JP2004205970A - Reinforcing structure for optical fiber exposed part - Google Patents

Reinforcing structure for optical fiber exposed part Download PDF

Info

Publication number
JP2004205970A
JP2004205970A JP2002377397A JP2002377397A JP2004205970A JP 2004205970 A JP2004205970 A JP 2004205970A JP 2002377397 A JP2002377397 A JP 2002377397A JP 2002377397 A JP2002377397 A JP 2002377397A JP 2004205970 A JP2004205970 A JP 2004205970A
Authority
JP
Japan
Prior art keywords
optical fiber
coating
exposed portion
silicone resin
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377397A
Other languages
Japanese (ja)
Inventor
Akira Kashiwazaki
昭 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002377397A priority Critical patent/JP2004205970A/en
Publication of JP2004205970A publication Critical patent/JP2004205970A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reinforce deterioration of a strength in a portion where coating of an optical fiber is removed, and to obtain an optical fiber coating removed part having improved mechanical strength. <P>SOLUTION: The optical fiber exposed part where coating of the optical fiber is removed is coated with silicone resin mainly composed of trifunctional siloxane. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバの被覆部を除去処理した光ファイバ露出部の強度を補強する構造に関するものである。
【0002】
【従来の技術】
従来から、例えば光ファイバ同士を接続する場合に、接続する二つの光ファイバ先端部の被覆部をそれぞれ除去した後、筒状のフェルールにそれぞれ嵌入して二つの光ファイバの先端面同士を接続することが行われている。また、光ファイバを受発光モジュールに組みこむ場合には、同様にあらかじめ光ファイバ先端部の被覆部を除去し、光ファイバを固定するためのシリコンV溝基板のV溝内にUV硬化接着剤を用いて光ファイバ先端の被覆除去部を固定したり、あるいは光ファイバの被覆除去部にメッキ処理をほどこし、光ファイバ固定用部材にはんだ固定をして受発光モジュールに組みこんでいる。
【0003】
このような光ファイバ先端部の被覆部を除去する方法としては、ストリッパーなどの機械的手段で被覆部を除去する方法がある。この方法は、あらかじめ除去したい被覆部に熱を加えて、被覆樹脂を柔らかくしたのちストリッパーで機械的に被覆部を除去する。ストリッパーには被覆を除去するための金属の刃がついており、この刃で被覆樹脂部に亀裂を入れ、引っ張る事によって所望の長さの被覆部を除去する。この時、被覆部に亀裂を入れ引っ張るための金属の刃によって、被覆を除去する過程で光ファイバの裸線部分の表面に微細な傷が発生し、強度が劣化するという問題点があった。
【0004】
光ファイバの被覆部を除去した部分にも機械的強度が要求される場合、その問題点を解決するため、あらかじめ光ファイバの表面に金属カーボン薄膜や、あるいは有機金属ポリマをコートし、強度を向上させた特殊な光ファイバを用いていた。
【0005】
また、機械的な手段で被覆除去時に傷を発生させてしまう事を回避するため、特許文献1では濃硫酸などの溶剤を用いて被覆部を化学的処理で分解あるいは溶解させて除去する方法が行われていた。
【特許文献1】特開平3−186806号公報
【発明が解決しようとする課題】
しかしながら、上記光ファイバの表面にあらかじめカーボンや有機ポリマをコートしたファイバにおいても、被覆除去工程でファイバ表面の傷を完全に無くす事は難しく、被覆除去工程後の光ファイバ裸線部の強度は、被覆除去前の強度よりも弱くなってしまう。さらに、あらかじめ光ファイバの機械強度が強くなっているため、光ファイバ先端部の加工が、通常の光ファイバより加工しにくいという問題点がある。また、濃硫酸などの溶剤を用いて被覆部を化学的処理で除去する場合、溶剤で処理するため、光ファイバ被覆部の除去された境界部の形状が機械的な手段で除去した場合と比較して、きれいに仕上がらないという欠点がある。さらに溶剤で処理した後、被覆が除去された光ファイバの裸線部の表面に溶剤が残らないように洗浄をする必要があり、特別の設備と洗浄時間が必要となる。
