JP2004198506A - Thin film optical fiber, thin film coated optical fiber, and connector connecting part - Google Patents

Thin film optical fiber, thin film coated optical fiber, and connector connecting part Download PDF

Info

Publication number
JP2004198506A
JP2004198506A JP2002364002A JP2002364002A JP2004198506A JP 2004198506 A JP2004198506 A JP 2004198506A JP 2002364002 A JP2002364002 A JP 2002364002A JP 2002364002 A JP2002364002 A JP 2002364002A JP 2004198506 A JP2004198506 A JP 2004198506A
Authority
JP
Japan
Prior art keywords
optical fiber
thin film
ultraviolet
thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364002A
Other languages
Japanese (ja)
Inventor
Daiki Takeda
大樹 竹田
Itaru Ishida
格 石田
Tetsuo Hayano
哲雄 早野
Takeshi Shimomichi
毅 下道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002364002A priority Critical patent/JP2004198506A/en
Publication of JP2004198506A publication Critical patent/JP2004198506A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the adhesion force of a thin film ultraviolet-curing type cladding of an optical fiber, to manufacture a coated optical fiber using the thin film optical fiber and not to strip off the thin film ultraviolet-curing type cladding in removing a jacket, and further to decrease transmission loss and increase the reflection attenuation amount of the connector connecting part without causing scratch and glass chipping on the end face of the optical fiber even if such a coated optical fiber is used and treated with polishing at the time of connection or the like. <P>SOLUTION: The thin film optical fiber is made so as to have adhesion force of the thin film ultraviolet-curing type resin cladding provided on the optical fiber made to 50gf/cm or more (conforming to the JIS-C-6471; Test method A for stripping copper foil), and also the thin film coated optical fiber is made by forming the ultraviolet-curing type resin jacket on the thin film optical fiber, and thus the above purpose is achieved by making the thin film ultraviolet-curing type resin cladding not be stripped off in removing this thin film ultraviolet-curing type resin jacket. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、皮膜の密着力が優れた薄膜光ファイバ素線、それを用いた薄膜光ファイバ心線並びにコネクタ接続部に関するものである。
