JP2004205293A - Transmission type interferometer and coating thickness measuring system - Google Patents

Transmission type interferometer and coating thickness measuring system Download PDF

Info

Publication number
JP2004205293A
JP2004205293A JP2002372924A JP2002372924A JP2004205293A JP 2004205293 A JP2004205293 A JP 2004205293A JP 2002372924 A JP2002372924 A JP 2002372924A JP 2002372924 A JP2002372924 A JP 2002372924A JP 2004205293 A JP2004205293 A JP 2004205293A
Authority
JP
Japan
Prior art keywords
thickness
measurement
interferometer
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002372924A
Other languages
Japanese (ja)
Other versions
JP4088145B2 (en
Inventor
Kazuo Onishi
一夫 大西
Hiroyuki Nishida
弘幸 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002372924A priority Critical patent/JP4088145B2/en
Publication of JP2004205293A publication Critical patent/JP2004205293A/en
Application granted granted Critical
Publication of JP4088145B2 publication Critical patent/JP4088145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect irregularities in the coating thickness of a light sensitive material precisely. <P>SOLUTION: Transmission type interferometers 5, 6 are installed before and after a coating process, and the thickness distribution of a film base 2 and the thickness distribution of a photograph film 4, where the film base 2 is coated with the sensitive material 3, are measured. The reflection optical system of the transmission type interferometers 5, 6 comprises erecting Poro prisms 12a, 12b; and corner cube mirror 13a, 13b. Inverted luminous flux that is deflected by 180 degrees while being reflected by the corner cube mirror is erected by the erecting Poro prism 12a, and interferes with reference light on half mirrors 11a, 11b for reference. Since both thickness information can be obtained from interference fringes including the thickness information of the film base 2 and the photograph film 4, irregularities in the thickness of the sensitive material 3 is detected from the difference. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、反射光学系の位置調整が容易な透過型干渉計、並びに薄膜の厚みムラ測定に好適な膜厚測定システムに関するものである。
【0002】
【従来の技術】
干渉計を用いた非接触型の膜厚測定装置として、マイケルソン干渉計を利用して層別厚み測定を行うものが知られている(特許文献1参照)。この膜厚測定装置では、シート状のベース素材と薄膜素材との間の屈折率差が大きい被検体を測定対象としており、薄膜層及びベース層の各境界面における透過光及び反射光を参照光と干渉させ、各層の厚みに応じて生じる光路差から得られる干渉縞の明暗強度を解析し、各層の厚みを測定している。
【0003】
【特許文献1】
特開昭55−29708号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述の膜厚測定装置は、ベース層と薄膜層との屈折率差がない被検体に対しては干渉縞の検出感度が低くなり、汎用的な膜厚測定には適していない。また、被検体を透過した測定光を平面ミラーによって反射させているため、この平面ミラーの法線が干渉光軸に対して傾くと干渉縞のピッチが変化して測定精度が下がる。これを防止するために、平面ミラーと干渉光軸との位置調整を精密に行うことは手間である。さらに平面ミラーの微振や熱変形による光軸ズレを防止するための設備には多大なコストがかかる。
【0005】
また、低コヒーレント光を利用するマイケルソン干渉計では、被検体の層境界面を透過又は反射した測定光から干渉縞を形成するために、参照ミラーを微動させて参照光と測定光との光路差を得ているため時間応答性が悪く、長尺のシート体を高速搬送しながらの厚み測定に使用することができない。
【0006】
本発明は、上記問題点を考慮してなされたもので、測定光の反射光学系と干渉光学系の位置調整が容易な干渉計、並びに二層間に屈折率差のない被検体に対してもベースシート上に形成した薄膜の厚みを求めることができ、高速搬送される被検体の厚み測定も可能な膜厚測定システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、可干渉性の電磁波から参照波と測定波とを得るための手段と、測定対象物を透過した測定波をその入射方向と平行な方向に反射する反射手段とを備え、前記測定対象物を再度透過した測定波と前記参照波とを重ね合わせることにより干渉縞を形成する透過型干渉計において、前記反射手段を、コーナーキューブリフレクタと、このコーナーキューブリフレクタを反射して倒立された測定波を正立させる光学系とで構成したことを特徴とするものである。
【0008】
請求項2記載の膜厚測定システムは、シート基材を測定対象物とする第1の干渉計と、前記シート基材上に薄膜が形成された薄膜シートを測定対象物とする第2の干渉計とが設けられ、前記第1の干渉計により得られた前記シート基材の干渉縞を取り込んで、前記シート基材の厚み情報を割り出す手段と、前記第2の干渉計により前記シート基材の測定範囲と同じ範囲を測定することで得られる前記薄膜シートの干渉縞を取り込んで、前記薄膜シートの厚み情報を割り出す手段と、シート基材の厚み情報と薄膜シートの厚み情報との差を求め、前記薄膜の厚み情報を割り出す手段とを備えていることを特徴とするもので、屈折率差がない複数の層からなるシート体を高速搬送しながら、高精度の厚み測定を可能にしている。
【0009】
【発明の実施の形態】
図1において、膜厚測定システム1は、写真フイルムの製造工程内に設けられる。フイルムベース2は図中左から右方へ搬送されており、感光材料3の塗布工程を介して写真フイルム4が製造される。感光材料3の塗布工程前後には、透過型干渉計5,6がそれぞれ設置されている。以下では、フイルムベース2と写真フイルム3とを被検体と総称する場合がある。
【0010】
感光材料3の塗布前工程に設置された透過型干渉計5は、レーザー光源7a、発散レンズ8a、光路変更用ハーフミラー9a、コリメータレンズ10a、参照用ハーフミラー11a、正立ポロプリズム12a、コーナーキューブミラー13a、CCDカメラ14aとから構成されている。なお、感光材料3の塗布後工程に設置された透過型干渉計6も同様の構成である。なお、参照用ハーフミラー11aや正立ポロプリズム12a、コーナーキューブミラー13aの反射面は、被検体の表面に比べて極めて高い精度の平坦面である。
【0011】
レーザー光源7aは、写真フイルム3が感光しにくい波長のレーザー光を発する。射出されたレーザー光は、発散レンズ8aとコリメータレンズ10aとによって光束径の大きい平行光となる。コリメータレンズ10aを透過したレーザー光は、フイルムベース2に向かって進行する測定光と、参照用ハーフミラー11aで反射される参照光とに分割される。
【0012】
図2において、測定光はフイルムベース2を透過して、コーナーキューブミラー13aに入射する。コーナーキューブミラー13aは、互いに直交する3つの反射面に金属膜を施した180度偏角プリズムであり、周知のように、3つの反射面を反射した光が入射方向と平行な方向に射出される再帰性反射光学素子である。コーナーキューブミラー13aを反射した測定光は、4つの直角プリズムを組み合わせて構成された正立ポロプリズム12aに入射する。
【0013】
コーナーキューブミラー13aは、図3(a)に示すように、頂点A1を中心に反射面15a,15b,15cを有している。なお、図中二点鎖線で示しているのは、再帰性反射の有効径内に現れるキュービックコーナーの稜線の反射像である。ここで、反射面15aに測定光が「F」の形をした光束として入射したとき、この光束は反射面15b,15cを経て、頂点A1に対して点対称な位置から180度偏向した倒立光束として出射する。
【0014】
「F」の倒立光束は、図3(b)に示すように、正立ポロプリズム12aを構成する第1直角プリズム16a内に入射する。第1直角プリズム16aに入射した倒立光束は、第2,第3直角プリズム16b,16cを反射して、第4直角プリズム16dから出射する。「F」の倒立光束は、正立ポロプリズム12aを透過・反射する過程で180度偏向し、コーナーキューブミラー13aへの入射時と同じ偏角の光束として正立する。
【0015】
図3(c)には、コーナーキューブミラー13aと正立ポロプリズム12aとによる測定光の倒立・正立変換の様子を示す。コーナーキューブミラー13aへの入射光路と、正立ポロプリズム12aからの出射光路とが一致しておらず、中に端末矢印で示す距離だけ隔たった光路を進行し、測定光は被検体の異なる2つの位置を透過することになる。
【0016】
正立ポロプリズム12aを出射した測定光は、フイルムベース2を再び透過して参照用ハーフミラー11aに到達する。参照用ハーフミラー11aに達した測定光は、フイルムベース2を透過することで参照光に比べて位相に遅れが生じる。この位相遅れの大きさは、フイルムベース2を測定光が透過する2つの位置の厚みを合計した大きさに応じて決まる。
【0017】
参照用ハーフミラー11a上では、参照光と測定光とがその位相差によって干渉し、測定光が一度目に透過した箇所の厚みと、二度目に透過した箇所の厚みとを足し合わせた厚みの情報を含んだ干渉縞が形成される。測定光と参照光との干渉光は、コリメータレンズ10aを透過した後に光路変更用ハーフミラー9aで進路が折り曲げられ、CCDカメラ14aに到達する。CCDカメラ14aでは、参照用ハーフミラー11a上に形成された干渉縞が撮影される。
【0018】
透過型干渉計に正立ポロプリズム12aとコーナーキューブミラー13aとを併用した反射系を用いる利点について、コーナーキューブミラー13aのみの反射系を用いた場合と比較しながら図4,図5を用いて説明する。
【0019】
図4に示すコーナーキューブミラー13aのみを備えた反射系において、図4(a)中の点p1,p2で示す間を直線状の測定光が入射することを想定する。点p1,p2に入射した光は、図4(b)に示す厚み分布を有する被検体を一度透過する。点p1,点p2を通る光路で入射した測定光は、頂点A1に点対称な点p4,点p3を通る光路からそれぞれ出射する。コーナーキューブミラー13aを出射した測定光は、点p3,p4を通る光路で被検体を再び透過し、2つの透過位置における被検体の厚みの合計分に応じた位相遅れが生じる。
【0020】
図4(c)に示すように、被検体を二回透過した測定光は、参照光に対し、p1−p2間の被検体の厚みによる位相差分布(φ1’)と、p3−p4間の厚みによる位相差分布(φ2)との和(φ1’+φ2)で表わされる位相差が生じる。このとき、コーナーキューブミラー13aによって測定光が180度偏向しているため、p1−p2間における位相差分布は、実際のp1−p2間の位相差分布(φ1)(図5参照)と鏡像関係にある。よって、コーナーキューブミラー13aのみを用いた反射系では、その頂点A1と点対称の位置にある測定光の位相差が重ね合わされるため、図示するような被検体の厚み分布によっては、大きな誤差を含む結果となる。
【0021】
一方、図5に示す正立ポロプリズム12aとコーナーキューブミラー13aとを併用した反射系においては、被検体を透過する測定光の向きが揃えられ、p1−p2間の位相差分布とp5−p6間の位相差分布とが正しく平均化され、被検体の厚み分布をより正確に反映した干渉縞を得ることができる。なお、図5においては、説明の便宜上、p5−p6間の厚み分布とp3−p4間の厚み分布とを同じにしている。
