JP2004205291A - Quality evaluation device for fruit vegetable - Google Patents

Quality evaluation device for fruit vegetable Download PDF

Info

Publication number
JP2004205291A
JP2004205291A JP2002372878A JP2002372878A JP2004205291A JP 2004205291 A JP2004205291 A JP 2004205291A JP 2002372878 A JP2002372878 A JP 2002372878A JP 2002372878 A JP2002372878 A JP 2002372878A JP 2004205291 A JP2004205291 A JP 2004205291A
Authority
JP
Japan
Prior art keywords
light
unit
light receiving
wavelength
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002372878A
Other languages
Japanese (ja)
Other versions
JP3923011B2 (en
Inventor
Kenichi Iwami
憲一 石見
Shinichi Kawabata
真一 河端
Yoshiyuki Katayama
良行 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002372878A priority Critical patent/JP3923011B2/en
Priority to CN2003801076012A priority patent/CN1732379B/en
Priority to PCT/JP2003/016536 priority patent/WO2004059300A1/en
Priority to AU2003296077A priority patent/AU2003296077B2/en
Priority to KR1020057011826A priority patent/KR100798518B1/en
Priority to US10/540,742 priority patent/US7316322B2/en
Publication of JP2004205291A publication Critical patent/JP2004205291A/en
Application granted granted Critical
Publication of JP3923011B2 publication Critical patent/JP3923011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quality evaluation device for fruit vegetables that abridges labor for preparing a weigh-in expression without lowering measurement accuracy for finding quality evaluation values of fruit and vegetables. <P>SOLUTION: A measurement part 2 projects light in a near-infrared region from a light projection part 1 to a measured object, disperses the light that is transmitted or reflected, and receives it by a plurality of unitary light receiving parts. A calculation part finds the quality evaluation values of the fruit and vegetables based on received light information from the measurement part and on the weigh-in expression. The measurement part and the measurement part perform wavelength correction based on the light information used when a reference body is measured for wavelength correction. The weigh-in expression is prepared by using the light information with resolution smaller than the maximum resolution of the light information determined according to the number of two or more unitary light receiving parts. The wavelength correction is performed by using the light information with resolution smaller than the resolution used for preparing the weigh-in expression. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、計測対象箇所に位置する被計測物に近赤外域の光を投光部より投射して、被計測物からの透過又は反射光を分光して複数の単位受光部にて受光する計測部と、前記被計測物として果菜類を計測したときの前記計測部からの受光情報と予め作成した果菜類品質評価用の検量式とに基づいて果菜類の品質評価値を求める品質評価処理を行う演算部とが設けられ、前記演算部が、前記品質評価処理に代えて、前記被計測物として、近赤外域の光のうちの特定波長について光透過性に特徴を有する波長校正用の基準体を計測したときの前記計測部からの受光情報に基づいて前記複数の単位受光部の夫々が受光する波長を特定する波長校正処理を行う状態とに切り換え自在に構成されている果菜類の品質評価装置に関する。
【0002】
【従来の技術】
上記果菜類の品質評価装置は、被計測物として例えば蜜柑や林檎等の果菜類における品質、例えば糖度や酸度等の内部品質を非破壊状態で計測するためのものであるが、このような品質評価装置として、従来では、次のような構成のものがあった。
【0003】
すなわち、被計測物に対して投光部より近赤外域の光を投射してその被計測物を透過した光を凹面回折格子等の分光手段にて分光した後、その分光した光のうち700nm〜1000nmの範囲の波長の光を1024ビットの一次元のCCDラインセンサからなるアレイ型受光素子、つまり、1024個の単位受光部にて検出して、その検出結果から分光スペクトルデータを求めて、その分光スペクトルデータに基づいて、例えば、その得られた分光スペクトルデータを2次微分した2次微分スペクトルデータと、予め設定されている検量式とを用いて被計測物に含まれる特性成分の成分量を求めることで、内部品質を計測するようになっていた。
【0004】
又、前記波長校正処理は次のように行われていた。つまり、前記波長校正用の基準体として一対の特定波長に透過光量のピークを備えるなるような校正用フィルターが用いられ、この校正用フィルターを透過した光を前記アレイ型受光素子にて受光して、その受光した検出結果から、予め特定されている一対の特定波長と、一対のピーク波長を受光することになる各素子(単位受光部)との位置関係から、アレイ型受光素子を構成する各素子(単位受光部)と、夫々の素子が受光する光の波長との間で対応を取るようにしている(特許文献1参照。)。
【0005】
ところで、上記したような検量式は、被計測物に対する計測処理に先立って、予め、計測対象である被計測物と同じようなサンプルを実測したデータに基づいて装置毎に個別に設定されるものである。特許文献には、その作成のしかたについて詳細は記載していないが、一般的に次のようにして作成されていた。
【0006】
つまり、サンプルとして数十個〜数百個の被計測物を用意して、各サンプルについて前記品質評価装置を用いて分光スペクトルデータを得る。更に、各サンプルについて、例えば破壊分析等に基づいて被計測物の化学成分を特別な検査装置によって精度よく検出する実成分量の検出処理を実行して、被計測物の実成分量を得る。そして、上記したようにして得られた各サンプル毎の分光スペクトルデータ、具体的には、前記アレイ型受光素子の全ての素子の受光データを用いて、前記実成分量の検出結果と対比させながら、重回帰分析の手法を用いて、スペクトルデータと特定の成分についての成分量との関係を示す前記検量式を求める処理を行うことになる。
【0007】
従って、従来では、前記波長校正処理を行うとき、及び、前記検量式を作成するときの夫々において共に同じ分解能で前記複数の単位受光部にて受光して得られた受光情報を用いて行うようになっていた。
【0008】
【特許文献1】
特開2002−90301号公報(第3−5頁、図1、図4、図5)
【0009】
【発明が解決しようとする課題】
上記従来構成においては、前記波長校正処理を行うときの波長分解能は充分小さいものであることから、このようにして波長校正された多数の単位受光部にて、被計測物の品質評価値を求めるために被計測物からの透過光を分光して受光するときに、各単位受光部が計測する受光情報における波長ズレを小さくすることが可能であり、被計測物としての果菜類の品質評価値を求めるために得られる受光情報についても波長ズレを少なくさせることが可能である。
【0010】
しかし、上記従来構成においては、前記検量式を作成する場合には、上述した如く分光した光を小さい分解能で検出することができる多数の素子(単位受光部)を備えるアレイ型受光素子の全ての素子の受光データを用いて、重回帰分析の手法を用いて検量式を求めることになるが、このような重回帰分析の手法を用いて検量式を作成する場合には膨大な回数の演算を行う必要があって検量式の作成に多大な作業時間が必要となるという不利な面があった。
【0011】
そこで、このような検量式の作成に必要な時間を短くするために、複数の単位受光部の個数を減らして、分光した光を受光するときの波長分解能を低くさせて受光データを少なくさせることが考えられるが、このようにすると、上述したような波長校正処理が適正に行われて、各単位受光部にて受光したデータに基づいて複数の単位受光部の夫々が受光する波長を特定することが行われるとしても、複数の単位受光部にて分光した光を受光するときの波長分解能自体が低いものとなって、その結果、果菜類の品質評価値を求めるために得られる受光情報についても計測精度が低下するおそれがある。
【0012】
本発明はかかる点に着目してなされたものであり、その目的は、果菜類の品質評価値を求めるときの計測精度を低下させることなく、検量式の作成の手間を少なくすることが可能となる果菜類の品質評価装置を提供する点にある。
【0013】
【課題を解決するための手段】
請求項1に記載の果菜類の品質評価装置は、計測対象箇所に位置する被計測物に近赤外域の光を投光部より投射して、被計測物からの透過又は反射光を分光して複数の単位受光部にて受光する計測部と、
前記被計測物として果菜類を計測したときの前記計測部からの受光情報と予め作成した果菜類品質評価用の検量式とに基づいて果菜類の品質評価値を求める品質評価処理を行う演算部とが設けられ、
前記演算部が、前記品質評価処理に代えて、前記被計測物として、近赤外域の光のうちの特定波長について光透過性に特徴を有する波長校正用の基準体を計測したときの前記計測部からの受光情報に基づいて前記複数の単位受光部の夫々が受光する波長を特定する波長校正処理を行う状態とに切り換え自在に構成されているものであって、
前記複数の単位受光部の数に応じて定まる前記受光情報の最大分解能よりも大きい分解能で前記受光情報を用いて前記検量式が作成され、
前記演算部が、前記波長校正処理を、前記検量式の作成のときの分解能よりも小さい分解能で前記受光情報を用いて行うように構成されていることを特徴とする。
【0014】
すなわち、前記複数の単位受光部の数に応じて定まる前記受光情報の最大分解能よりも大きい分解能で前記受光情報を用いて前記検量式が作成される。つまり、単位受光部の個数を多くさせて、被計測物からの透過又は反射光を分光した光を受光するときの波長分解能を小さくさせるようにしても、検量式を作成するときには、このような複数の単位受光部による受光情報の最大分解能よりも大きな分解能で前記受光情報を用いて検量式を作成することになるから、例えば、重回帰分析の手法を用いるような検量式の作成にあたっても、受光情報のデータ数も少ないものとなり、演算の回数を極力少ないものにして検量式の作成にかかる手間を少なくすることが可能となる。
【0015】
そして、前記波長校正処理は、前記検量式の作成のときの分解能よりも小さい分解能で前記受光情報を用いて行うので、小さい分解能で複数の単位受光部の夫々が受光する波長を特定することができるから、複数の単位受光部の夫々において受光して得られる受光情報が、検量式作成時の分解能と同じ分解能で波長校正を行う場合に比べて波長誤差が少ない受光情報として得られることになり、それだけ果菜類の品質評価値を求めるときの計測誤差が少ないものになる。
【0016】
しかも、検量式を作成するために予め計測される受光情報も同様に波長誤差が少ない受光情報として得られるものであるから、検量式を作成する場合において、受光情報のデータ数は少ないものの正しい波長に対応した適正な受光情報により適正な検量式を作成することが可能となる。
【0017】
従って、果菜類の品質評価値を求めるときの計測精度を低下させることなく、検量式の作成の手間を少なくすることが可能となる果菜類の品質評価装置を提供できるに至った。
【0018】
請求項2に記載の果菜類の品質評価装置は、請求項1において、前記演算部が、前記受光情報の最大分解能にて、前記波長校正処理を実行するように構成されていることを特徴とする。
【0019】
すなわち、前記受光情報の最大分解能にて前記波長校正処理を実行するので、複数の単位受光部の夫々が受光する波長を特定する波長校正処理を行うにあたって、複数の単位受光部にて受光して得られた受光情報の最大分解能、言い換えると、複数の単位受光部にて受光するときの波長分解能と同じような高い分解能で精度よく波長校正処理を行うことができる。従って、この波長校正処理が行われたのちは、複数の単位受光部の夫々と受光する波長との関係をよりズレの少ない状態で対応付けることが可能となる。
【0020】
請求項3記載の果菜類の品質評価装置は、請求項1又は2において、前記波長校正用の基準体が、前記特定波長として、2以上の特定波長を備えるように構成され、
前記演算部が、前記波長校正処理として、前記複数の単位受光部のうちで、前記複数の特定波長を受光する複数の単位受光部を特定して、その複数の特定波長を受光するものとして定めた複数の単位受光部についての全ての単位受光部に対する位置情報と、前記特定波長とに基づいて、他の単位受光部が受光する波長を求めるように構成されていることを特徴とする。
【0021】
すなわち、波長校正処理を行うときは、前記波長校正用の基準体として特定波長として2以上の特定波長を備える基準体を用いて、この基準体に近赤外域の光を投光部より投射して、基準体からの透過又は反射光を分光して複数の単位受光部にて受光する。前記基準体は前記特定波長について光透過性に特徴を有するものであり、そのときの複数の単位受光部のうち前記特定波長に対応するものが他のものとは異なる受光状態となるから、複数の特定波長を受光する複数の単位受光部を特定することができる。
【0022】
そして、上述したようにして特定された複数の単位受光部の位置情報と複数の特定波長との夫々の情報から、その特定の単位受光部以外の他の単位受光部の夫々の位置情報とそれらが受光する波長との対応関係を求めて波長校正を行うことが可能となるのである。
【0023】
請求項4記載の果菜類の品質評価装置は、請求項1〜3のいずれかにおいて、前記計測部が、1024個の前記単位受光部にて、前記特定波長を含む所定の波長帯域の光を受光するように構成され、
前記演算部が前記波長校正処理を実行するために前記分光された光の波長を特定するときの波長分解能が0.8ナノメートル以下に設定され、且つ、前記検量式を作成するために被計測物の品質評価値を求めるために前記分光された光の波長を特定するときの波長分解能が2ナノメートル以上に設定されていることを特徴とする。
【0024】
すなわち、前記特定波長を含む所定の波長帯域の光を1024個という多数の単位受光部にて受光するようにしているので、所定の波長帯域の光を高分解能で受光することができる。例えば、果菜類として蜜柑や林檎などが計測対象である場合には、前記所定の波長帯域は一般に数百nm〜千nm程度であり、分光された光を十分高い分解能で受光することができる。尚、計測精度を上げるために更に高い分解能にすると単位受光部に受光する光量が不足するおそれがあり、光量を確保するために投光部からの投光量を大にすると果菜類に損傷を与えるおそれがある。
【0025】
そして、演算部が前記波長校正処理を実行するために前記分光された光の波長を特定するときの波長分解能が0.8ナノメートル以下に設定されているので、果菜類の品質評価値を一般的に要求されている計測誤差よりも少ない誤差で精度よく求めることができる。
本出願人による実測データを参照しながら説明を加えると、図18に、果菜類の品質評価値として林檎の糖度を求める場合について、特定波長が適正値からずれている場合の波長のズレ量と、求められる糖度の変化の関係を実測した結果を表している。つまり、横軸の波長のズレが発生すると、求められる糖度が異なった値として求められることになることを示している。そして、林檎等のような果物などにおいては一般的には0.5度以下の計測誤差が要求されるものである。従って、この図から明らかなように、波長のズレが0.8ナノメートル以下であれば要求される0.5度以下の計測精度を満足できるものとなる。
そこで、上述したように波長校正処理を実行するために前記分光された光の波長を特定するときの波長分解能が0.8ナノメートル以下に設定されているから、上記したような一般的に要求される計測精度を満たすことができる。
【0026】
そして、検量式を作成するために被計測物の品質評価値を求めるために前記分光された光の波長を特定するときの波長分解能が2ナノメートル以上に設定されているから、検量式を作成するときは、いために被計測物の品質評価値としては、2ナノメートル以上の波長間隔をあけた状態で得られる、単位受光部の数に応じて定まる前記受光情報の個数よりも少ない数の受光情報を用いて、例えば重回帰分析の手法を用いて検量式を求めることになる演算処理によって作成することになる。
【0027】
従って、検量式を作成する場合における受光情報のデータ数を少ないものにして演算回数を極力少なくして、検量式の作成の手間を減らせることができる。
【0028】
請求項5記載の果菜類の品質評価装置は、請求項1〜4のいずれかにおいて、前記被計測物からの透過又は反射光のうち前記計測部が受光する光の光量を変更調整自在な光量調整手段が備えられていることを特徴とする。
【0029】
すなわち、光量調整手段が被計測物からの透過又は反射光のうち計測部が受光する光の光量を変更調整自在な構成となっていることから、被計測物からの透過又は反射してくる光の光量が大きすぎる場合であっても、光量調整手段にて計測部への入射量が調整されるので、計測部への入射量を適正量に調整させることが可能となる。また、被計測物と複数の単位受光部との間に被計測物からの透過光または反射光以外の光が存在しても、その透過光または反射光以外の光が、光量調整手段にて調整されて計測部に入射されることになり、S/N(信号対雑音)比が小さくなることを防止することが可能となる。
【0030】
請求項6記載の果菜類の品質評価装置は、請求項1〜5のいずれかにおいて、前記投光部による投光箇所及び前記計測部による受光箇所夫々の前記計測対象箇所に対する相対位置を、それらが接近並びに離間する方向に沿って変更調節自在な水平位置調節手段が備えられていることを特徴とする。
【0031】
すなわち、前記水平位置調節手段によって、前記計測対象箇所に対する投光箇所及び受光箇所夫々の接近並びに離間する方向での相対位置を変更調節することができるから、計測対象箇所に位置する被計測物に対して投光箇所を近づけたり離間させたりすることができる。従って、例えば、投射する光の焦点位置を被計測物の表面又はその近傍に合わせることにより、光が効率よく被計測物に投射されるようにすること等が可能となる。又、計測対象箇所に位置する被計測物に対して受光箇所を近づけたり離間させたりすることができるので、投光箇所の場合と同様に、受光用の焦点位置を被計測物の表面又はその近傍に合わせることにより被計測物を透過した光を極力効率よく受光することが可能になる等の利点がある。