【0002】
【従来の技術】
薄膜光ファイバ心線は、例えば80〜100μmの光ファイバ上に薄肉の紫外線硬化型樹脂皮膜を施した薄膜光ファイバ素線上に、通常この上に着色層やプラスチックの2次被覆を設けて、前記薄膜光ファイバ素線を保護するように構成されている。例えば、外径80μm石英ファイバ上に45μmの薄肉の紫外線硬化樹脂皮膜を設けて薄膜光ファイバ素線とし、その上に厚肉のソフトタイプ紫外線硬化型樹脂層、ハードタイプ紫外線硬化型樹脂被覆等が順次設けられて、外径が250μmの薄膜光ファイバ心線として使用される。そして前記薄膜光ファイバ素線の製造は、通常前記紫外線硬化型樹脂皮膜の硬化処理を大気中で行うので、酸素に曝されながら行われることになり、前記紫外線硬化型樹脂皮膜は酸素阻害によって、十分な硬化が行われない等して、石英光ファイバとの密着力が十分でないこともある。そして、その上に設けるソフトタイプやハードタイプの紫外線硬化型樹脂被覆は、紫外線硬化型樹脂どうしの関係から、密着力は前記光ファイバとの密着力よりも大きくなっている。そして、このような密着力の関係になっている薄膜光ファイバ心線の、ソフトタイプやハードタイプの紫外線硬化型樹脂被覆を除去しようとすると、前記薄膜の紫外線硬化型樹脂皮膜の方が剥がれたりすることがあった。また、このような薄膜光ファイバ心線は、コネクタ接続時にはその端面をPC研磨(フィジカルコンタクト)、APC研磨(アドバンストフィジカルコンタクト)やフラット研磨等の研磨加工を施す必要がある。そしてその際には、前記紫外線硬化型樹脂被覆も除去する必要があるが、前記紫外線硬化型樹脂被覆によっては、このような作業によって光ファイバのガラス端面に傷がついたり、ガラス欠けと称する割れ等が発生するものがあった。そしてこのような傷等が生じた光ファイバ心線を用いて接続部を形成すると、伝送損失が増大したり、反射減衰量が小さくなる等の問題が生じていた。このような問題に対処する提案の一つとして、光ファイバのクラッド層上に密着性が良好なフッ素系樹脂の薄層を設けた特許文献1が、知られている。
【0003】
【特許文献1】
特開2000−155244号公報
【0004】
【発明が解決しようとする課題】
よって本発明が解決しようとする課題は、光ファイバ素線の薄膜紫外線硬化型皮膜と光ファイバのガラスとの密着力を向上させること、前記薄膜光ファイバ素線を用いた光ファイバ心線の紫外線硬化型樹脂被覆を除去する際に、前記薄膜の紫外線硬化型樹脂皮膜が剥離されないものとすること、さらにはこのような光ファイバ心線を用いて接続時等の研磨加工処理を施しても、光ファイバのガラス端面に傷やガラス欠け等が発生せず、得られるコネクタ接続部は伝送損失が小さく、反射減衰量が大きなものとすることにある。
【0005】
【課題を解決するための手段】
前記解決しようとする課題は、請求項1に記載されるように、光ファイバ上に設けられる薄膜の紫外線硬化型樹脂皮膜の密着力(JIS規格C6471の銅箔の引剥がし試験方法Aに準拠)を、50gf/cm以上とした薄膜光ファイバ素線とすることによって、解決される。
【0006】
また、請求項2に記載されるように、前記薄膜光ファイバ素線上に、紫外線硬化型樹脂被覆が形成された薄膜光ファイバ心線であって、この紫外線硬化型樹脂被覆を除去するときに、前記薄膜の紫外線硬化型樹脂皮膜が剥離しない薄膜光ファイバ心線とすることによって、解決される。
【0007】
さらに、請求項3に記載されるように、前記薄膜光ファイバ心線を用いてコネクタ研磨加工処理を行ったときに、光ファイバ端面に傷等の発生がないコネクタ接続部とすることによって、解決される。さらには、請求項4に記載されるように、前記コネクタ接続部の伝送損失が0.2dB以下で、かつ反射減衰量が40dB以上である、請求項3に記載されるコネクタ接続部とすることによって、解決される。
【0008】
【発明の実施の形態】
以下に本発明を詳細に説明する。請求項1に記載される発明は、光ファイバ上に設けられる薄膜の紫外線硬化型樹脂皮膜の密着力(JIS規格C6471の銅箔の引剥がし試験方法Aに準拠)を、50gf/cm以上とした薄膜光ファイバ素線とすることによって、これを用いた薄膜光ファイバ心線は、前記素線上に設けられた樹脂被覆除去を、光ファイバに傷等をつけずに行うことができ、またこのような光ファイバ心線を用いたコネクタ接続部のガラス端面には、研磨処理によりガラス欠けや傷つける等がなくなり、さらに得られたコネクタ接続部は、伝送損失が小さく、反射減衰量が大きなものとすることができる。
【0009】
