取/書込装置は無変調の搬送波を送信して、非接触ICカードへ電力供給のみを行っている。非接触ICカード側では、ICチップ13内のメモリ(図示せず)から読み出されたデータDATAbに応じて、例えばアンテナコイル13に接続された負荷抵抗(図示せず)とスイッチ(図示せず)とからなる変調回路(図示せず)において、データの“1”、“0”ビットに応じて、このスイッチがオン、オフされる。読取/書込装置111においては、上記のようにスイッチがオン、オフすると、アンテナコイル12に対する負荷が変動する。この変動が読取/書込装置側のループアンテナ3へ電磁誘導により伝わり、ループアンテナ3側のインピーダンスが変動する。ループアンテナ3に接続されたカップリングコンデンサC3を介して、C4、L3から成る第二の共振回路5を介して、無線受信部2の復調器11でデータが復調される。上記の構成にする事により、送信周波数専用の共振回路と受信周波数専用の共振回路を設ける事が送受信特性の改善が計れる。
【0027】
(実施の形態2)
図1(b)において、第一の共振回路部4のC1、C2、L1の値を電力と送信信号を伝送する搬送波の周波数になるよう設定し、第二の共振回路部5のC4、L3の値を、接触ICカード側の負荷変動にて形成される変調副搬送波の周波数になるよう設定する事により、図5に示すように、読取/書込装置111からの送信時において、電力と送信信号を伝送する搬送波周波数に特化した周波数に、第一の共振回路部の共振周波数を設定する事により、Q値の最大化が計れ、効率よく電力と送信信号を伝送できるため電力伝送効率が向上する。なお、図5は同調回路の周波数とQ値の関係を示すグラフである。
【0028】
さらにICカード側からのデータの受信時において、負荷変調された受信変調側波帯に特化した周波数に、第二の共振回路部の共振周波数を設定する事により、Q値の最大化が計れ、搬送波の受信側への回り込みを大幅に低減でき、その結果効率よく受信信号を受信できるため受信効率が向上する。
【0029】
(実施の形態3)
図1(b)において、第二の共振回路部5を構成する第一のコイルL3に近接設置され、相互誘導にて結合された第二のコイルL4を設け、第一のコイルL3の一端を第一のグランドG1に、第二のコイルL4の一端を第二のグランドG2に接地し、無線送信部およびアンテナインターフェース部のグランドG1と受信部のグランドG2を分離した構成にしたことにより、送信部からの大振幅の搬送波信号により、受信側のグランドG2が振られる事を防止し受信性能を大幅に改善したものである。
【0030】
(実施の形態4)
図1(b)において、第二の共振回路部を構成する第一のコイルL3の巻数n1と、相互誘導にて結合された第二のコイルL4の巻数n2を、第二の共振回路部の出力インピーダンスZ1と前記無線受信部の入力インピーダンスZ2に夫々整合する様に選定した構成にしたことにより、第一のコイルL3と第二のコイルL4にインピーダンス変換機能を持たせたもので、不整合損失を低減でき受信性能を改善するとともにインピーダンス変換回路を別途設ける必要がなくなり、回路規模の小型化およびコストダウン効果が計られる。
【0031】
(実施の形態5)
図2は本発明の実施の形態に係る非接触ICカード読取/書込装置を示すブロック図である。図2(a)は本発明の実施の形態に係る非接触ICカード読取/書込装置を示すブロック図、図2(b)は(a)の部分詳細図であり、第一の共振回路の一例として直列共振回路を用いた場合の詳細図である。図2に示すように第二の共振回路部を構成する第二のコイルL4の一端と他端間に、第一のコンデンサC6および第二のコンデンサC7を直列に接続し、そのC6−C7の接合点より出力信号を取り出し、前記無線受信部の入力インピーダンスに整合する様に接続する構成にしたことにより、第二の共振回路機能と前記無線受信部とのインピーダンス変換機能を併用させ、回路規模の小型化および受信効率を向上させたものである。
【0032】
(実施の形態6)
図1(b)において、第二の共振回路部5を構成する第一のコイルL3と、相互誘導にて結合された第二のコイルL4からなる構成において、第二の共振回路部5の共振周波数を、図6(b)に示すように接触ICカード側の負荷変動にて形成される両側波帯のうち、下側の変調副搬送波の周波数に設定した構成にしたことにより、受信側から見れば搬送波は非希望波(U)、変調副搬送波は希望波(D)であり、それゆえDU比を大きくするためには、当然の事であるが希望波(D)を大きく、非希望波(U)を小さくする必要がある。L3とL4は誘導結合されている為、図6(a)に示すようにL3とL4は周波数が高い程結合度が低く、周波数が低い程結合度が高くなる。よって周波数が高い非希望波(U)より、周波数の低い希望波(D)の方が結合度が大きくなる。それゆえDU比の改善が計れ受信性能を向上させたものである。なお、図6は周波数対結合度および受信信号強度を示すグラフである。
【0033】
(実施の形態7)
図2(b)において、第二の共振回路部5を構成する第一のコイルL3と、相互誘導にて結合された第二のコイルL4からなる構成において、コイルL4の一端と他端間に、第一のコンデンサC6および第二のコンデンサC7を直列に接続し、そのC6−C7間の中点より出力信号を取りす構成において、第二の共振回路部5の共振周波数を、図7(b)に示すように接触ICカード側の負荷変動にて形成される両側波帯のうち、上側の変調副搬送波の周波数に設定した構成にしたことにより、受信側から見れば搬送波は非希望波(U)、変調副搬送波は希望波(D)であり、それゆえDU比を大きくするためには、当然の事であるが希望波(D)を大きく、非希望波(U)を小さくする必要がある。搬送波の周波数に共振している第一の共振回路と、上側の変調副搬送波に共振している第二の共振回路は結合コンデンサC3で結合している為、図7(a)に示すように高い周波数では結合度が大きく、低い周波数では結合度が小さくなる。それゆえ周波数が高い希望波(D)の方が周波数の低い非希望波(U)より結合度が大きくなりそれゆえDU比の改善が計れ受信性能を向上させたものである。さらに受信部とインピーダンス整合する為に誘導結合での2次巻き線でのインピーダンス変換でははなく、共振回路のコンデンサによるタップダウン回路を用いることでこのDU比を確保したまま、インピーダンスの変換も可能となり、回路規模の小型化も計れる。なお、図7は周波数対結合度および受信信号強度を示すグラフである。
【0034】
(実施の形態8)
図2(b)において、搬送波の周波数に共振している第一の共振回路と、変調副搬送波に共振している第二の共振回路を、結合コンデンサC3で結合し副同調回路を構成する。まず図8(a)に示すように結合コンデンサC3の特性により、高い周波数では結合度が大きく、低い周波数では結合度が小さくなる。これとは逆に、第二の共振回路部を構成する第一のコイルL3と、相互誘導にて結合された第二のコイルL4の特性は、誘導結合されているがゆえに周波数が高い程結合度が小さく、周波数が低い程結合度が大きくなる。したがって、これら相反する特性を有する二つの回路を組み合わせた場合、各々の特性が相殺しあいフラットな周波数特性を有する広帯域な共振回路を得ることができる。その結果、図8(b)に示すように周波数に関係無く変調副搬送波が212KHz、484KHz、847KHzと異なるシステムでも一つのハードウェアーでDU比が一定にとれ、回路規模の小型化と共に安定した受信特性を得ることができる。なお、図8は周波数対結合度および受信信号強度を示すグラフである。
【0035】
(実施の形態9)
図2(b)において、第二の共振回路部と無線受信部間に中間周波トランス14を設け、中間周波トランスの第一のコイルL5の一端を第二の共振回路部のグランドG2に、中間周波トランスの第二のコイルL6の一端を無線受信部のグランドG3に接地し、第二の共振回路部および無線受信部のグランドを分離しするとともに、中間周波トランス14により搬送波と受信信号波を周波数的に分離した構成にしたことにより、第二の共振回路部からの大振幅の搬送波にて無線受信部のグランドが振られる事を防止し、さらに無線受信部への搬送波周波数成分の流入を大幅に抑圧することが可能となり、受信性能を改善することができる。
【0036】
以上、本発明の実施の形態1〜9について説明したが、上述したように、発振器からの搬送波は電力増幅器で増幅されるが、その増幅にはE級増幅器(Eクラスアンプ)を用いることが好ましい。E級増幅器を用いることによって、高効率動作を実現することが可能となる。よって、送信出力を上げても発熱を抑えることができる。
【0037】
【発明の効果】
以上のように本発明により、第一の共振回路部の共振周波数を電力と送信信号を伝送する搬送波の周波数に設定し、第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される変調副搬送波の周波数に設定する。これにより読取/書込装置からの送信時は、電力と送信信号を伝送する搬送波周波数に特化した周波数に、第一の共振回路部の共振周波数を設定する事により、Q値の最大化が計れ電力伝送効率が向上する。さらに非接触ICカード側からのデータの受信時は、負荷変調された受信変調側波帯に特化した周波数に、第二の共振回路部の共振周波数を設定する事により、Q値の最大化が計れ搬送波の受信側への回り込みを大幅に低減でき、受信効率が向上する。上記のごとく本発明により、良好な送受信特性を有する非接触ICカード読取/書込装置を提供する事ができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る非接触ICカード読取/書込装置のブロック図
【図2】本発明の実施の形態に係る非接触ICカード読取/書込装置のブロック図
【図3】周波数と信号強度の関係を示すグラフ
【図4】アンテナの周波数とQ値の関係を示すグラフ
【図5】同調回路の周波数とQ値の関係を示すグラフ
【図6】周波数対結合度および受信信号強度を示すグラフ
【図7】周波数対結合度および受信信号強度を示すグラフ
【図8】周波数対結合度および受信信号強度を示すグラフ
【図9】13.56MHzシステム比較表を示す図
【図10】従来の非接触ICカードシステムの説明図
【図11】従来の非接触ICカードシステムの読取/書込装置と非接触ICカードの結合に関連する部分を示したブロック図
【符号の説明】
1 無線送信部
2 無線受信部
3 ループアンテナ
4 第一の共振回路
5 第二の共振回路
6 インピーダンス変性器
7 発振器
8 変調器
9 電力増幅器
10 マッチング回路
11 復調回路
12 アンテナコイル
13 ICチップ
14 中間周波トランス
101 非接触ICカード
102 アンテナコイル
103 ICチップ
104 ループアンテナ
105 読取/書込装置
106 電力増幅器
107 マッチング回路
108 ループアンテナ
109 アンテナコイル
110 復調回路
111 読取/書込装置
112 非接触ICカード
113 抵抗器
114 コンデンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a read / write device used in a non-contact IC card system, and more particularly to a non-contact IC card read / write in which power transmission efficiency to a non-contact IC card and data reception efficiency from the non-contact IC card are improved. It relates to an embedded device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a read / write system using an IC card is generally called a non-contact IC card system, and is being put to practical use in, for example, a distribution system, a transportation system, an air cargo management system, and the like using a 13.56 MHz frequency band. is there. Here, FIG. 10 is an explanatory diagram of a conventional non-contact IC card system. As shown in FIG. 10, this system includes a non-contact IC card 101 having an IC chip 103 and an antenna coil 102 on a single resin card, and a read / write system for communicating with the non-contact IC card 101. The read / write device 105 includes a loop antenna 104. The loop antenna 104 transmits power and transmission data constantly or intermittently, and obtains reception data from the non-contact IC card 101 within a range where the power and transmission data can be received.
[0003]
As an example, FIG. 11 shows a reading / writing device of a non-contact IC card system described in (Patent Document 1). FIG. 11 is a block diagram showing a portion related to the connection between the read / write device and the non-contact IC card of the conventional non-contact IC card system. Hereinafter, the operation of the contactless IC card system will be described with reference to FIGS.
[0004]