【0032】
請求項7記載の果菜類の品質評価装置は、請求項1〜6のいずれかにおいて、前記被計測物からの透過又は反射光が前記各単位受光部にて受光されることを許容する開放状態と、前記被計測物からの透過又は反射光が前記各単位受光部にて受光されることを阻止する遮蔽状態とに切り換え自在な入射状態切換手段と、
各部の動作を制御する動作制御手段とが備えられ、
前記動作制御手段が、
前記被計測物が前記計測対象箇所に位置する状態において、前記遮蔽状態から前記開放状態に切り換えてその開放状態を開放維持時間が経過する間維持した後に前記遮蔽状態に戻すように前記入射状態切換手段の動作を制御し、且つ、前記入射状態切換手段が前記開放状態を維持している間に前記被計測物から得られた光を前記各単位受光部にて受光する計測処理を実行するように前記計測部の動作を制御するよう構成されていることを特徴とする。
【0033】
すなわち、動作制御手段は、被計測物が計測対象箇所に位置する状態において、遮蔽状態から開放状態に切り換えてその開放状態を開放維持時間が経過する間維持した後に遮蔽状態に戻すように入射状態切換手段の動作を制御することになる。前記遮蔽状態においては、被計測物からの透過又は反射光が前記各単位受光部に受光されない。又、前記開放状態においては、被計測物からの透過又は反射光が前記各単位受光部に受光されて計測が行われる。
【0034】
従って、被計測物が計測対象箇所に位置していない状態では、投光部から投射される光が直接、各単位受光部にて受光されることを防止して、被計測物からの透過又は反射光を適正に受光することができる。
【0035】
請求項8記載の果菜類の品質評価装置は、請求項1〜7のいずれかにおいて、前記被計測物を前記計測対象箇所を経由して搬送する搬送手段が備えられていることを特徴とする。
【0036】
すなわち、搬送手段によって被計測物が前記計測対象箇所を経由して搬送されるものであるから、例えば、多数の被計測物を計測する場合であっても、搬送手段にて順次搬送することで能率よく計測を行うことが可能であり、又、品質評価値の計測結果に応じて被計測物を複数のランクに仕分けるような場合であっても搬送手段により仕分け箇所まで搬送させることもできる。
【0037】
請求項9記載の果菜類の品質評価装置は、請求項8において、前記計測対象箇所に、前記搬送手段にて搬送される前記被計測物が通過することを許容しながら、前記投光部から投射した光のうち前記被計測物を透過することなく前記各単位受光部に入射しようとする回り込み光を遮断する遮光手段が備えられていることを特徴とする。
【0038】
すなわち、前記遮光手段が備えられることによって、投光部から投射した光のうち被計測物を透過することなく複数の単位受光部に入射しようとする回り込み光が有効に遮断されるから、複数の単位受光部にて誤検出されるおそれが少ないものとなる。しかも、この遮光手段は、搬送手段によって計測対象箇所を経由して搬送される被計測物が、計測箇所を通過することを許容しながら、回り込み光を有効に遮断する構成となっており、搬送手段による搬送が阻害されることなく、作業能率を低下させるおそれは少ない。従って、作業能率を低下させる等の不利の生じない状態で、上記したような回り込み光に起因した計測の誤差を少なくすることが可能となる。
【0039】
【発明の実施の形態】
【0040】
(第1実施形態)
以下、本発明に係る果菜類の品質評価装置の第1実施形態を図面に基づいて説明する。
本発明に係る果菜類の品質評価装置は、被計測物として例えば蜜柑等の果菜類の品質としての糖度や酸度を計測するための装置であり、計測対象箇所に位置する被計測物に近赤外域の光を投光部より投射して、被計測物からの透過又は反射光を分光して複数の単位受光部にて受光する計測部と、前記被計測物として果菜類を計測したときの前記計測部からの受光情報と予め作成した果菜類品質評価用の検量式とに基づいて果菜類の品質評価値を求める品質評価処理を行う演算部とが設けられている。
【0041】
詳述すると、図1に示すように、被計測物Mに光を照射する投光部1と、被計測物Mを透過した光を受光し、その受光した光を計測する計測部としての受光部2と、上述したような品質評価処理を実行するとともに、各部の動作を制御する制御部3等を備えて構成され、被計測物Mは、搬送手段としての搬送コンベア4により一列で縦列状に載置搬送される構成となっており、本装置による計測対象個所を順次、通過していくように構成されている。そして、計測対象個所に位置する被計測物Mに対して、投光部1から投射した光が被計測物Mを透過した後に受光部2にて受光される状態で、投光部1と受光部2とが、計測対象個所の左右両側部に、すなわち、搬送コンベア4の搬送横幅方向の両側部に振り分けて配置される構成となっている。
【0042】
次に、前記投光部1の構成について説明する。
この投光部1は、2個の光源を備えるとともに、その2個の光源からの光を互いに異なる照射用の光軸にて計測対象箇所に位置する被計測物に照射するように構成されている。又、各光源による2本の照射用の光軸が計測対象箇所に位置する被計測物の表面部又はその近傍にて交差するように構成されている。
すなわち、図5及び図6に示すように、搬送コンベア4による搬送方向に沿って離間させた2個のハロゲンランプからなる光源5が設けられ、これら2個の光源5の夫々に対応させて次のような光学系が備えられている。つまり、光源5が発光する光を反射させて被計測物Mの表面に焦点を合わせるための集光手段としての凹面形状の光反射板6が備えられ、この光反射板6にて集光される光の焦点位置近くに対応するように位置させて、大きめの絞り孔7aを通過させることで集光された後の光の径方向外方側への広がりを抑制する絞り板7、絞り板7を通過した光を通過させる状態、小さめの絞り孔8aを通して通過させる状態、及び、光を遮断する状態の夫々に切り換え自在な光量調節板8、集光された光源5からの光を並行光に変更させるコリメータレンズ9、並行光に変化した光を反射して屈曲させる反射板10、この反射板10にて反射された光を集光させる集光レンズ11の夫々が1個の光源5に対する光学系として備えられている。前記各光量調節板8は、投光量調整用モータ12によって一体的に揺動操作され、前記各状態に切り換え自在に構成されている。
【0043】
そして、この投光部1は上記したような各部材がケーシング13に内装されてユニット状に組み立てられた構成となっている。又、計測対象箇所に位置する被計測物に対して斜め下方に向かう状態で光を照射するように、投光部1が斜め姿勢で備えられており、外形寸法が小さい被計測物であっても受光部2に直接光が入らないようにしている。
【0044】
次に、受光部2の構成について説明する。
この受光部2は、図5に示すように、被計測物Mを透過した光を集光する集光レンズ14、並行光に変化した光のうち近赤外域である波長領域680〜990ナノメートル(以下、nmと略称する)の範囲の光だけを上向きに反射し、それ以外の波長の光をそのまま通過させるバンドパスミラー15、バンドパスミラー15により上向きに反射された計測対象光を集光させる集光レンズ16、集光レンズ16を通過した光をそのまま通過させる開放状態と、前記計測対象光の通過を阻止する遮蔽状態とに切り換え自在な入射状態切換手段としてのシャッター機構17、開放状態のシャッター機構17を通過した光が入射されると、その光を分光して前記分光スペクトルデータを計測する分光器18、バンドパスミラー15をそのまま直進状態で通過した光の光量を検出する光量検出センサ19等を備えて構成されている。
【0045】
そして、シャッター機構17の下方側、つまり光入射方向上手側箇所には、分光器に入射される光に対して作用する複数の各種のフィルターを切り換えるフィルター切り換え機構Eが備えられている。このフィルター切り換え機構Eは、図9に示すように、フィルター切換用モータ80によって回転操作される回転体81に中心から等距離またはほぼ等距離の位置で周方向に間隔を隔てる状態で3つのフィルター82、83、84及び1つの開口85が備えられ、回転体81を回転作動させて入射光が通過する位置にいずれかフィルターが位置するように切り換える自在な構成となっている。
【0046】
第1のフィルター82は光減衰率が低いNDフィルタ、第2のフィルター83は光減衰率が高いNDフィルタ、第3のフィルター84は、波長校正用のフィルターである。つまり、フィルター切換用モータ80を駆動させて回転体81を回転作動させることによって、開口85を通すことにより被計測物Mからの透過光を減衰させることなく分光器に入射させ、第1のフィルター82を通すことで少し減衰させた状態で入射させ、第2のフィルター83を通すことで多めに減衰させた状態で入射させる状態に夫々切り換えることができる。すなわち、予め入力される計測条件(例えば、被計測物Mの品種、大きさ、透過率などの被計測物Mの計測条件)に基づいて、分光器が受光する光の光量を変更調整することができるのである。従って、このフィルター切り換え機構Eを利用して光量調整手段が構成されている。尚、前記第3のフィルター84(波長校正用フィルター)は、後述するような波長校正処理を行うのに利用される。
【0047】
前記分光器18は、図7に示すように、受光位置である入光口20から入射した計測対象光を反射する反射鏡21と、反射された計測対象光を複数の波長の光に分光する分光手段としての凹面回折格子22と、凹面回折格子22によって分光された計測対象光における各波長毎の光量を検出することにより分光スペクトルデータを計測する受光センサ23とが、外部からの光を遮光する遮光性材料からなる暗箱24内に配置される構成となっている。前記受光センサ23は、凹面回折格子22にて分光反射された光を同時に各波長毎に受光するとともに波長毎の信号に変換して出力する、1024ビットの電荷蓄積型のCCDラインセンサにて構成されている。つまり、分光された複数の波長の光の光量を各別に検出可能な1024個の単位受光部23aが備えられており、このラインセンサは、詳述はしないが、各単位受光部23a毎に光量を電気信号(電荷)に変換する光電変換部と、その光電変換部にて得られた電荷を蓄積する電荷蓄積部、及び、その蓄積電荷を外部に出力させるための駆動回路等が備えた半導体基板上に形成されている。そして、この半導体基板の裏面側には例えばペルチェ素子などからなる電子冷却素子が貼着され、マイナス10℃まで冷却することができる構成として、温度上昇による温度ドリフトを回避して温度変化に起因した計測値の誤差を少なくできるようになっている。
【0048】
又、前記シャッター機構17は、図7、図8に示すように、放射状に複数のスリット25が形成された円板17Aを、パルスモータ17Bによって縦軸芯周りで回転操作される状態で備えて構成され、前記暗箱24の入光口20には前記各スリット25が上下に重なると光を通過させる開放状態となり、スリット25の位置がずれると光を遮断する遮断状態となるように、スリット25とほぼ同じ形状の透過孔27が形成されており、光の漏洩がないように暗箱の入光口20に対して円板17Aを密接状態で摺動する状態で配備して構成されている。すなわち、このシャッター機構17は凹面回折格子22に対する入光口20に近接する状態で設けられている。この受光部2も投光部1と同様にして、上記したような各部材がケーシング28に内装されてユニット状に組み立てられた構成となっている。
【0049】
そして、投光部1及び受光部2の夫々が、投光用箇所及び受光用箇所の夫々に対して各別に着脱自在に取り付け可能なユニット状に構成されており、投光部1と受光部2とが着脱自在に取付けられる装置枠体Fが、計測対象箇所における搬送コンベア4の左右両側に相当する箇所を投光用箇所及び受光用箇所とするように、投光部1と受光部2に対する一対の取付部を備える状態で設けられている。更には、前記装置枠体Fには、投光部1及び受光部2を一体的に上下方向に位置調節自在な上下位置調節手段としての上下位置調節機構29、及び、投光部1及び受光部2の夫々を各別に装置枠体Fに対して計測対象箇所に位置する被計測物に接近並びに離間する方向、すなわち、水平方向であって搬送コンベア4の搬送方向と直交する方向に沿って位置調節自在な水平位置調節手段としての水平位置調節機構30が備えられている。
【0050】
次に、前記上下位置調節機構29について説明する。図1〜図4に示すように、品質評価装置の外周部を囲うように矩形枠状に組み付けられた装置枠体Fが備えられ、その装置枠体Fの上部側箇所から位置固定状態で4本の固定支持棒31が垂下される状態で設けられ、これら4本の固定支持棒31の下端部には後述する品質評価装置校正用の被計測体Aを載置支持するための支持台32が取り付けられている。そして、この4本の固定支持棒31に対して4箇所の摺動支持部33により上下方向にスライド移動自在に昇降台34が支持されている。又、装置枠体Fの上部側箇所から垂下状態に支持された送りネジ35が電動モータ36にて回動自在に設けられ、昇降台34に備えられた雌ネジ部材37がこの送りネジ35に螺合しており、送りネジ35を電動モータ36にて回動操作することで昇降台34が任意の位置に上下移動調節可能な構成となっている。尚、送りネジ35は手動操作ハンドル38でも回動自在に構成されている。
又、前記昇降台34には、品質評価装置校正用の被計測体Aが支持台32に載置支持された状態でも昇降操作可能なように品質評価装置校正用の被計測体Aが上下方向に通過することを許容する挿通孔34aが形成されている。
【0051】
次に、水平位置調節機構30について説明する。
前記昇降台34には、図3に示すように、投光部1と受光部2との並び方向に沿って延びる2本のガイド棒39が設けられており、ユニット状に組み付けられた投光部1並びに受光部2の夫々が着脱自在に取付けられる前記一対の取付部としての支持部材40、41が各ガイド棒39にスライド移動自在に支持される構成となっている。前記各ガイド棒39は長手方向両端側で連結具39aにて連結されている。又、前記昇降台34には、投光部1と受光部2との並び方向に沿って延びる2本の送りネジ42、43が夫々電動モータ44、45によって回動操作可能に設けられ、各支持部材40、41に備えられた雌ネジ部46、47が各送りネジ42、43に螺合しており、電動モータ44、45にて前記各送りネジ42、43を各別に正逆回動させることで、前記各支持部材40、41が各別に搬送コンベア4の搬送方向と直交する水平方向に沿って位置調節可能な構成となっている。従って、各支持部材40、41に夫々各別に取付けられる投光部1及び受光部2は電動モータ44、45にて前記各送りネジ42、43を各別に正逆回動させることで前記水平方向、すなわち、計測対象箇所に対して接近並びに離間する方向での相対位置を変更調節することが可能となる。
【0052】
従って、電動モータ36にて送りネジ35を回動操作させると昇降台34が上下移動調節されるが、それに伴って昇降台34に支持されている投光部1及び受光部2を一体的に上下移動調節することができ、前記各電動モータ44、45を回動操作させることで投光部1及び受光部2が各別に搬送コンベア4の搬送方向と直交する水平方向に沿って位置調節することができる。
【0053】
前記各支持部材40、41に対する投光部1及び受光部2の取付けの構成について説明を加えると、前記各支持部材40、41の下端部における取付け用の台座部分40a,41aには、水平方向に適宜間隔をあけて横向きに突出する複数の位置決め用突起40b,41bが形成され、ユニット状に設けられた投光部1及び受光部2に夫々、それらの位置決め用突起40b,41bに対応する位置決め孔が設けられ、各支持部材40、41に対して投光部1及び受光部2を取付けるときは、図5、図6に示すように、位置決め用突起40b,41bを位置決め孔に嵌め合わせて位置決めした状態でその近くの適宜箇所をボルト止めすることで投光部1及び受光部2を取付ける構成となっている。従って、この装置においては、投光部1及び受光部2が夫々取付けられた状態においては、投光部1が位置する投光用箇所、計測対象箇所、及び、受光部2が位置する受光用箇所の夫々が一直線状に位置する形態で投光部1及び受光部2が配置される状態となる。但し、支持部材40、41の下端部における取付け用の台座部分40a,41aは、投光部1及び受光部2の上下方向の長さに対応するように左右で少し長さが異なるものを用いるようにしている。又、投光部1の取付け部には、投射方向が少し斜め下方となるように傾斜用の姿勢規制具40cを設けている。
【0054】
搬送コンベア4における被計測物Mの通過予定箇所の上方側に位置させて、前記支持台32から下方側に延設した支持アーム48により支持される状態でリファレンスフィルター49が設けられている。このリファレンスフィルター49は、所定の吸光度特性を有する光学フィルターで構成され、具体的には、一対のオパールガラスを備えて構成されている。
【0055】
上下位置調節機構29によって投光部1及び受光部2を一体的に上下移動調節することによって、図1に示すように、投光部1からの光が搬送コンベア4に載置される被計測物Mを透過した後に受光部2にて受光される通常計測状態と、図4の仮想線にて示すように、各投光部1からの光が前記リファレンスフィルター49を透過した後に受光部2にて受光されるリファレンス計測状態、及び、図4の実線にて示すように、後述するような校正用計測状態の夫々に切り換えることができるように構成されている。
尚、詳述はしないが、この品質評価装置の外周部は、被計測物の搬送に伴う通過箇所を除いて装置枠体Fに備えられた壁体によって囲われて外部から光が入り込まないようになっている。
【0056】
又、前記計測対象箇所には、被計測物Mが通過することを許容しながら、投光部1から投射した光のうち被計測物Mを透過することなく受光部2に入射しようとする回り込み光を遮断する遮光手段としての遮光部材90が備えられている。詳述すると、この遮光部材90は、図10〜図12に示すように、硬質材からなる枠部材93が被計測物Mの搬送方向に向かう方向視で、その下方側を被計測物Mが通過可能なように略門形に形成され、且つ、搬送左右両側部に位置する側壁部90a,90bには、投光部1から被計測物Mに投射される光の通過を許容する光通過用開口95aと、被計測物Mを透過した光が受光部に向けて通過することを許容する光通過用開口95bとが夫々形成されて構成されている。
そして、この枠部材93における搬送方向上手側の側面及び搬送方向下手側の側面並びに上方側箇所の夫々には、この枠部材93の内方側に入り込んだ被計測物M、すなわち、計測箇所に位置する被計測物Mに対して、搬送方向上手側箇所並びに搬送方向下手側箇所、及び、光投射位置Qよりも上方側箇所の夫々において、回り込み光を遮断する遮蔽体91a,91b,91cが夫々備えられている。
この遮蔽体91a,91b,91cは、遮光性の軟質材、例えば、遮光性を有する厚めの布やスポンジ材等からなり、計測箇所を通過する被計測物Mの大きさにバラツキがあっても、各被計測物Mの搬送を阻害しないように表面に沿いながら屈曲変形して通過を許容するように退避自在に構成されている。しかも、搬送方向上手側箇所、及び、搬送方向下手側箇所夫々に位置する遮蔽体91a,91bには、被計測物Mが滑らかに搬送されて通過すること許容するために開口K1,K2が形成されており、夫々の開口K1,K2における口縁部には、上下方向に複数の舌片Zが互いに切り裂かれたように互いの隙間が少ない状態で形成されており、各舌片Zは夫々各別に被計測物Mの外表面に沿いながら屈曲変形して被計測物Mの通過を許容するように退避自在に構成されている。このようにして、ミカン等のように略球形の形状を有する被計測物Mであっても円弧状の外表面に滑らかに沿わせながら回り込み光が受光部2側に漏れることを極力回避できる構成としている。
【0057】
そして、この品質評価装置には、前記支持台32に被計測物の光透過特性とほぼ同じような特性を有する擬似計測体Aを取り外し自在に装着できる構成となっている。尚、被計測体Aは支持台32にそのまま位置決めした状態で載置させる構成であり、容易に着脱可能な構成となっており、校正を行わないときには、被計測体Aを支持台32から取り外しておくことができる。
【0058】
この品質評価装置校正用の被計測体Aについて簡単に説明すると、図5に示すように、非透光性の部材で構成された略四角柱状の外側ケーシング52によって外周部が覆われ、この外側ケーシング52内部の下方側に位置する箇所に品質評価対象としての純水Jを封入状態で収納する収納部51が設けられ、この収納部51と外側ケーシング52との間に空気層が形成されている。そして、この空気層の温度が、品質評価装置によって品質が評価されるときの被計測物の温度又はそれに近い温度である設定温度(例えば、30℃)に維持されるようにペルチェ素子55を作用させる構成となっている。そして、外側ケーシング52における収納部51の左右両側箇所に対応する位置に夫々、光通過部61と光通過部62とが形成され、非透光性の部材で構成された外側ケーシング52の入光側光通過部61及び出光側光通過部62に対応する位置に通過孔が形成されるとともに、拡散体としてのオパールガラスGが気密状態に保持される状態で装着されている。
【0059】