【0022】
図6において、干渉縞解析装置20には、CCDカメラ14a,14bから干渉縞の静止画像信号がそれぞれ出力される。干渉縞解析装置20は、干渉縞画像蓄積部21a,21b、干渉縞画像接続部22a,22b、厚みパターン変換部23a,23b、厚みムラ分布解析部24の各機能を有するコンピュータで構成される。
【0023】
干渉縞画像蓄積部21a,21bは、CCDカメラ14a,14bで連続撮影されたそれぞれの干渉縞画像を取り込んで、複数の静止画像データとして記憶する。このとき、被検体の搬送に伴って、撮影もれが生じないカメラ視野と画像ブレが生じない撮影速度とを求めておく必要がある。
【0024】
被検体の搬送に伴う撮影画像の取りこぼしが発生しないように、被検体の搬送方向に対して最低必要なカメラ視野D(mm)を算出する。CCDカメラ14a,14bの撮像速度をf(フレーム/秒)、被検体の搬送速度をV(mm/秒)、後述する画像接続のために必要となる撮影画像の搬送方向のオーバーラップ率をK(%)、搬送方向に並べるカメラ台数をn(台)とすると、
D=V/(1−K/100)/f/n
と表わされる。例えば、毎秒30フレームでフルフレーム画像の連続取り込みが可能なプログレッシブスキャンカメラを1台使い、被検体を毎秒3000mmで搬送し、画像オーバーラップ率を20%確保するときのカメラ視野は、上式に各値を代入するとD=125(mm)となる。撮像速度の異なるカメラを使用する時や、被検体の搬送速度が異なる時は上式よりカメラ視野を算出し、場合によってはカメラ台数を増やして1台あたりのカメラ視野が狭くされる。
【0025】
被検体の搬送に伴う画像ブレの発生をなくすためには、画像の取り込み速度を上げるか、露光時間を短くする必要がある。画像の取り込み速度は上述したfであるから、ここでは撮影1回あたりの露光時間について説明する。CCDカメラの被検体搬送方向における撮影画素数をx(画素)とし、鮮明な静止画像を得るために画像ブレを10分の1画素以下に抑えるための露光時間t(秒)は、
t=1/f/x/10
となる。例えば、撮像速度が毎秒30フレームであり、搬送方向の撮影画素数が512画素のCCDカメラを使用した場合(カメラ視野125mmの時に1画素の空間分解能は0.24mm)、t=6.5×10-6(秒)となる。この瞬間的な露光時間tを実現するためには、パルス発光が可能なするレーザー光源を用いるのがよい。また、レーザー光源の前面にシャッタとなる羽根車を配置する方法もある。また、瞬間的な露光時間でも、撮影に支障をきたすことがないように、CCD感度やレーザー光量などが感光材料3の感度とともに適宜考慮される。
【0026】
図6において、干渉縞画像接続部22a,22bは、1/f秒ごとに撮影された複数の干渉縞静止画像を干渉縞画像蓄積部21a,21bから読み出し、被検体の搬送方向に接続する。ここでは、精密な一連の干渉縞画像を得るために、2つの干渉縞画像のオーバーラップ範囲を1画素以下の分解能で一致させる画像接続処理が行われる。具体的には、周知の正規化相関サーチ法が用いられ、1つの干渉縞登録画像と、時間的に隣り合う他の干渉縞画像とが、そのオーバーラップパターンの範囲内で一致するように接続処理される。この画像接続処理においては、被検体の搬送中における蛇行やバタツキなどによる2次元的な小さな画素ズレなども補正される。
【0027】
厚みパターン変換部23a,23bでは、干渉縞画像接続部22a,22bで接続計算されたされた一連の干渉縞画像を元に、フーリエ変換縞パターン解析法(FTP法)を用いて被検体の厚み情報が割り出される。FTP法は、フリンジスキャン法(縞走査法)のように縞の周期変化を測定するために圧電素子を用いた参照面の走査機構が必要なく、1枚の干渉縞画像から厚み情報が得られるので、本実施形態のように高速搬送される被検体の厚み算出に適している。干渉縞画像からは、ノイズを含む高い空間周波数成分が除去され、位相接続や逆フーリエ変換を経て被検体の厚み分布が得られる。
【0028】
厚みムラ分布解析部24は、厚みパターン変換部23a,23bでそれぞれ得られたフイルムベース2の厚み分布と、写真フイルム4の厚み分布とを比較し、その差分から感光材料3の塗布厚み分布を割り出す。割り出された感光材料3の塗布厚み分布は、予め登録された正常な塗布厚み分布と比較され、塗布異常の認められた範囲が塗布ムラとして検出される。
【0029】
例えば、フイルムベース2が200μmの厚みで形成され、感光材料3がフイルムベース2上で20μmの厚みとなるように塗布される場合、それぞれ±10%の範囲で厚みにバラツキが生じることが統計的に確かめられている。すなわち、フイルムベース2の厚みムラは±20μm程度であり、感光材料3の厚みムラは±2μmとなる。フイルムベース2の厚みムラは、感光材料3の塗布厚みムラの約10倍となるため、写真フイルム4の厚み分布を測定するだけでは、フイルムベース2の厚み分布を求めることと大差がなく、感光材料3の厚みムラを検出することは不可能である。よって、フイルムベース2の厚み分布と写真フイルム4の厚み分布との差分をとることで、感光材料3の塗布厚み分布を測定でき、その厚みムラを有効に検出することが可能となる。
【0030】
図7において、透過型干渉計5,6は、感光材料3の塗布過程前後において、幅広で長尺の被検体の全面を測定するために、被検体の幅方向及び搬送方向にそれぞれ複数配置される。また、反射光学系の大きさに対して干渉縞の得られる参照面の有効面積が小さいことから、各干渉計の物理的干渉を避けるために各干渉計を千鳥状に少しずつずらして配置している。各干渉計は搬送方向に6列、幅方向に2列の合計12台配置され、1台の干渉計で被検体搬送方向の厚み分布測定をカバーする。
【0031】
上述した被検体搬送方向のカメラ視野Dに基づいて、被検体幅方向に必要な干渉計台数Aを求める算出式は、幅方向のカメラ視野オーバーラップ率をM(%)、被検体の幅をW(mm)、被検体の搬送に伴う蛇行許容幅をJ(mm)としたとき、
A=(W+J)/D/(1−M/100)
となる(端数は繰り上げ)。例えば、幅方向の縞画像オーバーラップ率を20%とし、カメラ視野を125mmとし、(W+J)を1200mmとすれば、A=12(台)となる。
【0032】
以上の構成の膜厚測定システム1は、幅広で長尺のフイルムベース2上に塗布された感光材料3の塗布厚みムラをその全面に渡って高精度に検出することが可能となる。また、透過型干渉計を用いているので、反射型干渉計のように搬送に伴う被検体のバタツキによる検出誤差が生じることはない。
【0033】
なお、上記実施形態は、被検体を透過する測定光の入射光路と反射光路とが異なった光路不一致型の反射光学系について述べているが、図8に示すように、正立光学系として、偏向膜を施した偏向膜付きポロプリズム30と、光束の均一性を高めるために位相板31とを設け、被検体を透過する測定光の透過点を一致させるようにしてもよい。この場合、光路不一致型の反射光学系に比べて正確な膜厚測定が可能となる。また、コーナーキューブリフレクタを用いているので、被検体を正反射した測定光による干渉縞の乱れを防止するために、被検体を例えば10度±5度の範囲で干渉計光軸から傾けるのも有効である。
【0034】
また、上記実施形態のように、被検体に感光性物質を用いる場合には、光カブリを生じない短時間露光に頼る以外にも、発光波長が0.9μm〜1.3μmの近赤外線を放出するレーザー源を用いてもよい。レーザー源としては、YAGレーザー、チタン・サファイアレーザー、エキシマレーザー、炭酸ガスレーザー、半導体レーザーなど、被検体の光学物性に応じて発光強度、波長、光源種を適宜選択することができる。
【0035】
さらに、反射光学系として、コーナーキューブリフレクタとしては、キュービックコーナーの形状に組み合わせた板状の鏡を用いてもよい。正立光学系としてはポロプリズムを用いる以外にも、4枚以上の鏡を組み合わせて、180度の偏角光学系を構成すればよい。
【0036】
そして、本発明は、写真フイルムの製造工程などの成層工程に限られず、蒸着膜やスパッタリング膜の膜厚ムラ測定や、薄膜を剥離する減層工程や加工深さ測定などに利用することもできる。
【0037】
【発明の効果】
以上のように、本発明の透過型干渉計によれば、コーナーキューブリフレクタの再帰性反射を利用することで、干渉計の光軸調整が容易になり、干渉計全体の剛性を高める必要がない。また、コーナーキューブリフレクタの反射による倒立光束を正立させているので、厚み検出誤差を小さくすることができる。さらに、被検体を透過した測定波の位相差を利用して干渉縞を形成するので、高速搬送される被検体のバタツキによる測定誤差が生じない。
【0038】
また、本発明の膜厚測定システムによれば、シート基材の厚み分布と、シート基材上に薄膜を形成した薄膜シートの厚み分布との差から薄膜の厚みを求めているので、シート基材の厚みムラと薄膜の厚みムラとを区別して検出することができる。さらに、二層間あるいは複数層間で屈折率差のない被検体の厚みムラ検出が可能である。
【図面の簡単な説明】
【図1】膜厚測定システムの概略構成図である。
【図2】反射光学系の斜視図である。
【図3】測定光の倒立・正立変換を示す説明図である。
【図4】コーナーキューブミラーのみによる膜厚測定の原理を示す説明図である。
【図5】コーナーキューブミラーと正立光学系を併用した場合の膜厚測定の原理を示す説明図である。
【図6】干渉縞解析装置の機能構成を示すブロック図である。
【図7】被検体の幅全域の厚み分布を測定するための干渉計配置図である。
【図8】反射光学系の他の実施形態を示す斜視図である。
【符号の説明】
1 膜厚測定システム
5,6 透過型干渉計
11a,11b 参照用ハーフミラー
12a 正立ポロプリズム
13a コーナーキューブミラー
20 干渉縞解析装置
21a,21b 干渉縞画像蓄積部
22a,22b 干渉縞画像解析部
23a,23b 厚みパターン変換部
24 厚みムラ分布解析部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission interferometer in which the position of a reflection optical system can be easily adjusted, and a film thickness measurement system suitable for measuring thickness unevenness of a thin film.
[0002]
[Prior art]
As a non-contact type film thickness measurement apparatus using an interferometer, one that performs layer-by-layer thickness measurement using a Michelson interferometer is known (see Patent Document 1). In this film thickness measurement device, an object having a large refractive index difference between a sheet-like base material and a thin film material is measured, and transmitted light and reflected light at each boundary surface between the thin film layer and the base layer are used as reference light. And the intensity of interference fringes obtained from the optical path difference generated according to the thickness of each layer is analyzed, and the thickness of each layer is measured.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 55-29708
[Problems to be solved by the invention]
However, the above-described film thickness measurement apparatus is not suitable for general-purpose film thickness measurement because the detection sensitivity of interference fringes is low for a subject having no difference in refractive index between the base layer and the thin film layer. In addition, since the measurement light transmitted through the subject is reflected by the plane mirror, if the normal line of the plane mirror is tilted with respect to the interference optical axis, the pitch of the interference fringes changes and the measurement accuracy is lowered. In order to prevent this, it is troublesome to precisely adjust the position of the plane mirror and the interference optical axis. Furthermore, the equipment for preventing the optical axis shift due to the fine vibration or thermal deformation of the flat mirror is very expensive.