【0006】
【課題を解決するための手段】
本発明は、上記問題点に鑑みてなされたものであり、光ファイバの被覆を除去して裸線を露出させた光ファイバの露出部に、三官能性のシロキサンを主成分とするシリコーン樹脂をコートさせたことを特徴とする光ファイバ露出部の補強構造を提供する。
【0007】
また、エッチング処理により前記光ファイバ露出部の外径を小さくした後、三官能性のシロキサンを主成分とするシリコーン樹脂をコートさせたことを特徴とする光ファイバ露出部の補強構造を提供する。
【0008】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。図1は、本発明による光ファイバ被覆部を除去した後の光ファイバ露出部の補強構造を示す図であり、(a)は縦断面図、(b)は斜視図である。
【0009】
図に示すように光ファイバ1の被覆2がストリッパーで除去され、光ファイバ露出部11が被覆無しの状態で露出している。光ファイバ露出部11には、ストリッパーで被覆を除去する工程で光ファイバ1表面に微細な傷3が生じている。傷3の大きさは、ミクロンオーダーの大きさのものから、更に小さくナノオーダーのものまで様々であるが、その大小に関わらず傷が光ファイバ1表面に存在した場合、光ファイバ1に機械的な応力が加わった場合に破断する起点となって、通常の光ファイバ1が有する破断強度より小さな力で破断してしまう。通常光ファイバ1を引っ張った場合の光ファイバ1の破断強度は数十Nであるのに対し、被覆2を除去した部分の破断強度は、最悪十分の一以下にまで低下してしまう。
【0010】
本発明では光ファイバ1表面に発生した傷3を補強するために、傷3の部位に三官能性のシロキサンからなるシリコーン樹脂4をコートしてある。本発明で用いた三官能性のシロキサンからなるシリコーン樹脂は、二官能性のシロキサンからなるシリコーン樹脂に比べ、シロキサン分子同士の重合が密であり、結合力が強くなる。二官能性のシロキサンからなるシリコーン樹脂を以下の化1に、三官能性のシロキサンから成るシリコーン樹脂を以下の化2で示す。
【0011】
【化1】

Figure 2004205970
【0012】
【化2】
Figure 2004205970
【0013】
化1の二官能性のシロキサンからなるシリコーン樹脂は鎖状高分子であるので、二官能性のシロキサンからはガラス転移転の低いシリコーン樹脂が生成される。これに対し、化2の三官能性のシロキサンからなるシリコーン樹脂は、分子鎖同士が三次元網目構造を有する空間網目状高分子となり、シロキサン分子鎖間の結合が強化され、三官能性のシロキサンからは高硬度のシリコーン樹脂が生成される。このため、光ファイバ表面に生じた傷の内部に三官能性樹脂が充填個化された部位において、傷の成長を抑制させる効果が強く、応力が加わった場合にも破壊耐性を強める事が出来る。
【0014】
また、三官能性シロキサンからなるシリコーン樹脂は、緻密な分子構造により撥水性を持ち、良好な耐水性、耐湿性を示す。
【0015】
即ち、従来の二官能性のシロキサンからなるシリコーン樹脂は、分子構造が緻密でないので透湿性が大きい。透湿性のある樹脂の場合、外部雰囲気からの水分が樹脂表面から内部へと浸透し光ファイバ露出部11のガラス表面にある傷3に達してしまう。一般にガラス表面に形成されている傷に対して、水分は傷の成長を促進させてしまい、ガラスの機械強度を著しく低下させてしまう傾向にある。このため光ファイバ露出部11に二官能性のシロキサンからなるシリコーン樹脂をコーティングしても、傷3の部分に水分が到達し、傷3が成長してしまい耐湿性に対する強度的な補強が十分に出来ない。
【0016】
これに対して本発明では三官能性のシロキサン樹脂からなるシリコーン樹脂を光ファイバ露出部11の傷3にコートするため、コート部分の透湿性が低く、結果として湿度に対しても強度的に優れた光ファイバ露出部11を得る事ができる。
【0017】
光ファイバ露出部11があるような形状の光ファイバは、通常レーザモジュールに組みこむために、光ファイバ露出部11に更にAu/SnをメッキしてLDモジュールの固定用冶具に半田固定されたり、あるいはそのまま熱硬化接着剤を用いてLDモジュールの固定用冶具に固定されたりする。また、別の使用形態としては、光ファイバ露出部11の外径にほぼ等しい内径を持つ金属やセラミックからなる円筒フェルールの穴に光ファイバ露出部11を挿入し、その後、熱硬化型の接着剤を充填し加熱硬化させ、光ファイバ同士の接続用部品に用いられる。このようなレーザモジュールへの固定や円筒フェルールへの挿入固定の工程において、光ファイバ露出部11は高温下に曝される。従って、耐熱性の低いシリコーン樹脂で光ファイバ露出部11を補強した場合、傷3にコートされた樹脂がレーザモジュールや円筒フェルールへの固定時に熱により劣化する恐れがあるが、本発明の接着剤で用いる三官能性のシロキサンからなるシリコーン樹脂は、シロキサン分子同士の結合力が強いため高温下においても樹脂の劣化は生じ難く、耐熱性のある光ファイバ露出部11を得る事が出きる。
【0018】
三官能性シロキサンからなるシリコーン樹脂4の選択に際しては、その屈折率は、光ファイバ1のクラッド部12と同じ程度もしくは、それより高いことが望ましい。これは三官能性シロキサンからなるシリコーン樹脂4部に外部から光が入射した場合、樹脂4の方が光ファイバクラッド部12よりも屈折率が低いと光ファイバに光が伝わり易くなりノイズ光となって光ファイバ中を伝播してしまう可能性が有るためである。