First, in the case of transmission data transmission, a carrier wave from an oscillator at the preceding stage is input to a modulator and modulated by transmission data (not shown). This modulated wave is amplified by the power amplifier 106 shown in FIG. 11 and transmitted from the loop antenna 108 via the matching circuit 107.
[0005]
In the case of only power transmission, the carrier wave from the preceding oscillator is transmitted without any modulation. The transmission from the read / write device to the non-contact IC card is performed by the magnetic flux generated by the loop antenna 108 interlinking with the antenna coil 109 of the non-contact IC card due to the electromagnetic coupling to excite the induced voltage. On the non-contact IC card side, the induced voltage of the antenna coil 109 is rectified by a rectifier circuit (not shown) in the IC chip and used as a power source for each circuit in the non-contact IC card. The same induced voltage is guided to a demodulation circuit (not shown) to demodulate data from the read / write device.
[0006]
Next, at the time of data transmission from the contactless IC card to the reading / writing device, the reading / writing device transmits a non-modulated carrier wave and only supplies power to the contactless IC card. On the non-contact IC card side, for example, a load resistor (not shown) and a switch (not shown) connected to the antenna coil 109 in accordance with data read from a memory (not shown) in the IC chip. This switch is turned on and off according to the data "1" and "0" bits by a modulation circuit (not shown) composed of. When the switch is turned on and off as described above, the load Z on the antenna coil 109 fluctuates, and this fluctuation is transmitted to the loop antenna 108 on the read / write device side by electromagnetic induction, and the impedance on the loop antenna 108 fluctuates. The voltage / current, that is, the impedance at point A in FIG. 11A changes according to the transmission data of the non-contact IC card. As a result, the amplitude of the high-frequency signal fluctuates. That is, the high-frequency signal is amplitude-modulated by the data of the IC card. The modulated high-frequency signal is demodulated by the demodulation circuit 110 to obtain received data.
[0007]
[Patent Document 1]
JP 2002-007976 A
[0008]
[Problems to be solved by the invention]
As a first conventional example, FIG. 11A shows details of the periphery of the demodulation circuit 110 when parallel resonance is used, and a capacitor 114 resonates with the loop antenna 108 in parallel. In this case, since the impedance of the parallel resonance circuit has a large value near the resonance point, the output side impedance of the matching circuit 107 also has a large value accordingly. It is taken into the demodulation circuit 110 and demodulated. In this configuration, the carrier current is such that the series impedance of the resistor 113 and the input impedance of the demodulation circuit 110 in the carrier band enters the parallel circuit composed of the loop antenna 108 and the capacitor 114 in parallel. Therefore, the Q of the resonance circuit is reduced for the data detection. This immediately reduces the power transmission efficiency to the contactless IC card.
[0009]
FIG. 11B shows, as a second conventional example, the periphery of the demodulation circuit 110 when series resonance is used. In this case, a series resonance circuit including a loop antenna 108 and a capacitor 114 is shown. Is formed. At the time of series resonance, the impedance of the circuit has a small value. In this case, the current I from the power amplifier 106 flows to the resistor 113, and the voltage drop is detected by the demodulation circuit 110. Therefore, power consumption occurs in the resistor 113, and in this case, the resistor 113 enters the series resonance circuit in series, so that Q is reduced, and power transmission efficiency to the non-contact IC card is reduced. .
[0010]
As described above, in each of the first and second conventional examples, the number of the resonance circuit is one, and the frequency of the carrier wave transmitting the power and the transmission signal and the frequency of the reception signal from the IC card side are different. Needed to cover both frequencies. Therefore, in the conventional circuit, it is necessary to lower the Q value of the antenna, and a resistor is inserted in series or in parallel with the loop antenna 108 to lower the Q value (not shown). FIG. 4 shows the characteristics. FIG. 4 is a graph showing the relationship between the antenna frequency and the Q value. When the Q of the antenna is low in the drawing, it is necessary to extend the band around the frequency of the carrier transmitting the transmission signal to the range of ± subcarrier frequency which is the frequency of the reception signal, as shown by the solid line (Q = L). Was. Therefore, when the Q value is reduced, the power and the level of the carrier transmitting the transmission signal are significantly reduced, and as a result, the efficiency of power transmission to the non-contact IC card is significantly reduced. Further, when receiving the received data, since there is only one resonance circuit, a large-amplitude high-frequency signal from the power amplifier 106 flows into the demodulation circuit 110. In order to filter this large-amplitude high-frequency signal, In addition, there is a problem that a filter circuit having a high-performance band rejection characteristic must be provided before the demodulation circuit 110.
[0011]
Therefore, the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a non-contact IC card reading / writing device having good transmission / reception characteristics.
[0012]
[Means for Solving the Problems]