[0005]
Further, in the Michelson interferometer using low-coherent light, in order to form interference fringes from the measurement light transmitted or reflected from the layer boundary surface of the subject, the optical path between the reference light and the measurement light is moved finely. Since the difference is obtained, the time responsiveness is poor and the long sheet cannot be used for thickness measurement while being conveyed at high speed.
[0006]
The present invention has been made in consideration of the above problems, and is applicable to an interferometer in which the position of the reflection optical system and the interference optical system of the measurement light can be easily adjusted, and an object having no refractive index difference between the two layers. It is an object of the present invention to provide a film thickness measurement system that can determine the thickness of a thin film formed on a base sheet and can also measure the thickness of an object that is conveyed at high speed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention reflects a means for obtaining a reference wave and a measurement wave from a coherent electromagnetic wave, and a measurement wave transmitted through the measurement object in a direction parallel to the incident direction. A transmissive interferometer that forms interference fringes by superimposing the reference wave and the measurement wave that has again passed through the measurement object, the reflection means being a corner cube reflector and the corner cube It is characterized by comprising an optical system that erects an inverted measurement wave reflected by a reflector.
[0008]
The film thickness measurement system according to claim 2, wherein the measurement object is a first interferometer using a sheet base material as a measurement object, and a thin film sheet having a thin film formed on the sheet base material. And a means for taking in the interference fringes of the sheet base material obtained by the first interferometer and calculating thickness information of the sheet base material, and the sheet base material by the second interferometer Means for taking in the interference fringes of the thin film sheet obtained by measuring the same range as the measurement range, and calculating the thickness information of the thin film sheet, and the difference between the thickness information of the sheet base material and the thickness information of the thin film sheet And a means for determining the thickness information of the thin film, enabling high-precision thickness measurement while conveying a sheet body composed of a plurality of layers having no refractive index difference at high speed. Yes.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, a film thickness measuring system 1 is provided in a photographic film manufacturing process. The film base 2 is conveyed from the left to the right in the figure, and the photographic film 4 is manufactured through the coating process of the photosensitive material 3. Before and after the coating process of the photosensitive material 3, transmission type interferometers 5 and 6 are respectively installed. Hereinafter, the film base 2 and the photographic film 3 may be collectively referred to as a subject.
[0010]
The transmissive interferometer 5 installed in the pre-application process of the photosensitive material 3 includes a laser light source 7a, a diverging lens 8a, an optical path changing half mirror 9a, a collimator lens 10a, a reference half mirror 11a, an upright porro prism 12a, a corner It is composed of a cube mirror 13a and a CCD camera 14a. The transmission interferometer 6 installed in the post-application process of the photosensitive material 3 has the same configuration. The reflecting surfaces of the reference half mirror 11a, the erecting porro prism 12a, and the corner cube mirror 13a are flat surfaces with extremely high accuracy compared to the surface of the subject.
[0011]
The laser light source 7a emits a laser beam having a wavelength at which the photographic film 3 is difficult to be exposed. The emitted laser light becomes parallel light having a large light beam diameter by the diverging lens 8a and the collimator lens 10a. The laser light transmitted through the collimator lens 10a is divided into measurement light traveling toward the film base 2 and reference light reflected by the reference half mirror 11a.
[0012]
In FIG. 2, the measurement light passes through the film base 2 and enters the corner cube mirror 13a. The corner cube mirror 13a is a 180 degree declination prism in which three reflective surfaces orthogonal to each other are provided with a metal film. As is well known, light reflected from the three reflective surfaces is emitted in a direction parallel to the incident direction. This is a retroreflective optical element. The measurement light reflected from the corner cube mirror 13a is incident on an upright poro prism 12a configured by combining four right-angle prisms.
[0013]
As shown in FIG. 3A, the corner cube mirror 13a has reflection surfaces 15a, 15b, and 15c with the vertex A1 as the center. In addition, what is shown with the dashed-two dotted line in the figure is the reflective image of the ridgeline of the cubic corner which appears within the effective diameter of retroreflection. Here, when the measurement light is incident on the reflecting surface 15a as a light beam having the shape of "F", this light beam passes through the reflecting surfaces 15b and 15c and is an inverted light beam deflected 180 degrees from a point-symmetrical position with respect to the vertex A1. To be emitted.
[0014]