【0019】
このように、光ファイバ露出部11を三官能性のシロキサンからなるシリコーン樹脂で補強した事により、機械強度にすぐれ、耐湿性、耐熱性にも優れた光ファイバ露出部11を得る事が出きる。
【0020】
図2は、本発明の第2実施形態を示す図であり、(a)は縦断面図、(b)は斜視図である。被覆が除去された光ファイバ露出部11を補強する場合、光ファイバ露出部11に生じている傷3の部位のみに三官能性シロキサン4を補強する必要も無く、光ファイバ露出部11の側面全体にコートして補強しても良い。この場合、傷3以外の光ファイバ表面部位にも水分の侵入を防ぐ効果が期待できるため、光ファイバ露出部11の耐湿性を向上させる事が出来る。
【0021】
図3は本発明の光ファイバ露出部の第3実施形態を説明する図である。第2の実施形態のように、光ファイバ露出部11に対し、全体的に三官能性シロキサン4を被覆する場合、被覆後の全体の外径がもともとの光ファイバ1の外径より極端に大きくなってしまうことがあり、光ファイバ露出部11をコネクタのフェルールに挿入する時に標準的なフェルールの内径より大きく挿入出来ない場合が生じる。そのため、あらかじめ被覆を除去した光ファイバ露出部11の外径をエッチング等の手段で小さくしておき、その後、三官能性シロキサン4を光ファイバ露出部11の全体に被覆し、被覆後の外径がもともとの光ファイバ外径とほぼ等しくなるようにした。
【0022】
更に、あらかじめ露出部をエッチングして光ファイバ表面の微小な傷を完全に除去しても良い。
【0023】
これらにより、強度を得ながら製造を簡単にすることができるだけでなく、光ファイバ1表面に存在する傷の数は少なくなり、エッチングにより除去しきれない大きな傷もその深さを浅くした傷30としたり、完全に除去する事が出来るため、エッチング後にコートする事により、光ファイバの露出部の機械強度をさらに向上させる効果が有る。
【0024】
【実施例】
本発明の図1に示した光ファイバ露出部の補強構造により補強を実施した。
【0025】
光ファイバ露出部の外径125ミクロン、被覆部外径250ミクロンのシングルモード光ファイバ素線の被覆部を先端から約30mmメカニカルストリッパーにて除去し、除去後の光ファイバ露出部を、エタノールで拭いてクリーニングを行った後、光ファイバ露出部11の先端部の長さを正確に出すためファイバカッターで15mmの長さになるように切断した。
【0026】
そのように準備した光ファイバを三官能性シロキサンを主成分とするポリアルキルシロキサン溶液中に浸漬させた。溶液に対し、光ファイバ露出部を鉛直上方から、先端から徐々に浸していき、ファイバ先端から約14mmの位置まで浸漬させた後、再び徐々に引き上げた。ポリアルキルシロキサン溶液の粘性は8cpsであった。三官能性のシロキサン溶液は、粘性が高いと、光ファイバ露出部の側面全体に厚く被覆されてしまい易く、全体の外径が大きくなりがちなので、出来るだけ粘度が低い20cps以下としている。
【0027】
その後、ポリアルキルシロキサンの溶液から引き上げた光ファイバを鉛直方向に立てたまま、先端を払拭紙に接触させ、余分なポリアルキルシロキサン溶液を払拭紙に吸い取らせた。その後、80度で5時間加熱し硬化させた。このようにして補強した光ファイバの破断強度を高温高湿環境下(湿度90%、温度75℃)に168時間投入した後測定したところ、補強処理をしない光ファイバ露出部の破断強度が最低値2.5Nであったのに対し、上記補強処理を行った光ファイバの破談強度は最低値が4.9Nと強度を向上させる事ができた。
【0028】
また、光ファイバ露出部外径125ミクロンのシングルモード光ファイバ素線の被覆部を前述と同様に除去し、光ファイバ露出部11の先端部の長さが15mmの試料を、5%のフッ酸にてエッチングをおこなった。光ファイバ露出部11の外径はエッチング前の外径が124.9ミクロンであったものがエッチング処理後には124.4ミクロンとなった。この光ファイバ露出部に前述の実施例と同様にポリアルキルシロキサン溶液に浸漬させた後、先端を払拭紙に接触させる作業をおこなわずに、加熱硬化させた。この時のポリシロキサン溶液の粘度は20pcsであった。硬化後の光ファイバ露出部11の外径は124.8ミクロンであった。このようにして補強した光ファイバの破断強度を高温高湿環境下(湿度90%、温度75℃)に168時間投入した後測定したところ、光ファイバの破断強度は最低値が10.8Nと強度を向上させる事ができた。
【0029】
【発明の効果】
上述のように本発明による補強構造によれば、光ファイバの被覆を除去して裸線を露出させた光ファイバの露出部に、三官能性のシロキサンからなるシリコーン樹脂をコートさせたことにより、耐湿性に優れ、高温下においても光ファイバの被覆部を除去処理した部分の強度を確実に向上させる事が出来る。
【図面の簡単な説明】
【図1】本発明の光ファイバ露出部の補強構造を説明する図であり、同(a)は縦断面図、また同(b)は斜視図である。
【図2】本発明の第2の光ファイバ露出部の補強構造を示す図であり、同(a)は縦断面図、また同(b)は斜視図である。
【図3】本発明の第3の実施形態を示す縦断面図である。
【符号の説明】
1、11、12:光ファイバ
2:被覆
3:傷