The present invention provides a loop antenna that supplies power and a transmission signal to a non-contact IC card by electromagnetic induction and obtains a reception signal from the non-contact IC card by load fluctuation, and resonates the loop antenna to a desired first frequency. A first resonance circuit section for causing a wireless transmission section to supply power and transmission data to the loop antenna via the first resonance circuit section is provided, and further connected to the loop antenna by a coupling capacitor. A wireless receiving unit for obtaining a reception signal from the loop antenna is provided via a second resonance circuit unit that resonates at the second frequency, and data from the contactless IC card is demodulated from the reception signal by a demodulation circuit. It is what was constituted.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention provides a loop antenna that supplies power and a transmission signal to a non-contact IC card by electromagnetic induction, and obtains a reception signal from the non-contact IC card by load fluctuation, and a loop antenna. A first resonance circuit unit for resonating to a desired first frequency, and a wireless transmission unit for supplying power and transmission data to the loop antenna via the first resonance circuit unit are provided, and a coupling capacitor is further provided on the loop antenna. A wireless receiving unit that obtains a reception signal from the loop antenna via a second resonance circuit unit that resonates at a desired second frequency, which is connected by a non-contact IC by a demodulation circuit from the reception signal. A read / write device of a contactless IC card system configured to demodulate data from a card. With this configuration, a resonance circuit dedicated to the transmission frequency and a resonance circuit dedicated to the reception frequency can be provided.
[0014]
According to a second aspect of the present invention, the resonance frequency of the first resonance circuit unit is set to the frequency of a carrier wave for transmitting power and a transmission signal, and the resonance frequency of the second resonance circuit unit is set to a load on the non-contact IC card side. This is a read / write device for a non-contact IC card system having a configuration set to the frequency of a modulated subcarrier generated by fluctuation. With this configuration, at the time of transmission from the read / write device, the Q value is set by setting the resonance frequency of the first resonance circuit unit to a frequency specialized for the power and the carrier frequency for transmitting the transmission signal. Can be maximized and the power and the transmission signal can be transmitted efficiently, so that the power transmission efficiency is improved.
[0015]
Furthermore, when data is received from the non-contact IC card side, the Q value can be maximized by setting the resonance frequency of the second resonance circuit unit to a frequency specific to the load-modulated reception sideband. The rounding of the measured carrier wave to the receiving side can be greatly reduced, and as a result, the received signal can be efficiently received, so that the receiving efficiency is improved.
[0016]
According to a third aspect of the present invention, there is provided a second coil which is provided close to the first coil constituting the second resonance circuit unit and is coupled by mutual induction, and one end of the first coil is connected to the first coil by the first coil. Ground, one end of the second coil is grounded to the second ground, and the transmission unit, the antenna circuit unit, and the reception unit are separated from each other. This prevents the ground on the side from swinging and greatly improves the reception performance.
[0017]
According to a fourth aspect of the present invention, the number of turns n1 of the first coil L3 constituting the second resonance circuit unit and the number of turns n2 of the second coil L4 coupled by mutual induction are defined by the second resonance circuit. The first coil L3 and the second coil L4 have an impedance conversion function by adopting a configuration selected so as to match the output impedance Z1 of the unit and the input impedance Z2 of the radio receiving unit, respectively. The mismatch loss can be reduced and the receiving performance is improved.
[0018]
According to a fifth aspect of the present invention, a first capacitor C1 and a second capacitor C2 are connected in series between one end and the other end of a second coil L4 constituting a second resonance circuit portion. By taking out the output signal from the junction of -C2 and connecting it so as to match the input impedance of the wireless receiving unit, the second resonance circuit function and the impedance converting function of the wireless receiving unit can be used together. In this case, the circuit size is reduced and the receiving efficiency is improved.
[0019]
According to a sixth aspect of the present invention, in the configuration comprising the first coil L3 constituting the second resonance circuit section according to the fourth aspect and the second coil L4 coupled by mutual induction, By setting the resonance frequency of the resonance circuit section to the frequency of the lower modulated subcarrier in the double sideband formed by the load fluctuation on the non-contact IC card side, from the reception side, The carrier is the undesired wave (U) and the modulated subcarrier is the desired wave (D). Therefore, in order to increase the DU ratio, it is natural that the desired wave (D) is increased and the undesired wave (D) is increased. U) must be reduced. Since L3 and L4 are inductively coupled, the higher the frequency of L3 and L4, the lower the degree of coupling, and the lower the frequency, the higher the degree of coupling. Therefore, the desired wave (D) having a lower frequency has a higher degree of coupling than the undesired wave (U) having a higher frequency. Therefore, the DU ratio can be improved and the receiving performance can be improved.
[0020]
According to a seventh aspect of the present invention, a first capacitor C1 and a second capacitor C2 are connected in series between one end and the other end of the second coil L4 according to the fifth aspect. In the configuration in which an output signal is taken from the junction, the resonance frequency of the second resonance circuit is set to the frequency of the upper modulated subcarrier in the double sideband formed by the load fluctuation on the non-contact IC card side. With this configuration, the carrier is an undesired wave (U) and the modulated subcarrier is a desired wave (D) from the viewpoint of the receiving side. Therefore, in order to increase the DU ratio, it is natural that It is necessary to increase the desired wave (D) and reduce the undesired wave (U). The first resonance circuit resonating at the carrier frequency and the second resonance circuit resonating at the upper modulated sub-carrier are coupled by the coupling capacitor C3. At frequencies, the degree of coupling decreases. Therefore, the desired wave (D) having a higher frequency has a higher degree of coupling than the undesired wave (U) having a lower frequency, and therefore the DU ratio is improved and the receiving performance is improved. Furthermore, it is possible to convert the impedance while maintaining this DU ratio by using a tap-down circuit with a capacitor of the resonance circuit instead of the impedance conversion of the secondary winding by inductive coupling to match the impedance with the receiver. It becomes.