As shown in FIG. 3B, the inverted light beam “F” is incident on the first right-angle prism 16a constituting the upright porro prism 12a. The inverted luminous flux incident on the first right-angle prism 16a is reflected by the second and third right-angle prisms 16b and 16c and is emitted from the fourth right-angle prism 16d. The inverted light beam “F” is deflected by 180 degrees in the process of being transmitted and reflected by the erecting Porro prism 12a, and erects as a light beam having the same declination as that incident on the corner cube mirror 13a.
[0015]
FIG. 3C shows how the measurement light is inverted and erected by the corner cube mirror 13a and the upright porro prism 12a. The incident optical path to the corner cube mirror 13a and the outgoing optical path from the erecting Porro prism 12a do not coincide with each other, travel along an optical path separated by a distance indicated by a terminal arrow, and the measurement light is different from the subject. Two positions will be transmitted.
[0016]
The measurement light emitted from the erecting Porro prism 12a passes through the film base 2 again and reaches the reference half mirror 11a. The measurement light that has reached the reference half mirror 11a is transmitted through the film base 2 so that its phase is delayed as compared with the reference light. The magnitude of this phase lag is determined according to the sum of the thicknesses of the two positions where the measurement light passes through the film base 2.
[0017]
On the reference half mirror 11a, the reference light and the measurement light interfere with each other due to the phase difference, and the thickness of the portion where the measurement light is transmitted through the first time and the thickness of the portion where the measurement light is transmitted through the second time are added. Interference fringes containing information are formed. The interference light of the measurement light and the reference light passes through the collimator lens 10a, and then the path is bent by the optical path changing half mirror 9a, and reaches the CCD camera 14a. The CCD camera 14a captures the interference fringes formed on the reference half mirror 11a.
[0018]
The advantage of using a reflection system in which an erecting Porro prism 12a and a corner cube mirror 13a are used in combination with a transmission interferometer will be described with reference to FIGS. 4 and 5 in comparison with a case where a reflection system using only a corner cube mirror 13a is used. explain.
[0019]
In the reflection system having only the corner cube mirror 13a shown in FIG. 4, it is assumed that linear measurement light is incident between the points p1 and p2 in FIG. The light incident on the points p1 and p2 once passes through the subject having the thickness distribution shown in FIG. The measurement light incident on the optical path passing through the points p1 and p2 is emitted from the optical path passing through the point p4 and the point p3 that are symmetric with respect to the vertex A1, respectively. The measurement light emitted from the corner cube mirror 13a is transmitted again through the subject along the optical path passing through the points p3 and p4, and a phase delay corresponding to the total thickness of the subject at the two transmission positions occurs.
[0020]
As shown in FIG. 4C, the measurement light transmitted twice through the subject has a phase difference distribution (φ1 ′) depending on the thickness of the subject between p1 and p2, and between p3 and p4 with respect to the reference light. A phase difference represented by the sum (φ1 ′ + φ2) with the phase difference distribution (φ2) depending on the thickness is generated. At this time, since the measurement light is deflected 180 degrees by the corner cube mirror 13a, the phase difference distribution between p1 and p2 is a mirror image relationship with the actual phase difference distribution (φ1) between p1 and p2 (see FIG. 5). It is in. Therefore, in the reflection system using only the corner cube mirror 13a, the phase difference of the measurement light at a point symmetric position with respect to the vertex A1 is superimposed, so that a large error may occur depending on the thickness distribution of the subject as illustrated. Result.
[0021]
On the other hand, in the reflection system using the erecting Porro prism 12a and the corner cube mirror 13a shown in FIG. 5, the direction of the measurement light passing through the subject is aligned, and the phase difference distribution between p1-p2 and p5-p6 Interference fringes that more accurately reflect the thickness distribution of the object can be obtained. In FIG. 5, the thickness distribution between p5-p6 and the thickness distribution between p3-p4 are made the same for convenience of explanation.
[0022]
In FIG. 6, the interference fringe analyzer 20 outputs interference fringe still image signals from the CCD cameras 14a and 14b. The interference fringe analysis apparatus 20 is configured by a computer having the functions of interference fringe image storage units 21a and 21b, interference fringe image connection units 22a and 22b, thickness pattern conversion units 23a and 23b, and thickness unevenness distribution analysis unit 24.
[0023]
The interference fringe image accumulating units 21a and 21b capture the respective interference fringe images continuously photographed by the CCD cameras 14a and 14b and store them as a plurality of still image data. At this time, it is necessary to obtain a camera field of view that does not cause imaging leakage and an imaging speed that does not cause image blur as the subject is transported.
[0024]
The minimum required camera field of view D (mm) is calculated with respect to the direction in which the subject is transported so that the captured image is not lost due to the transport of the subject. The imaging speed of the CCD cameras 14a and 14b is f (frame / second), the transport speed of the subject is V (mm / second), and the overlap rate in the transport direction of the captured image necessary for image connection described later is K. (%), Where n (units) is the number of cameras arranged in the transport direction,