そこで光ファイバ心線の樹脂被覆を除去する場合に、光ファイバ素線の薄膜の密着力と、前記薄膜の紫外線硬化型樹脂皮膜と石英ガラス界面との剥離現象の問題について、種々検討を行った。すなわち、図1(A)並びに(B)に示されるような、外径80μmの石英ファイバ1の上に、表1に示す種々の密着力の薄膜の紫外線硬化型樹脂皮膜2を設けた後、さらにその上に順次、比較的厚肉のソフトタイプの紫外線硬化型樹脂被覆3、ハードタイプの紫外線硬化型樹脂被覆4、を設けて、光ファイバ心線5を製造した。なお、前記薄膜の紫外線硬化型樹脂皮膜の密着力の調整は、石英ガラスの紡糸時における入線温度の調整や前記紡糸時における表面性の改善(酸素濃度等の調整)によって、行った。ついで、これらの光ファイバ心線について、前記ソフトタイプとハードタイプの紫外線硬化型被覆を被覆除去器を用いて除去すると共に、その密着力を測定した。具体的な被覆除器としては、マイクロストリッパ(MS)、ホットジャケットストリッパ(HJS)およびPBストリッパ(PB)を用い、剥離の発生率を調べた。また密着力については、JIS規格C6471の銅箔の引剥がし強さを測定する方法Aに準拠して、行った。
【0010】
結果は表1に記載されるように、光ファイバ素線の薄膜の厚さが45μmの場合、密着力が50gf/cm以上のものであれば、光ファイバ心線の紫外線硬化型樹脂被覆の除去手段(MS、HJS、PB)にも関係なく、剥離の発生を防止できることがわかる。より詳細に述べると、実験例4、5、8、9、10、11〜15に記載されるように、薄膜の厚さが45μmの光ファイバ素線において、密着力が50gf/cm以上あれば、前記被覆の除去方法がマイクロストリッパ(MS)、ホットジャケットストリッパ(HJS)およびプラスチックブレード(PB)のいずれの方法によっても、前記薄膜と石英ガラスとの界面の剥離を、発生率0%とすることができる。このことは前記樹脂被覆の除去によって、光ファイバのガラス端面に傷等の発生させないものとなる。より詳細には、前記MSによる被覆除去においては、密着力が70gf/cmあれば発生率を0%とすることができる。また前記HJSによる被覆除去においては、密着力が30gf/cmあれば実用でき、さらに前記PBによる被覆除去においては、10gf/cmあれば良いことがわかる。そしてこのような光ファイバ素線薄膜の密着力の調整も、前記のように製造条件を調整することによって、実用的に好ましい光ファイバ心線とすることができる。
【0011】
【表1】

Figure 2004198506
【0012】
また、前記光ファイバ素線を用いた光ファイバ心線とすれば、コネクタ接続においても有用なものとなる。すなわち請求項3に記載されるように、前記薄膜光ファイバ心線を用いてコネクタ研磨加工処理を行ったときに、光ファイバのガラス端面に傷等の発生がないコネクタ接続部とすることができる。まず研磨加工処理について簡単に説明すると、光ファイバ心線はコネクタ接続時には、その端面をPC研磨(フィジカルコンタクト)、APC研磨(アドバンストフィジカルコンタクト)やフラット研磨等の研磨加工を施される。より具体的には、前記PC研磨はフェルール先端を凸球面に加工し、コネクタ突合せ部での空気層をなくしてガラスを直に接触させることにより、フレネル反射を低減させるためのものであり、また前記フラット研磨は、光ファイバ端面をファイバ軸に対して直角に研磨するものである。しかしいずれの場合も、前記紫外線硬化型樹脂被覆を除去する必要がある。そして前記紫外線硬化型樹脂被覆によっては、このような作業によって光ファイバのガラス端面に傷がついたり、ガラス欠けと称する割れ等が発生するものがあった。しかしながら、前述した様に薄膜の密着力(JIS規格C6471の銅箔の引剥がし試験方法Aに準拠)が50gf/cm以上の光ファイバ素線を用いた光ファイバ心線においては、このような研磨作業におけるガラス端面の傷の発生を、なくすことが可能となる。
【0013】
すなわち、コア径が50μmで、クラッド径が100μmのGIタイプの光ファイバに、紫外線硬化型樹脂からなる薄膜皮膜を、表2に示す種々の密着力(gf/cm)になるように施して、外径125μmの光ファイバ素線とした。ついでこの上に順次、比較的厚肉のソフトタイプの紫外線硬化型樹脂被覆並びにハードタイプの紫外線硬化型樹脂被覆を設けて、外径250μmの光ファイバ心線を作製した。次いでこれらの光ファイバ心線を用い、コネクタ接続のための前記PC研磨加工を行った。そして、前記光ファイバ心線のガラス端面の状態を観測した。結果は表2に示されるように、光ファイバ素線の薄膜皮膜の密着力が、50gf/cm以上の光ファイバ心線では、PC研磨加工による傷の発生が殆どないものとすることができることが判る。これに対して、実験例16や17に示されるように、密着力が10gf/cmでは多数の傷が見られ、また30gf/cmでも傷の発生が見られた。このように、光ファイバ素線の薄膜皮膜の密着力は、50gf/cm以上あることが好ましいことがわかる。