[0021]
According to an eighth aspect of the present invention, a first resonance circuit resonating at the carrier frequency and a second resonance circuit resonating at the modulated sub-carrier are coupled by a coupling capacitor C3 to form a sub-tuning circuit. I do. First, due to the characteristics of the coupling capacitor C3, the degree of coupling is high at high frequencies, and is low at low frequencies. Conversely, the characteristics of the first coil L3 forming the second resonance circuit unit and the second coil L4 coupled by mutual induction are inductively coupled, so that the higher the frequency, the higher the coupling. The degree is small and the lower the frequency, the greater the degree of coupling. Therefore, when two circuits having these contradictory characteristics are combined, a wide-band resonance circuit having a flat frequency characteristic can be obtained by canceling each characteristic. As a result, even in a system in which the modulated subcarriers are different from 212 KHz, 484 KHz, and 847 KHz irrespective of the frequency, the DU ratio can be kept constant with one piece of hardware, and a stable receiving characteristic can be obtained along with the downsizing of the circuit scale.
[0022]
The invention according to claim 9 is configured such that an intermediate frequency transformer is provided between the second resonance circuit unit and the wireless reception unit, and one end of a first coil L5 of the intermediate frequency transformer is connected to the second resonance circuit unit. At the ground, one end of the second coil L6 of the intermediate frequency transformer is grounded to the ground of the radio receiving unit, and the ground of the second resonance circuit unit and the radio receiving unit is separated. By adopting a configuration in which the received signal wave is separated in frequency, it is possible to prevent the ground of the wireless receiving unit from swinging by the large-amplitude carrier wave from the second resonance circuit unit, and to further prevent the carrier wave frequency from being transmitted to the wireless receiving unit. It is possible to greatly suppress the inflow of components, and it is possible to improve reception performance.
[0023]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 9. Note that the definition of a non-contact IC card in the present invention is not limited to a so-called card, but is a wireless communication medium capable of performing communication with a reading / writing device in a non-contact manner. Therefore, it includes what is called an IC tag, an ID tag, and an identification label depending on the use.
[0024]
First, a modulation method using a subcarrier will be described with reference to FIG. FIG. 3 is a graph showing the relationship between frequency and signal strength. As shown in FIG. 3, in the non-contact IC card system, the modulation method using the subcarrier is mainly used for data transfer from the non-contact IC card side to the reading / writing device in the system in the frequency range of 13.56 MHz. Used for load modulation. Here, FIG. 9 is a diagram showing a 13.56 MHz system comparison table. In a 13.56 MHz system, a subcarrier frequency of 847 KHz (13.56 MHz / 16), 423 KHz (13.56 MHz / 32) or 212 KHz (13.56 MHz / 64) is typically used as shown in FIG. As shown in FIG. 3, the load modulation on the subcarrier generates two spectra at ± subcarrier frequency fH near the carrier frequency. In a contactless IC card system having a low degree of coupling, the difference between the carrier signal of the read / write device and the load-modulated reception modulation sideband varies in a range of about 80 to 90 dB. Since information is included in either sideband of the two subcarrier modulations, the frequency may use the lower subcarrier or the upper subcarrier.
[0025]
(Embodiment 1)
FIG. 1 is a block diagram showing a non-contact IC card reading / writing device according to an embodiment of the present invention. FIG. 1A is a block diagram showing a non-contact IC card reader / writer according to an embodiment of the present invention, and FIG. 1B is a partial detailed view of FIG. FIG. 4 is a detailed diagram when a resonance circuit is used. In the case of transmission data transmission in FIG. 1, a carrier wave from an oscillator 7 is input to a modulator 8 and modulated by transmission data. This is amplified by the power amplifier 9, passed through the matching circuit 10, and transmitted from the loop antenna 3 via the first resonance circuit 4 including C 1, C 2, and L 1 shown in FIG. In the case of only power transmission, the carrier from the oscillator 7 is transmitted without modulation. The transmission from the read / write device 111 to the non-contact IC card 112 is performed by magnetic flux generated by the loop antenna 3 interlinking with the antenna coil 12 of the non-contact IC card 112 by electromagnetic coupling to excite an induced voltage. Done. In the non-contact IC card 112, the induced voltage of the antenna coil 12 is rectified by a rectifier circuit (not shown) in the IC chip 13 and used as a power source for each circuit in the non-contact IC card. The same induced voltage is guided to a demodulation circuit (not shown) to demodulate data from the read / write device.
[0026]
Next, at the time of data transmission from the non-contact IC card 112 to the read / write device 111, the read / write device transmits a non-modulated carrier wave and only supplies power to the non-contact IC card. On the non-contact IC card side, for example, a load resistor (not shown) connected to the antenna coil 13 and a switch (not shown) according to data DATAb read from a memory (not shown) in the IC chip 13. )), This switch is turned on and off in accordance with the data “1” and “0” bits. In the read / write device 111, when the switch is turned on and off as described above, the load on the antenna coil 12 fluctuates. This variation is transmitted to the loop antenna 3 on the read / write device side by electromagnetic induction, and the impedance on the loop antenna 3 side fluctuates. The data is demodulated by the demodulator 11 of the wireless reception unit 2 via the coupling capacitor C3 connected to the loop antenna 3 and the second resonance circuit 5 including C4 and L3. With the above configuration, the provision of the resonance circuit dedicated to the transmission frequency and the resonance circuit dedicated to the reception frequency can improve the transmission / reception characteristics.