前記制御部3は、マイクロコンピュータを利用して構成してあり、図15に示すように、通過検出センサ50、光量検出センサ19、受光センサ23の検出情報に基づいて被計測物の内部品質を解析する演算部としての解析手段100や、各部の動作を制御する動作制御手段101が夫々制御プログラム形式で備えられる構成となっている。つまり、後述するような公知技術である分光分析手法を用いて被計測物Mの内部品質を解析する演算処理を実行するとともに、シャッター機構17、投光量調整用モータ12、フィルター切換用モータ80、上下位置調節用モータ36、水平位置調節用モータ44、45の動作の管理等の各部の動作を制御する構成となっている。
【0060】
次に、制御部3による制御動作について説明する。
制御部3は、被計測物Mに代えて前記リファレンスフィルター49に照射して、そのリファレンスフィルター49からの透過光を、受光部2にて分光してその分光した光を受光して得られた分光スペクトルデータを基準分光スペクトルデータとして求める基準データ計測処理、搬送コンベア4により搬送される被計測物Mに対して、投光部1から光を照射して計測分光スペクトルデータを得て、この計測分光スペクトルデータと前記基準分光スペクトルデータとに基づいて、被計測物Mの内部品質を解析する通常データ計測処理、及び、被計測物Mに代えて前記波長校正用フィルター84を透過した光を、受光部2にて分光してその分光した光を受光して得られた受光情報に基づいて、受光センサ23の各単位受光部23aの夫々が受光する波長を特定する波長校正処理の夫々を実行するように構成されている。
【0061】
前記基準データ計測処理について説明する。
搬送コンベア4による被計測物Mの搬送を停止させている状態で、上下位置調節機構29によって前記リファレンス計測状態に切り換え、シャッター機構17を開放状態に切り換えて、投光部1からの光を被計測物Mに代えて前記リファレンスフィルター49に照射して、そのリファレンスフィルター49からの透過光を、受光部2にて分光してその分光した光を受光して得られた分光スペクトルデータを基準分光スペクトルデータとして計測する。又、受光部2への光が遮断された無光状態での受光センサ18の検出値(暗電流データ)も計測される。すなわち、前記受光部2のシャッター機構17を遮蔽状態に切り換えて、そのときの受光センサ18の単位画素毎における検出値を暗電流データとして求めるようにしている。
【0062】
次に、通常データ計測処理について説明する。
この通常データ計測処理においては、上下位置調節機構29、具体的には上下位置調整用電動モータ36を操作して昇降台34を通常計測状態に切り換えて、搬送コンベア4による被計測物Mの搬送を行う。そして、図14に示すように、通過検出センサ50による検出情報に基づいて、被計測物が前記計測対象箇所を通過する周期を検出し、その周期に同期させる状態で、分光した光を受光して電荷蓄積動作を設定時間実行する電荷蓄積処理と、蓄積した電荷を送り出す送出処理とを設定周期で繰り返すように、受光センサ23の動作を制御する。
【0063】
つまり、各被計測物Mが計測対象箇所を通過すると予測される時間帯において、受光センサ23が設定時間だけ電荷蓄積処理を実行し、被計測物Mが計測対象箇所に存在しないと予測される各被計測物M同士の中間位置付近が計測対象箇所に位置するようなタイミングで蓄積した電荷を送り出す送出処理を実行するように、受光センサ23の動作を制御する。従って、この品質評価装置では、受光センサ23による電荷蓄積時間は常に一定で動作する構成となっている。尚、1秒間に7個づつ被計測物が通過するような処理能力とした場合には、電荷蓄積処理を実行する設定時間は、約140msec程度になる。
【0064】
そして、動作制御手段101は、受光センサ23が前記計測対象箇所に位置する状態において受光センサ23が電荷蓄積処理を行うときに、遮蔽状態から開放状態に切り換えてその開放状態を開放維持時間Txが経過する間維持した後に遮蔽状態に戻すように、シャッター機構17の動作を制御するよう構成され、変更指令情報に基づいて、前記開放維持時間Txを変更調整するように構成されている。
この開放維持時間Txは、被計測物の品種の違いに応じて変更させる構成となっている。説明を加えると、例えば、温州蜜柑であれば光が比較的透過しやすいので比較的短い時間(10msec程度)に設定し、伊予柑であれば光が透過し難いので長めの時間(30msec程度)に設定する。
このような品種の違いによる動作条件の設定は、作業員が人為的に行う構成となっている。つまり、図15に示すように、品種の違いに応じて設定位置を人為的に切り換える切換操作具Cが設けられ、この切換操作具Cの設定情報が制御部3に入力され、制御部3はその設定情報に従って開放維持時間Txを変更調整する構成となっている。
又、このような動作条件の設定に応じて、上記したようなフィルター切り換え機構を操作して分光器18に入射する光の光量を変更調整する処理も行うことになる。
【0065】
又、動作制御手段101は、前記光量検出センサ19にて検出される受光量、すなわち、被計測物の光透過量の実測値の変化に基づいて、被計測物が計測対象箇所に到達したか否かを検出するようになっており、被計測物が到達したことを検出するとシャッター機構17を開放状態に切り換え、前記開放維持時間Txだけ開放状態を維持した後に、シャッター機構17を遮蔽状態に切り換えて計測処理を終了する構成となっている。
具体的に説明すると、図16に前記光量検出センサ19の検出値の時間経過に伴う変化状態を示している。被計測物が到達するまでは投光部1から投射される光によってほぼ最大値が出力されているが、被計測物Mが計測箇所に至ると計測用光が遮られて光量検出センサの検出値(受光量)が減少し始めて検出値が予め設定した設定値以下にまで減少したとき(t1)に、被計測物が計測箇所に到達したものと判断して、その時点から設定時間が経過したとき(t2)に、シャッター機構17を開放状態に切り換える。そして、前記開放維持時間Txだけ開放状態を維持した後に、シャッター機構17を遮蔽状態に切り換えるのである。
尚、このような計測処理を実行しているときに、搬送コンベア4が異常停止したような場合には、投光部1における光量調節板8を遮断状態に切り換えて移動停止している被計測物に長い間、光源からの強い光が照射されることを防止させるようにしている。
【0066】
そして、前記解析手段100が、このようにして得られた各種データに基づいて公知技術である分光分析手法を用いて被計測物Mの内部品質を解析する演算処理を実行するように構成されている。
つまり、上記したようにして得られた計測分光スペクトルデータを、前記基準データ計測モードにて求められた基準分光スペクトルデータ、及び、暗電流データを用いて正規化して、分光された各波長毎の吸光度スペクトルデータを得るとともに、その吸光度スペクトルデータの二次微分値を求める。具体的には、受光センサ23の1024個の単位受光部23a毎に得られた受光情報に対応する吸光度スペクトルデータを得ることになる。このように求められた吸光度スペクトルデータの二次微分値のうち成分を算出するための特定波長の二次微分値と予め設定されている検量式とにより、被計測物Mに含まれる糖度に対応する成分量や酸度に対応する品質評価値としての成分量を算出する品質評価処理を実行するように構成されている。
【0067】
前記吸光度スペクトルデータdは、基準分光スペクトルデータをRd、計測分光スペクトルデータをSdとし、暗電流データをDaとすると、
【0068】
【数1】
d=log[(Rd−Da)/(Sd−Da)]
【0069】
という演算式にて求められる。そして、このようにして得られた吸光度スペクトルデータdを二次微分した値のうち特定波長の値と、下記の数2に示されるような検量式とを用いて、被計測物Mに含まれる糖度や酸度に対応する成分量を算出するための検量値を求めるのである。
【0070】
【数2】
Y=K0+K1・A(λ1)+K2・A(λ2)
【0071】
但し、
Y ;成分量に対応する検量値
K0,K1,K2 ;係数
A(λ1 ),A(λ2 ) ;特定波長λにおける吸光度スペクトルの二次微分値
【0072】
尚、成分量を算出する成分毎に、特定の検量式、特定の係数K0,K1,K2、及び、波長λ1,λ2等が予め設定されて記憶されており、演算手段100は、この成分毎に特定の検量式を用いて各成分の検量値(成分量)を算出する構成となっている。
【0073】
次に、前記波長校正処理について説明する。
この波長校正処理は、前記解析手段100が実行するように構成され、被計測物Mに対する通常の計測に先立って行われる校正用データの計測処理、及び、被計測物Mに対する通常の計測にて得られた計測データの変換処理からなる。
校正用データの計測処理について説明すると、通常の計測に先立って、フィルター切り換え機構Eにおけるフィルター切換用モータにより回転体81を回転させて、波長校正用フィルター84を光通過箇所に位置させた状態で、投光部1からの光をそのまま照射させて、受光部2にて得られた受光情報に基づいて、受光センサ23の各単位受光部23aの夫々が受光する波長を特定するのである。詳述すると、前記波長校正用フィルターは、近赤外域の光のうちの特定波長について光透過性に特徴を有する波長校正用の基準体として構成されるものであり、具体的には、波長が既知である少なくとも一対の特定波長に光透過量のピーク部を有するものである。
【0074】
従って、この波長校正用フィルターを透過した後の光は、図17(イ)に示すように、一対の特定波長(λ1、λ2)に透過光量ピーク部W1、W2を備えており、前述の受光センサ23が、この光を検出する場合に、受光量がピークとなる少なくとも一対の単位受光部23aと既知の透過光量ピーク部W1、W2の光の波長(λ1、λ2)との対応をとることにより、波長校正を行えるのである。ここで、前記一対の所定波長(λ1、λ2)を受光する受光センサ23の単位受光部23aの一対の素子番号が(P1、P2 )である場合は、その他の単位受光部23a(素子番号をPとする)に於ける受光波長λは,素子番号Pを変数としたときの一次近似式として以下の数3で表すことができ、素子番号に対応する波長を求めることができる。但し、aは一次近似式の傾きであり、bは演算上仮想的に求められる切片である。又、図で表すと図17(ロ)のように示すことができる。
【0075】
【数3】
λ=aP+b
【0076】
次に、計測データの変換処理について説明すると、上述したような通常データ計測処理によって求められた波長毎の吸光度スペクトルデータの二次微分値は、受光センサ23の1024個の単位受光部23a毎に得られた受光情報に対応する受光位置を基準としたデータであるが、この計測データの変換処理は、数3に基づく演算処理によって、被計測物の成分を算出するための特定波長に対応する波長の吸光度スペクトルデータの二次微分値を内挿により求めて、上記した単位受光部23a毎に得られた受光位置を基準としたデータを正しい波長を基準としたデータに変換するのである。
【0077】
前記分光器18に入射される光は、バンドパスミラー15により計測対象となる特定の波長領域680〜990nmの範囲の光だけが入射されることになり、しかも、この波長校正処理においては、受光センサ23の1024個の単位受光部23aにおける全ての受光データに基づいて、各単位受光部23aの波長を特定することになる。従って、波長校正処理を実行するために前記分光された光の波長を特定するときの波長分解能は約0.3nm程度になる。
【0078】
蜜柑や林檎等のような果菜類においては一般的には品質評価値としての糖度の計測精度として要求される計測誤差は0.5度以下が要求されるのであるが、図18の本出願人の実験データより明らかなように、波長のズレの要因となる波長分解能が0.3nmであれば要求される0.5度以下の計測精度を十分に満足できるものとなる。
【0079】
次に上記したような検量式を作成する手順について説明する。
上記したような検量式は、被計測物に対する計測処理に先立って、予め、計測対象である被計測物と同じようなサンプルを実測したデータに基づいて装置毎に個別に設定されることになる。
【0080】
説明を加えると、先ず、上述したような波長校正処理のうち校正用データの計測処理を実行し、数1のような関係を求めておき受光センサ23の各単位受光部23aの夫々が受光する波長を特定できるようにする。
【0081】
そして、次に、前記サンプルとして数十個〜数百個の被計測物を用意して、各サンプルについて前記分光分析装置を用いて各波長毎の分光スペクトルデータを求め、さらに、その分光スペクトルデータから上記したような吸光度スペクトルデータを求める。このようにして求められた吸光度スペクトルデータは、受光センサ23の1024個の単位受光部23a毎に得られたデータである。
【0082】
次に、このようにして得られた吸光度スペクトルデータについて、検量式を作成するための吸光度データを求めるための計測データの変換処理を行う。この場合、受光センサ23の1024個の単位受光部23a毎に得られた吸光度スペクトルデータと、数1に示される関係式とに基づいて、正しい波長として700nmから2nmづつ変化する毎の波長に対応する吸光度スペクトルデータ、具体的には、対応する波長に対応する単位受光部23aにおける吸光度スペクトルデータを求める。つまり、700,702,704‥‥という正しい波長毎の吸光度スペクトルデータを求めるのである。このように2nm毎に700〜990nmまでの吸光度スペクトルデータを求める場合であれば、そのデータ数は145個程度になる。
【0083】
更に、前記各サンプルについて、例えば破壊分析等に基づいて被計測物の化学成分を特別な検査装置によって精度よく検出する実成分量の検出処理を実行して、被計測物の実成分量を得る。そして、上記したようにして得られた各サンプル毎の吸光度スペクトルデータを用いて、前記実成分量の検出結果と対比させながら、重回帰分析の手法を用いて、吸光度スペクトルデータと特定の成分についての成分量との関係を示す前記検量式を求めるのである。
このとき、受光センサ23の全ての単位受光部23aの全1024個の吸光度スペクトルデータを用いるのではなく、上記したように145個程度の個数のデータに基づいて演算にて検量式を作成するので、検量式の作成にかかる手間を少なくすることができる。
【0084】
従って、この品質評価装置では、受光センサ23の複数の単位受光部23aの数(1024)に応じて定まる受光情報の最大分解能(0.3nm)よりも大きい分解能(2nm)で前記受光情報を用いて前記検量式が作成され、演算部としての解析手段100が、前記波長校正処理を、前記検量式の作成のときの分解能(2nm)よりも小さい分解能であって、しかも、受光センサ23の複数の単位受光部23aの数(1024)に応じて定まる受光情報の最大分解能(0.3nm)にて波長校正処理を実行するように構成されている。
【0085】
〔第2実施形態〕
次に、本発明に係る第2実施形態について説明する。
この実施形態の品質評価装置は、投光部1と受光部2との配置構成、受光部2に対する光の通過経路構成、搬送コンベア4aの構成、受光センサの計測方法が異なる他は、第1実施形態の品質評価装置の構成であるから、異なる構成についてのみ説明し、同じ構成については説明は省略する。又、投光部1及び受光部2は、夫々、ユニット状に組み立てられる構成であり、第1実施形態に使用されるものとほぼ同じ構成のものを使用する構成となっている。
【0086】
図19に示すように、第1実施形態における投光部1と同じ構成のユニット状の投光部1が2台備えられ、それら2台の投光部1が計測対象個所の左右両側部、すなわち、搬送コンベア4aの搬送横幅方向の両側部に振り分けて配置され、各投光部1は光の照射方向がほぼ水平方向となるように構成されている。すなわち、前記各支持部材40、41と同様な支持部材40、41にユニット状の2台の投光部1が夫々取付けられる。但し、支持部材40、41の下端部における取付け用の台座部分40a,41aは、投光部1の上下長さに対応するように左右で同じものを用いるようにしている。又、各投光部1の光の照射方向がほぼ水平方向となるように、上記品質評価装置にて用いた傾斜用の姿勢規制具40cは使用しない構成となっている。
【0087】
搬送コンベア4aは、被計測物を中央部に挿通孔70が形成された受皿71に載置した状態で搬送される構成となっており、この受皿71は、計測対象箇所の下方側には、前記投光部1から照射されて被計測物を透過して受皿71の挿通孔70を通して下方側に透過する光を受光する光ファイバー72の受光側端部が配置されている。その光ファイバー72の他端側には、前記受光部2とほぼ同じ構成のユニット状の受光部2が接続されて光が受光されることになる。この受光部2による受光情報に基づく制御部3での内部品質の解析処理については第1実施形態の場合と同様である。
【0088】
この品質評価装置においては、計測対象個所に位置する被計測物に対して、その左右両側部に位置する各投光部1から光がほぼ水平方向に対向するように投射され、被計測物内部で散乱して下方側に透過して出て来た光を光ファイバー72にて受光して受光部2に導く構成となっている。従って、この装置においては、投光部1及び受光部2が夫々取付けられた状態においては、投光部1が位置する投光用箇所、計測対象箇所、及び、受光部2が位置する受光用箇所の夫々が屈曲線上に位置する形態で投光部1及び受光部2が配置される状態となる。
【0089】
図20に、この実施形態における動作のタイミングチャートを示している。この図に示すように、第1実施形態の通過検出センサ50と同様な検出センサにて受皿71又は被計測物が計測対象個所に対して設定距離手前側の位置に搬送されてきたことが検出されると、その時点から設定遅れ時間T3が経過したのちに、受光センサ23による計測用の電荷蓄積処理を開始するように構成され、又、その電荷蓄積処理を行う少し前からシャッター機構17を遮蔽状態から開放状態に切り換えて、設定時間T4が経過した後にシャッター機構17を開放状態から遮蔽状態に切り換えるようになっている。
尚、この実施形態では、受光センサ23は、被計測物が通過毎に蓄積電荷の読み出しを行うのではなく、設定時間T5(例えば数十msec)が経過する毎に蓄積電荷の読み出し処理を繰り返し行うようにして残留電荷を少なくするようにしながら、被計測物の通過が検出されると、そのタイミングでその繰り返し処理をリセットして蓄積電荷の読み出し処理を実行する構成になっている。
【0090】
〔別実施形態〕
以下、別実施形態を列記する。
【0091】
(1)上記実施形態では、計測部としての受光部に1024個の単位受光部23aを備えて、特定の波長領域680〜990nmの範囲の光が入射される構成として、前記演算部としての解析手段が前記波長校正処理を実行するために前記分光された光の波長を特定するときの波長分解能が0.3nm程度になり、検量式の作成のときの分解能が2nmになるようにしたが、このような構成に代えて次のように構成してもよい。
複数の単位受光部23aとしては1024個よりも少ない個数の単位受光部23aでもよく1024個よりも多い個数の単位受光部23aを備える構成としてもよい。
前記演算部としての解析手段が前記波長校正処理を実行するために前記分光された光の波長を特定するときの波長分解能としては、0.8nm以下であれば適宜変更させて実施してもよく、受光する波長領域としては被計測物の品質を評価するための波長を備えているものであれば上記領域に限らず適宜変更させて実施するようにしてもよい。
検量式の作成のときの分解能として、2nm毎に得られた受光情報により検量式を作成するものに代えて、2nm以上の大きい間隔で得られた受光情報を用いて、言い換えると上記実施形態よりも更に大きな分解能にて検量式を作成するようにしてもよい。
【0092】
(2)上記実施形態では、前記演算部としての解析手段が前記複数の単位受光部23aの数に応じて定まる前記受光情報の最大分解能にて前記波長校正処理を実行するように構成したが、このような構成に限らず、前記検量式の作成のときの分解能よりも小さい分解能であればよく、前記最大分解能よりも大きい分解能で前記波長校正処理を実行するようにしてもよい。
【0093】
(3)上記実施形態では、前記波長校正用の基準体が、光透過性に特徴を有する特定波長として2以上の特定波長を備えるものを例示したが、このような構成に限らず、光透過性に特徴を有する特定波長として1つの特定波長を備える構成として、前記波長校正処理として、1つの特定波長を受光する単位受光部23aを特定して、その単位受光部23aについての全ての単位受光部23aに対する位置情報と、特定波長とに基づいて、他の単位受光部23aが受光する波長を求めるように構成してもよい。
【0094】
(4)上記実施形態では、前記被計測物からの透過又は反射光のうち前記計測部が受光する光の光量を変更調整自在な光量調整手段が備えられているものを例示したが、このような光量調整手段を備えない構成としてもよい。
【0095】
(5)上記実施形態では、前記計測部による投光箇所及び受光箇所夫々の前記計測対象箇所に対する相対位置を、それらが接近並びに離間する方向に沿って変更調節自在な水平位置調節手段が備えられているものを例示したが、このような水平位置調節手段を備えずに、投光箇所及び受光箇所夫々の前記計測対象箇所に対する相対位置を位置固定状態で設けるものでもよい。
【0096】