【0014】
【表2】
Figure 2004198506
【0015】
さらにまた、請求項4に記載されるように、薄膜皮膜の密着力(JIS規格C6471の銅箔の引剥がし試験方法Aに準拠)が、50gf/cm以上の光ファイバ素線を用いた光ファイバ心線を、コネクタ接続部に使用することによって、コネクタ接続部の伝送損失が0.2dB以下で、かつ反射減衰量が40dB以上とすることが可能となる。すなわち、コア径が50μmで、クラッド径が100μmのGIタイプの光ファイバに、紫外線硬化型樹脂からなる薄膜皮膜を種々の密着力(gf/cm)になるように施して、外径125μmの光ファイバ素線とし、この上に順次、比較的厚肉のソフトタイプの紫外線硬化型樹脂被覆、ハードタイプの紫外線硬化型樹脂被覆を設けて、外径250μmの光ファイバ心線を作製した。次いでこれらの光ファイバ心線を用いて、コネクタ接続のための前記PC研磨加工を行った後に、コネクタ接続部を形成し、接続損失(dB)並びに反射減衰量(dB)を測定した。なお反射減衰量は、入射光パワーに対する反射光の割合を示すもので、通常40dB以上が好ましいものである。
【0016】
結果は表3に記載されるごとく、実験例22や23のように光ファイバ素線の薄膜の密着力が、50gf/cm以上のものを使用することによって、コネクタ接続損失が0.2dB以下と、実用上問題がない数値であり、また反射減衰量も40dB以上と、好ましいものであった。これに対して、実験例20や21のように、密着力が10gf/cmや30gf/cmの場合には、コネクタ接続損失が0.2dBを越えるものであり、また反射減衰量も40dB未満のものとなる。このように、光ファイバ素線薄膜の紫外線硬化型皮膜の密着力を50gf/cm以上とすることによって、得られた光ファイバ心線を用いたコネクタ接続部は、接続損失が少なく、反射減衰量を大きなものとすることができることになる。
【0017】
【表3】
Figure 2004198506
【0018】
【発明の効果】
以上説明したとおり、本発明は光ファイバ上に設けられる薄膜の紫外線硬化型樹脂皮膜の密着力(JIS規格C6471の銅箔の引剥がし試験方法Aに準拠)を、50gf/cm以上とした薄膜光ファイバ素線とすることによって、また、前記薄膜光ファイバ素線上に、紫外線硬化型樹脂被覆が形成された薄膜光ファイバ心線であって、この紫外線硬化型樹脂被覆を除去するときに、前記薄膜の紫外線硬化型樹脂皮膜が剥離しない薄膜光ファイバ心線とすることによって、このような光ファイバ素線を用いた光ファイバ心線は、前記紫外線硬化型樹脂被覆の除去手段が、マイクロストリッパ(MS)、ホットジャケットストリッパ(HJS)およびPBストリッパ(PB)のいずれを用いても、光ファイバ素線の薄膜との界面に、剥離がなく傷の発生を防止できる。具体的には、前記薄膜と石英ガラスとの界面の剥離発生率を、0%とすることができる。また、光ファイバ素線薄膜の密着力の調整も、石英ガラスの紡糸時における入線温度の調整や前記紡糸時における表面性の改善(酸素濃度等の調整)によって行えばよいので、実用的なものといえる。
【0019】
また、前記光ファイバ心線を用いてコネクタ研磨加工処理を行ったときには、光ファイバガラス端面に傷等の発生がないものとすることができ、さらには、前記光ファイバ心線を用いてコネクタ接続部を形成したときには、伝送損失が0.2dB以下で、かつ反射減衰量が40dB以上であるネクタ接続部とすることができる。このように、光ファイバ素線の薄膜皮膜の密着力が50gf/cm以上の光ファイバ心線を用いた場合には、その端面をPC研磨(フィジカルコンタクト)、APC研磨(アドバンストフィジカルコンタクト)やフラット研磨等の研磨加工を施しても、傷の発生が殆どないものとすることができ、また、それを用いたコネクタ接続部も、コネクタ接続損失が0.2dB以下であり、また反射減衰量も40dB以上と、実用的に優れたものとすることができる。
【図面の簡単な説明】
【図1】図1(A)および(B)は、光ファイバ心線の一例を示す概略断面図である。
【符号の説明】
1、1 石英ファイバ
2、2 薄膜紫外線硬化型樹脂皮膜
3、3 ソフトタイプ紫外線硬化型樹脂被覆
4、4 ハードタイプ紫外線硬化型樹脂被覆
5、5 光ファイバ心線[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a thin-film optical fiber having excellent coating adhesion, a thin-film optical fiber core using the same, and a connector connecting portion.