[0027]
(Embodiment 2)
In FIG. 1B, the values of C1, C2, and L1 of the first resonance circuit unit 4 are set to be the power and the frequency of the carrier for transmitting the transmission signal, and the values of C4, L3 of the second resonance circuit unit 5 are set. Is set to be the frequency of the modulated sub-carrier generated by the load fluctuation on the contact IC card side, as shown in FIG. By setting the resonance frequency of the first resonance circuit to a frequency that is specific to the carrier frequency for transmitting the transmission signal, the Q value can be maximized, and power and transmission signals can be transmitted efficiently, resulting in power transmission efficiency. Is improved. FIG. 5 is a graph showing the relationship between the frequency of the tuning circuit and the Q value.
[0028]
Furthermore, when data is received from the IC card side, the Q value can be maximized by setting the resonance frequency of the second resonance circuit unit to a frequency that is specialized for the load-modulated reception modulation sideband. In addition, it is possible to greatly reduce the carrier wave wraparound to the receiving side, and as a result, it is possible to efficiently receive a received signal, thereby improving the receiving efficiency.
[0029]
(Embodiment 3)
In FIG. 1B, a second coil L4 is provided in proximity to the first coil L3 constituting the second resonance circuit unit 5 and coupled by mutual induction, and one end of the first coil L3 is connected. One end of the second coil L4 is grounded to the first ground G1 and the second ground G2, and the ground G1 of the wireless transmission unit and the antenna interface unit is separated from the ground G2 of the reception unit. This prevents the ground G2 on the receiving side from being fluctuated by the large-amplitude carrier signal from the unit, thereby greatly improving the receiving performance.
[0030]
(Embodiment 4)
In FIG. 1B, the number of turns n1 of the first coil L3 constituting the second resonance circuit unit and the number of turns n2 of the second coil L4 coupled by mutual induction are represented by the second resonance circuit unit. The first coil L3 and the second coil L4 are provided with an impedance conversion function by adopting a configuration selected so as to match the output impedance Z1 and the input impedance Z2 of the radio receiving unit, respectively. The loss can be reduced, the receiving performance can be improved, and it is not necessary to separately provide an impedance conversion circuit, so that the circuit size can be reduced and the cost can be reduced.
[0031]
(Embodiment 5)
FIG. 2 is a block diagram showing a non-contact IC card reading / writing device according to the embodiment of the present invention. FIG. 2A is a block diagram showing a non-contact IC card reader / writer according to an embodiment of the present invention, and FIG. 2B is a partial detailed view of FIG. FIG. 3 is a detailed diagram of a case where a series resonance circuit is used as an example. As shown in FIG. 2, a first capacitor C6 and a second capacitor C7 are connected in series between one end and the other end of a second coil L4 constituting a second resonance circuit unit. An output signal is taken out from the junction and connected so as to match the input impedance of the wireless receiving unit, so that the second resonance circuit function and the impedance converting function of the wireless receiving unit are used together, and the circuit scale is increased. And the reception efficiency is improved.
[0032]
(Embodiment 6)
In FIG. 1B, in the configuration including the first coil L <b> 3 forming the second resonance circuit unit 5 and the second coil L <b> 4 coupled by mutual induction, the resonance of the second resonance circuit unit 5 is performed. As shown in FIG. 6 (b), the frequency is set to the frequency of the lower modulated sub-carrier in the double sideband formed by the load fluctuation on the contact IC card side, as shown in FIG. As can be seen, the carrier is the undesired wave (U) and the modulated subcarrier is the desired wave (D). Therefore, in order to increase the DU ratio, the desired wave (D) is naturally increased, It is necessary to reduce the wave (U). Since L3 and L4 are inductively coupled, as shown in FIG. 6A, the higher the frequency, the lower the degree of coupling becomes, and the lower the frequency, the higher the degree of coupling becomes. Therefore, the desired wave (D) having a lower frequency has a higher degree of coupling than the undesired wave (U) having a higher frequency. Therefore, the DU ratio can be improved and the receiving performance can be improved. FIG. 6 is a graph showing frequency versus coupling degree and received signal strength.
[0033]
(Embodiment 7)
In FIG. 2B, in a configuration including a first coil L3 constituting the second resonance circuit unit 5 and a second coil L4 coupled by mutual induction, between one end and the other end of the coil L4. In a configuration in which the first capacitor C6 and the second capacitor C7 are connected in series, and an output signal is taken from a middle point between C6 and C7, the resonance frequency of the second resonance circuit unit 5 is set as shown in FIG. As shown in b), the carrier wave is an undesired wave when viewed from the receiving side by adopting a configuration in which the frequency of the upper modulated subcarrier is set in the double sideband formed by the load fluctuation on the contact IC card side. (U) The modulated subcarrier is the desired wave (D). Therefore, in order to increase the DU ratio, it is natural that the desired wave (D) is increased and the undesired wave (U) is reduced. There is a need. Since the first resonance circuit resonating at the carrier frequency and the second resonance circuit resonating at the upper modulated subcarrier are coupled by the coupling capacitor C3, as shown in FIG. At high frequencies, the degree of coupling is high, and at low frequencies, the degree of coupling is low. Therefore, the desired wave (D) having a higher frequency has a higher degree of coupling than the undesired wave (U) having a lower frequency, and therefore the DU ratio is improved and the receiving performance is improved. Furthermore, it is possible to convert the impedance while maintaining this DU ratio by using a tap-down circuit with a capacitor of the resonance circuit instead of the impedance conversion of the secondary winding by inductive coupling to match the impedance with the receiver. Thus, the circuit scale can be reduced. FIG. 7 is a graph showing frequency versus coupling degree and received signal strength.