4:三官能性シロキサンからなるシリコーン樹脂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure for reinforcing the strength of an exposed portion of an optical fiber obtained by removing a coating portion of an optical fiber.
[0002]
[Prior art]
Conventionally, for example, when optical fibers are connected to each other, after removing the covering portions of the two optical fiber tips to be connected, respectively, each is fitted into a cylindrical ferrule, and the tip surfaces of the two optical fibers are connected to each other. That is being done. Also, when assembling the optical fiber into the light receiving / emitting module, similarly, remove the coating at the tip of the optical fiber in advance, and apply a UV curing adhesive in the V-groove of the silicon V-groove substrate for fixing the optical fiber. The coating removal portion at the tip of the optical fiber is fixed by using this method, or the coating removal portion of the optical fiber is plated, and is fixed to an optical fiber fixing member by soldering and assembled into a light emitting / receiving module.
[0003]
As a method of removing the coating at the tip of the optical fiber, there is a method of removing the coating by a mechanical means such as a stripper. In this method, heat is applied to a coating portion to be removed in advance to soften the coating resin, and then the coating portion is mechanically removed with a stripper. The stripper is provided with a metal blade for removing the coating, and the blade is used to make a crack in the coating resin portion and pull the coating to remove the coating portion having a desired length. At this time, there is a problem in that the surface of the bare portion of the optical fiber is finely scratched in the process of removing the coating by a metal blade for cracking and pulling the coating, thereby deteriorating the strength.
[0004]
If mechanical strength is also required in the part where the coated part of the optical fiber is removed, in order to solve the problem, the surface of the optical fiber is coated in advance with a metal carbon thin film or an organic metal polymer to improve the strength A special optical fiber was used.
[0005]
Further, in order to avoid causing scratches at the time of removing the coating by mechanical means, Patent Document 1 discloses a method of removing the coating portion by decomposing or dissolving it by a chemical treatment using a solvent such as concentrated sulfuric acid. It was done.