[0002]
[Prior art]
The thin-film optical fiber core wire is usually provided with a colored layer or a secondary coating of plastic on a thin-film optical fiber wire obtained by applying a thin ultraviolet curable resin film on an optical fiber of, for example, 80 to 100 μm. The thin film optical fiber is configured to be protected. For example, a thin UV curable resin film of 45 μm is provided on a quartz fiber having an outer diameter of 80 μm to form a thin optical fiber, and a thick soft UV curable resin layer, a hard UV curable resin coating, and the like are formed thereon. They are sequentially provided and used as a thin-film optical fiber core having an outer diameter of 250 μm. And since the production of the thin film optical fiber is usually performed in the atmosphere, the curing process of the ultraviolet curing resin film is performed while being exposed to oxygen, and the ultraviolet curing resin film is inhibited by oxygen, The adhesion to the quartz optical fiber may not be sufficient due to insufficient curing or the like. The adhesive force of the soft-type or hard-type UV-curable resin coating provided thereon is larger than that of the optical fiber due to the relationship between the UV-curable resins. Then, when an attempt is made to remove the soft-type or hard-type UV-curable resin coating of the thin-film optical fiber core having such a relationship of adhesion, the UV-curable resin film of the thin film is peeled off. There was something to do. Further, when such a thin-film optical fiber core is connected to a connector, its end face needs to be polished by PC polishing (physical contact), APC polishing (advanced physical contact), flat polishing, or the like. At this time, it is necessary to remove the UV-curable resin coating. However, depending on the UV-curable resin coating, such an operation may damage the glass end face of the optical fiber or cause a crack called glass chipping. There was something that caused such. When the connection portion is formed by using the optical fiber core wire having such a flaw or the like, problems such as an increase in transmission loss and a decrease in return loss have occurred. As one of proposals for addressing such a problem, Patent Literature 1 in which a thin layer of a fluororesin having good adhesion is provided on a clad layer of an optical fiber is known.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-155244
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to improve the adhesive strength between the thin-film ultraviolet-curable coating of the optical fiber and the glass of the optical fiber, and to improve the ultraviolet light of the optical fiber using the thin-film optical fiber. When removing the curable resin coating, it is assumed that the ultraviolet curable resin film of the thin film is not peeled off, and even if a polishing process such as connection is performed using such an optical fiber core wire, An object of the present invention is to prevent the glass end face of the optical fiber from being scratched or chipped, and to obtain a connector connection having a small transmission loss and a large return loss.
[0005]
[Means for Solving the Problems]
The problem to be solved is, as described in claim 1, the adhesion of a thin ultraviolet curable resin film provided on an optical fiber (according to JIS C6471 copper foil peeling test method A). Is reduced to 50 gf / cm or more by using a thin film optical fiber.
[0006]
Further, as described in claim 2, the thin-film optical fiber core wire on which the ultraviolet-curable resin coating is formed on the thin-film optical fiber strand, when removing the ultraviolet-curable resin coating, This problem can be solved by using a thin-film optical fiber core that does not peel off the ultraviolet-curable resin film of the thin film.
[0007]
Further, as described in claim 3, when the connector polishing processing is performed using the thin-film optical fiber core, a connector connection portion in which the end face of the optical fiber does not have scratches or the like is solved. Is done. Further, as described in claim 4, the connector connection part according to claim 3, wherein the transmission loss of the connector connection part is 0.2 dB or less and the return loss is 40 dB or more. Is solved by
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. According to the invention described in claim 1, the adhesive force (based on the peeling test method A of the copper foil of JIS standard C6471) of the thin ultraviolet curable resin film provided on the optical fiber is set to 50 gf / cm or more. By using the thin-film optical fiber strand, the thin-film optical fiber core wire using the same can remove the resin coating provided on the strand without damaging the optical fiber. The glass end face of the connector connection portion using a simple optical fiber core is free from chipping or damage due to polishing, and the obtained connector connection portion has a small transmission loss and a large return loss. be able to.
[0009]
Therefore, when the resin coating of the optical fiber core was removed, various studies were made on the problem of the adhesion of the thin film of the optical fiber and the peeling phenomenon between the ultraviolet-curable resin film and the quartz glass interface of the thin film. . That is, as shown in FIGS. 1 (A) and 1 (B), after a thin film ultraviolet curing resin film 2 having various adhesion strengths shown in Table 1 is provided on a quartz fiber 1 having an outer diameter of 80 μm, Furthermore, a soft-type UV-curable resin coating 3 and a hard-type UV-curable resin coating 4 having a relatively large thickness were sequentially provided thereon, and an optical fiber core 5 was manufactured. The adhesion of the ultraviolet-curable resin film of the thin film was adjusted by adjusting the input wire temperature during the spinning of the quartz glass and by improving the surface properties during the spinning (adjustment of the oxygen concentration and the like). Next, with respect to these optical fibers, the soft-type and hard-type ultraviolet-curable coatings were removed using a coating remover, and the adhesion was measured. As a specific coating remover, a micro stripper (MS), a hot jacket stripper (HJS) and a PB stripper (PB) were used to examine the rate of occurrence of peeling. The adhesion was measured in accordance with JIS C6471 Method A for measuring the peel strength of copper foil.