(6)上記実施形態では、前記搬送手段にて搬送される前記被計測物が通過することを許容しながら、前記投光部から投射した光のうち前記被計測物を透過することなく前記各単位受光部23aに入射しようとする回り込み光を遮断する遮光手段が備えられているものを例示したが、このような遮光手段を備えない構成としてもよい。
【0097】
(7)上記第1実施形態では、投光部と受光部とが計測対象個所の左右両側部に振り分けて配置される構成のものを例示したが、このような構成に代えて、投光部と受光部とが計測対象個所の上下両側部に振り分けて配置される構成としてもよい。
【0098】
(8)上記第2実施形態では、計測対象個所の左右両側部に一対の投光部を振り分けて配置し、計測対象個所の下側に出てくる光を光ファイバーで受光して受光部に導く構成のものを例示したが、このような構成に代えて、計測対象個所の横一側箇所に1つの投光部を配置する構成としてもよく、光ファイバーで受光するものに代えて、計測対象個所の下側に受光部を備えて受光部にて透過光を直接受光する構成としてもよい。又、投光部と受光部とを計測対象箇所の例えば横一側箇所に並べて配置して光投射方向に対してほぼそれを反対方向に出てくる光を受光するようにしてもよい。
【0099】
(9)上記実施形態では、前記被計測物が前記計測対象箇所を通過するように、搬送コンベアにて搬送される構成としたが、このような構成に限らず、搬送手段としてロボットハンドにて被計測物を計測対象箇所に供給するものでもよく、又、搬送手段にて供給するものに代えて人為操作にて被計測物を供給するものでもよい。
【0100】
(10)上記実施形態では、投光部の光源としてハロゲンランプを用いたが、これに限らず、水銀灯、Ne放電管等の各種の光源を用いてもよく、受光部における受光センサは、CCD型ラインセンサに限らずMOS型ラインセンサ等の他の検出手段を用いるようにしてもよい。
【0101】
(11)上記実施形態では、被計測物Mの内部品質として、糖度や酸度を例示したが、これに限らず、食味の情報等、それ以外の内部品質を計測してもよい。
【図面の簡単な説明】
【図1】品質評価装置の正面図
【図2】品質評価装置の側面図
【図3】品質評価装置の平面図
【図4】品質評価装置の正面図
【図5】品質評価装置の一部切欠正面図
【図6】投光部の切欠平面図
【図7】分光器の構成図
【図8】シャッター機構を示す図
【図9】フィルター切換機構を示す図
【図10】遮光手段の斜視図
【図11】遮光手段の平面図
【図12】遮光手段の正面図
【図13】設置状態を示す平面図
【図14】計測作動のタイミングチャート
【図15】制御ブロック図
【図16】受光量の変化と計測タイミングを示す図
【図17】波長と光量との関係を示すデータ
【図18】糖度の計測値と波長ズレ量との関係を示す実験データ
【図19】第2実施形態の品質評価装置の正面図
【図20】第2実施形態の計測作動のタイミングチャート
【符号の説明】
1 投光部
2 計測部
4、4a 搬送手段
17 入射状態切換手段
23a 単位受光部
30 水平位置調節手段
84 基準体
90 遮光手段
100 演算部
101 動作制御手段
E 光量調整手段
M 被計測物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention projects near-infrared light from a light projecting unit to an object to be measured located at a measurement target location, and separates transmitted or reflected light from the object to be received by a plurality of unit light receiving units. A quality evaluation process for obtaining a quality evaluation value of a fruit and vegetable based on a measurement unit and light receiving information from the measurement unit when the fruit and vegetable is measured as the object to be measured and a calibration formula for fruit and vegetable quality evaluation created in advance. And an arithmetic unit for performing a wavelength calibration having a light transmittance characteristic for a specific wavelength of near-infrared light as the object to be measured, in place of the quality evaluation process. Fruits and vegetables that are configured to be freely switchable to a state in which a wavelength calibration process for specifying a wavelength to be received by each of the plurality of unit light receiving units based on light receiving information from the measuring unit when measuring the reference body is performed. It relates to a quality evaluation device.
[0002]
[Prior art]
The quality evaluation device for fruits and vegetables described above is for measuring the quality of fruits and vegetables such as tangerines and apples as objects to be measured, for example, the internal quality such as sugar content and acidity in a non-destructive state. Conventionally, an evaluation device has the following configuration.
[0003]
That is, after projecting light in the near-infrared region from the light projecting unit to the object to be measured, and separating the light transmitted through the object to be measured by spectral means such as a concave diffraction grating, 700 nm of the spectrally separated light is emitted. Light of a wavelength in the range of ~ 1000 nm is detected by an array-type light receiving element composed of a 1024-bit one-dimensional CCD line sensor, that is, 1024 unit light receiving units, and spectral spectrum data is obtained from the detection result. Based on the spectral spectrum data, for example, a second derivative spectrum data obtained by secondarily differentiating the obtained spectral spectrum data and a component of a characteristic component included in the measured object using a predetermined calibration formula. By measuring the quantity, the internal quality was measured.
[0004]
Further, the wavelength calibration processing has been performed as follows. That is, a calibration filter having a peak of the amount of transmitted light at a pair of specific wavelengths is used as the reference body for wavelength calibration, and the light transmitted through the calibration filter is received by the array-type light receiving element. From the detected result of the received light, each of the elements constituting the array type light receiving element is determined based on the positional relationship between a pair of specific wavelengths specified in advance and each element (unit light receiving unit) that receives a pair of peak wavelengths. The correspondence between the element (unit light receiving unit) and the wavelength of light received by each element is taken (see Patent Document 1).
[0005]
By the way, the above-mentioned calibration equation is individually set for each device based on data obtained by actually measuring a sample similar to the object to be measured prior to the measurement processing on the object to be measured. It is. Although the patent document does not describe in detail how to make it, it was generally made as follows.
[0006]
That is, tens to hundreds of objects to be measured are prepared as samples, and spectral spectrum data is obtained for each sample using the quality evaluation device. Further, for each sample, a real component amount detection process for accurately detecting a chemical component of the object to be measured by a special inspection device based on, for example, destructive analysis or the like is executed to obtain the actual component amount of the object to be measured. Then, the spectral spectrum data for each sample obtained as described above, specifically, using the light receiving data of all the elements of the array type light receiving element, while comparing with the detection result of the actual component amount In other words, a process of obtaining the above-mentioned calibration formula indicating the relationship between the spectral data and the component amount of the specific component is performed by using a multiple regression analysis technique.
[0007]
Therefore, in the related art, when performing the wavelength calibration process, and when each of the calibration formulas is created, the wavelength calibration process is performed using light reception information obtained by receiving the light at the plurality of unit light receiving units with the same resolution. Had become.
[0008]
[Patent Document 1]
JP-A-2002-90301 (pages 3 to 5, FIGS. 1, 4 and 5)
[0009]
[Problems to be solved by the invention]
In the above conventional configuration, since the wavelength resolution when performing the wavelength calibration process is sufficiently small, the quality evaluation value of the object to be measured is obtained by a large number of unit light receiving units whose wavelengths are calibrated in this way. Therefore, when the transmitted light from the measured object is spectrally received and received, it is possible to reduce the wavelength deviation in the light reception information measured by each unit light receiving unit, and the quality evaluation value of fruit vegetables as the measured object It is also possible to reduce the wavelength shift of the received light information obtained to obtain the wavelength.
[0010]
However, in the above-described conventional configuration, when the calibration equation is created, all of the array-type light receiving elements including a large number of elements (unit light receiving units) capable of detecting the light separated as described above with a small resolution are used. Calibration formulas are calculated using the multiple regression analysis method using the received light data of the elements.When such a multiple regression analysis method is used to create the calibration formula, an enormous number of calculations must be performed. There is a disadvantage in that a large amount of work time is required for the preparation of the calibration equation since it is necessary to perform the calibration.
[0011]
Therefore, in order to shorten the time required for creating such a calibration equation, the number of unit light receiving units should be reduced, and the wavelength resolution when receiving dispersed light should be reduced to reduce received light data. In this case, the wavelength calibration process described above is appropriately performed, and the wavelengths received by each of the plurality of unit light receiving units are specified based on the data received by each unit light receiving unit. Even if this is done, the wavelength resolution itself when receiving light separated by a plurality of unit light receiving units becomes low, and as a result, light reception information obtained to obtain a quality evaluation value of fruits and vegetables Also, there is a possibility that the measurement accuracy is reduced.
[0012]
The present invention has been made by paying attention to such a point, and its object is to reduce the trouble of creating a calibration formula without reducing the measurement accuracy when calculating the quality evaluation value of fruits and vegetables. Another object of the present invention is to provide an apparatus for evaluating the quality of fruits and vegetables.