D = V / (1-K / 100) / f / n
It is expressed as For example, when using one progressive scan camera capable of continuous capture of full frame images at 30 frames per second, transporting the subject at 3000 mm per second, and ensuring a 20% image overlap rate, the camera field of view is Substituting each value results in D = 125 (mm). When using cameras with different imaging speeds or when the transport speed of the subject is different, the camera field of view is calculated from the above equation. In some cases, the number of cameras is increased to narrow the camera field of view per camera.
[0025]
In order to eliminate the occurrence of image blur due to the conveyance of the subject, it is necessary to increase the image capture speed or shorten the exposure time. Since the image capturing speed is f as described above, the exposure time per one shooting will be described here. An exposure time t (second) for suppressing the image blur to 1/10 pixel or less in order to obtain a clear still image is set to x (pixel) as the number of imaging pixels in the subject conveyance direction of the CCD camera.
t = 1 / f / x / 10
It becomes. For example, when a CCD camera having an imaging speed of 30 frames per second and a shooting pixel count of 512 pixels in the transport direction is used (the spatial resolution of one pixel is 0.24 mm when the camera field of view is 125 mm), t = 6.5 × 10 −6 (seconds). In order to realize this instantaneous exposure time t, it is preferable to use a laser light source capable of emitting pulses. There is also a method of arranging an impeller as a shutter in front of the laser light source. Further, the CCD sensitivity, the laser light quantity, and the like are appropriately taken into consideration together with the sensitivity of the photosensitive material 3 so as not to hinder photographing even with an instantaneous exposure time.
[0026]
In FIG. 6, interference fringe image connection units 22a and 22b read a plurality of interference fringe still images taken every 1 / f second from the interference fringe image storage units 21a and 21b, and connect them in the transport direction of the subject. Here, in order to obtain a precise series of interference fringe images, an image connection process for matching the overlapping range of the two interference fringe images with a resolution of 1 pixel or less is performed. Specifically, a well-known normalized correlation search method is used, and one interference fringe registered image and another interference fringe image adjacent in time are connected so that they coincide within the range of the overlap pattern. It is processed. In this image connection process, a two-dimensional small pixel shift caused by meandering or flapping during the transportation of the subject is also corrected.
[0027]
The thickness pattern conversion units 23a and 23b use the Fourier transform fringe pattern analysis method (FTP method) based on the series of interference fringe images calculated by the interference fringe image connection units 22a and 22b. Information is determined. The FTP method does not require a scanning mechanism for a reference surface using a piezoelectric element to measure the fringe period change like the fringe scan method (the fringe scan method), and thickness information can be obtained from a single interference fringe image. Therefore, it is suitable for calculating the thickness of the subject that is transported at high speed as in this embodiment. From the interference fringe image, high spatial frequency components including noise are removed, and the thickness distribution of the subject is obtained through phase connection and inverse Fourier transform.
[0028]
The thickness unevenness distribution analysis unit 24 compares the thickness distribution of the film base 2 obtained by the thickness pattern conversion units 23a and 23b with the thickness distribution of the photographic film 4, and determines the coating thickness distribution of the photosensitive material 3 from the difference. Find out. The determined application thickness distribution of the photosensitive material 3 is compared with a normal application thickness distribution registered in advance, and a range where application abnormality is recognized is detected as application unevenness.
[0029]
For example, when the film base 2 is formed with a thickness of 200 μm and the photosensitive material 3 is applied on the film base 2 so as to have a thickness of 20 μm, it is statistical that the thickness varies within a range of ± 10%. Has been confirmed. That is, the thickness unevenness of the film base 2 is about ± 20 μm, and the thickness unevenness of the photosensitive material 3 is ± 2 μm. Since the thickness unevenness of the film base 2 is about 10 times the coating thickness unevenness of the photosensitive material 3, the thickness distribution of the film base 2 is not much different from the thickness distribution of the film base 2 only by measuring the thickness distribution of the photographic film 4. It is impossible to detect the thickness unevenness of the material 3. Therefore, by taking the difference between the thickness distribution of the film base 2 and the thickness distribution of the photographic film 4, the coating thickness distribution of the photosensitive material 3 can be measured, and the thickness unevenness can be detected effectively.
[0030]
In FIG. 7, a plurality of transmission interferometers 5 and 6 are arranged in the width direction and the transport direction of the subject in order to measure the entire surface of the wide and long subject before and after the coating process of the photosensitive material 3. The In addition, since the effective area of the reference surface where interference fringes are obtained is small relative to the size of the reflective optical system, each interferometer is arranged in a staggered manner to avoid physical interference of each interferometer. ing. A total of 12 interferometers are arranged in 6 rows in the transport direction and 2 rows in the width direction, and one interferometer covers the thickness distribution measurement in the subject transport direction.