[0010]
As shown in Table 1, when the thickness of the thin film of the optical fiber was 45 μm and the adhesion was 50 gf / cm or more, the removal of the ultraviolet-curable resin coating of the optical fiber was performed. It can be seen that peeling can be prevented regardless of the means (MS, HJS, PB). More specifically, as described in Experimental Examples 4, 5, 8, 9, 10, 11 to 15, in an optical fiber with a thin film thickness of 45 μm, if the adhesion is 50 gf / cm or more, Regardless of the method of removing the coating, a micro stripper (MS), a hot jacket stripper (HJS), or a plastic blade (PB), the interface at the interface between the thin film and quartz glass is reduced to an incidence of 0%. be able to. This prevents the glass end face of the optical fiber from being damaged by the removal of the resin coating. More specifically, in the coating removal by MS, the occurrence rate can be reduced to 0% if the adhesion is 70 gf / cm. Further, it can be seen that the coating removal by the HJS is practical if the adhesion is 30 gf / cm, and that the coating removal by the PB is only 10 gf / cm. The adjustment of the adhesion of the optical fiber thin film can be a practically preferable optical fiber core by adjusting the manufacturing conditions as described above.
[0011]
[Table 1]
Figure 2004198506
[0012]
In addition, if an optical fiber core using the optical fiber is used, it is useful for connector connection. That is, as described in claim 3, when a connector polishing process is performed using the thin-film optical fiber core wire, a connector connection portion can be provided in which the glass end surface of the optical fiber does not have scratches or the like. . First, the polishing process will be briefly described. When the optical fiber core wire is connected to the connector, the end surface thereof is subjected to a polishing process such as PC polishing (physical contact), APC polishing (advanced physical contact), flat polishing, or the like. More specifically, the PC polishing is for reducing the Fresnel reflection by processing the tip of the ferrule into a convex spherical surface, eliminating the air layer at the connector butt portion, and bringing the glass into direct contact, and In the flat polishing, an end face of an optical fiber is polished at right angles to a fiber axis. However, in any case, it is necessary to remove the ultraviolet curable resin coating. Depending on the UV-curable resin coating, the glass fiber end face of the optical fiber may be damaged by such an operation, or a crack called glass chipping may occur. However, as described above, in the case of an optical fiber core using an optical fiber having an adhesive strength of a thin film (based on a test method A for peeling a copper foil of JIS C6471) of 50 gf / cm or more, such polishing is performed. It is possible to eliminate the occurrence of scratches on the glass end surface during the operation.
[0013]
That is, a GI type optical fiber having a core diameter of 50 μm and a cladding diameter of 100 μm is coated with a thin film made of an ultraviolet curable resin so as to have various adhesion strengths (gf / cm) shown in Table 2. An optical fiber having an outer diameter of 125 μm was used. Next, a relatively thick soft type ultraviolet-curable resin coating and a hard type ultraviolet-curable resin coating were sequentially provided thereon to produce an optical fiber core having an outer diameter of 250 μm. Next, the PC polishing for connector connection was performed using these optical fibers. Then, the state of the glass end surface of the optical fiber core was observed. As shown in Table 2, as shown in Table 2, the optical fiber core wire having an adhesive strength of 50 gf / cm or more of the optical fiber bare wire has almost no damage due to the PC polishing. I understand. On the other hand, as shown in Experimental Examples 16 and 17, a large number of scratches were seen at an adhesion force of 10 gf / cm, and scratches were seen at 30 gf / cm. Thus, it can be seen that the adhesive force of the thin film coating of the optical fiber is preferably 50 gf / cm or more.
[0014]
[Table 2]
Figure 2004198506
[0015]
Furthermore, as described in claim 4, an optical fiber using an optical fiber having an adhesive force of a thin film film (based on a copper foil peeling test method A of JIS standard C6471) of 50 gf / cm or more. By using the core wire for the connector connection portion, the transmission loss of the connector connection portion can be 0.2 dB or less and the return loss can be 40 dB or more. That is, a GI type optical fiber having a core diameter of 50 μm and a cladding diameter of 100 μm is coated with a thin film made of an ultraviolet curable resin so as to have various adhesion strengths (gf / cm). An optical fiber core wire having an outer diameter of 250 μm was prepared by sequentially providing a relatively thick soft type ultraviolet curable resin coating and a hard type ultraviolet curable resin coating thereon. Next, after performing the above-mentioned PC polishing for connector connection using these optical fiber core wires, a connector connection portion was formed, and a connection loss (dB) and a return loss (dB) were measured. The return loss indicates the ratio of the reflected light to the incident light power, and is usually preferably 40 dB or more.
[0016]
The results are as shown in Table 3. As shown in Experimental Examples 22 and 23, by using an optical fiber with a thin film having an adhesion of 50 gf / cm or more as in Experimental Examples 22 and 23, the connector connection loss was reduced to 0.2 dB or less. This is a numerical value having no practical problem, and the return loss is preferably 40 dB or more. On the other hand, when the adhesion is 10 gf / cm or 30 gf / cm as in Experimental Examples 20 and 21, the connector connection loss exceeds 0.2 dB, and the return loss is less than 40 dB. It will be. As described above, by setting the adhesive force of the ultraviolet curable film of the optical fiber thin film to 50 gf / cm or more, the connector connection portion using the obtained optical fiber core wire has a small connection loss and a return loss. Can be increased.