[0034]
(Embodiment 8)
In FIG. 2B, a first resonance circuit resonating at the carrier frequency and a second resonance circuit resonating at the modulated sub-carrier are coupled by a coupling capacitor C3 to form a sub-tuning circuit. First, as shown in FIG. 8A, due to the characteristics of the coupling capacitor C3, the degree of coupling is high at a high frequency, and the degree of coupling is low at a low frequency. Conversely, the characteristics of the first coil L3 forming the second resonance circuit unit and the second coil L4 coupled by mutual induction are inductively coupled, so that the higher the frequency, the higher the coupling. The degree is small and the lower the frequency, the greater the degree of coupling. Therefore, when two circuits having these contradictory characteristics are combined, a wide-band resonance circuit having a flat frequency characteristic can be obtained by canceling each characteristic. As a result, as shown in FIG. 8 (b), even in a system in which the modulated subcarrier is different from 212 kHz, 484 kHz, and 847 kHz regardless of the frequency, the DU ratio can be kept constant with one piece of hardware, and the circuit size is reduced and stable reception is achieved. Properties can be obtained. FIG. 8 is a graph showing frequency versus coupling degree and received signal strength.
[0035]
(Embodiment 9)
In FIG. 2B, an intermediate frequency transformer 14 is provided between the second resonance circuit unit and the radio reception unit, and one end of the first coil L5 of the intermediate frequency transformer is connected to the ground G2 of the second resonance circuit unit. One end of the second coil L6 of the frequency transformer is grounded to the ground G3 of the wireless receiving unit, the ground of the second resonance circuit unit and the ground of the wireless receiving unit are separated, and the carrier wave and the received signal wave are separated by the intermediate frequency transformer 14. With the configuration separated in frequency, it is possible to prevent the ground of the wireless receiving unit from swinging by the large-amplitude carrier wave from the second resonance circuit unit, and further prevent the carrier frequency component from flowing into the wireless receiving unit. Significant suppression can be achieved, and reception performance can be improved.
[0036]
As described above, the first to ninth embodiments of the present invention have been described. As described above, the carrier wave from the oscillator is amplified by the power amplifier, and a class E amplifier (E class amplifier) is used for the amplification. preferable. By using a class E amplifier, high-efficiency operation can be realized. Therefore, heat generation can be suppressed even when the transmission output is increased.
[0037]
【The invention's effect】
As described above, according to the present invention, the resonance frequency of the first resonance circuit is set to the frequency of the carrier transmitting the power and the transmission signal, and the resonance frequency of the second resonance circuit is set to the load on the non-contact IC card side. Set to the frequency of the modulated subcarrier formed by the fluctuation. As a result, at the time of transmission from the read / write device, the Q value can be maximized by setting the resonance frequency of the first resonance circuit unit to a frequency specialized for the power and the carrier frequency for transmitting the transmission signal. The measured power transmission efficiency is improved. Further, when data is received from the non-contact IC card side, the Q value is maximized by setting the resonance frequency of the second resonance circuit unit to a frequency specialized for the load-modulated reception modulation sideband. As a result, the carrier wave wraparound to the receiving side can be greatly reduced, and the receiving efficiency is improved. As described above, according to the present invention, it is possible to provide a non-contact IC card reader / writer having good transmission / reception characteristics.
[Brief description of the drawings]
FIG. 1 is a block diagram of a non-contact IC card reading / writing device according to an embodiment of the present invention.
FIG. 2 is a block diagram of a non-contact IC card reading / writing device according to an embodiment of the present invention;
FIG. 3 is a graph showing the relationship between frequency and signal strength.
FIG. 4 is a graph showing a relationship between an antenna frequency and a Q value.
FIG. 5 is a graph showing the relationship between the frequency and the Q value of the tuning circuit.
FIG. 6 is a graph showing frequency versus coupling and received signal strength.
FIG. 7 is a graph showing frequency versus coupling and received signal strength.
FIG. 8 is a graph showing frequency versus coupling and received signal strength.
FIG. 9 is a diagram showing a 13.56 MHz system comparison table.
FIG. 10 is an explanatory diagram of a conventional non-contact IC card system.
FIG. 11 is a block diagram showing a portion related to the connection between a read / write device and a non-contact IC card of a conventional non-contact IC card system.
[Explanation of symbols]
1 wireless transmitter
2 Radio receiver
3 loop antenna
4 First resonance circuit
5 Second resonance circuit
6 Impedance denaturator
7 Oscillator
8 Modulator
9 Power amplifier
10. Matching circuit
11 Demodulation circuit
12 Antenna coil
13 IC chip
14. Intermediate frequency transformer
101 Non-contact IC card
102 Antenna coil
103 IC chip
104 loop antenna
105 read / write device
106 power amplifier
107 Matching circuit
108 loop antenna
109 antenna coil
110 demodulation circuit
111 read / write device
112 Non-contact IC card
113 resistor
114 Capacitor