[0013]
[Means for Solving the Problems]
The fruit and vegetable quality evaluation device according to claim 1 projects the near-infrared light from the light projecting unit to the measurement target located at the measurement target portion, and separates the transmitted or reflected light from the measurement target. A measuring unit that receives light at a plurality of unit light receiving units;
An operation unit that performs a quality evaluation process of obtaining a quality evaluation value of fruit and vegetables based on light reception information from the measurement unit when fruit and vegetables are measured as the measurement target and a calibration formula for fruit and vegetables quality evaluation created in advance. Is provided,
The measurement when the arithmetic unit measures a wavelength calibration reference body having a characteristic of light transmittance for a specific wavelength of near-infrared light as the object to be measured instead of the quality evaluation process. The plurality of unit light-receiving units are configured to be freely switchable to a state of performing a wavelength calibration process for specifying a wavelength to be received based on light-receiving information from the unit,
The calibration formula is created using the received light information at a resolution larger than the maximum resolution of the received light information determined according to the number of the plurality of unit light receiving units,
The arithmetic unit is configured to perform the wavelength calibration process using the received light information at a resolution smaller than the resolution at the time of creating the calibration equation.
[0014]
That is, the calibration equation is created using the received light information at a resolution larger than the maximum resolution of the received light information determined according to the number of the plurality of unit light receiving units. In other words, even when the number of unit light receiving units is increased to reduce the wavelength resolution when receiving light obtained by dispersing transmitted or reflected light from an object to be measured, such a method is used when creating a calibration equation. Since a calibration formula is created using the received light information at a resolution larger than the maximum resolution of the received light information by the plurality of unit light receiving units, for example, even when creating a calibration formula using a method of multiple regression analysis, The number of data of the received light information is also small, and the number of calculations can be reduced as much as possible, thereby making it possible to reduce the time and effort required to create the calibration formula.
[0015]
Then, since the wavelength calibration process is performed using the received light information at a resolution smaller than the resolution at the time of creating the calibration formula, it is possible to specify a wavelength at which each of the plurality of unit light receiving units receives light with a small resolution. Therefore, the received light information obtained by receiving light at each of the plurality of unit light receiving sections can be obtained as received light information having a smaller wavelength error as compared with a case where wavelength calibration is performed at the same resolution as when the calibration formula was created. Therefore, the measurement error when calculating the quality evaluation value of the fruits and vegetables is small.
[0016]
In addition, since the received light information measured in advance to create the calibration equation can also be obtained as the received light information with a small wavelength error, when creating the calibration equation, the number of data of the received light information is small but the correct wavelength is obtained. It is possible to create an appropriate calibration equation by using the appropriate light receiving information corresponding to.
[0017]
Therefore, it has been possible to provide a fruit and vegetable quality evaluation apparatus that can reduce the labor for creating a calibration formula without reducing the measurement accuracy when obtaining the fruit and vegetable quality evaluation value.
[0018]
The quality evaluation device for fruit and vegetables according to claim 2 is characterized in that, in claim 1, the calculation unit is configured to execute the wavelength calibration process at the maximum resolution of the received light information. I do.
[0019]
That is, since the wavelength calibration process is executed at the maximum resolution of the light receiving information, the wavelength calibration process for specifying the wavelengths received by each of the plurality of unit light receiving units is performed. The wavelength calibration process can be performed with high accuracy at the same high resolution as the maximum resolution of the obtained light receiving information, in other words, the same as the wavelength resolution when light is received by the plurality of unit light receiving units. Therefore, after the wavelength calibration processing is performed, the relationship between each of the plurality of unit light receiving units and the wavelength to be received can be associated with less deviation.
[0020]
The fruit and vegetable quality evaluation device according to claim 3, wherein in claim 1 or 2, the wavelength calibration reference body is configured to include two or more specific wavelengths as the specific wavelength,
The arithmetic unit, as the wavelength calibration process, among the plurality of unit light receiving units, specifies a plurality of unit light receiving units that receive the plurality of specific wavelengths, and determines that the plurality of unit light receiving units receive the plurality of specific wavelengths. It is characterized in that, based on the position information of all of the plurality of unit light receiving units with respect to all the unit light receiving units and the specific wavelength, a wavelength at which another unit light receiving unit receives light is obtained.
[0021]
That is, when performing the wavelength calibration process, using a reference body having two or more specific wavelengths as the specific wavelength as the reference body for the wavelength calibration, projecting near-infrared light to the reference body from the light emitting unit. Then, the transmitted or reflected light from the reference body is split and received by the plurality of unit light receiving units. The reference body has a characteristic in light transmittance with respect to the specific wavelength, and among the plurality of unit light receiving units at that time, a light corresponding to the specific wavelength is in a light receiving state different from other light receiving states. A plurality of unit light receiving sections that receive the specific wavelength can be specified.
[0022]
Then, based on the position information of the plurality of unit light receiving units and the information of the plurality of specific wavelengths specified as described above, the position information of each unit light receiving unit other than the specific unit light receiving unit and the It is possible to perform the wavelength calibration by finding the correspondence with the wavelength at which the light is received.
[0023]
In the fruit and vegetable quality evaluation device according to claim 4, the measurement unit according to any one of claims 1 to 3, wherein the measuring unit emits light in a predetermined wavelength band including the specific wavelength by the 1024 unit light receiving units. Configured to receive light,
The wavelength resolution when the arithmetic unit specifies the wavelength of the split light in order to execute the wavelength calibration process is set to 0.8 nanometer or less, and measured to create the calibration equation. The wavelength resolution for specifying the wavelength of the split light in order to obtain the quality evaluation value of the object is set to 2 nm or more.
[0024]
That is, since light of a predetermined wavelength band including the specific wavelength is received by a large number of 1024 unit light receiving units, light of the predetermined wavelength band can be received with high resolution. For example, when fruits and vegetables such as tangerines and apples are to be measured, the predetermined wavelength band is generally on the order of several hundred nm to 1,000 nm, so that the spectral light can be received with sufficiently high resolution. If the resolution is further increased to increase the measurement accuracy, the amount of light received by the unit light receiving unit may be insufficient. If the amount of light emitted from the light emitting unit is increased to secure the amount of light, fruit and vegetables may be damaged. There is a risk.
[0025]
Then, since the wavelength resolution at the time when the calculation unit specifies the wavelength of the dispersed light to execute the wavelength calibration processing is set to 0.8 nm or less, the quality evaluation value of fruit and vegetables is generally calculated. It can be obtained with high accuracy with an error smaller than the measurement error that is required in general.
With reference to the actual measurement data by the present applicant, FIG. 18 shows that, in the case where the sugar content of apple is obtained as the quality evaluation value of fruits and vegetables, the amount of wavelength deviation when the specific wavelength is deviated from the appropriate value is shown. And the results of actual measurement of the relationship between the required changes in the sugar content. In other words, it indicates that when the wavelength shift on the horizontal axis occurs, the obtained sugar content is obtained as a different value. In general, a measurement error of 0.5 degrees or less is required for fruits such as apples. Therefore, as apparent from this figure, if the wavelength shift is 0.8 nm or less, the required measurement accuracy of 0.5 degrees or less can be satisfied.
Therefore, as described above, the wavelength resolution for specifying the wavelength of the split light in order to execute the wavelength calibration process is set to 0.8 nm or less. Measurement accuracy can be satisfied.
[0026]
Then, since the wavelength resolution for specifying the wavelength of the dispersed light is set to 2 nanometers or more to obtain the quality evaluation value of the object to be measured in order to create the calibration equation, the calibration equation is created. When doing, the quality evaluation value of the object to be measured is obtained with a wavelength interval of 2 nanometers or more, a number smaller than the number of the light receiving information determined according to the number of unit light receiving units. Using the received light information, for example, it is created by an arithmetic processing for obtaining a calibration equation using a method of multiple regression analysis.
[0027]
Therefore, it is possible to reduce the number of calculations and the number of calculations as much as possible by reducing the number of data of the received light information in the case of creating the calibration formula, thereby reducing the trouble of creating the calibration formula.
[0028]
An apparatus for evaluating the quality of fruits and vegetables according to claim 5, wherein the amount of light of the light received by the measuring unit out of the transmitted or reflected light from the object to be measured is adjustable in any one of claims 1 to 4. An adjusting means is provided.
[0029]
That is, since the light amount adjusting means is configured to be able to change and adjust the light amount of the light received by the measuring unit out of the transmitted or reflected light from the measured object, the light transmitted or reflected from the measured object is Even if the amount of light is too large, the amount of incident light on the measuring unit is adjusted by the light amount adjusting means, so that the amount of incident light on the measuring unit can be adjusted to an appropriate amount. Further, even if light other than transmitted light or reflected light from the measured object exists between the measured object and the plurality of unit light receiving units, light other than the transmitted light or the reflected light is transmitted by the light amount adjusting unit. After being adjusted and incident on the measurement unit, it is possible to prevent the S / N (signal-to-noise) ratio from decreasing.
[0030]
The quality evaluation device for fruit and vegetables according to claim 6, wherein, in any one of claims 1 to 5, the relative position of the light projecting portion by the light projecting portion and the light receiving portion by the measuring portion with respect to the measurement target portion, Is provided with a horizontal position adjusting means which can be changed and adjusted along the approaching and separating directions.
[0031]
That is, the horizontal position adjusting means can change and adjust the relative positions of the light projecting point and the light receiving point with respect to the measurement target location in the directions of approaching and separating from the measurement target location. On the other hand, the light projecting part can be moved closer or farther away. Therefore, for example, by adjusting the focal position of the light to be projected to the surface of the object to be measured or the vicinity thereof, the light can be efficiently projected onto the object to be measured. In addition, since the light receiving point can be moved closer to or away from the object to be measured located at the measurement target point, the light receiving focal point position is set to the surface of the object to be measured or the same as in the case of the light projecting point. By adjusting the distance to the vicinity, there is an advantage that the light transmitted through the object to be measured can be received as efficiently as possible.
[0032]
An apparatus for evaluating the quality of fruits and vegetables according to claim 7 is the open state in which the light transmitted or reflected from the object to be measured is received by each of the unit light receiving units in any one of claims 1 to 6. And incident state switching means that can be switched to a shielded state that prevents transmitted or reflected light from the measured object from being received by each of the unit light receiving units,
Operation control means for controlling the operation of each part,
The operation control means,
In the state where the object to be measured is located at the measurement target location, the incident state switching is performed so as to switch from the shielded state to the open state, maintain the open state for the duration of the open maintenance time, and then return to the shielded state. Controlling the operation of the means, and executing a measurement process of receiving the light obtained from the object to be measured at each of the unit light receiving units while the incident state switching means maintains the open state. The operation of the measurement unit is controlled.
[0033]
That is, in the state where the object to be measured is located at the position to be measured, the operation control means switches from the shielded state to the open state, maintains the open state for the elapse of the open maintenance time, and then returns to the shielded state. This controls the operation of the switching means. In the shielding state, transmitted or reflected light from the measured object is not received by each of the unit light receiving units. In the open state, the transmitted or reflected light from the object to be measured is received by each of the unit light receiving units, and measurement is performed.
[0034]
Therefore, in a state where the object to be measured is not located at the position to be measured, the light projected from the light projecting unit is directly prevented from being received by each unit light receiving unit, and the light transmitted from the object to be measured or The reflected light can be properly received.
[0035]
The fruit and vegetable quality evaluation device according to claim 8 is characterized in that, in any one of claims 1 to 7, a transport unit that transports the object to be measured via the measurement target portion is provided. .
[0036]
That is, since the object to be measured is transported by the transport unit via the measurement target portion, for example, even when a large number of objects to be measured are measured, the transport unit sequentially transports the object to be measured. The measurement can be performed efficiently, and even when the measured object is sorted into a plurality of ranks according to the measurement result of the quality evaluation value, the object can be transported to the sorting location by the transporting means.
[0037]
According to a ninth aspect of the present invention, in the fruit and vegetable quality evaluation device according to the eighth aspect, the light-emitting unit transmits the object to be measured, while allowing the object to be measured conveyed by the conveyance unit to pass therethrough. A light-shielding means is provided for blocking the sneak light that is going to enter each of the unit light receiving units without transmitting the measured object out of the projected light.
[0038]
That is, by providing the light-shielding means, of the light projected from the light projecting unit, sneak light that is going to enter the plurality of unit light receiving units without transmitting through the object to be measured is effectively blocked. The possibility of erroneous detection by the unit light receiving unit is reduced. In addition, the light shielding means is configured to effectively block the sneak light while allowing the object to be measured conveyed through the measurement target location by the transport means to pass through the measurement location. There is little risk of lowering the work efficiency without the transport by the means being hindered. Therefore, it is possible to reduce the measurement error caused by the sneak light as described above in a state where there is no disadvantage such as a decrease in work efficiency.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
[0040]
(1st Embodiment)
Hereinafter, a first embodiment of a fruit and vegetable quality evaluation apparatus according to the present invention will be described with reference to the drawings.
The fruit and vegetable quality evaluation device according to the present invention is a device for measuring the sugar content and the acidity as the quality of fruit vegetables such as tangerine as an object to be measured, and is close to the object to be measured located at the measurement target location. A measuring unit that projects the light in the outer region from the light projecting unit, splits the transmitted or reflected light from the object to be measured, and receives the light with a plurality of unit light receiving units, and when measuring fruits and vegetables as the object to be measured. An operation unit is provided for performing a quality evaluation process for obtaining a quality evaluation value of the fruits and vegetables based on the received light information from the measurement unit and a calibration formula for evaluating the quality of fruits and vegetables prepared in advance.
[0041]
More specifically, as shown in FIG. 1, a light projecting unit 1 that irradiates light to an object M to be measured and a light receiving unit that receives light transmitted through the object M and measures the received light And a control section 3 for controlling the operation of each section while performing the quality evaluation process as described above. The objects to be measured M are arranged in a row in a row by a transport conveyor 4 as transport means. , And are configured to sequentially pass through the locations to be measured by the apparatus. Then, in a state where the light projected from the light projecting unit 1 passes through the object M and is received by the light receiving unit 2, the light projecting unit 1 and the light receiving unit 2 The sections 2 are arranged on both left and right sides of the location to be measured, that is, on both sides of the transport conveyor 4 in the transport width direction.
[0042]
Next, the configuration of the light emitting unit 1 will be described.
The light projecting unit 1 includes two light sources, and is configured to irradiate light from the two light sources to an object to be measured located at a measurement target location with different optical axes for irradiation. I have. Further, it is configured such that the two optical axes for irradiation by each light source intersect at or near the surface portion of the measured object located at the measurement target location.
That is, as shown in FIG. 5 and FIG. 6, a light source 5 composed of two halogen lamps separated in the transport direction by the transport conveyor 4 is provided, and a light source 5 corresponding to each of these two light sources 5 is provided. Is provided. In other words, a concave light reflector 6 is provided as a light collecting means for reflecting light emitted from the light source 5 to focus on the surface of the object M to be measured. Plate 7, which is positioned so as to correspond to the vicinity of the focal position of the light, and suppresses the spread of the condensed light to the radially outward side by passing through a large stop hole 7 a. 7, a light amount adjusting plate 8 that can be switched between a state in which light passes through, a state in which light passes through a small aperture 8a, and a state in which light is blocked. A collimator lens 9 that changes the light into parallel light, a reflector 10 that reflects and bends the light converted into parallel light, and a condenser lens 11 that collects the light reflected by the reflector 10 for one light source 5. It is provided as an optical system. Each of the light amount adjusting plates 8 is integrally rocked by a projection light amount adjusting motor 12, and is configured to be freely switchable to each of the above states.
[0043]
The light projecting unit 1 has a configuration in which the above-described members are housed in a casing 13 and assembled into a unit. Further, the light projecting unit 1 is provided in an oblique posture so as to irradiate the object to be measured positioned obliquely downward toward the object to be measured. Also, light is prevented from directly entering the light receiving unit 2.
[0044]
Next, the configuration of the light receiving section 2 will be described.
As shown in FIG. 5, the light receiving unit 2 includes a condenser lens 14 for condensing light transmitted through the object to be measured M, and a wavelength region 680 to 990 nanometers in the near-infrared region of light converted into parallel light. (Hereinafter, abbreviated as nm) only a band-pass mirror 15 that reflects only light in a range upward and passes light of other wavelengths as it is, and collects light to be measured reflected upward by the band-pass mirror 15. Condensing lens 16, a shutter mechanism 17 as an incident state switching means that can be switched between an open state in which the light passing through the condensing lens 16 passes as it is and a blocking state in which the light to be measured is prevented from passing, an open state When the light that has passed through the shutter mechanism 17 is incident, the spectroscope 18 that separates the light to measure the spectral data and the band-pass mirror 15 go straight. It is configured to include a light-power detection sensor 19 detects the amount of light passing through or the like.
[0045]
Further, a filter switching mechanism E for switching a plurality of various filters acting on the light incident on the spectroscope is provided below the shutter mechanism 17, that is, at a position on the upper side in the light incident direction. As shown in FIG. 9, the filter switching mechanism E includes three filters provided at a position equidistant or almost equidistant from the center in a circumferential direction on a rotating body 81 rotated by a filter switching motor 80. 82, 83, 84 and one opening 85 are provided, and the rotary body 81 is rotated to switch freely so that any filter is located at a position through which incident light passes.