[0017]
[Table 3]
Figure 2004198506
[0018]
【The invention's effect】
As described above, the present invention provides a thin-film light-emitting device in which the adhesiveness of a thin-film ultraviolet-curable resin film provided on an optical fiber (according to JIS C6471 copper foil peeling test method A) is 50 gf / cm or more. By forming a fiber strand, a thin-film optical fiber core having an ultraviolet-curable resin coating formed on the thin-film optical fiber strand. By using a thin-film optical fiber core wire from which the ultraviolet-curable resin film is not peeled off, the optical fiber core wire using such an optical fiber can be removed by a micro stripper (MS) ), The hot jacket stripper (HJS) and the PB stripper (PB) have no peeling at the interface between the optical fiber and the thin film. The occurrence can be prevented. Specifically, the rate of occurrence of separation at the interface between the thin film and the quartz glass can be set to 0%. Further, the adjustment of the adhesion force of the optical fiber thin film may be performed by adjusting the input temperature during spinning of quartz glass or by improving the surface properties (adjustment of oxygen concentration or the like) during spinning. It can be said that.
[0019]
Further, when the connector polishing process is performed using the optical fiber core, it is possible to prevent the occurrence of scratches or the like on the end surface of the optical fiber glass, and further, the connector connection using the optical fiber core. When the portion is formed, a nectar connection portion having a transmission loss of 0.2 dB or less and a return loss of 40 dB or more can be provided. As described above, when an optical fiber core having a thin film coating of an optical fiber with an adhesive force of 50 gf / cm or more is used, its end face is PC-polished (physical contact), APC-polished (advanced physical contact) or flat. Even if a polishing process such as polishing is performed, it is possible to make scarcely any occurrence of a scratch. Also, a connector connection portion using the same has a connector connection loss of 0.2 dB or less, and also has a return loss. 40 dB or more can be practically excellent.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic cross-sectional views showing an example of an optical fiber core. FIG.
[Explanation of symbols]
1, 1 ' quartz fiber 2, 2 ' thin-film UV-curable resin coating 3, 3 ' soft-type UV-curable resin coating 4, 4 ' hard-type UV-curable resin coating 5, 5 ' optical fiber core

Claims (4)

光ファイバ上に設けられる薄膜の紫外線硬化型樹脂皮膜の密着力(JIS規格C6471の銅箔の引剥がし試験方法Aに準拠)を、50gf/cm以上としたことを特徴とする、薄膜光ファイバ素線。The thin-film optical fiber element according to claim 1, wherein the adhesive strength of the ultraviolet-curable resin film of the thin film provided on the optical fiber (according to JIS C6471 copper foil peeling test method A) is 50 gf / cm or more. line. 前記薄膜光ファイバ素線上に、紫外線硬化型樹脂被覆が形成された薄膜光ファイバ心線であって、この紫外線硬化型樹脂被覆を除去するときに、前記薄膜の紫外線硬化型樹脂皮膜が剥離しないことを特徴とする、薄膜光ファイバ心線。A thin-film optical fiber core wire having an ultraviolet-curable resin coating formed on the thin-film optical fiber wire, and when the ultraviolet-curable resin coating is removed, the ultraviolet-curable resin film of the thin film does not peel off. A thin-film optical fiber core. 前記薄膜光ファイバ心線を用いてコネクタ研磨加工処理を行ったときに、光ファイバ端面に傷等の発生がないことを特徴とする、コネクタ接続部。A connector connecting part, wherein when the connector polishing process is performed using the thin-film optical fiber core wire, the end face of the optical fiber is not damaged. 前記コネクタ接続部の伝送損失が0.2dB以下で、かつ反射減衰量が40dB以上であることを特徴とする、請求項3に記載されるコネクタ接続部。The connector connection part according to claim 3, wherein the transmission loss of the connector connection part is 0.2 dB or less, and the return loss is 40 dB or more.