[Patent Document 1] JP-A-3-186806 [Problems to be Solved by the Invention]
However, even in a fiber in which the surface of the optical fiber is coated with carbon or an organic polymer in advance, it is difficult to completely eliminate the scratch on the fiber surface in the coating removing step, and the strength of the bare optical fiber after the coating removing step is It becomes weaker than the strength before removing the coating. Furthermore, since the mechanical strength of the optical fiber has been increased in advance, there is a problem that the processing of the distal end of the optical fiber is more difficult than the processing of a normal optical fiber. In addition, when the coating is removed by chemical treatment using a solvent such as concentrated sulfuric acid, the shape of the removed boundary of the optical fiber coating is removed by mechanical means because it is treated with a solvent. However, there is a disadvantage that the finish is not clean. Further, after the treatment with the solvent, it is necessary to perform cleaning so that the solvent does not remain on the surface of the bare fiber portion of the optical fiber from which the coating has been removed, and special equipment and cleaning time are required.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and a silicone resin containing a trifunctional siloxane as a main component is applied to an exposed portion of an optical fiber in which a bare wire is exposed by removing a coating of the optical fiber. Provided is a reinforcing structure for an exposed portion of an optical fiber, which is coated.
[0007]
The present invention also provides a reinforcing structure for an exposed portion of an optical fiber, characterized in that an outer diameter of the exposed portion of the optical fiber is reduced by etching, and then a silicone resin containing trifunctional siloxane as a main component is coated.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are diagrams showing a reinforcing structure of an exposed portion of an optical fiber after removing an optical fiber coating portion according to the present invention, wherein FIG. 1A is a longitudinal sectional view and FIG. 1B is a perspective view.
[0009]
As shown in the figure, the coating 2 of the optical fiber 1 is removed by the stripper, and the optical fiber exposed portion 11 is exposed without coating. In the optical fiber exposed portion 11, fine scratches 3 are generated on the surface of the optical fiber 1 in a step of removing the coating with a stripper. The size of the flaw 3 varies from a size on the order of microns to a smaller size on the order of nanometers. It becomes a starting point of breaking when a strong stress is applied, and it breaks with a force smaller than the breaking strength of the ordinary optical fiber 1. Normally, when the optical fiber 1 is pulled, the breaking strength of the optical fiber 1 is several tens of N, whereas the breaking strength of the portion from which the coating 2 is removed is reduced to one tenth or less in the worst case.
[0010]
In the present invention, in order to reinforce the flaw 3 generated on the surface of the optical fiber 1, the site of the flaw 3 is coated with a silicone resin 4 made of trifunctional siloxane. The silicone resin composed of a trifunctional siloxane used in the present invention has a higher polymerization of siloxane molecules and a stronger bonding force than the silicone resin composed of a bifunctional siloxane. A silicone resin composed of a bifunctional siloxane is represented by the following chemical formula 1, and a silicone resin composed of a trifunctional siloxane is represented by the following chemical formula 2.
[0011]
Embedded image
Figure 2004205970
[0012]
Embedded image
Figure 2004205970
[0013]
Since the silicone resin composed of the bifunctional siloxane of Chemical Formula 1 is a chain polymer, a silicone resin having a low glass transition is generated from the bifunctional siloxane. On the other hand, a silicone resin composed of a trifunctional siloxane of the formula (2) is a spatial network polymer in which molecular chains have a three-dimensional network structure, bonding between siloxane molecular chains is strengthened, and trifunctional siloxane is formed. Produces a silicone resin having a high hardness. For this reason, at the site where the trifunctional resin is filled into the inside of the scratch generated on the surface of the optical fiber, the effect of suppressing the growth of the scratch is strong, and the fracture resistance can be enhanced even when stress is applied. .
[0014]
In addition, a silicone resin composed of a trifunctional siloxane has water repellency due to its dense molecular structure, and exhibits good water resistance and moisture resistance.
[0015]
That is, the conventional silicone resin composed of a bifunctional siloxane has a high moisture permeability because the molecular structure is not dense. In the case of a resin having moisture permeability, moisture from the external atmosphere penetrates from the resin surface to the inside and reaches the scratch 3 on the glass surface of the optical fiber exposed portion 11. Generally, for a flaw formed on the surface of glass, moisture tends to promote the growth of the flaw and significantly lower the mechanical strength of the glass. For this reason, even if the optical fiber exposed portion 11 is coated with a silicone resin composed of a bifunctional siloxane, the moisture reaches the wound 3 and the scratch 3 grows, so that sufficient reinforcement against moisture resistance is sufficiently provided. Can not.