Claims (9)

非接触ICカードに電磁誘導により電力と送信信号を供給し、前記非接触ICカードからの受信信号を負荷変動により取得するループアンテナと、このループアンテナを所望の第一の周波数に共振させるための第一の共振回路部と、前記第一の共振回路部を介し前記ループアンテナに電力と送信データを供給する無線送信部を設け、さらに前記ループアンテナにカップリングコンデンサにて接続された、所望の第二の周波数に共振した第二の共振回路部を介して、前記ループアンテナからの受信信号を取得する無線受信部を設け、その受信信号から復調回路により前記非接触ICカードからのデータを復調するように構成したことを特徴とする非接触ICカード読取/書込装置。A loop antenna for supplying power and a transmission signal to the non-contact IC card by electromagnetic induction, and acquiring a reception signal from the non-contact IC card by a load change; and a loop antenna for resonating the loop antenna to a desired first frequency. A first resonance circuit unit, a wireless transmission unit that supplies power and transmission data to the loop antenna through the first resonance circuit unit, further connected to the loop antenna by a coupling capacitor, a desired A wireless receiving unit for obtaining a reception signal from the loop antenna is provided via a second resonance circuit unit that resonates at a second frequency, and data from the contactless IC card is demodulated from the reception signal by a demodulation circuit. A non-contact IC card reading / writing device characterized in that it is configured to perform the following. 前記第一の共振回路部の共振周波数を、電力と送信信号を伝送する搬送波の周波数に、前記第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される変調副搬送波の周波数に設定したことを特徴とする請求項1に記載の非接触ICカード読取/書込装置。Modulation of the resonance frequency of the first resonance circuit unit to the frequency of the carrier wave transmitting the power and the transmission signal, and the resonance frequency of the second resonance circuit unit to the modulation formed by the load fluctuation on the non-contact IC card side 2. The non-contact IC card reading / writing device according to claim 1, wherein the sub-carrier frequency is set. 前記第二の共振回路部を構成する第一のコイルに近接設置され、相互誘導にて結合された第二のコイルを設け、前記第一のコイルの一端を第一のグランドに、前記第二のコイルの一端を第二のグランドに接地し、送信部およびアンテナ回路部と受信部のグランドを分離した構成にしたことを特徴とする請求項1,2いずれか1項に記載の非接触ICカード読取/書込装置。A second coil is provided in proximity to the first coil constituting the second resonance circuit unit and coupled by mutual induction. One end of the first coil is connected to a first ground, and the second coil is connected to the second coil. The non-contact IC according to any one of claims 1 and 2, wherein one end of the coil is grounded to a second ground, and the ground of the transmitting unit, the antenna circuit unit, and the receiving unit is separated. Card reading / writing device. 前記第二の共振回路部を構成する第一のコイルの巻数n1と、相互誘導にて結合された第二のコイルの巻数n2を、前記第二の共振回路部の出力インピーダンスZ1と前記無線受信部の入力インピーダンスZ2に夫々整合する様に選定し、前記第一のコイルと前記第二のコイルにて、インピーダンス変換機能を持たせた事を特徴とする請求項1〜3いずれか1項に記載の非接触ICカード読取/書込装置。The number of turns n1 of the first coil constituting the second resonance circuit and the number of turns n2 of the second coil coupled by mutual induction are determined by the output impedance Z1 of the second resonance circuit and the wireless reception. 4. The apparatus according to claim 1, wherein the first coil and the second coil are selected so as to match the input impedance Z <b> 2 of the unit, respectively, and have an impedance conversion function. 5. Non-contact IC card reading / writing device according to the above. 前記第二のコイルの一端と他端間に、第一のコンデンサC1および第二のコンデンサC2を直列に接続し、そのC1−C2の接合点より出力信号を取り出し、第一のコンデンサC1および第二のコンデンサC2にて、インピーダンス変換機能を持たせた事を特徴とする請求項1〜4いずれか1項に記載の非接触ICカード読取/書込装置。A first capacitor C1 and a second capacitor C2 are connected in series between one end and the other end of the second coil, and an output signal is taken out from a junction of C1-C2, and the first capacitor C1 and the second capacitor C1 are connected to each other. The non-contact IC card reader / writer according to any one of claims 1 to 4, wherein the second capacitor (C2) has an impedance conversion function. 前記第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される両側波帯のうち、下側の変調副搬送波の周波数に設定した構成にしたことを特徴とする請求項1〜4いずれか1項に記載の非接触ICカード読取/書込装置。The resonance frequency of the second resonance circuit is set to the frequency of the lower modulated subcarrier in the double sideband formed by the load fluctuation on the non-contact IC card side. The non-contact IC card reading / writing device according to claim 1. 前記第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される両側波帯のうち上側の変調副搬送波の周波数に設定した構成にしたことを特徴とする請求項1〜3、請求項5いずれか1項に記載の非接触ICカード読取/書込装置。3. A structure in which a resonance frequency of the second resonance circuit is set to a frequency of an upper modulation sub-carrier in a double-sided wave band formed by a load fluctuation on a non-contact IC card side. The non-contact IC card reader / writer according to any one of claims 1 to 3, and claim 5. 前記第二の共振回路部の共振周波数を、非接触ICカード側の負荷変動にて形成される複数の変調副搬送波をカバーする周波数帯域に設定した構成にしたことを特徴とする請求項1〜5いずれか1項に記載の非接触ICカード読取/書込装置。2. The structure according to claim 1, wherein the resonance frequency of the second resonance circuit is set to a frequency band covering a plurality of modulated sub-carriers formed by a load fluctuation on the non-contact IC card side. 5. The non-contact IC card reading / writing device according to any one of 5. 前記第二の共振回路部と前記無線受信部間に中間周波トランスを設け、前記第二の共振回路部と前記無線受信部のグランドを分離した構成にしたことを特徴とする請求項1〜8いずれか1項に記載の非接触ICカード読取/書込装置。An intermediate frequency transformer is provided between the second resonance circuit unit and the wireless reception unit, and a ground of the second resonance circuit unit and a ground of the wireless reception unit are separated. A non-contact IC card reading / writing device according to any one of the preceding claims.
JP2002374383A 2002-12-24 2002-12-25 Non-contact IC card reader / writer Expired - Lifetime JP4657574B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002374383A JP4657574B2 (en) 2002-12-25 2002-12-25 Non-contact IC card reader / writer
EP03029458A EP1434160A3 (en) 2002-12-24 2003-12-19 Non-contact IC card reading/writing apparatus
EP05022151.4A EP1615158B1 (en) 2002-12-24 2003-12-19 Non-contact IC card reading/writing apparatus
US10/743,899 US7164344B2 (en) 2002-12-24 2003-12-24 Non-contact IC card reading/writing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374383A JP4657574B2 (en) 2002-12-25 2002-12-25 Non-contact IC card reader / writer