JP2002364002A 2002-12-16 2002-12-16 Thin film optical fiber, thin film coated optical fiber, and connector connecting part Pending JP2004198506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364002A JP2004198506A (en) 2002-12-16 2002-12-16 Thin film optical fiber, thin film coated optical fiber, and connector connecting part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364002A JP2004198506A (en) 2002-12-16 2002-12-16 Thin film optical fiber, thin film coated optical fiber, and connector connecting part

Publications (1)

Publication Number Publication Date
JP2004198506A true JP2004198506A (en) 2004-07-15

Family

ID=32761995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364002A Pending JP2004198506A (en) 2002-12-16 2002-12-16 Thin film optical fiber, thin film coated optical fiber, and connector connecting part

Country Status (1)

Country Link
JP (1) JP2004198506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079362A1 (en) * 2012-04-13 2014-03-20 Sumitomo Electric Industries, Ltd. Optical fiber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140010U (en) * 1984-02-23 1985-09-17 住友電気工業株式会社 Fiber for optical transmission
JPH0369907A (en) * 1989-08-09 1991-03-26 Showa Electric Wire & Cable Co Ltd Coated optical fiber
JPH09159860A (en) * 1995-06-19 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connector
JPH09251121A (en) * 1996-03-15 1997-09-22 Toray Ind Inc Distributed refractive index optical fiber
JPH11116282A (en) * 1997-10-06 1999-04-27 Sumitomo Electric Ind Ltd Coated optical fiber
JPH11347908A (en) * 1999-05-12 1999-12-21 Nec Corp Spherical processing device
JP2000081552A (en) * 1998-09-03 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Core wire of optical fiber
JP2000292661A (en) * 1999-04-07 2000-10-20 Sumitomo Electric Ind Ltd Coated optical fiber
JP2001083381A (en) * 1999-09-14 2001-03-30 Sumitomo Electric Ind Ltd Coated optical fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140010U (en) * 1984-02-23 1985-09-17 住友電気工業株式会社 Fiber for optical transmission
JPH0369907A (en) * 1989-08-09 1991-03-26 Showa Electric Wire & Cable Co Ltd Coated optical fiber
JPH09159860A (en) * 1995-06-19 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connector
JPH09251121A (en) * 1996-03-15 1997-09-22 Toray Ind Inc Distributed refractive index optical fiber
JPH11116282A (en) * 1997-10-06 1999-04-27 Sumitomo Electric Ind Ltd Coated optical fiber
JP2000081552A (en) * 1998-09-03 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Core wire of optical fiber
JP2000292661A (en) * 1999-04-07 2000-10-20 Sumitomo Electric Ind Ltd Coated optical fiber
JPH11347908A (en) * 1999-05-12 1999-12-21 Nec Corp Spherical processing device
JP2001083381A (en) * 1999-09-14 2001-03-30 Sumitomo Electric Ind Ltd Coated optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079362A1 (en) * 2012-04-13 2014-03-20 Sumitomo Electric Industries, Ltd. Optical fiber
US9229159B2 (en) * 2012-04-13 2016-01-05 Sumitomo Electric Industries, Ltd. Optical fiber

Similar Documents

Publication Publication Date Title
US6549712B2 (en) Method of recoating an optical fiber
US6134364A (en) Optical fiber ribbon
JP2004198506A (en) Thin film optical fiber, thin film coated optical fiber, and connector connecting part
US8374474B2 (en) Optical fiber with single layer coating for field termination
US20050135763A1 (en) Optical fiber with a mechanically strippable coating and methods of making the same
JP2001264597A (en) Coated optical fiber
JP2004013105A (en) Coated optical fiber
EP1333301A1 (en) Method for molding optical fiber fusion spliced portion and optical fiber with molded fusion spliced portion
JP2004244269A (en) Thin film optical fiber strand and connector joint part
JP2004149377A (en) Thin film optical fiber
JP2006208940A (en) Optical fiber ribbon and optical cable
JP2000056191A (en) Coated optical fiber
JP2004196612A (en) Method for manufacturing thin film primary-coated optical fiber, secondary-coated optical fiber, and connection part of connector
JPS63281109A (en) Fiber for light transmission
JP2768674B2 (en) Optical fiber cord
JP3886249B2 (en) Fiber array
JP4058626B2 (en) Optical fiber fusion splicing method and optical fiber
JP3462634B2 (en) Optical fiber core and method of removing coating
JP2004004481A (en) Glass optical fiber strand for fiber grating
JP2006301531A (en) Optical fiber tape, optical cable and method for separating single core of optical fiber tape
JPH11202167A (en) Colored coated optical fiber and its manufacture
JP2004037762A (en) Recoating method for exposed clad part of optical fiber
CN206850212U (en) A kind of high power pump stripper
JP3349274B2 (en) Optical fiber
JP2004021118A (en) Plastic clad optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204