[0016]
On the other hand, in the present invention, since the silicone resin made of a trifunctional siloxane resin is coated on the scratches 3 of the optical fiber exposed portion 11, the coated portion has low moisture permeability, and as a result, has excellent strength against humidity. The exposed optical fiber portion 11 can be obtained.
[0017]
An optical fiber having a shape having an optical fiber exposed portion 11 is usually plated with Au / Sn on the optical fiber exposed portion 11 and soldered to a fixing jig of an LD module, for incorporation into a laser module, or It is fixed to the fixing jig of the LD module using the thermosetting adhesive as it is. As another use form, the optical fiber exposed portion 11 is inserted into a hole of a cylindrical ferrule made of metal or ceramic having an inner diameter substantially equal to the outer diameter of the optical fiber exposed portion 11, and then a thermosetting adhesive is used. And cured by heating, and used as a part for connecting optical fibers. In such a process of fixing to the laser module and inserting and fixing to the cylindrical ferrule, the optical fiber exposed portion 11 is exposed to a high temperature. Therefore, when the optical fiber exposed portion 11 is reinforced with a silicone resin having low heat resistance, the resin coated on the scratches 3 may be deteriorated by heat when fixed to the laser module or the cylindrical ferrule. Since the silicone resin composed of trifunctional siloxane used in the above has a strong bonding force between siloxane molecules, the resin hardly deteriorates even at a high temperature, and the optical fiber exposed portion 11 having heat resistance can be obtained.
[0018]
When selecting the silicone resin 4 made of trifunctional siloxane, it is desirable that the refractive index is the same as or higher than the cladding 12 of the optical fiber 1. This is because when light enters from outside into the silicone resin 4 made of trifunctional siloxane, if the refractive index of the resin 4 is lower than that of the optical fiber cladding 12, the light is easily transmitted to the optical fiber and becomes noise light. This is because there is a possibility that the light will propagate through the optical fiber.
[0019]
As described above, by reinforcing the optical fiber exposed portion 11 with a silicone resin made of trifunctional siloxane, it is possible to obtain the optical fiber exposed portion 11 having excellent mechanical strength and excellent moisture resistance and heat resistance. .
[0020]
Drawing 2 is a figure showing a 2nd embodiment of the present invention, (a) is a longitudinal section and (b) is a perspective view. When reinforcing the exposed portion 11 of the optical fiber from which the coating has been removed, it is not necessary to reinforce the trifunctional siloxane 4 only at the site of the flaw 3 occurring in the exposed portion 11 of the optical fiber. May be reinforced by coating. In this case, since the effect of preventing moisture from entering the surface of the optical fiber other than the scratches 3 can be expected, the moisture resistance of the optical fiber exposed portion 11 can be improved.
[0021]
FIG. 3 is a view for explaining a third embodiment of the optical fiber exposed portion of the present invention. In the case where the optical fiber exposed portion 11 is entirely coated with the trifunctional siloxane 4 as in the second embodiment, the entire outer diameter after coating is extremely larger than the original outer diameter of the optical fiber 1. When the optical fiber exposed part 11 is inserted into the ferrule of the connector, it may not be possible to insert the optical fiber exposed part 11 larger than the inner diameter of the standard ferrule. Therefore, the outer diameter of the optical fiber exposed portion 11 from which the coating has been removed in advance is reduced by etching or the like, and then the trifunctional siloxane 4 is coated on the entire optical fiber exposed portion 11, and the outer diameter after the coating is reduced. Was made substantially equal to the original outer diameter of the optical fiber.
[0022]
Further, the exposed portion may be etched in advance to completely remove minute scratches on the surface of the optical fiber.
[0023]
As a result, not only can manufacturing be simplified while obtaining strength, but also the number of scratches on the surface of the optical fiber 1 is reduced, and large scratches that cannot be completely removed by etching can be changed to the scratches 30 having a reduced depth. Since it can be completely removed, coating after etching has the effect of further improving the mechanical strength of the exposed portion of the optical fiber.
[0024]
【Example】
Reinforcement was performed by the reinforcing structure of the optical fiber exposed portion shown in FIG. 1 of the present invention.