Publications (2)

Publication Number Publication Date
JP2004206383A true JP2004206383A (en) 2004-07-22
JP4657574B2 JP4657574B2 (en) 2011-03-23

Family

ID=32812425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374383A Expired - Lifetime JP4657574B2 (en) 2002-12-24 2002-12-25 Non-contact IC card reader / writer

Country Status (1)

Country Link
JP (1) JP4657574B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140842A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Contactless ic card reader/writer
JP2006331223A (en) * 2005-05-27 2006-12-07 Yoshikawa Rf System Kk Reader/writer device and data carrier system
JP2008516495A (en) * 2004-10-07 2008-05-15 イデント テクノロジー アーゲー Method, circuit device and system for signal transmission through human body
JP2008182458A (en) * 2007-01-24 2008-08-07 National Univ Corp Shizuoka Univ Inductive link
US7562828B2 (en) 2005-02-28 2009-07-21 Kabushiki Kaisha Toshiba Radio communication device, radio communication method and non-contact IC card reader/writer device
JP2012503469A (en) * 2008-09-17 2012-02-02 クゥアルコム・インコーポレイテッド Transmitter for wireless power transmission
US8432070B2 (en) 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
JP2013090021A (en) * 2011-10-14 2013-05-13 Sony Corp Antenna circuit, communication device, and communication method
US8947041B2 (en) 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
JP2015222866A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Signal coupler
JP2015222867A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Signal coupler

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516495A (en) * 2004-10-07 2008-05-15 イデント テクノロジー アーゲー Method, circuit device and system for signal transmission through human body
JP2006140842A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Contactless ic card reader/writer
US7562828B2 (en) 2005-02-28 2009-07-21 Kabushiki Kaisha Toshiba Radio communication device, radio communication method and non-contact IC card reader/writer device
JP2006331223A (en) * 2005-05-27 2006-12-07 Yoshikawa Rf System Kk Reader/writer device and data carrier system
JP2008182458A (en) * 2007-01-24 2008-08-07 National Univ Corp Shizuoka Univ Inductive link
JP4555969B2 (en) * 2007-01-24 2010-10-06 国立大学法人静岡大学 Inductive link
US8432070B2 (en) 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
US8947041B2 (en) 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
JP2012503469A (en) * 2008-09-17 2012-02-02 クゥアルコム・インコーポレイテッド Transmitter for wireless power transmission
US8532724B2 (en) 2008-09-17 2013-09-10 Qualcomm Incorporated Transmitters for wireless power transmission
JP2015008625A (en) * 2008-09-17 2015-01-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated Transmitter for wireless power transmission
US9425653B2 (en) 2008-09-17 2016-08-23 Qualcomm Incorporated Transmitters for wireless power transmission
JP2013090021A (en) * 2011-10-14 2013-05-13 Sony Corp Antenna circuit, communication device, and communication method
JP2015222866A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Signal coupler
JP2015222867A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Signal coupler

Also Published As

Publication number Publication date
JP4657574B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US7164344B2 (en) Non-contact IC card reading/writing apparatus
JP4380239B2 (en) Non-contact IC card reader / writer
JP4561796B2 (en) Power receiving device and power transmission system
US6321067B1 (en) Power transmission system IC card and information communication system using IC card
JP5015262B2 (en) Wireless interface
US8811542B2 (en) HDX demodulator
US7573368B2 (en) Electromagnetic transponder with no autonomous power supply
JP4657574B2 (en) Non-contact IC card reader / writer
JP2004040788A (en) Electromagnetic transponder reader
US7528699B2 (en) Transponder in communication system
JP2008301241A (en) Loop antenna and radio transmitter/receiver with loop antenna
JP2004206245A (en) Contactless ic card reader/writer
JPH1166260A (en) Non-contact ic card wound with antenna coil in plural planes
JP4843994B2 (en) Reader and data carrier system
JP3003482B2 (en) Radio frequency code identification method
JP4067638B2 (en) Data carrier system and interrogator for data carrier system
JP3449621B2 (en) Reader / writer device for non-contact IC card system
JP4666738B2 (en) Non-contact IC card reader / writer device
JP2000235628A (en) Read/write device for non-contact ic card system and its antenna circuit
JP3194715B2 (en) Reader / writer device for non-contact IC card system
JP2003067689A (en) Communication equipment and method
JP2007281768A (en) Rf device, and rf data transmission method
JP2008182528A (en) Loop antenna and radio transmitter-receiver provided with same
JPH11288447A (en) Reader/writer
JPH07159527A (en) Method for identifying ratio frequency code

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081023

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081114

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4657574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

EXPY Cancellation because of completion of term