[0046]
The first filter 82 is an ND filter having a low optical attenuation rate, the second filter 83 is an ND filter having a high optical attenuation rate, and the third filter 84 is a wavelength calibration filter. That is, by driving the filter switching motor 80 to rotate the rotating body 81, the transmitted light from the measurement object M is made to enter the spectroscope without being attenuated by passing through the opening 85, and the first filter It is possible to switch to a state where the light is made to enter with a little attenuation by passing through the second filter 83 and is made to enter with a little attenuation by passing through the second filter 83. That is, the amount of light received by the spectroscope is changed and adjusted based on measurement conditions (for example, measurement conditions of the object M such as the type, size, and transmittance of the object M) which are input in advance. You can do it. Therefore, the light amount adjusting means is configured using the filter switching mechanism E. The third filter 84 (wavelength calibration filter) is used for performing a wavelength calibration process as described later.
[0047]
As shown in FIG. 7, the spectroscope 18 reflects the measurement target light incident from the light entrance 20 which is the light receiving position, and separates the reflected measurement target light into light of a plurality of wavelengths. A concave diffraction grating 22 serving as a spectral unit and a light receiving sensor 23 for measuring spectral data by detecting the amount of light at each wavelength in the light to be measured spectrally separated by the concave diffraction grating 22 shield light from outside. It is arranged in a dark box 24 made of a light-shielding material. The light receiving sensor 23 is constituted by a 1024-bit charge storage type CCD line sensor that simultaneously receives the light spectrally reflected by the concave diffraction grating 22 for each wavelength and converts it into a signal for each wavelength and outputs the signal. Have been. In other words, 1024 unit light receiving sections 23a capable of separately detecting the light amounts of a plurality of split wavelengths of light are provided, and this line sensor is not described in detail, but the light amount is provided for each unit light receiving section 23a. Comprising: a photoelectric conversion unit that converts light into an electric signal (charge); a charge storage unit that stores the charge obtained by the photoelectric conversion unit; and a drive circuit that outputs the stored charge to the outside. It is formed on a substrate. An electronic cooling element such as a Peltier element is adhered to the back side of the semiconductor substrate, and is configured to be able to cool down to minus 10 ° C. The error of the measured value can be reduced.
[0048]
7 and 8, the shutter mechanism 17 includes a disk 17A having a plurality of radially formed slits 25 in a state where the disk 17A is rotated around a vertical axis by a pulse motor 17B. The slits 25 are formed in the light entrance 20 of the dark box 24 so that the slits 25 are in an open state in which light passes when the slits 25 are vertically overlapped, and in a blocking state in which light is blocked when the position of the slits 25 is shifted. A transmission hole 27 having substantially the same shape as that of FIG. 1 is formed, and the disk 17A is arranged so as to slide in close contact with the light entrance 20 of the dark box so as not to leak light. That is, the shutter mechanism 17 is provided in a state of being close to the light entrance 20 for the concave diffraction grating 22. Similarly to the light projecting section 1, the light receiving section 2 has a configuration in which the above-described members are housed in the casing 28 and assembled into a unit.
[0049]
Each of the light projecting unit 1 and the light receiving unit 2 is configured as a unit that can be detachably attached to each of the light projecting location and the light receiving location, respectively. The light projecting unit 1 and the light receiving unit 2 are arranged such that the device frame F to which the second unit 2 is detachably attached is such that the positions corresponding to the left and right sides of the conveyor 4 at the measurement target position are the light projecting position and the light receiving position. Are provided with a pair of mounting portions for the first and second members. Further, the device frame F is provided with an up / down position adjusting mechanism 29 as up / down position adjusting means capable of vertically adjusting the position of the light projecting unit 1 and the light receiving unit 2 integrally, and the light projecting unit 1 and the light receiving unit. Each of the sections 2 is separately approached and separated from the device to be measured located at the measurement target position with respect to the device frame F, that is, along a direction that is horizontal and orthogonal to the transport direction of the transport conveyor 4. A horizontal position adjusting mechanism 30 is provided as horizontal position adjusting means capable of adjusting the position.
[0050]
Next, the vertical position adjusting mechanism 29 will be described. As shown in FIGS. 1 to 4, a device frame F assembled in a rectangular frame shape so as to surround an outer peripheral portion of the quality evaluation device is provided. The four fixed support rods 31 are provided in a suspended state, and the lower ends of these four fixed support rods 31 are provided with support stands 32 for placing and supporting a measurement object A for calibration of a quality evaluation device described later. Is attached. An elevating table 34 is slidably supported in the up and down direction by four sliding support portions 33 with respect to the four fixed support bars 31. Further, a feed screw 35 supported in a hanging state from an upper side portion of the apparatus frame F is rotatably provided by an electric motor 36, and a female screw member 37 provided on an elevating table 34 is attached to the feed screw 35. The lifting table 34 can be vertically moved to an arbitrary position by rotating the feed screw 35 with an electric motor 36. Note that the feed screw 35 is also configured to be rotatable with a manual operation handle 38.
The object to be measured A for calibration of the quality evaluation device is placed on the elevation table 34 so that the object to be measured A for calibration of the quality evaluation device can be moved up and down even when the object to be measured A for calibration of the quality evaluation device is mounted and supported on the support 32. An insertion hole 34a is formed so as to allow the passage.
[0051]
Next, the horizontal position adjustment mechanism 30 will be described.
As shown in FIG. 3, the lifting table 34 is provided with two guide rods 39 extending along the direction in which the light projecting unit 1 and the light receiving unit 2 are arranged. The support members 40 and 41 as the pair of attachment portions to which the portion 1 and the light receiving portion 2 are detachably attached are supported by the guide bars 39 so as to be slidable. The guide bars 39 are connected at both ends in the longitudinal direction by connecting members 39a. In addition, two feed screws 42 and 43 extending along the direction in which the light projecting unit 1 and the light receiving unit 2 are arranged are provided on the elevating table 34 so as to be rotatable by electric motors 44 and 45, respectively. Female screw portions 46 and 47 provided on the support members 40 and 41 are screwed into the respective feed screws 42 and 43, and the respective feed screws 42 and 43 are respectively rotated forward and reverse by the electric motors 44 and 45. By doing so, each of the support members 40 and 41 can be separately adjusted in position in a horizontal direction orthogonal to the transport direction of the transport conveyor 4. Therefore, the light projecting unit 1 and the light receiving unit 2 respectively attached to the support members 40 and 41 are respectively rotated by the electric motors 44 and 45 by rotating the feed screws 42 and 43 forward and backward respectively. That is, it is possible to change and adjust the relative position in the direction approaching and separating from the measurement target location.
[0052]
Therefore, when the feed screw 35 is rotated by the electric motor 36, the elevating table 34 is vertically moved and adjusted, and accordingly, the light emitting unit 1 and the light receiving unit 2 supported by the elevating table 34 are integrated. Up and down movement can be adjusted, and by turning each of the electric motors 44 and 45, the light emitting unit 1 and the light receiving unit 2 are individually adjusted in position in a horizontal direction orthogonal to the transport direction of the transport conveyor 4. be able to.
[0053]
In addition to the description of the configuration of attaching the light projecting unit 1 and the light receiving unit 2 to the support members 40 and 41, the mounting pedestal portions 40a and 41a at the lower ends of the support members 40 and 41 have horizontal directions. Are formed with a plurality of positioning projections 40b and 41b projecting laterally at appropriate intervals, and correspond to the projections 40b and 41b, respectively, of the light projecting unit 1 and the light receiving unit 2 provided in a unit shape. When positioning holes are provided and the light projecting unit 1 and the light receiving unit 2 are mounted on the support members 40 and 41, the positioning projections 40b and 41b are fitted into the positioning holes as shown in FIGS. The light projecting unit 1 and the light receiving unit 2 are mounted by bolting an appropriate part near the position in a state where they are positioned. Therefore, in this device, when the light projecting unit 1 and the light receiving unit 2 are respectively mounted, the light projecting position where the light projecting unit 1 is located, the measurement target position, and the light receiving position where the light receiving unit 2 is located. The light projecting unit 1 and the light receiving unit 2 are arranged in such a manner that each of the locations is located in a straight line. However, the mounting pedestal portions 40a, 41a at the lower end portions of the support members 40, 41 have slightly different lengths on the left and right so as to correspond to the vertical lengths of the light projecting unit 1 and the light receiving unit 2. Like that. The mounting portion of the light projecting unit 1 is provided with a tilting posture restricting tool 40c so that the projection direction is slightly obliquely downward.
[0054]
A reference filter 49 is provided above the support conveyor 32 and supported by a support arm 48 extending above the support table 32 at a position above the portion where the measurement object M is expected to pass on the conveyor 4. The reference filter 49 is configured by an optical filter having a predetermined absorbance characteristic, and specifically includes a pair of opal glasses.
[0055]
By vertically moving and adjusting the light projecting unit 1 and the light receiving unit 2 by the vertical position adjusting mechanism 29, the light from the light projecting unit 1 is measured on the transport conveyor 4 as shown in FIG. The normal measurement state in which the light is received by the light receiving unit 2 after passing through the object M, and the light from each light projecting unit 1 is transmitted through the reference filter 49 as shown by the phantom line in FIG. , And as shown by the solid line in FIG. 4, it can be switched to a calibration measurement state as described later.
Although not described in detail, the outer peripheral portion of the quality evaluation device is surrounded by a wall provided on the device frame F except for a passing portion accompanying the transport of the measured object so that light does not enter from the outside. It has become.
[0056]
Also, while allowing the object to be measured M to pass through the measurement target portion, the light projected from the light projecting unit 1 wraps around the light receiving unit 2 without passing through the object to be measured M. A light-blocking member 90 is provided as light-blocking means for blocking light. More specifically, as shown in FIGS. 10 to 12, when the frame member 93 made of a hard material is viewed in a direction toward the transport direction of the measurement object M, the measurement object M Light passing through the side walls 90a and 90b, which are formed in a substantially gate-like shape so that they can pass, and which allow light projected from the light projecting unit 1 to the measurement object M to pass through the side walls 90a and 90b located on both left and right sides of the conveyance. The aperture 95a for light transmission and the aperture 95b for light transmission which allow the light transmitted through the measurement object M to pass toward the light receiving unit are formed respectively.
Then, on the side surface on the upper side in the transport direction, the side surface on the lower side in the transport direction, and the upper portion of the frame member 93, respectively, the measurement object M that has entered the inner side of the frame member 93, Shields 91a, 91b, and 91c that block sneak light with respect to the object to be measured M at a location on the upper side in the transport direction, a location on the lower side in the transport direction, and a location above the light projection position Q, respectively. Each is provided.
The shields 91a, 91b, 91c are made of a soft material having a light-shielding property, for example, a thick cloth or sponge material having a light-shielding property. Each of the objects to be measured M is configured to be able to be retracted so as to be bent and deformed along the surface so as not to hinder the conveyance of the measured objects M and to allow passage. Moreover, openings K1 and K2 are formed in the shields 91a and 91b located at the upper part in the transport direction and the lower part in the transport direction, respectively, to allow the object M to be measured to be smoothly transported and passed. A plurality of tongues Z are formed at the edges of the openings K1 and K2 in such a manner that a plurality of tongues Z are cut apart from each other in the up-down direction, and each tongue Z is individually formed. Each object is bent and deformed along the outer surface of the object M, and is configured to be retractable so as to allow the object M to pass therethrough. In this way, it is possible to minimize the leakage of the sneaking light to the light receiving unit 2 side while smoothly following the arc-shaped outer surface even with the measured object M having a substantially spherical shape such as oranges. And
[0057]
The quality evaluation device is configured such that a pseudo measurement object A having substantially the same characteristics as the light transmission characteristics of the object to be measured can be detachably mounted on the support table 32. The measurement object A is placed on the support 32 in a state where it is positioned as it is, and is configured to be easily detachable. When calibration is not performed, the measurement object A is detached from the support 32. Can be kept.
[0058]
The measuring object A for calibration of the quality evaluation device will be briefly described. As shown in FIG. 5, the outer peripheral portion is covered by a substantially quadrangular prism-shaped outer casing 52 made of a non-translucent member. A storage part 51 for storing pure water J as a quality evaluation target in a sealed state is provided at a position located on the lower side inside the casing 52, and an air layer is formed between the storage part 51 and the outer casing 52. I have. The Peltier device 55 is operated so that the temperature of the air layer is maintained at a set temperature (for example, 30 ° C.) which is a temperature of the object to be measured when the quality is evaluated by the quality evaluation device or a temperature close thereto. It is a configuration to make it. A light-passing portion 61 and a light-passing portion 62 are formed at positions corresponding to the left and right sides of the storage portion 51 in the outer casing 52, respectively, so that light can enter the outer casing 52 made of a non-translucent member. A passage hole is formed at a position corresponding to the side light passage portion 61 and the light exit side light passage portion 62, and an opal glass G as a diffuser is mounted in a state of being kept in an airtight state.
[0059]
The control unit 3 is configured using a microcomputer, and as shown in FIG. 15, controls the internal quality of the measured object based on the detection information of the passage detection sensor 50, the light amount detection sensor 19, and the light receiving sensor 23. An analysis unit 100 as an arithmetic unit for analysis and an operation control unit 101 for controlling the operation of each unit are provided in a control program format. In other words, while executing a calculation process for analyzing the internal quality of the object to be measured M using a spectroscopic analysis technique which is a known technique as described later, the shutter mechanism 17, the projection light amount adjustment motor 12, the filter switching motor 80, The operation of each part such as the management of the operation of the vertical position adjusting motor 36 and the horizontal position adjusting motors 44 and 45 is controlled.
[0060]
Next, a control operation by the control unit 3 will be described.
The control unit 3 irradiates the reference filter 49 in place of the measured object M, splits the transmitted light from the reference filter 49 by the light receiving unit 2, and receives the split light. The reference data measurement processing for obtaining the spectral spectrum data as the reference spectral spectrum data. The object to be measured M conveyed by the conveyor 4 is irradiated with light from the light projecting unit 1 to obtain the measured spectral spectrum data. On the basis of the spectral data and the reference spectral data, the normal data measurement processing for analyzing the internal quality of the object M, and light transmitted through the wavelength calibration filter 84 in place of the object M, Each of the unit light receiving units 23a of the light receiving sensor 23 receives light based on light receiving information obtained by receiving the separated light after the light is separated by the light receiving unit 2. And it is configured to perform each of the wavelength calibration process to determine the length.
[0061]
The reference data measurement processing will be described.
While the transport of the object M by the transport conveyor 4 is stopped, the vertical position adjustment mechanism 29 switches to the reference measurement state, the shutter mechanism 17 switches to the open state, and receives light from the light projecting unit 1. The reference filter 49 is irradiated in place of the measurement object M, the transmitted light from the reference filter 49 is separated by the light receiving unit 2, and the spectral light data obtained by receiving the separated light is used as the reference spectral data. Measure as spectral data. Further, the detection value (dark current data) of the light receiving sensor 18 in a non-light state in which light to the light receiving unit 2 is blocked is also measured. That is, the shutter mechanism 17 of the light receiving unit 2 is switched to the shielded state, and the detection value of each unit pixel of the light receiving sensor 18 at that time is obtained as dark current data.
[0062]
Next, the normal data measurement processing will be described.
In the normal data measurement process, the vertical position adjusting mechanism 29, specifically, the vertical position adjusting electric motor 36 is operated to switch the elevator 34 to the normal measurement state, and the transport of the workpiece M by the transport conveyor 4 is performed. I do. Then, as shown in FIG. 14, based on the detection information from the passage detection sensor 50, a period in which the object to be measured passes through the measurement target location is detected, and in a state synchronized with the period, the separated light is received. The operation of the light receiving sensor 23 is controlled such that the charge accumulation process of executing the charge accumulation operation for a set time and the sending process of sending out the accumulated charges are repeated at a set cycle.
[0063]
That is, in the time zone in which each of the objects M is predicted to pass through the measurement target location, the light receiving sensor 23 performs the charge accumulation process for the set time, and it is predicted that the measurement target M does not exist in the measurement target location. The operation of the light receiving sensor 23 is controlled so as to execute a sending process of sending out the accumulated electric charges at a timing such that the vicinity of the intermediate position between the objects to be measured M is located at the measurement target portion. Therefore, in this quality evaluation device, the charge accumulation time by the light receiving sensor 23 is always constant. When the processing capability is set so that seven measurement objects pass through each second, the set time for executing the charge accumulation process is about 140 msec.