[0025]
The covering portion of the single-mode optical fiber having an outer diameter of 125 μm of the exposed portion of the optical fiber and an outer diameter of 250 μm of the covering portion is removed from the tip by a mechanical stripper of about 30 mm, and the exposed portion of the removed optical fiber is wiped with ethanol. After cleaning, the tip of the optical fiber exposed portion 11 was cut to a length of 15 mm with a fiber cutter in order to accurately obtain the length.
[0026]
The optical fiber thus prepared was immersed in a polyalkylsiloxane solution containing trifunctional siloxane as a main component. The exposed portion of the optical fiber was gradually immersed in the solution from the vertically upward from the tip, immersed to a position about 14 mm from the tip of the fiber, and then gradually pulled up again. The viscosity of the polyalkylsiloxane solution was 8 cps. If the viscosity of the trifunctional siloxane solution is high, the entire side surface of the exposed portion of the optical fiber is likely to be thickly coated, and the entire outer diameter tends to be large. Therefore, the viscosity is set to 20 cps or less as low as possible.
[0027]
Thereafter, with the optical fiber pulled up from the polyalkylsiloxane solution standing upright, the tip was brought into contact with a wiping paper, and excess polyalkylsiloxane solution was sucked into the wiping paper. Then, it was heated and cured at 80 degrees for 5 hours. The rupture strength of the optical fiber reinforced in this manner was measured after being placed in a high-temperature and high-humidity environment (humidity 90%, temperature 75 ° C.) for 168 hours. In contrast to 2.5 N, the breaking strength of the optical fiber subjected to the above-mentioned reinforcing treatment was improved to a minimum value of 4.9 N.
[0028]
In addition, the covering portion of the single-mode optical fiber having an outer diameter of 125 μm was removed in the same manner as described above, and a sample having a length of 15 mm at the distal end of the exposed portion of the optical fiber 11 was treated with 5% hydrofluoric acid. Etching was performed. The outer diameter of the optical fiber exposed portion 11 was 124.9 microns before etching, but became 124.4 microns after etching. After immersing the exposed portion of the optical fiber in the polyalkylsiloxane solution in the same manner as in the above-described embodiment, the optical fiber was cured by heating without performing the operation of bringing the tip into contact with the wiping paper. At this time, the viscosity of the polysiloxane solution was 20 pcs. The outer diameter of the optical fiber exposed portion 11 after curing was 124.8 microns. When the breaking strength of the optical fiber reinforced in this manner was measured for 168 hours in a high-temperature and high-humidity environment (90% humidity, 75 ° C. temperature), the breaking strength of the optical fiber was as low as 10.8 N. Could be improved.
[0029]
【The invention's effect】
According to the reinforcing structure according to the present invention as described above, the exposed portion of the optical fiber in which the coating of the optical fiber is removed to expose the bare wire is coated with a silicone resin made of trifunctional siloxane, It has excellent moisture resistance, and can reliably improve the strength of the portion of the optical fiber from which the coating has been removed even at high temperatures.
[Brief description of the drawings]
FIG. 1 is a view for explaining a reinforcing structure of an optical fiber exposed portion of the present invention, wherein FIG. 1 (a) is a longitudinal sectional view and FIG. 1 (b) is a perspective view.
FIGS. 2A and 2B are diagrams showing a reinforcing structure of a second optical fiber exposed portion of the present invention, wherein FIG. 2A is a longitudinal sectional view and FIG. 2B is a perspective view.
FIG. 3 is a longitudinal sectional view showing a third embodiment of the present invention.
[Explanation of symbols]
1, 11, 12: optical fiber 2: coating 3: scratch 4: silicone resin composed of trifunctional siloxane

Claims (2)

光ファイバの被覆を除去して裸線を露出させた光ファイバの露出部に、三官能性のシロキサンを主成分とするシリコーン樹脂をコートさせたことを特徴とする光ファイバ露出部の補強構造。A reinforcing structure for an exposed portion of an optical fiber, wherein the exposed portion of the optical fiber from which the bare wire is exposed by removing the coating of the optical fiber is coated with a silicone resin containing trifunctional siloxane as a main component. エッチング処理により前記光ファイバ露出部の外径を小さくした後、三官能性のシロキサンを主成分とするシリコーン樹脂をコートさせたことを特徴とする請求項1記載の光ファイバ露出部の補強構造。2. The reinforcing structure for an exposed portion of an optical fiber according to claim 1, wherein the outer diameter of the exposed portion of the optical fiber is reduced by etching, and then a silicone resin containing a trifunctional siloxane as a main component is coated.
JP2002377397A 2002-12-26 2002-12-26 Reinforcing structure for optical fiber exposed part Pending JP2004205970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377397A JP2004205970A (en) 2002-12-26 2002-12-26 Reinforcing structure for optical fiber exposed part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377397A JP2004205970A (en) 2002-12-26 2002-12-26 Reinforcing structure for optical fiber exposed part

Publications (1)

Publication Number Publication Date
JP2004205970A true JP2004205970A (en) 2004-07-22

Family

ID=32814583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377397A Pending JP2004205970A (en) 2002-12-26 2002-12-26 Reinforcing structure for optical fiber exposed part

Country Status (1)

Country Link
JP (1) JP2004205970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511748A (en) * 2009-11-18 2013-04-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Method and apparatus for a distal end portion of an optical fiber having a substantially spherical shape
WO2016006713A1 (en) * 2014-07-11 2016-01-14 古河電気工業株式会社 Connector with built-in bending optical fibers and method for producing bending optical fibers
JP2021033201A (en) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 Optical fiber module, illumination device, and manufacturing device of optical fiber module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511748A (en) * 2009-11-18 2013-04-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Method and apparatus for a distal end portion of an optical fiber having a substantially spherical shape
US10492864B2 (en) 2009-11-18 2019-12-03 Boston Scientific Scimed, Inc. Methods and apparatus related to a distal end portion of an optical fiber having a substantially spherical shape
WO2016006713A1 (en) * 2014-07-11 2016-01-14 古河電気工業株式会社 Connector with built-in bending optical fibers and method for producing bending optical fibers
JPWO2016006713A1 (en) * 2014-07-11 2017-04-27 古河電気工業株式会社 Method for manufacturing bent optical fiber and method for manufacturing connector with bent optical fiber
US10036856B2 (en) 2014-07-11 2018-07-31 Furukawa Electric Co., Ltd. Connector with built-in bent optical fibers and method for producing bent optical fibers
JP2021033201A (en) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 Optical fiber module, illumination device, and manufacturing device of optical fiber module
JP7281649B2 (en) 2019-08-29 2023-05-26 パナソニックIpマネジメント株式会社 lighting equipment

Similar Documents

Publication Publication Date Title
TWI246995B (en) Etching method for fabricating high quality optical fiber probe
JPS63184712A (en) Splicing method for optical fiber
US6549712B2 (en) Method of recoating an optical fiber
US9507083B2 (en) Optical transmission element
JP2008287191A (en) Optical fiber, end face sealing method of optical fiber, connecting structure of optical fiber, and optical connector
JP4877067B2 (en) Optical fiber, optical fiber connection structure and optical connector
JP2014059479A (en) Manufacturing method of optical connector, and optical connector
JP2008164773A (en) Grating optical fiber and manufacturing method
JP2004205970A (en) Reinforcing structure for optical fiber exposed part
WO2004019103A1 (en) Optical fiber core wire, method of removing coating from optical fiber core wire and process for producing optical fiber part
US9918620B2 (en) Optical transmission element and method for manufacturing the same
JP4096936B2 (en) Optical fiber, optical fiber end face sealing method, optical fiber connection structure, and optical connector
US20050135763A1 (en) Optical fiber with a mechanically strippable coating and methods of making the same
KR20190048129A (en) Fabrication method of fiber tip for nano-/micro-scale near field spectroscopy
JP2005024849A (en) Optical fiber connector
US6513218B2 (en) Accessing fiber fracture surfaces in fiber optic connectors
JP2003322760A (en) Method of manufacturing optical fiber assembly, and optical fiber assembly
JP2017007875A (en) Optical transmission body
JP3192771B2 (en) Optical element mounting method
CN110678429B (en) Optical fiber bundle, endoscope, and method for manufacturing optical fiber bundle
JP2004244269A (en) Thin film optical fiber strand and connector joint part
JP2004004423A (en) Glass optical fiber strand for fiber grating
JP2565120B2 (en) Optical fiber terminal processing method
JP2002072033A (en) Pitch conversion two-fiber coated fiber ribbon, method of manufacturing pitch conversion two-fiber coated fiber ribbon and ferrule assembly
JP2004198506A (en) Thin film optical fiber, thin film coated optical fiber, and connector connecting part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080403