[0031]
Based on the camera field of view D in the subject conveyance direction described above, the calculation formula for obtaining the number of interferometers A required in the direction of the subject width is M (%) for the camera field overlap ratio in the width direction and the width of the subject. W (mm), where J (mm) is the allowable meandering width associated with the transportation of the subject,
A = (W + J) / D / (1-M / 100)
(Rounded up). For example, if the stripe image overlap rate in the width direction is 20%, the camera field of view is 125 mm, and (W + J) is 1200 mm, A = 12 (units).
[0032]
The film thickness measuring system 1 having the above configuration can detect the coating thickness unevenness of the photosensitive material 3 coated on the wide and long film base 2 with high accuracy over the entire surface. Further, since a transmission type interferometer is used, a detection error due to the flickering of the subject accompanying the conveyance does not occur unlike the reflection type interferometer.
[0033]
In the above-described embodiment, the optical path mismatch type reflection optical system in which the incident optical path and the reflected optical path of the measurement light transmitted through the subject are different from each other, but as shown in FIG. A Porro prism 30 with a deflecting film provided with a deflecting film and a phase plate 31 may be provided in order to improve the uniformity of the light beam, and the transmission points of the measurement light passing through the subject may be matched. In this case, it is possible to measure the film thickness more accurately than in the optical path mismatch type reflection optical system. In addition, since the corner cube reflector is used, in order to prevent disturbance of interference fringes due to the measurement light regularly reflected from the subject, the subject may be tilted from the interferometer optical axis within a range of, for example, 10 degrees ± 5 degrees. It is valid.
[0034]
In addition, when a photosensitive material is used for the subject as in the above embodiment, a near infrared ray having an emission wavelength of 0.9 μm to 1.3 μm is emitted in addition to relying on short-time exposure that does not cause light fogging. A laser source may be used. As the laser source, the emission intensity, wavelength, and light source type can be appropriately selected according to the optical physical properties of the subject, such as a YAG laser, titanium / sapphire laser, excimer laser, carbon dioxide laser, and semiconductor laser.
[0035]
Further, as the reflecting optical system, a plate-like mirror combined with a cubic corner shape may be used as the corner cube reflector. In addition to using a Porro prism as an erecting optical system, a 180 ° declination optical system may be configured by combining four or more mirrors.
[0036]
The present invention is not limited to a stratification process such as a photographic film manufacturing process, but can also be used for measurement of film thickness unevenness of a deposited film or a sputtering film, a delamination process for peeling a thin film, or a processing depth measurement. .
[0037]
【The invention's effect】
As described above, according to the transmission interferometer of the present invention, the optical axis of the interferometer can be easily adjusted by using the retroreflection of the corner cube reflector, and it is not necessary to increase the rigidity of the entire interferometer. . Further, since the inverted luminous flux due to the reflection of the corner cube reflector is erected, the thickness detection error can be reduced. Further, since the interference fringes are formed using the phase difference of the measurement wave transmitted through the subject, no measurement error due to the fluttering of the subject conveyed at high speed does not occur.
[0038]
Further, according to the film thickness measurement system of the present invention, since the thickness of the thin film is obtained from the difference between the thickness distribution of the sheet base material and the thickness distribution of the thin film sheet formed on the sheet base material, the sheet base The thickness unevenness of the material and the thickness unevenness of the thin film can be distinguished and detected. Furthermore, it is possible to detect the thickness unevenness of the subject with no difference in refractive index between two layers or a plurality of layers.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a film thickness measurement system.
FIG. 2 is a perspective view of a reflective optical system.
FIG. 3 is an explanatory diagram showing inverted / upright conversion of measurement light.
FIG. 4 is an explanatory diagram showing the principle of film thickness measurement using only a corner cube mirror.
FIG. 5 is an explanatory diagram showing the principle of film thickness measurement when a corner cube mirror and an erecting optical system are used in combination.
FIG. 6 is a block diagram showing a functional configuration of the interference fringe analyzer.
FIG. 7 is a layout diagram of interferometers for measuring the thickness distribution over the entire width of the subject.
FIG. 8 is a perspective view showing another embodiment of the reflecting optical system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Film thickness measurement system 5, 6 Transmission type interferometer 11a, 11b Reference half mirror 12a Erecting poro prism 13a Corner cube mirror 20 Interference fringe analyzer 21a, 21b Interference fringe image storage part 22a, 22b Interference fringe image analysis part 23a , 23b Thickness pattern conversion unit 24 Thickness unevenness distribution analysis unit

Claims (2)

可干渉性の電磁波から参照波と測定波を得るためのビームスプリッタと、測定対象物を透過した測定波をその入射方向と平行な方向に反射する反射手段とを備え、前記測定対象物を再度透過した測定波と前記参照波とを重ね合わせることにより干渉縞を形成する透過型干渉計において、
前記反射手段を、コーナーキューブリフレクタと、このコーナーキューブリフレクタを反射して倒立した測定波を正立させる光学系とで構成したことを特徴とする透過型干渉計。
A beam splitter for obtaining a reference wave and a measurement wave from a coherent electromagnetic wave, and a reflecting means for reflecting the measurement wave transmitted through the measurement object in a direction parallel to the incident direction; In a transmission interferometer that forms interference fringes by superimposing a transmitted measurement wave and the reference wave,
A transmissive interferometer, characterized in that the reflecting means is composed of a corner cube reflector and an optical system that erects an inverted measurement wave reflected from the corner cube reflector.
シート基材を測定対象物とする第1の干渉計と、前記シート基材上に薄膜が形成された薄膜シートを測定対象物とする第2の干渉計とが設けられ、
前記第1の干渉計により得られた前記シート基材の干渉縞を取り込んで、前記シート基材の厚み情報を割り出す手段と、
前記第2の干渉計により前記シート基材の測定範囲と同じ範囲を測定することで得られる前記薄膜シートの干渉縞を取り込んで、前記薄膜シートの厚み情報を割り出す手段と、
シート基材の厚み情報と薄膜シートの厚み情報との差を求め、前記薄膜の厚み情報を割り出す手段とを備えていることを特徴とする膜厚測定システム。
A first interferometer having a sheet base material as a measurement object and a second interferometer having a thin film sheet having a thin film formed on the sheet base material as a measurement object;
Means for taking in interference fringes of the sheet base material obtained by the first interferometer and calculating thickness information of the sheet base material;
Means for taking in the interference fringes of the thin film sheet obtained by measuring the same range as the measurement range of the sheet base material by the second interferometer, and calculating the thickness information of the thin film sheet;
A film thickness measuring system comprising: means for obtaining a difference between thickness information of the sheet base material and thickness information of the thin film sheet, and determining the thickness information of the thin film.
JP2002372924A 2002-12-24 2002-12-24 Transmission interferometer and film thickness measurement system Expired - Lifetime JP4088145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372924A JP4088145B2 (en) 2002-12-24 2002-12-24 Transmission interferometer and film thickness measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372924A JP4088145B2 (en) 2002-12-24 2002-12-24 Transmission interferometer and film thickness measurement system

Publications (2)

Publication Number Publication Date
JP2004205293A true JP2004205293A (en) 2004-07-22
JP4088145B2 JP4088145B2 (en) 2008-05-21

Family

ID=32811386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372924A Expired - Lifetime JP4088145B2 (en) 2002-12-24 2002-12-24 Transmission interferometer and film thickness measurement system

Country Status (1)

Country Link
JP (1) JP4088145B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006103066A (en) * 2004-10-01 2006-04-20 Mitsubishi Heavy Ind Ltd Control unit of sheet manufacturing apparatus, sheet manufacturing apparatus, control method of sheet manufacturing apparatus and program executed by computer
JP2006133224A (en) * 2004-10-21 2006-05-25 Mitsutoyo Corp System and method for controlling imaging system based on image blur limitation
JP2006349534A (en) * 2005-06-16 2006-12-28 Fujinon Corp Interferometer system and method of optical interferometry for measuring moving body
CN116678331A (en) * 2023-06-03 2023-09-01 湖北武汉亮测科技有限公司 Laser thickness measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006103066A (en) * 2004-10-01 2006-04-20 Mitsubishi Heavy Ind Ltd Control unit of sheet manufacturing apparatus, sheet manufacturing apparatus, control method of sheet manufacturing apparatus and program executed by computer
JP2006133224A (en) * 2004-10-21 2006-05-25 Mitsutoyo Corp System and method for controlling imaging system based on image blur limitation
JP2006349534A (en) * 2005-06-16 2006-12-28 Fujinon Corp Interferometer system and method of optical interferometry for measuring moving body
CN116678331A (en) * 2023-06-03 2023-09-01 湖北武汉亮测科技有限公司 Laser thickness measuring instrument
CN116678331B (en) * 2023-06-03 2023-12-15 湖北武汉亮测科技有限公司 Laser thickness measuring instrument

Also Published As

Publication number Publication date
JP4088145B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP7372968B2 (en) Method for determining angles by confocal optical protractor and structured light illumination
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US8199335B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
US8736847B2 (en) Method and apparatus for imaging
KR101596290B1 (en) Thickness Measuring Apparatus And Thickness Measuring Method
US9846373B2 (en) High accuracy measurement system for focusing and leveling
CN114502912B (en) Hybrid 3D inspection system
JP2011053176A (en) Inspection device and inspection method
US20070229842A1 (en) Optical Interferometer
KR920010692B1 (en) Aligning method and apparatus for exposing semiconductor
WO2024104502A1 (en) Imaging method and system based on lens compensation
JP4088145B2 (en) Transmission interferometer and film thickness measurement system
JPH0758172B2 (en) Shape measuring method and apparatus
TWI833042B (en) Hybrid 3d inspection system
JP3391030B2 (en) Electronic device manufacturing method and pattern exposure method
JP3238453B2 (en) Dach surface measurement method
JP2595050B2 (en) Small angle measuring device
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
JPH0612753B2 (en) Pattern detection method and apparatus thereof
JP2001349704A (en) Interferometer device
US20220104923A1 (en) Intraoral measurement device
JP3260830B2 (en) 3D recognition device
JP2003185420A (en) Method and apparatus for measuring three-dimensional shape
JP2634791B2 (en) Projection type alignment method and device
JPS61290414A (en) Focusing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061213

A711 Notification of change in applicant

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20071217

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Effective date: 20080222

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130228