[0064]
Then, when the light receiving sensor 23 performs the charge accumulation process in a state where the light receiving sensor 23 is located at the measurement target location, the operation control unit 101 switches from the shielding state to the open state and changes the open state to the open maintaining time Tx. The operation of the shutter mechanism 17 is controlled so as to return to the shielded state after being maintained for a lapse of time, and the open maintaining time Tx is configured to be changed and adjusted based on the change command information.
The open maintaining time Tx is configured to be changed according to the difference in the type of the object to be measured. To add an explanation, for example, in the case of Unshu mandarin orange, light is relatively easily transmitted, so that it is set to a relatively short time (about 10 msec), and in the case of Iyokan, light is hardly transmitted, so a longer time (about 30 msec). Set to.
The setting of the operating conditions depending on the kind of the kind is configured to be manually performed by a worker. That is, as shown in FIG. 15, a switching operation tool C for artificially switching the setting position according to the type difference is provided, and the setting information of the switching operation tool C is input to the control unit 3, and the control unit 3 The opening maintaining time Tx is changed and adjusted according to the setting information.
Further, in accordance with the setting of such operating conditions, a process of operating the filter switching mechanism as described above to change and adjust the amount of light incident on the spectroscope 18 is also performed.
[0065]
The operation control unit 101 determines whether the measured object has reached the measurement target location based on the amount of light received by the light amount detection sensor 19, that is, a change in the measured value of the light transmission amount of the measured object. The shutter mechanism 17 is switched to the open state when the arrival of the object to be measured is detected, and after the open state is maintained for the open maintaining time Tx, the shutter mechanism 17 is closed. The configuration is switched to end the measurement processing.
More specifically, FIG. 16 shows a change state of the detection value of the light amount detection sensor 19 over time. Until the measured object arrives, almost the maximum value is output by the light projected from the light projecting unit 1. However, when the measured object M reaches the measuring point, the measuring light is blocked and the light amount detection sensor detects the light. When the value (light receiving amount) starts to decrease and the detection value decreases below a preset value (t1), it is determined that the object to be measured has reached the measurement location, and the set time has elapsed from that point. At this time (t2), the shutter mechanism 17 is switched to the open state. Then, after maintaining the open state for the open maintaining time Tx, the shutter mechanism 17 is switched to the closed state.
If the transport conveyor 4 stops abnormally during the execution of such a measurement process, the light amount adjusting plate 8 in the light projecting unit 1 is switched to the cut-off state and the measured object stopped moving. The object is prevented from being irradiated with strong light from the light source for a long time.
[0066]
The analyzing means 100 is configured to execute an arithmetic process for analyzing the internal quality of the measured object M based on various data obtained in this manner by using a spectroscopic analysis technique which is a known technique. I have.
In other words, the measured spectrum data obtained as described above is normalized using the reference spectrum data obtained in the reference data measurement mode and the dark current data, and each of the separated wavelengths is measured. The absorbance spectrum data is obtained, and the second derivative of the absorbance spectrum data is obtained. Specifically, absorbance spectrum data corresponding to the received light information obtained for each of the 1024 unit light receiving sections 23a of the light receiving sensor 23 is obtained. The second derivative of the specific wavelength for calculating the component among the second derivative of the absorbance spectrum data obtained in this way corresponds to the sugar content contained in the measurement object M by the preset calibration formula and the second derivative. It is configured to execute a quality evaluation process of calculating a component amount as a quality evaluation value corresponding to the component amount or acidity to be performed.
[0067]
When the absorbance spectrum data d is Rd for the reference spectral data, Sd for the measured spectral data, and Da for the dark current data,
[0068]
(Equation 1)
d = log [(Rd-Da) / (Sd-Da)]
[0069]
It is calculated by the following arithmetic expression. Then, the absorbance spectrum data d obtained in this manner is included in the measurement object M using the value of the specific wavelength among the values obtained by secondarily differentiating the value and the calibration formula as shown in the following Expression 2. The calibration value for calculating the component amount corresponding to the sugar content or acidity is determined.
[0070]
(Equation 2)
Y = K0 + K1 · A (λ1) + K2 · A (λ2)
[0071]
However,
Y: Calibration value corresponding to component amount
K0, K1, K2; coefficient
A (λ1), A (λ2); second derivative of absorbance spectrum at specific wavelength λ
[0072]
Note that a specific calibration equation, specific coefficients K0, K1, K2, wavelengths λ1, λ2, and the like are preset and stored for each component for which the component amount is calculated. The calibration value (component amount) of each component is calculated using a specific calibration formula.
[0073]
Next, the wavelength calibration process will be described.
This wavelength calibration process is configured to be executed by the analysis unit 100, and includes a calibration data measurement process performed prior to a normal measurement of the measurement target M and a normal measurement of the measurement target M. It consists of a conversion process of the obtained measurement data.
The measurement process of the calibration data will be described. Before the normal measurement, the rotating body 81 is rotated by the filter switching motor in the filter switching mechanism E, and the wavelength calibration filter 84 is positioned at the light passing position. Then, the light from the light projecting unit 1 is irradiated as it is, and the wavelength to be received by each unit light receiving unit 23a of the light receiving sensor 23 is specified based on the light receiving information obtained by the light receiving unit 2. More specifically, the wavelength calibration filter is configured as a reference body for wavelength calibration having a characteristic in light transmittance for a specific wavelength of light in the near-infrared region. It has a peak portion of light transmission at at least a pair of known specific wavelengths.
[0074]
Accordingly, as shown in FIG. 17A, the light transmitted through the wavelength calibration filter has transmitted light peak portions W1 and W2 at a pair of specific wavelengths (λ1, λ2). When the sensor 23 detects this light, a correspondence is established between at least a pair of unit light receiving portions 23a at which the amount of received light reaches a peak and the wavelengths (λ1, λ2) of the light of the known transmitted light peak portions W1, W2. Thus, wavelength calibration can be performed. Here, when the pair of element numbers of the unit light receiving section 23a of the light receiving sensor 23 that receives the pair of predetermined wavelengths (λ1, λ2) is (P1, P2), the other unit light receiving sections 23a (element numbers are The light-receiving wavelength λ in (P) can be expressed by the following equation 3 as a linear approximation when the element number P is a variable, and the wavelength corresponding to the element number can be obtained. Here, a is the slope of the first-order approximation formula, and b is the intercept virtually calculated. In addition, it can be represented as shown in FIG.
[0075]
[Equation 3]
λ = aP + b
[0076]
Next, the conversion process of the measurement data will be described. The second derivative of the absorbance spectrum data for each wavelength obtained by the normal data measurement process as described above is calculated for each of the 1024 unit light receiving units 23a of the light receiving sensor 23. Although the data is based on the light receiving position corresponding to the obtained light receiving information, the measurement data conversion process corresponds to a specific wavelength for calculating the component of the object to be measured by an arithmetic process based on Equation 3. The second derivative of the wavelength absorbance spectrum data is obtained by interpolation, and the data based on the light receiving position obtained for each unit light receiving unit 23a is converted into data based on the correct wavelength.
[0077]
As for light incident on the spectroscope 18, only light in a specific wavelength range of 680 to 990 nm to be measured by the bandpass mirror 15 is incident, and in this wavelength calibration process, light is received. The wavelength of each unit light receiving unit 23a is specified based on all the light receiving data in the 1024 unit light receiving units 23a of the sensor 23. Therefore, the wavelength resolution when specifying the wavelength of the split light to execute the wavelength calibration processing is about 0.3 nm.
[0078]
In fruits and vegetables such as tangerines and apples, generally, a measurement error required as a measurement accuracy of sugar content as a quality evaluation value is required to be 0.5 degrees or less. As is clear from the experimental data, if the wavelength resolution that causes the wavelength shift is 0.3 nm, the required measurement accuracy of 0.5 degrees or less can be sufficiently satisfied.
[0079]
Next, a procedure for creating the above-described calibration formula will be described.
The calibration equation as described above is individually set in advance for each device based on data obtained by actually measuring a sample similar to the measured object to be measured prior to the measurement processing on the measured object. .
[0080]
In addition, first, the measurement process of the calibration data is performed in the wavelength calibration process as described above, and the relationship as shown in Expression 1 is obtained, and each of the unit light receiving units 23a of the light receiving sensor 23 receives light. Be able to specify the wavelength.
[0081]
Then, tens to hundreds of objects to be measured are prepared as the samples, and spectral spectrum data for each wavelength is obtained for each sample using the spectroscopic analyzer. To obtain the absorbance spectrum data as described above. The absorbance spectrum data obtained in this manner is data obtained for each of the 1024 unit light receiving sections 23a of the light receiving sensor 23.
[0082]
Next, the absorbance spectrum data thus obtained is subjected to conversion processing of measurement data for obtaining absorbance data for creating a calibration equation. In this case, based on the absorbance spectrum data obtained for each of the 1024 unit light receiving portions 23a of the light receiving sensor 23 and the relational expression shown in Equation 1, the correct wavelength corresponds to each wavelength that changes from 700 nm by 2 nm. Absorbance spectrum data, specifically, absorbance spectrum data in the unit light receiving unit 23a corresponding to the corresponding wavelength is obtained. That is, the correct absorbance spectrum data for each wavelength of 700, 702, 704 ° is obtained. When the absorbance spectrum data from 700 to 990 nm is obtained every 2 nm, the number of data is about 145.
[0083]
Further, for each of the samples, a real component amount detection process of accurately detecting a chemical component of the measured object by a special inspection device based on, for example, destructive analysis or the like is performed to obtain a real component amount of the measured object. . Then, using the absorbance spectrum data of each sample obtained as described above, while comparing with the detection result of the actual component amount, using a method of multiple regression analysis, for the absorbance spectrum data and specific components The above-mentioned calibration equation showing the relationship with the component amount is obtained.
At this time, a calibration formula is created by calculation based on about 145 pieces of data as described above, instead of using all 1024 pieces of absorbance spectrum data of all unit light receiving sections 23a of the light receiving sensor 23. In addition, the labor required to create the calibration equation can be reduced.
[0084]
Therefore, in this quality evaluation device, the light receiving information is used with a resolution (2 nm) larger than the maximum resolution (0.3 nm) of the light receiving information determined according to the number (1024) of the plurality of unit light receiving sections 23a of the light receiving sensor 23. The calibration formula is created in this way, and the analyzing means 100 as an arithmetic unit performs the wavelength calibration process with a resolution smaller than the resolution (2 nm) used when the calibration formula was created. The wavelength calibration processing is executed at the maximum resolution (0.3 nm) of the received light information determined according to the number (1024) of the unit light receiving sections 23a.
[0085]
[Second embodiment]
Next, a second embodiment according to the present invention will be described.
The quality evaluation device of this embodiment is different from the first embodiment in that the arrangement of the light projecting unit 1 and the light receiving unit 2, the configuration of the light passing path to the light receiving unit 2, the configuration of the transport conveyor 4 a, and the measuring method of the light receiving sensor are different. Since this is the configuration of the quality evaluation device of the embodiment, only different configurations will be described, and description of the same configuration will be omitted. Further, the light projecting unit 1 and the light receiving unit 2 are each configured to be assembled in a unit shape, and have substantially the same configuration as that used in the first embodiment.
[0086]
As shown in FIG. 19, two unit-shaped light projecting units 1 having the same configuration as the light projecting unit 1 according to the first embodiment are provided. That is, the light conveyers 4a are arranged so as to be distributed on both sides in the conveying width direction, and each light projecting unit 1 is configured so that the light irradiation direction is substantially horizontal. That is, two unit-shaped light projecting units 1 are respectively attached to the support members 40 and 41 similar to the support members 40 and 41, respectively. However, the mounting base portions 40a, 41a at the lower ends of the support members 40, 41 are the same on the left and right so as to correspond to the vertical length of the light projecting portion 1. Further, the inclination restricting tool 40c used in the above-described quality evaluation device is not used so that the light irradiation direction of each light projecting unit 1 is substantially horizontal.
[0087]
The transport conveyor 4a is configured to be transported in a state where an object to be measured is placed on a tray 71 having an insertion hole 70 formed in the center, and the tray 71 is located below the measurement target location. A light receiving side end of an optical fiber 72 that receives light emitted from the light projecting unit 1, transmits the object to be measured, and transmits downward through the insertion hole 70 of the receiving tray 71 is disposed. The other end of the optical fiber 72 is connected to a unit-shaped light receiving section 2 having substantially the same configuration as the light receiving section 2, and receives light. The process of analyzing the internal quality in the control unit 3 based on the light receiving information by the light receiving unit 2 is the same as in the first embodiment.
[0088]
In this quality evaluation device, light is projected from each of the light projecting units 1 located on both left and right sides of the measured object located at a measurement target location so as to substantially horizontally oppose each other. The optical fiber 72 receives the light scattered and transmitted downward and comes out, and guides the light to the light receiving unit 2. Therefore, in this device, when the light projecting unit 1 and the light receiving unit 2 are respectively mounted, the light projecting position where the light projecting unit 1 is located, the measurement target position, and the light receiving position where the light receiving unit 2 is located. The light projecting unit 1 and the light receiving unit 2 are arranged in such a manner that each of the locations is located on the bending line.
[0089]
FIG. 20 shows a timing chart of the operation in this embodiment. As shown in this figure, a detection sensor similar to the passage detection sensor 50 of the first embodiment detects that the tray 71 or the object to be measured has been conveyed to a position on the near side of the set distance from the measurement target location. Then, after the set delay time T3 has elapsed from that point, the charge accumulation process for measurement by the light receiving sensor 23 is started, and the shutter mechanism 17 is activated shortly before the charge accumulation process is performed. The shutter mechanism 17 is switched from the closed state to the open state, and after the set time T4 has elapsed, the shutter mechanism 17 is switched from the open state to the closed state.
Note that, in this embodiment, the light receiving sensor 23 does not read out the accumulated charge every time the measured object passes, but repeats the accumulated charge reading process every time a set time T5 (for example, several tens of msec) elapses. When the passage of the object to be measured is detected while the residual charge is reduced by performing the process, the repetition processing is reset at that timing to execute the readout processing of the stored charge.
[0090]
[Another embodiment]
Hereinafter, other embodiments will be listed.
[0091]
(1) In the above embodiment, the light receiving unit as a measuring unit is provided with 1024 unit light receiving units 23a, and light in a specific wavelength range of 680 to 990 nm is incident, and the analysis as the arithmetic unit is performed. Although the wavelength resolution when the means specifies the wavelength of the dispersed light to execute the wavelength calibration process is about 0.3 nm, the resolution when creating the calibration formula is 2 nm, Instead of such a configuration, the following configuration may be adopted.
The plurality of unit light receiving sections 23a may be smaller than 1024 unit light receiving sections 23a or may be configured to include more than 1024 unit light receiving sections 23a.
The wavelength resolution when the analyzing means as the arithmetic unit specifies the wavelength of the dispersed light to execute the wavelength calibration process may be appropriately changed and implemented as long as it is 0.8 nm or less. The wavelength region for receiving light is not limited to the above-described region as long as it has a wavelength for evaluating the quality of the object to be measured, and may be appropriately changed and implemented.
As the resolution at the time of creating the calibration equation, instead of the one that creates the calibration equation based on the received light information obtained every 2 nm, light reception information obtained at a large interval of 2 nm or more is used. Alternatively, the calibration equation may be created with a higher resolution.
[0092]
(2) In the above embodiment, the analysis unit as the calculation unit is configured to execute the wavelength calibration process at the maximum resolution of the received light information determined according to the number of the plurality of unit light receiving units 23a. The present invention is not limited to such a configuration, and the resolution may be smaller than the resolution at the time of creating the calibration formula, and the wavelength calibration process may be executed with a resolution larger than the maximum resolution.
[0093]
(3) In the above embodiment, the reference body for wavelength calibration has two or more specific wavelengths as specific wavelengths having characteristics of light transmittance. However, the present invention is not limited to such a configuration. As a configuration having one specific wavelength as a specific wavelength having a characteristic in the characteristic, as the wavelength calibration process, a unit light receiving unit 23a that receives one specific wavelength is specified, and all the unit light receptions for the unit light receiving unit 23a are specified. The wavelength at which the other unit light receiving unit 23a receives light may be obtained based on the position information for the unit 23a and the specific wavelength.
[0094]
(4) In the above-described embodiment, the one provided with the light amount adjusting means capable of changing and adjusting the light amount of the light received by the measuring unit out of the transmitted or reflected light from the object to be measured is exemplified. It is good also as composition which does not have a sufficient light quantity adjustment means.
[0095]
(5) In the above embodiment, the horizontal position adjusting means is provided which is capable of changing and adjusting the relative position of each of the light projecting point and the light receiving point by the measuring unit with respect to the measurement target point along a direction in which they approach and separate from each other. However, the relative position of each of the light projecting portion and the light receiving portion with respect to the measurement target portion may be provided in a fixed position without such a horizontal position adjusting means.
[0096]
(6) In the above embodiment, while allowing the object to be conveyed by the conveying means to pass therethrough, the light projected from the light projecting unit does not pass through the object to be measured without passing through the object to be measured. Although the light shielding means for blocking the sneak light that is going to enter the unit light receiving portion 23a has been exemplified, a configuration without such light shielding means may be adopted.
[0097]
(7) In the above-described first embodiment, an example is described in which the light projecting unit and the light receiving unit are arranged separately on the left and right sides of the measurement target location. And the light receiving unit may be arranged separately on the upper and lower sides of the measurement target location.
[0098]
(8) In the above-described second embodiment, a pair of light-projecting units are separately arranged on both left and right sides of the measurement target location, and light coming out below the measurement target location is received by an optical fiber and guided to the light receiving unit. Although the configuration is exemplified, a configuration in which one light projecting unit is disposed at one lateral side of the measurement target location instead of such a configuration may be employed. A configuration may be adopted in which a light receiving unit is provided below and the transmitted light is directly received by the light receiving unit. Further, the light projecting unit and the light receiving unit may be arranged side by side at, for example, one lateral side of the measurement target position, and may receive light that substantially exits in the opposite direction to the light projection direction.
[0099]
(9) In the above-described embodiment, the configuration is such that the object to be measured is transported by the transport conveyor so as to pass through the measurement target location. However, the configuration is not limited to such a configuration, and a robot hand may be used as a transport unit. The object to be measured may be supplied to the measurement target portion, or the object to be measured may be supplied by a manual operation instead of the one supplied by the transport means.
[0100]
(10) In the above embodiment, a halogen lamp was used as the light source of the light projecting unit. However, the light source is not limited to this, and various light sources such as a mercury lamp and a Ne discharge tube may be used. Not only the type line sensor but also other detection means such as a MOS type line sensor may be used.
[0101]
(11) In the above embodiment, the sugar content and the acidity are exemplified as the internal quality of the measured object M. However, the present invention is not limited to this, and other internal quality such as taste information may be measured.
[Brief description of the drawings]
FIG. 1 is a front view of a quality evaluation device.
FIG. 2 is a side view of the quality evaluation device.
FIG. 3 is a plan view of a quality evaluation device.
FIG. 4 is a front view of the quality evaluation device.
FIG. 5 is a partially cutaway front view of the quality evaluation device.
FIG. 6 is a cutaway plan view of a light emitting unit.
FIG. 7 is a configuration diagram of a spectroscope.
FIG. 8 shows a shutter mechanism.
FIG. 9 is a diagram showing a filter switching mechanism.
FIG. 10 is a perspective view of a light shielding unit.
FIG. 11 is a plan view of a light shielding unit.
FIG. 12 is a front view of a light shielding unit.
FIG. 13 is a plan view showing an installation state.
FIG. 14 is a timing chart of a measurement operation.
FIG. 15 is a control block diagram.
FIG. 16 is a diagram showing a change in the amount of received light and measurement timing.
FIG. 17 shows data indicating the relationship between wavelength and light amount.
FIG. 18 is experimental data showing the relationship between the measured value of sugar content and the amount of wavelength shift.
FIG. 19 is a front view of a quality evaluation device according to a second embodiment.
FIG. 20 is a timing chart of a measurement operation according to the second embodiment.
[Explanation of symbols]
1 Emitter
2 Measurement section
4, 4a conveying means
17 Incident state switching means
23a Unit light receiving section
30 Horizontal position adjustment means
84 datum
90 Shading means
100 arithmetic unit
101 operation control means
E Light intensity adjustment means
M object to be measured

Claims (9)

計測対象箇所に位置する被計測物に近赤外域の光を投光部より投射して、被計測物からの透過又は反射光を分光して複数の単位受光部にて受光する計測部と、
前記被計測物として果菜類を計測したときの前記計測部からの受光情報と予め作成した果菜類品質評価用の検量式とに基づいて果菜類の品質評価値を求める品質評価処理を行う演算部とが設けられ、
前記演算部が、前記品質評価処理に代えて、前記被計測物として、近赤外域の光のうちの特定波長について光透過性に特徴を有する波長校正用の基準体を計測したときの前記計測部からの受光情報に基づいて前記複数の単位受光部の夫々が受光する波長を特定する波長校正処理を行う状態とに切り換え自在に構成されている果菜類の品質評価装置であって、
前記複数の単位受光部の数に応じて定まる前記受光情報の最大分解能よりも大きい分解能で前記受光情報を用いて前記検量式が作成され、
前記演算部が、前記波長校正処理を、前記検量式の作成のときの分解能よりも小さい分解能で前記受光情報を用いて行うように構成されている果菜類の品質評価装置。
A measuring unit that projects near-infrared light from the light projecting unit to the object to be measured located at the measurement target location, splits transmitted or reflected light from the object to be measured, and receives the light with a plurality of unit light receiving units,
An operation unit that performs a quality evaluation process of obtaining a quality evaluation value of fruit and vegetables based on light reception information from the measurement unit when fruit and vegetables are measured as the measurement target and a calibration formula for fruit and vegetables quality evaluation created in advance. Is provided,
The measurement when the arithmetic unit measures a wavelength calibration reference body having a characteristic of light transmittance for a specific wavelength of near-infrared light as the object to be measured instead of the quality evaluation process. A fruit and vegetable quality evaluation device that is configured to be freely switchable between a state in which a wavelength calibration process is performed to specify a wavelength to be received by each of the plurality of unit light receiving units based on light receiving information from the unit,
The calibration formula is created using the received light information at a resolution larger than the maximum resolution of the received light information determined according to the number of the plurality of unit light receiving units,
A fruit and vegetable quality evaluation device, wherein the arithmetic unit is configured to perform the wavelength calibration process using the received light information at a resolution smaller than the resolution at the time of creating the calibration equation.
前記演算部が、前記受光情報の最大分解能にて、前記波長校正処理を実行するように構成されている請求項1記載の果菜類の品質評価装置。The fruit and vegetable quality evaluation device according to claim 1, wherein the calculation unit is configured to execute the wavelength calibration processing at a maximum resolution of the received light information. 前記波長校正用の基準体が、前記特定波長として、2以上の特定波長を備えるように構成され、
前記演算部が、前記波長校正処理として、前記複数の単位受光部のうちで、前記複数の特定波長を受光する複数の単位受光部を特定して、その複数の特定波長を受光するものとして定めた複数の単位受光部についての全ての単位受光部に対する位置情報と、前記特定波長とに基づいて、他の単位受光部が受光する波長を求めるように構成されている請求項1又は2記載の果菜類の品質評価装置。
The reference body for wavelength calibration is configured to include two or more specific wavelengths as the specific wavelength,
The arithmetic unit, as the wavelength calibration process, among the plurality of unit light receiving units, specifies a plurality of unit light receiving units that receive the plurality of specific wavelengths, and determines that the plurality of unit light receiving units receive the plurality of specific wavelengths. 3. The apparatus according to claim 1, wherein, based on the position information of all of the plurality of unit light receiving units with respect to all the unit light receiving units and the specific wavelength, a wavelength received by another unit light receiving unit is obtained. 4. Fruit and vegetable quality evaluation device.
前記計測部が、1024個の前記単位受光部にて、前記特定波長を含む所定の波長帯域の光を受光するように構成され、
前記演算部が前記波長校正処理を実行するために前記分光された光の波長を特定するときの波長分解能が0.8ナノメートル以下に設定され、且つ、前記検量式を作成するために被計測物の品質評価値を求めるために前記分光された光の波長を特定するときの波長分解能が2ナノメートル以上に設定されている請求項1〜3のうちいずれか1項に記載の果菜類の品質評価装置。
The measurement unit is configured to receive light in a predetermined wavelength band including the specific wavelength in the 1024 unit light receiving units,
The wavelength resolution when the arithmetic unit specifies the wavelength of the split light in order to execute the wavelength calibration process is set to 0.8 nanometer or less, and measured to create the calibration equation. The fruit or vegetable according to any one of claims 1 to 3, wherein a wavelength resolution at the time of specifying the wavelength of the separated light to determine a quality evaluation value of the product is set to 2 nanometers or more. Quality evaluation device.
前記被計測物からの透過又は反射光のうち前記計測部が受光する光の光量を変更調整自在な光量調整手段が備えられている請求項1〜4のうちいずれか1項に記載の果菜類の品質評価装置。The fruits and vegetables according to any one of claims 1 to 4, further comprising a light amount adjusting unit capable of changing and adjusting a light amount of light received by the measuring unit out of transmitted or reflected light from the object to be measured. Quality evaluation equipment. 前記投光部による投光箇所及び前記計測部による受光箇所夫々の前記計測対象箇所に対する相対位置を、それらが接近並びに離間する方向に沿って変更調節自在な水平位置調節手段が備えられている請求項1〜5のうちいずれか1項に記載の果菜類の品質評価装置。Horizontal position adjusting means capable of changing and adjusting the relative positions of the light projecting portion by the light projecting portion and the light receiving portion by the measuring portion with respect to the measurement target portion along a direction in which they approach and separate from each other is provided. Item 6. The fruit and vegetable quality evaluation device according to any one of Items 1 to 5. 前記被計測物からの透過又は反射光が前記各単位受光部にて受光されることを許容する開放状態と、前記被計測物からの透過又は反射光が前記各単位受光部にて受光されることを阻止する遮蔽状態とに切り換え自在な入射状態切換手段と、
各部の動作を制御する動作制御手段とが備えられ、
前記動作制御手段が、
前記被計測物が前記計測対象箇所に位置する状態において、前記遮蔽状態から前記開放状態に切り換えてその開放状態を開放維持時間が経過する間維持した後に前記遮蔽状態に戻すように前記入射状態切換手段の動作を制御し、且つ、前記入射状態切換手段が前記開放状態を維持している間に前記被計測物から得られた光を前記各単位受光部にて受光する計測処理を実行するように前記計測部の動作を制御するよう構成されている請求項1〜6のうちいずれか1項に記載の果菜類の品質評価装置。
An open state that allows transmitted or reflected light from the measured object to be received by each of the unit light receiving units, and transmitted or reflected light from the measured object to be received by each of the unit light receiving units Incident state switching means that can be switched to a shielded state to prevent that,
Operation control means for controlling the operation of each part,
The operation control means,
In the state where the object to be measured is located at the measurement target location, the incident state switching is performed so as to switch from the shielded state to the open state, maintain the open state for the duration of the open maintenance time, and then return to the shielded state. Controlling the operation of the means, and executing a measurement process of receiving the light obtained from the object to be measured at each of the unit light receiving units while the incident state switching means maintains the open state. The apparatus for evaluating the quality of fruits and vegetables according to any one of claims 1 to 6, wherein the apparatus is configured to control an operation of the measuring unit.
前記被計測物を前記計測対象箇所を経由して搬送する搬送手段が備えられている請求項1〜7のいずれか1項に記載の果菜類の品質評価装置。The fruit and vegetable quality evaluation device according to any one of claims 1 to 7, further comprising a transport unit configured to transport the object to be measured via the measurement target portion. 前記計測対象箇所に、前記搬送手段にて搬送される前記被計測物が通過することを許容しながら、前記投光部から投射した光のうち前記被計測物を透過することなく前記各単位受光部に入射しようとする回り込み光を遮断する遮光手段が備えられている請求項8記載の果菜類の品質評価装置。The unit light receiving unit transmits light transmitted from the light projecting unit without passing through the object to be measured, while allowing the object to be conveyed by the conveying unit to pass to the measurement target location. 9. The fruit and vegetable quality evaluation device according to claim 8, further comprising a light blocking means for blocking sneak light that is going to enter the part.
JP2002372878A 2002-12-24 2002-12-24 Fruit and vegetable quality evaluation equipment Expired - Fee Related JP3923011B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002372878A JP3923011B2 (en) 2002-12-24 2002-12-24 Fruit and vegetable quality evaluation equipment
CN2003801076012A CN1732379B (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device
PCT/JP2003/016536 WO2004059300A1 (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device
AU2003296077A AU2003296077B2 (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device
KR1020057011826A KR100798518B1 (en) 2002-12-24 2003-12-24 Fruit-vegetable quality evaluation device
US10/540,742 US7316322B2 (en) 2002-12-24 2003-12-24 Quality evaluation apparatus for fruits and vegetables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372878A JP3923011B2 (en) 2002-12-24 2002-12-24 Fruit and vegetable quality evaluation equipment

Publications (2)

Publication Number Publication Date
JP2004205291A true JP2004205291A (en) 2004-07-22
JP3923011B2 JP3923011B2 (en) 2007-05-30

Family

ID=32811357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372878A Expired - Fee Related JP3923011B2 (en) 2002-12-24 2002-12-24 Fruit and vegetable quality evaluation equipment

Country Status (2)

Country Link
JP (1) JP3923011B2 (en)
CN (1) CN1732379B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138789A (en) * 2015-01-27 2016-08-04 地方独立行政法人北海道立総合研究機構 Spectral imaging system
RU2756528C1 (en) * 2020-10-08 2021-10-01 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Apparatus for quality control of food products in liquid media

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829849B (en) * 2012-08-13 2014-05-21 浙江大学 Device and method for multi-index parametric measurement of pears
CN102788754B (en) * 2012-08-13 2014-08-06 浙江大学 Device and method for measuring multi-index parameters of pear
JP6241087B2 (en) * 2013-06-14 2017-12-06 村田機械株式会社 Yarn state detection method and yarn state detection device
US11576842B2 (en) * 2017-07-19 2023-02-14 Coledy Inc. Passage device and medication dose management device
CN107561977B (en) * 2017-08-17 2019-06-28 临沂大学 It is a kind of for apple quality intellectualized detection and the agricultural machinery of classification
CN109794437B (en) * 2018-10-30 2024-02-06 泉州装备制造研究所 Intelligent sorting system based on computer vision
CN117214108B (en) * 2023-11-06 2024-02-06 安徽猫头鹰科技有限公司 Batch automatic calibration method based on spectrum detection equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930994A (en) * 1973-10-03 1976-01-06 Sunkist Growers, Inc. Method and means for internal inspection and sorting of produce
US5845002A (en) * 1994-11-03 1998-12-01 Sunkist Growers, Inc. Method and apparatus for detecting surface features of translucent objects
CN1394699A (en) * 2002-08-03 2003-02-05 浙江大学 Fruit quality real time detection and grading robot system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138789A (en) * 2015-01-27 2016-08-04 地方独立行政法人北海道立総合研究機構 Spectral imaging system
RU2756528C1 (en) * 2020-10-08 2021-10-01 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Apparatus for quality control of food products in liquid media

Also Published As

Publication number Publication date
CN1732379B (en) 2010-05-05
CN1732379A (en) 2006-02-08
JP3923011B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3746453B2 (en) Double-sided multi-lamp online internal quality inspection system
US7316322B2 (en) Quality evaluation apparatus for fruits and vegetables
WO2000079247A1 (en) Side multiple-lamp on-line inside quality inspecting device
JP2004205291A (en) Quality evaluation device for fruit vegetable
JP4192012B2 (en) Quality evaluation equipment and quality measurement equipment
JP2004219375A (en) Apparatus for evaluating quality of fruits and vegetables
JP3576105B2 (en) Internal quality measurement device
JP2004219376A (en) Quality evaluation system for fruits and vegetables
JP3923018B2 (en) Fruit and vegetable quality evaluation equipment
JP3611519B2 (en) Agricultural product internal quality evaluation system
JP2004191353A (en) Internal quality evaluation apparatus
JP2004184172A (en) Quality evaluation apparatus for greens and fruits
JP4362423B2 (en) Spectroscopic analyzer
JP2005037294A (en) Quality evaluation apparatus of fruit vegetables
JP2006047214A (en) Method of measuring internal quality for produce
JP4378240B2 (en) Equipment for evaluating internal quality of fruits and vegetables
JP3989360B2 (en) Quality evaluation device calibration method
JP2006047209A (en) Spectroscopic analyzer
JP2005106526A (en) Internal quality measuring device
JP3919491B2 (en) Agricultural product quality measuring device
JP4326426B2 (en) Spectroscopic analysis apparatus evaluation method and evaluation apparatus
JP3847285B2 (en) Spectroscopic analyzer
JP2010203781A (en) Quality measuring instrument
JP2004184171A (en) Quality evaluating apparatus for greens and fruits
JP4222908B2 (en) Light receiving device for internal quality evaluation and internal quality evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees