JP2006047209A - Spectroscopic analyzer - Google Patents

Spectroscopic analyzer Download PDF

Info

Publication number
JP2006047209A
JP2006047209A JP2004231344A JP2004231344A JP2006047209A JP 2006047209 A JP2006047209 A JP 2006047209A JP 2004231344 A JP2004231344 A JP 2004231344A JP 2004231344 A JP2004231344 A JP 2004231344A JP 2006047209 A JP2006047209 A JP 2006047209A
Authority
JP
Japan
Prior art keywords
temperature
light
light receiving
measured
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231344A
Other languages
Japanese (ja)
Inventor
Shinichi Kawabata
河端  真一
Kenichi Iwami
憲一 石見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2004231344A priority Critical patent/JP2006047209A/en
Publication of JP2006047209A publication Critical patent/JP2006047209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectroscopic analyzer capable of precisely measuring the quality evaluation value of a measuring target by properly controlling the temperature of a light receiving means in a non-disadvantageous state bringing about the scaling-up of the spectroscopic analyzer or an increase in cost. <P>SOLUTION: The spectroscopic analyzer is equipped with temperature detecting means 63a and 63 for detecting the temperature of the light receiving means 2 for receiving the spectrally diffracted light obtained by spectrally diffracting the transmitted light from the measuring target, temperature adjusting means 60a and 60b for adjusting the temperature of the light receiving means 2 and a temperature control means for controlling the operation of the temperature adjusting means 60a and 60b so as to hold the temperature of the light receiving means 2 to a target temperature. The temperature control means is constituted so as to be freely changed over to a high temperature side adjusting state controlling the operation of the temperature adjusting means 60a and 60b by setting a high temperature side target temperature and a low temperature side adjusting state controlling the operation of the temperature adjusting means 60a and 60b by setting a low temperature side target temperature lower than the high temperature side target temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被計測物に光を投射する投光手段と、被計測物からの透過光又は反射光を分光してその分光した光を受光する受光手段と、前記受光手段の計測結果に基づいて被計測物の品質評価値を求める評価手段とを備えて構成された分光分析装置に関する。   The present invention is based on light projecting means for projecting light onto an object to be measured, light receiving means for dispersing transmitted light or reflected light from the object to be measured and receiving the dispersed light, and a measurement result of the light receiving means. The present invention also relates to a spectroscopic analysis apparatus configured to include an evaluation unit that obtains a quality evaluation value of a measurement object.

上記構成の分光分析装置は、例えば蜜柑や林檎等の果菜類を計測対象として、被計測物に対して投光手段により光を照射して、被計測物から得られる透過光や反射光の特性に基づいて、被計測物の品質評価値、例えば糖度や酸度等の品質評価値を非破壊状態で求めるためのものであるが、このような構成の分光分析装置において、従来では、次のように構成されたものがあった。   The spectroscopic analyzer having the above-described configuration is a characteristic of transmitted light and reflected light obtained from a measurement object by irradiating the measurement object with light by a light projecting unit, for example, fruit and vegetables such as mandarin orange and apple. In order to obtain a quality evaluation value of an object to be measured, for example, a quality evaluation value such as sugar content or acidity, in a non-destructive state, in a spectroscopic analyzer having such a configuration, conventionally, There was something configured.

すなわち、ハロゲンランプ等の光源ランプを備えて被計測物に光を投射する投光手段としての投光部と、被計測物からの透過光を分光してその分光した光を受光する受光手段としての受光部とを備えて構成されており、前記受光部が、被計測物からの透過光を分光する回折格子及びその回折格子により分光した波長毎の光量を計測することが可能な分光検出用の受光センサ等を備えて構成され、且つ、前記受光センサに対する冷却用のペルチェ素子を備えて受光センサの温度変化を防止するように構成されたものがあった(例えば、特許文献1参照。)。   That is, as a light projecting unit as a light projecting unit that includes a light source lamp such as a halogen lamp and projects light onto the object to be measured, and a light receiving unit that splits the transmitted light from the object to be measured and receives the dispersed light. And a light receiving unit for the spectral detection that can measure the amount of light per wavelength separated by the diffraction grating that separates the transmitted light from the object to be measured and the diffraction grating. In addition, there is a configuration that includes a cooling Peltier element for the light receiving sensor to prevent a temperature change of the light receiving sensor (see, for example, Patent Document 1). .

特開平8−233732号公報JP-A-8-233732

上記従来構成は、受光手段に備えられる分光検出用の受光センサの温度が変化すると、同じ光量の光を受光してもその光を計測したときの出力値である光量計測値が変動することがあり、そのことに起因して計測誤差を生じるおそれがあるから、上記したように受光センサの温度の変動を防止するようにしているのである。   In the above conventional configuration, when the temperature of the light receiving sensor for spectral detection provided in the light receiving means changes, the light quantity measurement value that is the output value when the light is measured may fluctuate even if the same quantity of light is received. There is a possibility of causing a measurement error due to that, and therefore, the temperature variation of the light receiving sensor is prevented as described above.

しかし、上記従来構成においては、外気温度が高い場合にはペルチェ素子にて冷却作用することにより受光センサの温度が上昇するのを防止することが可能であるが、外気温度が低い冬場においては、受光手段の温度が外気温度の影響によって低い状態となっても、そのときには温度調整はできないので、受光手段の温度変化を少ないものに抑制することができず受光状態を適正な状態に維持することができない不利があった。   However, in the above conventional configuration, when the outside air temperature is high, it is possible to prevent the temperature of the light receiving sensor from rising by cooling with the Peltier element, but in winter when the outside air temperature is low, Even if the temperature of the light receiving means becomes low due to the influence of the outside air temperature, the temperature cannot be adjusted at that time, so the temperature change of the light receiving means cannot be suppressed to a small one, and the light receiving state must be maintained in an appropriate state. There was a disadvantage that could not be.

そこで、夏場等のように外気温度が高い場合及び冬場等のように外気温度が低い場合のいずれの場合であっても、受光手段の温度を一定の温度に維持するために、受光手段に対して冷却作用だけでなく加温作用も行える温度調整手段を設ける構成として、その温度調整手段を用いて受光手段の温度が常に一定の温度になるように温度調整することが考えられる。   Therefore, in order to maintain the temperature of the light receiving means at a constant temperature regardless of whether the outside air temperature is high as in summer or the outside temperature is low as in winter, the light receiving means As a configuration in which the temperature adjusting means that can perform not only the cooling action but also the heating action is provided, it is conceivable that the temperature adjustment means is used to adjust the temperature of the light receiving means so as to be always a constant temperature.

しかし、このように常に一定の温度になるように温度調整する構成において、その目標とする温度を例えば夏場の外気温度に近い高めの温度に設定しておくと、夏場においては外気温度と目標温度との差が小さいので大きな空調能力は必要とされないが、外気温度が低くなる冬場においては、外気温度と目標温度との差が大きくなり大きな空調能力が必要になるから、その結果として、大きな空調能力を有する大型の温度調整手段が必要となり、コスト高を招く不利がある。又、目標とする温度を例えば冬場の外気温度に近い低めの温度に設定しておくと、この場合には、外気温度が高くなる夏場においては、外気温度と目標温度との差が大きくなり大きな空調能力が必要になるから、この場合においても大きな空調能力を有する大型の温度調整手段が必要となる。従って、常に一定の温度になるように温度調整する構成においては、大きな空調能力を有する大型の温度調整手段が必要となるので、装置が大型化したりコスト高を招いたりする等の不利がある。   However, in the configuration in which the temperature is adjusted so as to be always a constant temperature in this way, if the target temperature is set to a higher temperature, for example, close to the outside temperature in summer, the outside temperature and the target temperature in summer However, in winter when the outside air temperature is low, the difference between the outside air temperature and the target temperature is large and a large air conditioning capacity is required. There is a disadvantage that a large-scale temperature adjusting means having the capability is required, resulting in high cost. In addition, if the target temperature is set to a low temperature close to the outdoor temperature in winter, for example, in summer when the outdoor temperature becomes high, the difference between the outdoor temperature and the target temperature becomes large and large. Since air conditioning capability is required, a large temperature adjustment means having a large air conditioning capability is also required in this case. Therefore, in the configuration in which the temperature is adjusted so that the temperature is always constant, a large temperature adjusting means having a large air conditioning capability is required, and there are disadvantages such as an increase in the size of the apparatus and an increase in cost.

又、上記従来構成では、受光センサに対してのみ冷却用のペルチェ素子による冷却作用を実行するものであるから、受光手段における受光センサ以外の別の装置、例えば、回折格子等の光学系部材において温度変化に起因して受光状態が変化して計測誤差が生じる不利に対しては対処できていないものであった。   In the above conventional configuration, only the light receiving sensor is cooled by the cooling Peltier element. Therefore, in another device other than the light receiving sensor in the light receiving means, for example, an optical system member such as a diffraction grating. It has not been able to cope with the disadvantage that measurement errors occur due to changes in the light receiving state due to temperature changes.

上記したような光学系部材における受光状態が変化に起因して計測誤差を生じる点について説明を加えると、上記従来構成では、被計測物からの透過光を回折格子にて分光して、前記受光センサにて分光した波長毎の光量を計測することになるから、受光センサは、分光した波長毎の光量を計測するために複数の単位受光部を備える構成となっている。そして、例えば光学系部材である回折格子の温度が変動すると、その回折格子において光を受光する受光作用部分とそれを支持する基台部分との間の温度変化に対する膨張係数の違い等によって歪みが生じて、受光センサにおいて同じ波長を受光する単位受光部が変化することがある。その結果、波長毎の光量計測値を正確に計測することができずに、被計測物の品質評価値に計測誤差が生じるおそれがある。   In addition to the description of the fact that the above-described optical system member causes a measurement error due to a change in the light receiving state, in the above-described conventional configuration, the transmitted light from the object to be measured is dispersed by a diffraction grating and the light receiving is performed. Since the light quantity for each wavelength spectrally separated by the sensor is measured, the light receiving sensor is configured to include a plurality of unit light receiving units in order to measure the light quantity for each spectral wavelength. For example, when the temperature of the diffraction grating, which is an optical system member, fluctuates, distortion is caused by a difference in expansion coefficient with respect to a temperature change between the light receiving portion that receives light in the diffraction grating and the base portion that supports the light receiving portion. As a result, the unit light receiving unit that receives the same wavelength in the light receiving sensor may change. As a result, the light quantity measurement value for each wavelength cannot be accurately measured, and a measurement error may occur in the quality evaluation value of the measurement object.

本発明の目的は、装置が大型化したりコスト高を招いたりする等の不利のない状態で、受光手段の温度を適正に管理することにより、被計測物の品質評価値を精度よく計測することが可能となる分光分析装置を提供する点にある。   It is an object of the present invention to accurately measure the quality evaluation value of an object to be measured by appropriately managing the temperature of the light receiving means in a state where there is no disadvantage such as an increase in the size of the apparatus or an increase in cost. Therefore, it is possible to provide a spectroscopic analysis apparatus that can perform the above-described process.

本発明の第1特徴構成は、被計測物に光を投射する投光手段と、被計測物からの透過光又は反射光を分光してその分光した光を受光する受光手段と、前記受光部の計測結果に基づいて被計測物の品質評価値を求める評価手段とを備えて構成された分光分析装置であって、前記受光手段の温度を検出する温度検出手段と、前記受光手段を温調する温度調整手段と、前記温度検出手段にて検出される前記受光手段の温度が目標温度に維持されるように前記温度調整手段の作動を制御する温度制御手段とが備えられ、前記温度制御手段が、切換指令手段の切り換え指令に基づいて、高温側の目標温度を設定して前記温度調整手段の作動を制御する高温側調整状態と、前記高温側の目標温度よりも低い低温側の目標温度を設定して前記温度調整手段の作動を制御する低温側調整状態とに切り換え自在に構成されている点にある。   A first characteristic configuration of the present invention includes a light projecting unit that projects light onto a measurement object, a light receiving unit that splits transmitted light or reflected light from the measurement object and receives the split light, and the light receiving unit. A spectroscopic analyzer configured to include an evaluation unit that obtains a quality evaluation value of an object to be measured based on a measurement result of the temperature detection unit that detects a temperature of the light receiving unit; and Temperature adjusting means for controlling the operation of the temperature adjusting means so that the temperature of the light receiving means detected by the temperature detecting means is maintained at a target temperature, and the temperature control means However, on the basis of the switching command of the switching command means, a high temperature side adjustment state in which the high temperature side target temperature is set to control the operation of the temperature adjustment means, and a low temperature side target temperature lower than the high temperature side target temperature. Of the temperature adjusting means In that it is configured to be freely switched between the low-temperature side adjustment state for controlling the movement.

第1特徴構成によれば、温度制御手段は、切換指令手段の切り換え指令に基づいて高温側調整状態に切り換えられると、高温側の目標温度を設定して、温度検出手段によって検出される受光手段の温度が高温側の目標温度に維持されるように温度調整手段の作動を制御する。又、切換指令手段の切り換え指令に基づいて低温側調整状態に切り換えられると、前記高温側の目標温度よりも低い低温側の目標温度を設定して、温度検出手段によって検出される受光手段の温度が低温側の目標温度に維持されるように温度調整手段の作動を制御する。   According to the first characteristic configuration, when the temperature control means is switched to the high temperature side adjustment state based on the switching command of the switching command means, the light receiving means that sets the high temperature side target temperature and is detected by the temperature detection means. The operation of the temperature adjusting means is controlled so that the temperature of the temperature is maintained at the target temperature on the high temperature side. Further, when the low temperature side adjustment state is switched based on the switching command of the switching command means, a low temperature side target temperature lower than the high temperature side target temperature is set, and the temperature of the light receiving means detected by the temperature detection means Controls the operation of the temperature adjusting means so as to maintain the target temperature on the low temperature side.

例えば、夏場等のように外気温度が高いときには、前記高温側調整状態に切り換えておくと高温側の目標温度を設定するので、外気温度と高温側の目標温度との温度差が小さい状態となり、そのような温度差が小さい状態で受光手段の温度が高温側の目標温度に維持されるように温度調整手段の作動を制御することになるので、温度調整手段の空調能力は小さいもので済ませることができる。又、冬場等のように外気温度が低いときには、前記低温側調整状態に切り換えておくと低温側の目標温度を設定するので、外気温度と低温側の目標温度との温度差が小さい状態となり、そのような温度差が小さい状態で受光手段の温度が低温側の目標温度に維持されるように温度調整手段の作動を制御することになるので、温度調整手段の空調能力は小さいもので済ませることができる。   For example, when the outside air temperature is high such as in summer, the target temperature on the high temperature side is set by switching to the high temperature adjustment state, so the temperature difference between the outside air temperature and the target temperature on the high temperature side is small, Since the operation of the temperature adjusting means is controlled so that the temperature of the light receiving means is maintained at the target temperature on the high temperature side with such a small temperature difference, the air conditioning capacity of the temperature adjusting means should be small. Can do. Also, when the outside air temperature is low such as in winter, the target temperature on the low temperature side is set by switching to the low temperature side adjustment state, so the temperature difference between the outside air temperature and the target temperature on the low temperature side is small, Since the operation of the temperature adjusting means is controlled so that the temperature of the light receiving means is maintained at the target temperature on the low temperature side with such a small temperature difference, the air conditioning capacity of the temperature adjusting means should be small. Can do.

従って、夏場等のように外気温度が高い場合及び冬場等のように外気温度が低い場合のいずれの場合であっても、小さい空調能力で済ませることができるので、小型の温度調整手段を用いることが可能となる。   Therefore, even if the outside air temperature is high such as in summer and the case where the outside air temperature is low such as in winter, a small air conditioning capacity can be used, so use a small temperature adjustment means. Is possible.

上述したように、高温側の目標温度と低温側の目標温度とにわたり目標温度が変化するものの、高温側調整状態に切り換えられた状態では、受光手段の温度が高温側の目標温度に維持されるように温度調整手段の作動を制御するので、受光手段の温度変化を少ないものに抑制することが可能となり、低温側調整状態に切り換えられた状態では、受光手段の温度が低温側の目標温度に維持されるように温度調整手段の作動を制御するので、受光手段の温度変化を少ないものに抑制することが可能となる。   As described above, although the target temperature varies between the target temperature on the high temperature side and the target temperature on the low temperature side, the temperature of the light receiving means is maintained at the target temperature on the high temperature side when switched to the high temperature side adjustment state. Thus, it is possible to suppress the temperature change of the light receiving means to be small, and in the state switched to the low temperature side adjustment state, the temperature of the light receiving means becomes the target temperature on the low temperature side. Since the operation of the temperature adjusting means is controlled so as to be maintained, it is possible to suppress the temperature change of the light receiving means to be small.

その結果、夏場等のように外気温度が高い場合及び冬場等のように外気温度が低い場合のいずれの場合であっても、受光手段の温度変化を少ないものに抑制することによって、温度変化に起因した計測誤差を少なくすることが可能となる。前記受光手段は、被計測物からの透過光又は反射光を分光するための回折格子等の光学系部材及び分光した波長毎の光量を計測する分光検出用の受光センサ等を備えて構成されるものであるが、上記したように受光手段の温度変化を少ないものに抑制することにより、受光センサの温度変化が抑制され、同じ光量の光を受光してもその光を計測したときの出力値である光量計測値が変動することを防止することができ、そのことに起因して計測誤差が生じる不利を回避し易いものにできる。しかも、温度変化に伴う光学系部材の歪みの発生を少なくすることができ、このような光学系部材の歪みに起因して計測誤差が生じる不利を回避し易いものにできる。   As a result, even in cases where the outside air temperature is high, such as in summer, and in the case where the outside air temperature is low, such as in winter, the temperature change of the light receiving means is suppressed by suppressing it to a low one. The resulting measurement error can be reduced. The light receiving means includes an optical system member such as a diffraction grating for separating transmitted light or reflected light from the object to be measured, and a light receiving sensor for spectral detection for measuring the amount of light for each dispersed wavelength. However, as described above, by suppressing the temperature change of the light receiving means to be small, the temperature change of the light receiving sensor is suppressed, and the output value when the light is measured even if the same amount of light is received Therefore, it is possible to easily avoid the disadvantage that a measurement error occurs due to the fluctuation of the light quantity measurement value. In addition, it is possible to reduce the occurrence of distortion of the optical system member due to temperature change, and to easily avoid the disadvantage that a measurement error occurs due to such distortion of the optical system member.

因みに、上述したように、前記高温側調整状態と前記低温側調整状態とに切り換えると、いずれかの状態に切り換えた後はその状態に応じた目標温度になるように制御されるが、前記高温側調整状態と前記低温側調整状態とでは目標温度が異なることから、受光手段の温度は変化することになる。しかし、そのような長期間の範囲を対象とする温度の変化に対しては、一般に次のような処理が適宜行われることから計測誤差が生じることはない。   Incidentally, as described above, when switching between the high temperature side adjustment state and the low temperature side adjustment state, after switching to either state, the target temperature is controlled according to that state. Since the target temperature differs between the side adjustment state and the low temperature side adjustment state, the temperature of the light receiving means changes. However, for such a change in temperature for a long-term range, a measurement error does not occur because the following processing is generally performed as appropriate.

すなわち、受光手段の温度変化に起因して、同じ光量の光を受光してもその光量計測値が変動することに対しては、例えば、被計測物の代わりに所定の減光率を有する光量校正用の基準体を用いて透過光又は反射光を受光して光量計測値を求め、その値を基準値して定めておき、被計測物からの透過光又は反射光を受光して得られた光量計測値をその基準値により正規化する処理を実行することにより、光量計測値の変動をなくすことが可能である。又、温度変化により光学系部材に歪みが生じて、分光された光のうち同じ波長を受光する単位受光部が温度変化に伴って変化することに対しては、例えば、複数の特定波長に減光率のピークを有するような波長校正体を用いて受光手段の波長校正処理を実行することにより、同じ波長を受光する単位受光部が変化することを防止することができる。   That is, for example, the amount of light having a predetermined light attenuation instead of the object to be measured can be measured when the light amount measurement value fluctuates even when the same amount of light is received due to the temperature change of the light receiving means. Obtain the measured light quantity by receiving the transmitted or reflected light using the calibration reference body, determine the value as the reference value, and obtain the transmitted or reflected light from the measurement object By executing the process of normalizing the measured light quantity value with the reference value, it is possible to eliminate fluctuations in the measured light quantity value. In addition, when the temperature change causes the optical system member to be distorted and the unit light-receiving unit that receives the same wavelength of the dispersed light changes with the temperature change, for example, it is reduced to a plurality of specific wavelengths. By executing the wavelength calibration process of the light receiving means using the wavelength calibration body having the peak of the light rate, it is possible to prevent the unit light receiving unit that receives the same wavelength from changing.

従って、温度調整手段として小さい空調能力の小型のものを用いることができ、装置が大型化したりコスト高を招いたりする等の不利のない状態で、受光手段の温度を適正に管理することにより、被計測物の品質評価値を精度よく計測することが可能となる分光分析装置を提供できるに至った。   Therefore, a small one with a small air-conditioning capability can be used as the temperature adjusting means, and by appropriately managing the temperature of the light receiving means with no disadvantage such as an increase in the size of the apparatus or high cost, It has become possible to provide a spectroscopic analyzer that can accurately measure the quality evaluation value of an object to be measured.

本発明の第2特徴構成は、第1特徴構成に加えて、前記受光手段の外周部に空気層を形成する状態で前記受光手段を囲うケーシングが設けられ、前記温度調整手段が前記空気層に対して温調作用するように構成されている点にある。   According to a second characteristic configuration of the present invention, in addition to the first characteristic configuration, a casing is provided to surround the light receiving means in a state where an air layer is formed on an outer peripheral portion of the light receiving means, and the temperature adjusting means is provided in the air layer. It is in the point comprised so that it may adjust temperature with respect to it.

第2特徴構成によれば、温度調整手段は、ケーシングの内部において受光手段の外周部に形成されている空気層に対して温調作用することになる。つまり、受光手段の全体を被う空気層に対して温調作用するので、受光手段全体を偏りのない状態で満遍なく温度調整することができる。   According to the second characteristic configuration, the temperature adjustment means acts on the air layer formed on the outer peripheral portion of the light receiving means inside the casing. That is, since the temperature is controlled with respect to the air layer covering the entire light receiving means, the temperature of the entire light receiving means can be uniformly adjusted without any bias.

説明を加えると、温度調整手段が受光手段に対して温調作用する場合に、受光手段に接触して温調作用する構成であれば、受光手段の局部的な箇所だけを温調作用することになり、受光手段の他の部分では温調作用を受けないことになり、受光手段全体として適正な温度調整が行えないおそれがある。それに対して、上記構成によれば、温度調整手段がケーシング内の空気層に対して温調作用することから、受光手段の外周部に形成された空気層の温度を変化させることによって、受光手段全体を満遍なく温度調整することができるのである。   In other words, when the temperature adjusting means performs a temperature adjustment operation on the light receiving means, the temperature adjusting action is performed only on a local portion of the light receiving means if the temperature adjusting action is in contact with the light receiving means. As a result, the temperature adjusting action is not received in other parts of the light receiving means, and there is a possibility that proper temperature adjustment cannot be performed as a whole of the light receiving means. On the other hand, according to the above configuration, since the temperature adjusting means regulates the temperature of the air layer in the casing, the light receiving means is changed by changing the temperature of the air layer formed on the outer periphery of the light receiving means. The entire temperature can be adjusted evenly.

本発明の第3特徴構成は、第2特徴構成に加えて、前記温度調整手段が前記受光手段の両横側箇所に振り分けて位置させる状態で一対備えられ、前記温度制御手段が前記一対の温度調整手段を制御するように構成されている点にある。   According to a third characteristic configuration of the present invention, in addition to the second characteristic configuration, a pair of the temperature adjusting means is provided in a state where the temperature adjusting means is distributed and positioned on both lateral sides of the light receiving means, and the temperature control means is provided with the pair of temperature. The adjustment means is configured to be controlled.

第3特徴構成によれば、受光手段の両横側箇所に振り分けて位置させた一対の温度調整手段によって、ケーシング内の空気層に対して温調作用することになるから、受光手段に対して両横側箇所から温調作用することによって受光手段の全体にわたってより偏りの少ない状態で均等に温調作用することができる。   According to the third characteristic configuration, the temperature adjusting action is performed on the air layer in the casing by the pair of temperature adjusting means that are distributed and positioned on both lateral sides of the light receiving means. By performing the temperature control action from both lateral portions, it is possible to perform the temperature control function uniformly with less bias over the entire light receiving means.

本発明の第4特徴構成は、第1特徴構成〜第3特徴構成のいずれかに加えて、前記被計測物が果菜類である点にある。   According to a fourth feature configuration of the present invention, in addition to any of the first feature configuration to the third feature configuration, the measurement object is a fruit vegetable.

第4特徴構成によれば、被計測物が果菜類である場合には、一年間を通して常に同じ種類の被計測物を評価処理することはなく、対象となる果菜類の種類は季節によって変化すると考えられる。そこで、夏場においては、前記高温側調整状態に切り換えて温度調整手段の作動を制御することにより、外気温度と目標温度との温度差が小さい状態で、夏場に収穫される種類の果菜類について評価処理を適正に行うことが可能となる。又、冬場においては、前記低温側調整状態に切り換えて温度調整手段の作動を制御することにより、外気温度と目標温度との温度差が小さい状態で、冬場に収穫される種類の果菜類について評価処理を適正に行うことが可能となる。   According to the fourth feature configuration, when the object to be measured is a fruit vegetable, the same kind of object to be measured is not always evaluated throughout the year, and the type of the target fruit vegetable changes according to the season. Conceivable. Therefore, in summer, by switching to the high temperature side adjustment state and controlling the operation of the temperature adjustment means, the kind of fruit and vegetables harvested in the summer is evaluated in a state where the temperature difference between the outside temperature and the target temperature is small. It becomes possible to perform processing appropriately. Also, in winter, by switching to the low temperature side adjustment state and controlling the operation of the temperature adjustment means, the kind of fruits and vegetables harvested in the winter is evaluated in a state where the temperature difference between the outside air temperature and the target temperature is small. It becomes possible to perform processing appropriately.

以下、本発明に係る分光分析装置の実施形態を果菜類の内部品質評価装置に適用した場合について図面に基づいて説明する。
前記内部品質評価装置は、被計測物として果菜類の一例であるミカンを計測対象としており、そのような果菜類の内部品質として糖度や酸度を計測する装置であり、計測箇所に位置する被計測物に対して光を投射して、被計測物からの透過光を分光してその分光した光を受光して分光スペクトルデータを計測し、分光スペクトルデータ及び品質解析用の検量式に基づいて被計測物の品質評価値を求めるようになっている。
Hereinafter, a case where an embodiment of a spectroscopic analysis apparatus according to the present invention is applied to an internal quality evaluation apparatus for fruit vegetables will be described with reference to the drawings.
The internal quality evaluation device is a device for measuring a mandarin orange, which is an example of a fruit vegetable, as an object to be measured, and is a device for measuring sugar content and acidity as an internal quality of such fruit vegetable, and is to be measured located at a measurement location. Light is projected onto the object, the transmitted light from the object to be measured is dispersed, the dispersed light is received and the spectrum data is measured, and the object is measured based on the spectrum data and the calibration formula for quality analysis. The quality evaluation value of the measurement object is obtained.

詳述すると、図1、図2に示すように、被計測物に光を投射する投光手段としての投光部1と、被計測物からの透過光又は反射光を分光してその分光した光を受光する受光手段としての受光部2と、各種の制御処理を実行するマイクロコンピュータ利用の制御部3等を備えて構成され、被計測物Mは、搬送手段としての搬送コンベア4により一列で縦列状に載置搬送される構成となっており、本装置による計測箇所Pを順次、通過していくように構成されている。そして、計測箇所Pに位置する被計測物Mに対して、投光部1と受光部2とが、計測箇所Pの左右両側部すなわち搬送コンベア4の搬送横幅方向の両側部に振り分けて配置される構成となっている。   More specifically, as shown in FIGS. 1 and 2, the light projecting unit 1 as a light projecting unit that projects light onto the object to be measured, and the transmitted light or reflected light from the object to be measured are spectrally separated. A light receiving unit 2 serving as a light receiving unit that receives light, a control unit 3 using a microcomputer that executes various control processes, and the like are configured. The objects to be measured M are arranged in a row by a transport conveyor 4 serving as a transport unit. It is configured to be placed and conveyed in a tandem shape, and is configured to sequentially pass through measurement points P by this apparatus. Then, the light projecting unit 1 and the light receiving unit 2 are arranged with respect to the measurement object M located at the measurement location P, distributed to the left and right side portions of the measurement location P, that is, the both sides in the transport width direction of the transport conveyor 4. It is the composition which becomes.

前記投光部1の構成について説明する。
図4、図6に示すように、この投光部1は、2個の光源5を備え、その光源5からの光を互いに異なる照射用の光軸にて計測箇所Pに位置する被計測物Mに照射するように構成されている。因みに前記各光源5はハロゲンランプにて構成されている。又、各光源5による2本の照射用の光軸が計測箇所Pに位置する被計測物Mの表面部又はその近傍にて交差するように構成されている。すなわち、搬送コンベア4による搬送方向に沿って離間させた状態で2個の光源5が設けられ、これら2個の光源5の夫々に対応させて次のような光学系が備えられている。光源5が発光する光を反射させて被計測物Mの表面に焦点を合わせるための凹面形状の光反射板6が備えられ、この光反射板6にて集光される光の焦点位置近くに対応するように位置させて、大きめの絞り孔7aを通過させることで集光された後の光の径方向外方側への広がりを抑制する絞り板7、大きめの絞り孔7aを通過した光を通過させる状態、小さめの絞り孔8aを通して通過させる状態、及び、光を遮断する状態の夫々に切り換え自在な照射範囲調節用の調節板8、集光された光源5からの光を平行光に変更させるコリメータレンズ9、平行光に変化した光を反射して計測箇所に向かうように屈曲させる反射板10、この反射板10にて反射された光を集光させる集光レンズ11の夫々が1個の光源5に対する光学系として備えられている。前記各調節板8は、照射範囲調節用電動モータ12によって一体的に揺動操作され、前記各状態に切り換え自在に構成されている。そして、この投光部1は上記したような各部材がケーシング13に内装されてユニット状に組み立てられた構成となっている。
A configuration of the light projecting unit 1 will be described.
As shown in FIGS. 4 and 6, the light projecting unit 1 includes two light sources 5, and an object to be measured that is positioned at a measurement location P on the optical axes for irradiating light from the light sources 5 different from each other. It is comprised so that M may be irradiated. Incidentally, each light source 5 is constituted by a halogen lamp. Further, the two optical axes for irradiation by the respective light sources 5 are configured to intersect at or near the surface portion of the measurement object M located at the measurement location P. That is, two light sources 5 are provided in a state of being separated along the transport direction by the transport conveyor 4, and the following optical system is provided corresponding to each of the two light sources 5. A concave light reflecting plate 6 is provided for reflecting the light emitted from the light source 5 to focus on the surface of the object M to be measured, and near the focal position of the light condensed by the light reflecting plate 6. Light that has passed through the large aperture hole 7a and the aperture plate 7 that suppresses the spread of the light after being condensed by passing through the large aperture hole 7a in the radial direction. Irradiating state adjusting plate 8 which can be switched to a state where light is allowed to pass through, a state where light is allowed to pass through a small aperture 8a, and a state where light is blocked, and light from condensed light source 5 is converted into parallel light. Each of the collimator lens 9 to be changed, the reflecting plate 10 that reflects the light changed to parallel light and bends it toward the measurement location, and the condensing lens 11 that collects the light reflected by the reflecting plate 10 is 1. Provided as an optical system for each light source 5 To have. Each adjusting plate 8 is integrally pivoted by an irradiation range adjusting electric motor 12 and can be switched to each state. And this light projection part 1 becomes a structure by which each above-mentioned member was built in the casing 13, and was assembled in the unit form.

次に、受光部2の構成について説明する。
この受光部2は、図4に示すように、被計測物Mを透過した光を集光して平行光にさせる集光レンズ14、並行光に変化した光の一部を上向きに反射させるハーフミラー15、その上向きに反射された計測対象光を集光させる集光レンズ16、集光レンズ16を通過した光をそのまま通過させることを許容する開放状態と通過を阻止する遮蔽状態とに切り換え自在な受光用シャッター機構17、開放状態の受光用シャッター機構17を通過した光が入射されると、その光を分光して分光スペクトルデータを計測する分光器18、及び、分光器用コントローラ23A等を備えて構成されている。尚、受光用シャッター機構17の下方側、つまり光入射方向上手側箇所には、分光器18に入射される光に対して作用する光量調整用の複数の各種のフィルターを切り換えるフィルター切換機構19が備えられている。そして、受光部2は、上記したような各部材がケーシング2Aにより密封状に囲まれた状態で内装されてユニット状に組み立てられた構成となっている。従って、受光部2の外周部に空気層Qを形成する状態で受光部2を囲うケーシング2Aが設けられる構成となっている。
Next, the configuration of the light receiving unit 2 will be described.
As shown in FIG. 4, the light receiving unit 2 includes a condenser lens 14 that condenses the light transmitted through the measurement object M into parallel light, and a half that reflects upward a part of the light changed to parallel light. The mirror 15, a condensing lens 16 that condenses the measurement target light reflected upward, and an open state that allows the light that has passed through the condensing lens 16 to pass as it is and a shielding state that prevents passage of the light can be switched. When light that has passed through the open light receiving shutter mechanism 17 and the open light receiving shutter mechanism 17 is incident, the light receiving shutter mechanism 17 is provided with a spectroscope 18, a spectroscope controller 23A, and the like. Configured. A filter switching mechanism 19 that switches a plurality of various filters for adjusting the amount of light that acts on the light incident on the spectroscope 18 is provided below the light receiving shutter mechanism 17, that is, on the upper side in the light incident direction. Is provided. And the light-receiving part 2 becomes the structure assembled | attached in the state enclosed by the casing 2A with each member as above mentioned in the shape of a unit. Therefore, the casing 2 </ b> A that surrounds the light receiving part 2 in a state where the air layer Q is formed on the outer peripheral part of the light receiving part 2 is provided.

前記分光器18は、図9に示すように、入光口20から入射した計測対象光を集光する状態で反射する凹面鏡21aと、反射された光を複数の波長の光に分光する分光手段としての回折格子22と、回折格子22によって分光された光を集光する状態で反射する凹面鏡21bと、反射された光を受光して各波長毎の光量を検出することにより分光スペクトルデータを計測する受光センサ23とを備えて構成され、光が通過する領域は外部からの光を遮光する遮光性材料からなる暗箱24内に配置される構成となっている。前記受光センサ23は、回折格子22にて分光されて反射鏡で反射された光のうち特定波長領域(例えば、600nm〜1000nm程度の範囲)の光を同時に受光するとともに波長毎の信号に変換して出力する1024個の単位受光部を備えた電荷蓄積型のCCDラインセンサにて構成されており、暗箱24の横一側に横側外方に突出する状態で設けられている。前記分光器用コントローラ23Aは、受光センサ23にて電荷蓄積された単位受光部毎の蓄積電荷を外部に出力させるための信号処理等を行う構成となっている。   As shown in FIG. 9, the spectroscope 18 includes a concave mirror 21 a that reflects the measurement target light incident from the light entrance 20 in a focused state, and a spectroscopic unit that splits the reflected light into light of a plurality of wavelengths. As a diffraction grating 22, a concave mirror 21 b that reflects light collected by the diffraction grating 22 in a focused state, and receives the reflected light, and detects the amount of light for each wavelength to measure spectral spectrum data. The region through which light passes is arranged in a dark box 24 made of a light-shielding material that blocks light from the outside. The light receiving sensor 23 simultaneously receives light in a specific wavelength region (for example, a range of about 600 nm to 1000 nm) out of the light that is split by the diffraction grating 22 and reflected by the reflecting mirror, and converts it into a signal for each wavelength. It is composed of a charge storage type CCD line sensor having 1024 unit light-receiving units that output in this manner, and is provided on one side of the dark box 24 so as to protrude laterally outward. The spectroscope controller 23A is configured to perform signal processing and the like for outputting the accumulated charge for each unit light receiving unit accumulated by the light receiving sensor 23 to the outside.

図10に示すように、前記受光用シャッター機構17は、放射状に複数のスリット24が形成された円板25をシャッター切換用電動モータ26によって縦軸芯周りで回転操作される状態で備えて構成され、分光器18には前記各スリット24が上下に重なると光を通過させる開放状態となり、スリット24の位置がずれると光を遮断する遮断状態となるように、スリット24と略同じ形状の入光口20が形成されており、光の漏洩がないように入光口20に対して円板25を密接状態で摺動する状態で配備して構成されている。つまり、この受光用シャッター機構17は分光器18に対する入光口20に近接する状態で設けられている。   As shown in FIG. 10, the light-receiving shutter mechanism 17 includes a disk 25 in which a plurality of slits 24 are radially formed in a state of being rotated around a vertical axis by a shutter switching electric motor 26. When the slits 24 overlap with each other, the spectroscope 18 is in an open state that allows light to pass therethrough, and when the position of the slit 24 is shifted, it enters a blocking state that blocks light. A light aperture 20 is formed, and the disc 25 is arranged in a state of sliding in close contact with the light entrance 20 so as not to leak light. That is, the light receiving shutter mechanism 17 is provided in the state of being close to the light entrance 20 for the spectroscope 18.

図11に示すように、前記フィルター切換機構19は、受光用シャッター機構17の下方側、つまり、受光用シャッター機構17に対して光の入射方向上手側に位置させて密接する状態で備えられており、入射した光をそのまま通過させる開口部A1、夫々減光率が異なるNDフィルターからなる3個の減光作用部A2,A3,A4と、受光センサ23の受光波長範囲内において少なくとも2つの波長に減光率のピーク部を有する波長校正体としての波長校正作用部A5の夫々が回転体27の中心から等距離または略等距離の位置で周方向に間隔を隔てる状態で回転体27に設けられ、この回転体27を回転させるためのフィルター切換用電動モータ28が設けられている。そして、制御部3が、この切換用電動モータ28を駆動させて回転体27を回転作動させて、開口部A1、減光作用部A2,A3,A4のうちのいずれかを選択して、分光器18へ入射される光がいずれかを通過する状態に切り換える構成となっている。又、受光センサ23の波長校正処理を行うときは、前記フィルター切換用電動モータ28を駆動させて回転体27を回転作動させて、分光器18へ入射される光が波長校正作用部A5を通過する状態に切り換える構成となっている。従って、前記受光センサ23の受光波長範囲内において少なくとも2個の波長にピーク部を有する波長校正用光が得られる波長校正体が、被計測物からの透過光が受光センサ23に入射するまでの光路中に位置する状態と、前記光路から退避した状態とに切り換え自在に設けられる構成となっている。   As shown in FIG. 11, the filter switching mechanism 19 is provided in a state of being in close contact with the light receiving shutter mechanism 17, that is, on the upper side of the light incident direction with respect to the light receiving shutter mechanism 17. In addition, at least two wavelengths within the light receiving wavelength range of the light receiving sensor 23, the opening A1 through which the incident light passes as it is, three light reducing action portions A2, A3, A4 each consisting of ND filters having different light attenuation rates, and Each of the wavelength calibrating operation portions A5 as wavelength calibrating bodies having a peak portion of the light attenuation rate is provided in the rotating body 27 in a state of being spaced apart in the circumferential direction at a position equidistant or substantially equidistant from the center of the rotating body 27. A filter switching electric motor 28 for rotating the rotating body 27 is provided. Then, the control unit 3 drives the switching electric motor 28 to rotate the rotating body 27 to select any one of the opening A1, the dimming operation units A2, A3, and A4, and the spectral In this configuration, the light incident on the vessel 18 is switched to a state where it passes through either of them. When the wavelength calibration process of the light receiving sensor 23 is performed, the filter switching electric motor 28 is driven to rotate the rotating body 27 so that the light incident on the spectroscope 18 passes through the wavelength calibration operation part A5. It is the structure which switches to the state to perform. Therefore, the wavelength calibration body that can obtain the wavelength calibration light having the peak portions at at least two wavelengths within the light receiving wavelength range of the light receiving sensor 23, until the transmitted light from the measurement object enters the light receiving sensor 23. It is configured to be switchable between a state located in the optical path and a state retracted from the optical path.

そして、前記受光部2を温調する温度調整手段としての温度調整装置60a,60bが設けられ、前記温度調整装置60a,60bがケーシング2Aの内部において受光部2の外周部に形成された空気層Qに対して温調作用するように構成されている。又、温度調整装置60a,60bが受光部2の両横側箇所に振り分けて位置させる状態で一対備えられている。   Temperature adjusting devices 60a and 60b are provided as temperature adjusting means for adjusting the temperature of the light receiving unit 2, and the temperature adjusting devices 60a and 60b are formed on the outer periphery of the light receiving unit 2 inside the casing 2A. The temperature is adjusted with respect to Q. Further, a pair of temperature adjusting devices 60 a and 60 b are provided in a state where the temperature adjusting devices 60 a and 60 b are distributed and positioned on both lateral sides of the light receiving unit 2.

詳述すると、図7、図8に示すように、受光部2の左右両側の横側に位置させて、受光部2を温調する温度調整装置60a,60bが備えられている。これらの各温度調整装置60a,60bは、夫々、温度調整用のペルチェ素子pt、空調用の送風ファン62、排熱を放出させる排気ファン66を備えて構成されている。   More specifically, as shown in FIGS. 7 and 8, temperature adjusting devices 60 a and 60 b that adjust the temperature of the light receiving unit 2 are provided on the left and right sides of the light receiving unit 2. Each of these temperature control devices 60a and 60b includes a Peltier element pt for temperature adjustment, a blower fan 62 for air conditioning, and an exhaust fan 66 for releasing exhaust heat.

先ず、前記ペルチェ素子ptについて説明する。
ペルチェ素子ptは、図13に示すように、両端子間に電圧を印加して電流を流すとペルチェ効果により一方側の側面の温度が高くなり他方側の側面の温度が低くなり、印加する電圧の極性を変更すると一方側の側面の温度が低くなり他方側の側面の温度が高くなる性質がある。そこで、ケーシング2Aの内方側に位置する一方側の側面を温調作用面61aとし他方側の側面を排気用作用面61bとして、図13(イ)のように電圧を印加することで温調作用面61aの温度が周囲の温度よりも高くなるので、その温調作用面61aの周辺の空気を送風ファン62により受光部2の内部に送風することで受光部2を加温することができる。又、図13(ロ)のように電圧を印加することで温調作用面61aの温度が周囲の温度よりも低くなるので、その温調作用面61aの周辺空気を送風ファン62により受光部2の内部に送風することで受光部2を冷却することができる。そして、ペルチェ素子ptの前記排気用作用面61bの周辺の空気は排気ファン66によりケーシング2Aの外方に排出することで、温調作用面61aによる上記したような温度調整を良好に行うことができるようにしている。
First, the Peltier element pt will be described.
As shown in FIG. 13, the Peltier element pt is applied with a voltage between both terminals, and when a current is passed, the temperature of one side surface is increased and the temperature of the other side surface is decreased due to the Peltier effect. If the polarity is changed, the temperature of the side surface on one side decreases and the temperature of the side surface on the other side increases. Thus, the temperature control is performed by applying a voltage as shown in FIG. 13 (a) with the side surface on one side located on the inner side of the casing 2A as the temperature control surface 61a and the other side surface as the exhaust surface 61b. Since the temperature of the working surface 61a is higher than the ambient temperature, the light receiving unit 2 can be heated by blowing the air around the temperature adjusting working surface 61a into the light receiving unit 2 by the blower fan 62. . Further, as shown in FIG. 13B, since the temperature of the temperature control surface 61 a is lower than the ambient temperature by applying a voltage, the air around the temperature control surface 61 a is received by the blower fan 62 to receive the light receiving unit 2. The light receiving unit 2 can be cooled by blowing air into the interior. The air around the exhaust working surface 61b of the Peltier element pt is discharged to the outside of the casing 2A by the exhaust fan 66, so that the temperature adjustment as described above by the temperature control working surface 61a can be performed satisfactorily. I can do it.

説明を加えると、前記送風ファン62の周囲を覆うファンケーシング62aにおいて、受光部2のケーシング2A内に位置する部分における互いに対向する両側壁部分の夫々に吸気口62bを形成してあり、送風ファン62の通風作用により受光部2のケーシング2A内の空気を前記吸気口62bからファンケーシング62a内に吸い込んで前記ペルチェ素子ptの温調作用面61aの周辺を通過させた後に、分光器18が配設された領域に吹き出すように構成されている。   In other words, in the fan casing 62a that covers the periphery of the blower fan 62, the air inlets 62b are formed in the opposite side wall portions of the light receiving portion 2 located in the casing 2A. After the air in the casing 2A of the light receiving unit 2 is sucked into the fan casing 62a from the intake port 62b by the airflow action of the light receiving part 2 and passed through the periphery of the temperature control action surface 61a of the Peltier element pt, the spectroscope 18 is arranged. It is comprised so that it may blow out to the established area.

そして、受光部2の温度を検出する温度検出手段としての温度センサ63a,63bが設けられ、前記制御部3が、温度センサ63a,63bにて検出される受光部2の温度が目標温度に維持されるように温度調整装置60a,60bの作動を制御するように構成されている。すなわち、受光部2のケーシング2Aの内部における左右両側箇所に、一対の温度調整装置60a,60bに対応して各別に温度センサ63a,63bが備えられ、制御部3が、これらの各温度センサ63a,63bにて検出される空気層Qの温度、言い換えると受光部2の温度が目標温度になるように各温度調整装置60a,60bの作動を各別に制御するように構成されている。   Temperature sensors 63a and 63b are provided as temperature detecting means for detecting the temperature of the light receiving unit 2, and the control unit 3 maintains the temperature of the light receiving unit 2 detected by the temperature sensors 63a and 63b at the target temperature. Thus, the operation of the temperature control devices 60a and 60b is controlled. That is, temperature sensors 63a and 63b are respectively provided corresponding to the pair of temperature adjusting devices 60a and 60b at both the left and right sides in the casing 2A of the light receiving unit 2, and the control unit 3 controls the temperature sensors 63a. , 63b, the temperature of the air layer Q, that is, the temperature of the light receiving unit 2 is controlled so that the operation of the temperature adjusting devices 60a, 60b is controlled separately.

説明を加えると、制御部3からの指令に基づいてペルチェ素子ptに対して印加する電圧の極性を切り換えたり、印加するパルス信号のパルス幅を変更調節したりする切換駆動装置68a,68bが前記一対の温度調整装置60a,60bに対応して一対設けられている。そして、制御部3は、例えば、冬場等の外気温度が低いときには、図13(イ)に示すような加温する状態となるように印加電圧の極性を切り換えて、負極側端子を接地しておき正極側端子に設定電圧のパルス信号を印加するように、切換駆動回路に制御情報を指令する。その結果、温度調整された空気が受光部2の内部に向けて通風されて加温調整を行うことができる。又、そのとき、温度センサ63a,63bにて検出される温度と目標温度との温度偏差が大きいときはパルス信号のオン時間を長くし、温度偏差が小さいときはパルス信号のオン時間を短くするPWM制御を実行することによって、温度調整能力を自動調整して受光部2が目標温度になるように温度調整制御が行われる。   In other words, the switching drive devices 68a and 68b for switching the polarity of the voltage applied to the Peltier element pt and changing and adjusting the pulse width of the applied pulse signal based on the command from the control unit 3 are described above. A pair is provided corresponding to the pair of temperature control devices 60a and 60b. Then, for example, when the outside air temperature is low, such as in winter, the control unit 3 switches the polarity of the applied voltage so that the heating is performed as shown in FIG. Control information is commanded to the switching drive circuit so that a pulse signal of the set voltage is applied to the positive terminal. As a result, the temperature-adjusted air is ventilated toward the inside of the light receiving unit 2 so that the heating can be adjusted. At that time, when the temperature deviation between the temperature detected by the temperature sensors 63a and 63b and the target temperature is large, the ON time of the pulse signal is lengthened, and when the temperature deviation is small, the ON time of the pulse signal is shortened. By executing the PWM control, the temperature adjustment control is performed so that the temperature adjustment capability is automatically adjusted and the light receiving unit 2 reaches the target temperature.

又、夏場等の外気温度が高いときには、図13(ロ)に示すような冷却する状態となるように印加電圧の極性を切り換えて、負極側端子を接地し正極側端子に設定電圧のパルス信号を印加することにより受光部2の冷却を行うことができる。このとき、加温調整のときと同様に上記したような温度調整制御が行われる。   In addition, when the outside air temperature is high, such as in summer, the polarity of the applied voltage is switched so as to achieve the cooling state as shown in FIG. 13 (b), the negative terminal is grounded, and the set voltage pulse signal is connected to the positive terminal. The light receiving unit 2 can be cooled by applying. At this time, the temperature adjustment control as described above is performed as in the case of the heating adjustment.

このような温度調整制御が行われている間、前記送風ファン62、排気ファン66、及び、循環ファン67は、全て常に回転させるようにしている。   While the temperature adjustment control is performed, all of the blower fan 62, the exhaust fan 66, and the circulation fan 67 are always rotated.

又、一対の温度調整装置60a,60bのうちの前記受光センサ23が近接する側に位置する温度調整装置60aには、その温度調整装置60aに設けられる送風ファン62による送風が直接、受光センサ23に吹き付けられるのを防止して空気層Qに温調作用するように流動案内する送風案内板64が設けられている。このようにして温度調整装置60aにて温度調整された空気が直接、受光センサ23に吹き付けられることにより、受光センサ23の温度が急激に変化して、暗電流の値が変動することを防止するようにしている。   In addition, the temperature adjusting device 60a located on the side where the light receiving sensor 23 is close to the pair of temperature adjusting devices 60a and 60b is directly blown by the air blowing fan 62 provided in the temperature adjusting device 60a. An air blowing guide plate 64 is provided to flow and guide the air layer Q so as to prevent the air from being blown to the air layer Q. The air whose temperature has been adjusted by the temperature adjusting device 60a in this way is directly blown onto the light receiving sensor 23, thereby preventing the temperature of the light receiving sensor 23 from changing suddenly and changing the value of the dark current. I am doing so.

又、ケーシング2A内部の下方側の左右両側箇所にはケーシング2Aの内部における空気を循環通流させることで、ケーシング2A内部に温度分布を極力均一にさせるための循環ファン67が設けられている。   In addition, circulation fans 67 are provided in the casing 2A to make the temperature distribution uniform as much as possible by circulating air inside the casing 2A at both the left and right side portions on the lower side inside the casing 2A.

そして、前記制御部3は、切換指令手段としての目標温度切換器65による切り換え指令に基づいて、高温側の目標温度を設定して温度調整装置60a,60bの作動を制御する高温側調整状態と、高温側の目標温度よりも低い低温側の目標温度を設定して温度調整装置60a,60bの作動を制御する低温側調整状態とに切り換え自在に構成されている。具体的に説明すると、図12に示すように、人為操作により目標温度切換器65を操作して高温側調整状態に切り換えを指令すると、高温側の目標温度(例えば、30℃)を設定して温度調整装置60a,60bの作動を制御する。又、目標温度切換器65を操作して低温側調整状態に切り換えを指令すると、低温側の目標温度(例えば、10℃)を設定して温度調整装置60a,60bの作動を制御する。   And the said control part 3 sets the high temperature side target temperature based on the switching command by the target temperature switch 65 as a switching command means, and the high temperature side adjustment state which controls the action | operation of the temperature regulator 60a, 60b, The low temperature side target temperature lower than the high temperature side target temperature is set to switch to the low temperature side adjustment state in which the operation of the temperature adjustment devices 60a and 60b is controlled. More specifically, as shown in FIG. 12, when the target temperature switch 65 is manually operated to switch to the high temperature side adjustment state, the high temperature side target temperature (for example, 30 ° C.) is set. The operation of the temperature adjusting devices 60a and 60b is controlled. When the target temperature switching device 65 is operated to switch to the low temperature side adjustment state, the low temperature side target temperature (for example, 10 ° C.) is set to control the operation of the temperature adjustment devices 60a and 60b.

つまり、夏場においては高温側調整状態に切り換えて計測処理を行うことで、受光部2の温度が目標温度(30℃)になるように上記した温度調整制御が行われ、冬場においては低温側調整状態に切り換えて計測処理を行うことで、受光部2の温度が目標温度(10℃)になるように温度調整制御が行われることになる。このように夏場と冬場とで目標温度が異なることになるが、夏場と冬場では、対象となる果菜類の種類が異なるものであり、後述するような検量式も夫々各別に設定されたものを利用するので、品質評価の精度が低下することはない。尚、高温側の目標温度としては30℃に限定されるものではなくそれ以外の温度であってもよく、又、低温側の目標温度としては10℃に限定されるものではなくそれ以外の温度であってもよい。   That is, the temperature adjustment control described above is performed so that the temperature of the light receiving unit 2 becomes the target temperature (30 ° C.) by switching to the high temperature side adjustment state in summer and performing the low temperature side adjustment in winter. By performing measurement processing by switching to the state, temperature adjustment control is performed so that the temperature of the light receiving unit 2 becomes the target temperature (10 ° C.). In this way, the target temperature will be different between summer and winter, but the types of target fruits and vegetables are different between summer and winter, and the calibration formulas described later are also set for each. Since it is used, the accuracy of quality evaluation does not decrease. Note that the target temperature on the high temperature side is not limited to 30 ° C., and may be any other temperature, and the target temperature on the low temperature side is not limited to 10 ° C., but other temperatures. It may be.

従って、制御部3の上記したような制御構成、及び、前記切換駆動回路68により、温度センサ63a,63bにて検出される受光部2の温度が目標温度に維持されるように温度調整装置60a,60bの作動を制御する温度制御手段100が構成される。   Therefore, the temperature adjusting device 60a is maintained so that the temperature of the light receiving unit 2 detected by the temperature sensors 63a and 63b is maintained at the target temperature by the control configuration as described above of the control unit 3 and the switching drive circuit 68. , 60b is controlled.

そして、投光部1及び受光部2を一体的に上下方向に位置調節自在な上下位置調節手段としての上下位置調節機構29、及び、投光部1及び受光部2の夫々を各別に装置枠体Fに対して計測箇所に位置する被計測物に対して接近並びに離間する方向、すなわち、水平方向であって搬送コンベア4の搬送方向と直交する方向に沿って位置調節自在な水平位置調節手段としての水平位置調節機構30が備えられている。   Then, the vertical position adjusting mechanism 29 as vertical position adjusting means capable of adjusting the position of the light projecting unit 1 and the light receiving unit 2 in the vertical direction integrally, and each of the light projecting unit 1 and the light receiving unit 2 are separately provided in the device frame. Horizontal position adjusting means whose position is adjustable along the direction of approaching and moving away from the measurement object located at the measurement location with respect to the body F, that is, in the horizontal direction and perpendicular to the transport direction of the transport conveyor 4. A horizontal position adjusting mechanism 30 is provided.

次に、前記上下位置調節機構29について説明する。図1〜図3に示すように、品質評価装置の外周部を囲うように矩形枠状に組み付けられた装置枠体Fが備えられ、その装置枠体Fの上部側箇所から位置固定状態で4本の固定支持棒31が垂下される状態で設けられ、これら4本の固定支持棒31の下端部には支持台32が取り付けられている。そして、この4本の固定支持棒31に対して4箇所の摺動支持部33により上下方向にスライド移動自在に昇降台34が支持されている。又、装置枠体Fの上部側箇所から垂下状態に支持された送りネジ35が電動モータ36にて回動自在に設けられ、昇降台34に備えられた雌ネジ部材37がこの送りネジ35に螺合しており、送りネジ35を電動モータ36にて回動操作することで昇降台34が任意の位置に上下移動調節可能な構成となっている。尚、送りネジ35は手動操作ハンドル38でも回動自在に構成されている。   Next, the vertical position adjusting mechanism 29 will be described. As shown in FIG. 1 to FIG. 3, an apparatus frame F assembled in a rectangular frame shape so as to surround the outer peripheral portion of the quality evaluation apparatus is provided. The fixed support rods 31 are provided in a suspended state, and a support base 32 is attached to the lower ends of the four fixed support rods 31. A lifting platform 34 is supported on the four fixed support rods 31 by four sliding support portions 33 so as to be slidable in the vertical direction. Further, a feed screw 35 supported in a suspended state from an upper side portion of the apparatus frame F is rotatably provided by an electric motor 36, and a female screw member 37 provided on the lifting platform 34 is provided on the feed screw 35. They are screwed together, and the lifting platform 34 can be adjusted to move up and down to an arbitrary position by rotating the feed screw 35 with an electric motor 36. The feed screw 35 is also configured to be rotatable by a manual operation handle 38.

次に、水平位置調節機構30について説明する。
前記昇降台34には、図4に示すように、投光部1と受光部2との並び方向に沿って延びる2本のガイド棒39が設けられており、ユニット状に組み付けられた投光部1並びに受光部2の夫々が着脱自在に取付けられる前記一対の取付部としての支持部材40、41が各ガイド棒39にスライド移動自在に支持される構成となっている。前記各ガイド棒39は長手方向両端側で連結具39aにて連結されている。又、前記昇降台34には、投光部1と受光部2との並び方向に沿って延びる2本の送りネジ42、43が夫々、水平位置調節用動モータ44、45によって回動操作可能に設けられ、各支持部材40、41に備えられた雌ネジ部46、47が各送りネジ42、43に螺合しており、電動モータ44、45にて前記各送りネジ42、43を各別に正逆回動させることで、前記各支持部材40、41が各別に搬送コンベア4の搬送方向と直交する水平方向に沿って位置調節可能な構成となっている。従って、各支持部材40、41に夫々各別に取付けられる投光部1及び受光部2は電動モータ44、45にて前記各送りネジ42、43を各別に正逆回動させることで前記水平方向、すなわち、計測箇所に対して接近並びに離間する方向での相対位置を変更調節することが可能となる。
Next, the horizontal position adjusting mechanism 30 will be described.
As shown in FIG. 4, the lifting platform 34 is provided with two guide bars 39 extending along the direction in which the light projecting unit 1 and the light receiving unit 2 are arranged, and the light projecting unit assembled in a unit shape. The support members 40 and 41 as the pair of attachment parts to which the part 1 and the light receiving part 2 are detachably attached are supported by the guide rods 39 so as to be slidable. Each guide bar 39 is connected by a connecting tool 39a at both ends in the longitudinal direction. In addition, two feed screws 42 and 43 extending along the direction in which the light projecting unit 1 and the light receiving unit 2 are arranged on the lift 34 can be rotated by horizontal position adjusting motors 44 and 45, respectively. Female screw portions 46, 47 provided in the support members 40, 41 are screwed into the feed screws 42, 43, and the electric motors 44, 45 respectively connect the feed screws 42, 43 to the feed screws 42, 43. By separately rotating in the forward and reverse directions, the support members 40 and 41 can be adjusted in position along the horizontal direction perpendicular to the transport direction of the transport conveyor 4. Accordingly, the light projecting unit 1 and the light receiving unit 2 respectively attached to the support members 40 and 41 respectively rotate the feed screws 42 and 43 forward and backward by the electric motors 44 and 45, respectively. That is, it is possible to change and adjust the relative position in the direction approaching and separating from the measurement location.

又、前記搬送コンベア4における被計測物Mの通過箇所の上方側に位置させて、前記支持台32から延設した支持部材48にて支持される状態で光量校正用の基準体49が設けられている。この基準体49は、オパールガラスにて構成される所定の減光率を有する光学フィルターにて構成され、投光部1の投光状態と受光部2における受光状態が同じであれば常に同じ計測値が得られることになるが、受光センサ23における経年変化による計測値の変動があれば異なった計測値となるから、基準体49を透過した光を受光することで、そのような経年変化による変動を考慮に入れた状態での基準となる計測値を得ることができるのである。   In addition, a reference body 49 for light quantity calibration is provided in a state of being supported by a support member 48 extending from the support base 32 and positioned above the passing portion of the object to be measured M on the conveyor 4. ing. The reference body 49 is composed of an optical filter having a predetermined dimming rate composed of opal glass, and always performs the same measurement as long as the light projecting state of the light projecting unit 1 and the light receiving state of the light receiving unit 2 are the same. A value can be obtained, but if there is a variation in the measured value due to the secular change in the light receiving sensor 23, a different measured value is obtained. Therefore, by receiving the light transmitted through the reference body 49, such a secular change is caused. It is possible to obtain a measurement value serving as a reference in a state in which fluctuation is taken into consideration.

従って、電動モータ36にて送りネジ35を回動操作させると昇降台34が上下移動調節されるが、それに伴って昇降台34に支持されている投光部1及び受光部2を一体的に上下移動調節することができ、搬送コンベア4に対してその全体の上下方向の位置を変更調節することにより、被計測物Mに計測作用する通常計測位置と、光量校正用の基準体49に計測作用する校正用計測位置とに切り換えることができるようになっている。又、前記各電動モータ44、45を回動操作させることで投光部1及び受光部2が各別に搬送コンベア4の搬送方向と直交する水平方向に沿って位置調節することができる。   Therefore, when the feed screw 35 is rotated by the electric motor 36, the lifting / lowering base 34 is adjusted to move up / down. Accordingly, the light projecting unit 1 and the light receiving unit 2 supported by the lifting / lowering base 34 are integrated. It can be adjusted up and down, and by changing and adjusting the overall vertical position of the conveyor 4, it is measured at the normal measurement position that acts on the measurement object M and the reference body 49 for light quantity calibration. It is possible to switch to the calibration position where it operates. Further, by rotating the electric motors 44 and 45, the position of the light projecting unit 1 and the light receiving unit 2 can be adjusted along the horizontal direction perpendicular to the transport direction of the transport conveyor 4.

被計測物Mを載置搬送する搬送コンベア4は電動モータ4bにより回動駆動する構成となっており、図14に示すように、搬送コンベア4による前記計測箇所の搬送方向の上流側箇所には、被計測物が到達したことを検出すると検出信号を出力する光学式の通過検出センサ50が備えられている。すなわち、この通過検出センサ50は、発光器50aと受光器50bとを搬送コンベア4の左右両側に振り分けて配置され、被計測物が存在しなと光が検出され、被計測物が通過すると光が遮断されて検出されなくなるので、そのことによって被計測物が到達したことを検出するように構成されている。そして、前記搬送コンベア4の搬送速度はロータリーエンコーダEにより検出する構成となっている。   The transport conveyor 4 for placing and transporting the object to be measured M is rotationally driven by an electric motor 4b, and as shown in FIG. An optical passage detection sensor 50 that outputs a detection signal when it is detected that the measurement object has arrived is provided. That is, the passage detection sensor 50 is arranged with the light emitter 50a and the light receiver 50b distributed to the left and right sides of the transport conveyor 4, and light is detected when there is no object to be measured. Therefore, it is configured to detect that the object to be measured has arrived. The transport speed of the transport conveyor 4 is detected by a rotary encoder E.

そして、この品質計測装置では、例えば、被計測物Mとして減光率が異なる複数品種の果菜類を計測することができる構成となっており、品種の違いによる動作条件の設定は、作業員が人為的に行う構成となっている。つまり、図12に示すように、品種の違いに応じて設定位置を人為的に切り換える人為操作式の品種切換器51が設けられ、この品種切換器51の設定情報が制御部3に入力され、制御部3はその設定情報に対応して後述するように制御用の動作内容を変更するようになっている。   In this quality measuring device, for example, a plurality of varieties of fruit and vegetables with different light attenuation rates can be measured as the object M to be measured. It is configured to perform artificially. That is, as shown in FIG. 12, an artificially operated type changeover switch 51 is provided that artificially switches the setting position in accordance with the type of change, and setting information of the type changeover switch 51 is input to the control unit 3. The control unit 3 changes the operation content for control as described later in accordance with the setting information.

前記制御部3は、受光センサ23の検出情報に基づいて被計測物Mの内部品質を求める処理と各部の動作を制御する処理とを実行する構成となっている。従って、この制御部3におけるこのような制御構成により被計測物の品質評価値を求める評価手段101が構成されることになる。   The control unit 3 is configured to execute processing for obtaining the internal quality of the measurement object M based on detection information of the light receiving sensor 23 and processing for controlling the operation of each unit. Therefore, the evaluation means 101 for obtaining the quality evaluation value of the measurement object is configured by such a control configuration in the control unit 3.

前記制御部3は、被計測物に代えて光量校正用の基準体49に対して光を投射してその基準体49からの透過光を受光して光量校正のための基準用の受光情報を計測するように各部の作動を制御する光量校正用基準情報計測モードと、被計測物に対して光を投射して品質評価用の受光情報を計測するように各部の作動を制御し、且つ、基準用の受光情報と品質評価用の受光情報とに基づいて被計測物の品質情報を求める品質情報計測モードと、波長校正作用部A5に光を投射してその波長校正作用部A5を透過して光を受光して波長校正のための基準用の情報を計測するように各部の作動を制御する波長校正用基準情報計測モードとに切り換え自在に構成されている。   The control unit 3 projects light to a reference body 49 for light quantity calibration instead of the object to be measured, receives light transmitted from the reference body 49, and receives reference light reception information for light quantity calibration. Control the operation of each unit to measure the light reception information for quality evaluation by projecting light to the object to be measured, and the reference information measurement mode for light quantity calibration that controls the operation of each unit to measure, and A quality information measurement mode for obtaining quality information of an object to be measured based on the light reception information for reference and the light reception information for quality evaluation, and the light is projected to the wavelength calibration operation unit A5 and transmitted through the wavelength calibration operation unit A5. Thus, it is configured to be switched to a wavelength calibration reference information measurement mode for controlling the operation of each unit so as to receive light and measure reference information for wavelength calibration.

前記光量校正用基準情報計測モードにおける制御部3の処理について説明する。
この光量校正用基準情報計測モードにおいては、搬送コンベア4による被計測物Mの搬送を停止させている状態で、上下位置調節機構29によって投光部1及び受光部2の位置を図5に示すような校正用計測位置に切り換える。又、切換操作具51にて設定されている品種に応じて予め設定されている減光率になるようにフィルター切換機構19を切り換える。又、前記各調節板8による照射範囲の調整位置等の投光部1における投光状態を指令された品種に応じた条件に設定する。
The processing of the control unit 3 in the light quantity calibration reference information measurement mode will be described.
In the light quantity calibration reference information measurement mode, the positions of the light projecting unit 1 and the light receiving unit 2 are shown in FIG. 5 by the vertical position adjustment mechanism 29 in a state where the conveyance of the measurement object M by the conveyor 4 is stopped. Switch to the calibration measurement position. In addition, the filter switching mechanism 19 is switched so that the light attenuation rate set in advance according to the product set by the switching operation tool 51 is obtained. Further, the light projection state in the light projecting unit 1 such as the adjustment position of the irradiation range by each adjusting plate 8 is set to a condition corresponding to the commanded product type.

又、受光用シャッター機構17を開放状態に切り換えて、投光部1からの光を被計測物Mに代えて前記基準体49に照射して、その基準体49を通過した後の透過光を、受光センサ23にて分光してその分光した光を受光して得られた分光スペクトルデータを光量校正用の基準用の受光情報としての基準分光スペクトルデータとして計測する。又、このとき、光が遮断された無光状態での受光センサ23の検出値(暗電流データ)も合わせて計測される。すなわち、前記受光部2の受光用シャッター機構17を遮蔽状態に切り換えて、そのときの受光センサ23の単位画素毎における検出値を暗電流データとして求めるようにしている。   Further, the light receiving shutter mechanism 17 is switched to the open state, the light from the light projecting unit 1 is irradiated on the reference body 49 in place of the object M, and the transmitted light after passing through the reference body 49 is irradiated. Then, the spectral spectrum data obtained by performing the spectrum with the light receiving sensor 23 and receiving the split light is measured as reference spectral spectrum data as light receiving information for reference for light quantity calibration. At this time, the detection value (dark current data) of the light receiving sensor 23 in the non-lighted state where the light is blocked is also measured. That is, the light receiving shutter mechanism 17 of the light receiving unit 2 is switched to the shielding state, and the detection value for each unit pixel of the light receiving sensor 23 at that time is obtained as dark current data.

又、このとき、受光センサ23が設定時間だけ電荷蓄積処理を実行したのちに蓄積した電荷を送り出す送出処理を実行するように受光センサ23の動作を制御するが、受光センサ23が電荷蓄積処理を行うときには、受光用シャッター機構17を遮蔽状態から開放状態に切り換えてその開放状態を開放維持時間T2が経過する間維持した後に遮蔽状態に戻すようにその動作を制御する。この開放維持時間T2は、減光率が異なる複数品種の被計測物Mについて、その品種の違いに応じて変更させる構成となっている。   At this time, the operation of the light receiving sensor 23 is controlled so as to execute a sending process for sending out the accumulated charge after the light receiving sensor 23 executes the charge storing process for a set time, but the light receiving sensor 23 performs the charge storing process. When performing, the operation is controlled so that the light receiving shutter mechanism 17 is switched from the shielded state to the open state, and the open state is maintained for the duration of the open maintenance time T2 and then returned to the shielded state. This open maintenance time T2 is configured to change a plurality of types of objects to be measured M having different dimming rates in accordance with the types.

次に、品質情報計測モードにおける制御部3の処理について説明する。
この品質情報計測処理モードにおいては、上下位置調節機構29を操作して昇降台34を通常計測位置に切り換えて、搬送コンベア4による被計測物Mの搬送を行う。そのとき、指令された品種に応じて昇降位置を変更調節するようになっている。つまり、被計測物の品種が異なると被計測物の大きさが異なるから、投光部1により光を投射する位置と受光部2が透過光を受光する位置とを適切な位置に調整するのである。
Next, processing of the control unit 3 in the quality information measurement mode will be described.
In this quality information measurement processing mode, the vertical position adjustment mechanism 29 is operated to switch the lifting / lowering base 34 to the normal measurement position, and the object to be measured M is conveyed by the conveyor 4. At that time, the elevation position is changed and adjusted according to the commanded product type. In other words, since the size of the object to be measured differs depending on the type of object to be measured, the position where the light projecting unit 1 projects light and the position where the light receiving unit 2 receives transmitted light are adjusted to appropriate positions. is there.

そして、制御部3は、図15に示すように、被計測物が計測箇所に存在しないとき及び被計測物が計測箇所に存在しても後述するような品質評価用の受光情報の取得が終了しているときは、常に、蓄電開始タイミングから蓄電用設定時間が経過するまで受光センサ23に電荷を蓄積させ、その後、放電用設定時間が経過するまで受光センサ23に蓄積された電荷を放出させる電荷蓄積放電処理を設定周期T1毎に繰り返し実行するように受光センサ23の動作を制御するように構成されている。又、通過検出センサ50の検出情報に基づいて被計測物の先頭位置が手前側位置に到達したことを検出してから、ロータリーエンコーダEの検出情報に基づいて被計測物が計測箇所Pまで移動したことを判別するように構成されている。   Then, as shown in FIG. 15, the control unit 3 finishes obtaining light reception information for quality evaluation as described later when the measurement object does not exist at the measurement location and even when the measurement object exists at the measurement location. In this case, the charge is always accumulated in the light receiving sensor 23 until the set time for charging has elapsed from the start timing of charging, and then the charge accumulated in the light receiving sensor 23 is released until the set time for discharging has elapsed. It is configured to control the operation of the light receiving sensor 23 so as to repeatedly execute the charge accumulation / discharge process every set cycle T1. Further, after detecting that the leading position of the measurement object has reached the near side position based on the detection information of the passage detection sensor 50, the measurement object moves to the measurement point P based on the detection information of the rotary encoder E. It is comprised so that it may determine.

このように被計測物Mが計測箇所に至ったものと判別すると、前記電荷蓄積放電処理を繰り返し実行するのではなく、その時点から放電用設定時間が経過するまで受光センサ23に蓄積された電荷を放出させ、その後、計測用設定時間が経過するまで受光センサ23に品質評価用の受光情報として用いるための電荷を蓄積させる計測用電荷蓄積処理を実行することになる。又、制御部3は、このような受光センサ23の動作切り換えと併行して、被計測物Mが計測箇所Pに至ると受光用シャッター機構17を遮蔽状態から開放状態に切り換え、且つ、その開放状態を電荷蓄積を行うための計測用設定時間T2が経過するまで維持した後に遮蔽状態に戻すように受光用シャッター機構17の動作を制御するよう構成されている。このようにして、計測用設定時間T2が経過するまで投光部1から照射され被計測物を透過した光を受光部2にて分光した光を受光センサ23にて受光して電荷を蓄積することができる。そして、この計測用設定時間T2が経過した後に、蓄積された電荷を取り出して異なる波長毎の受光量を計測して計測分光スペクトルデータを求める。   When it is determined that the object to be measured M has reached the measurement location in this way, the charge accumulation discharge process is not repeatedly executed, but the charge accumulated in the light receiving sensor 23 until the set time for discharge elapses from that point. Thereafter, measurement charge accumulation processing for accumulating charges to be used as light reception information for quality evaluation in the light receiving sensor 23 is executed until the set time for measurement elapses. In addition to the switching of the operation of the light receiving sensor 23, the control unit 3 switches the light receiving shutter mechanism 17 from the shielded state to the opened state when the measured object M reaches the measurement point P, and opens the opened state. The operation of the light receiving shutter mechanism 17 is controlled so as to return to the shielding state after maintaining the state until the measurement set time T2 for charge accumulation elapses. In this way, the light received by the light receiving unit 2 from the light emitted from the light projecting unit 1 and transmitted through the object to be measured until the set time T2 for measurement is received by the light receiving sensor 23 and accumulated. be able to. Then, after the set time T2 for measurement elapses, the accumulated charges are taken out and the received light amounts for different wavelengths are measured to obtain measured spectral spectrum data.

そして、このようにして得られた基準分光スペクトルデータ、暗電流データ及び計測分光スペクトルデータに基づいて公知技術である分光分析手法を用いて被計測物Mの内部品質を解析する演算処理を実行するように構成されている。
つまり、上記したようにして得られた、前記基準データ計測モードにて求められた基準分光スペクトルデータ、及び、暗電流データを用いて、分光された各波長毎の吸光度スペクトルデータを得るとともに、その吸光度スペクトルデータの二次微分値を求める。具体的には、受光センサ23の単位受光部毎に得られた受光情報に対応する吸光度スペクトルデータを得ることになる。このように求められた吸光度スペクトルデータの二次微分値のうち成分を算出するための特定波長の二次微分値と予め設定されている検量式とにより、被計測物の品質情報として、被計測物Mに含まれる糖度に対応する成分量や酸度に対応する品質評価値としての成分量を算出する品質評価処理を実行するように構成されている。
And the arithmetic processing which analyzes the internal quality of the to-be-measured object M is performed using the spectral analysis method which is a well-known technique based on the reference | standard spectral spectrum data, dark current data, and measurement spectral spectrum data which were obtained in this way. It is configured as follows.
That is, using the reference spectral spectrum data obtained in the reference data measurement mode obtained as described above and the dark current data, the absorbance spectral data for each wavelength obtained is obtained, and the Obtain the second derivative of the absorbance spectrum data. Specifically, absorbance spectrum data corresponding to the light reception information obtained for each unit light receiving unit of the light receiving sensor 23 is obtained. Of the second derivative value of the absorbance spectrum data obtained in this way, the second derivative value of a specific wavelength for calculating the component and the preset calibration equation are used as the quality information of the object to be measured. It is configured to execute a quality evaluation process for calculating a component amount corresponding to the sugar content contained in the product M and a component amount as a quality evaluation value corresponding to the acidity.

前記吸光度スペクトルデータdは、基準分光スペクトルデータをRd、計測分光スペクトルデータをSdとし、暗電流データをDaとすると、   When the absorbance spectrum data d is Rd as the reference spectrum data, Sd as the measured spectrum data, and Da as the dark current data,

[数1]
d=log[(Sd−Da)/(Rd−Da)]
[Equation 1]
d = log [(Sd−Da) / (Rd−Da)]

という演算式にて求められる。そして、このようにして得られた吸光度スペクトルデータdを二次微分した値のうち特定波長の値と、下記の数2に示されるような検量式とを用いて、被計測物Mに含まれる糖度や酸度に対応する成分量を算出するための検量値を求めるのである。   It is calculated by the following formula. And it contains in the to-be-measured object M using the value of a specific wavelength among the values which carried out the second derivative of the absorbance spectrum data d obtained by doing in this way, and the calibration formula as shown in following Formula 2. A calibration value for calculating the amount of the component corresponding to the sugar content or acidity is obtained.

[数2]
Y=K0+K1・X(λ1)+K2・X(λ2)
[Equation 2]
Y = K0 + K1 · X (λ1) + K2 · X (λ2)

但し、
Y ;成分量に対応する検量値
K0,K1,K2 ;係数
X(λ1 ),X(λ2 ) ;特定波長λにおける吸光度スペクトルの二次微分値
However,
Y; calibration value corresponding to the component amount K0, K1, K2; coefficients X (λ1), X (λ2); second derivative of absorbance spectrum at specific wavelength λ

尚、成分量を算出する成分毎に、特定の検量式、特定の係数K0,K1,K2、及び、波長λ1,λ2等が予め設定されて記憶されており、制御部3は、この成分毎に特定の検量式を用いて各成分の検量値(成分量)を算出する構成となっている。   A specific calibration equation, specific coefficients K0, K1, K2, wavelengths λ1, λ2, and the like are preset and stored for each component for which the component amount is calculated. The calibration value (component amount) of each component is calculated using a specific calibration formula.

次に、前記波長校正用情報計測モードにおける制御部3の処理について説明する。
この波長校正用情報計測モードにおいては、搬送コンベア4による被計測物Mの搬送を停止させている状態で、フィルター切換機構を分光器18へ向かう光が波長校正作用部A5を通過する状態に切り換えておき、受光用シャッター機構17を開状態に切り換える。そして、投光部1からの光を波長校正作用部A5に照射して、その透過光を、受光センサ23にて受光して得られた分光スペクトルデータを波長校正用分光スペクトルデータとして計測する。更に、制御部3は、波長が既知の2点のスペクトルピーク位置を検出し、その検出情報に基づいて、受光センサ23の各単位受光部の受光波長を校正する波長校正処理を実行する。
Next, processing of the control unit 3 in the wavelength calibration information measurement mode will be described.
In this wavelength calibration information measurement mode, the filter switching mechanism is switched to a state in which the light toward the spectroscope 18 passes through the wavelength calibration operation part A5 while the conveyance of the object M to be measured by the conveyor 4 is stopped. The light receiving shutter mechanism 17 is switched to the open state. Then, the light from the light projecting unit 1 is irradiated onto the wavelength calibration operation unit A5, and the spectral spectrum data obtained by receiving the transmitted light by the light receiving sensor 23 is measured as spectral spectrum data for wavelength calibration. Further, the control unit 3 detects two spectral peak positions whose wavelengths are known, and executes wavelength calibration processing for calibrating the light reception wavelength of each unit light receiving unit of the light receiving sensor 23 based on the detection information.

このような波長校正用分光スペクトルデータの計測処理並びに前記波長校正処理は、例えば、一日の作業の開始のときに行ったり、あるいは、計測対象となる果菜類の品種が切り換えられたとき等において適宜行われることになるが、制御部3は、波長校正処理を実行した後は、その波長校正後の各単位受光部と受光波長との対応関係に基づいて、前記品質評価処理を実行するように構成されている。   Such wavelength calibration spectral data measurement processing and wavelength calibration processing are performed, for example, at the start of a day's work or when the variety of fruit and vegetable to be measured is switched. The control unit 3 executes the quality evaluation process based on the correspondence between each unit light receiving unit after the wavelength calibration and the received light wavelength after performing the wavelength calibration process. It is configured.

〔別実施形態〕
以下、別実施形態を列記する。
[Another embodiment]
Hereinafter, other embodiments are listed.

(1)上記実施形態では、前記温度調整手段が前記受光手段の両横側箇所に振り分けて位置させる状態で一対備えられ、前記温度制御手段が一対の温度調整手段を制御するように構成されるものを例示したが、このような構成に限らず、温度調整手段は1つだけ備える構成としてもよく、3つ以上備える構成としてもよい。 (1) In the above embodiment, a pair of the temperature adjusting means is provided in a state where the temperature adjusting means is distributed and positioned on both lateral sides of the light receiving means, and the temperature control means is configured to control the pair of temperature adjusting means. However, the present invention is not limited to such a configuration, and only one temperature adjusting unit may be provided, or three or more temperature adjusting units may be provided.

(2)上記実施形態では、前記受光手段の外周部に空気層を形成する状態で囲うケーシングが設けられ、温度調整手段がその空気層に対して温調作用するように構成されるものを例示したが、このような構成に限らず、受光手段に直接的に温調作用する構成としてもよい。 (2) In the above embodiment, an example is provided in which a casing that surrounds the light receiving means in a state where an air layer is formed is provided, and the temperature adjusting means is configured to regulate the temperature of the air layer. However, the present invention is not limited to such a configuration, and a configuration that directly controls the temperature of the light receiving unit may be employed.

(3)上記実施形態では、温度調整手段としてペルチェ素子を用いるものを例示したが、この構成に限らず、熱媒を凝縮器と圧縮器とにわたり循環流通させながら空調作用するように構成されたヒートポンプ式の空調装置等の他の構成の温度調整手段でもよい。 (3) In the above embodiment, an example using a Peltier element as the temperature adjusting means has been illustrated, but the configuration is not limited to this configuration, and the air medium is configured to circulate and circulate between the condenser and the compressor. It may be a temperature adjusting means having another configuration such as a heat pump type air conditioner.

(4)上記実施形態では、各部の動作を制御する制御部3を利用して、前記温度制御手段100と前記評価手段101とを構成するようにしたが、前記温度制御手段100は、評価手段を構成する制御部3とは別に、温度制御だけを実行する専用の装置として備えるものでもよい。 (4) In the above embodiment, the temperature control unit 100 and the evaluation unit 101 are configured by using the control unit 3 that controls the operation of each unit. Separately from the control unit 3 constituting the above, a dedicated device that performs only temperature control may be provided.

(5)上記実施形態では、切換指令手段として、人為操作式の目標温度切換器65を備えて、この目標温度切換器65によって高温側調整状態と低温側調整状態とに切り換える構成としたが、このような構成に限らず、例えば、カレンダー機能を有する制御装置を備えて、例えば5月〜10月を夏場として11月〜4月を冬場として設定して、自動的に高温側調整状態や低温側調整状態とに切り換えるように構成するものでもよい。これ以外に、外気温度から判断して自動的に高温側調整状態や低温側調整状態とに切り換えるように構成するものでもよい。 (5) In the above embodiment, as the switching command means, the human-operated target temperature switch 65 is provided, and the target temperature switch 65 switches between the high temperature side adjustment state and the low temperature side adjustment state. For example, a control device having a calendar function is provided, and for example, May to October is set as summer and November to April is set as winter. It may be configured to switch to the side adjustment state. In addition to this, it may be configured to automatically switch to the high temperature side adjustment state or the low temperature side adjustment state based on the outside air temperature.

又、次のように構成するものもでもよい。前記高温側調整状態において1種類の高温側の目標温度を設定し、前記低温側調整状態において1種類の低温側の目標温度を設定するものに代えて、例えば、高温側の目標温度として複数の目標温度のうちのいずれかを設定する構成としてもよく、低温側の目標温度として複数の目標温度のうちのいずれかを設定する構成としてもよい。   Also, the following configuration may be used. Instead of setting one type of high temperature side target temperature in the high temperature side adjustment state and setting one type of low temperature side target temperature in the low temperature side adjustment state, for example, a plurality of high temperature side target temperatures may be set. One of the target temperatures may be set, or one of a plurality of target temperatures may be set as the low-temperature target temperature.

(6)上記実施形態では、投光部と受光部とが搬送コンベアの左右両側に振り分け配備されて、計測箇所に位置する被計測物に対して、横一側外方から横向きに光を投射して、被計測物を透過した光を前記受光部にて受光する構成としたが、このような構成に代えて、次のように構成するものでもよい。 (6) In the said embodiment, a light projection part and a light-receiving part are distributed and arranged by the right-and-left both sides of a conveyance conveyor, and light is projected sideways from the lateral one side outward with respect to the to-be-measured object located in a measurement location. Thus, the light transmitted through the object to be measured is received by the light receiving unit. However, instead of such a configuration, the following configuration may be used.

図16に示すように、一対の投光部1、1を搬送コンベア4の左右両側に振り分け配備し、計測箇所に位置する被計測物に夫々の投光部1、1にて光を投射するように構成して、搬送コンベア4における被計測物を載置支持する載置体4aに上下に貫通する貫通孔52を形成しておき、被計測物を透過した後に前記貫通孔52を通して下方側に放出される光を受光するように、受光部2における受光作用部を搬送コンベア4における計測箇所の下方側に位置させる状態で設ける構成としてもよい。図16に示す例では、貫通孔52を通して下方側に放出される光を光ファイバー53により受光部2に導く構成としている。又、このような構成に限らず、貫通孔52を通して下方側に放出される光が受光部2に直接入射するように搬送コンベア4の下方側に受光部2を配備する構成としてもよい。   As shown in FIG. 16, a pair of light projecting units 1, 1 are distributed and arranged on the left and right sides of the conveyor 4, and light is projected by the light projecting units 1, 1 to the measurement object located at the measurement location. The through-hole 52 penetrating up and down is formed in the mounting body 4a for placing and supporting the object to be measured on the transport conveyor 4, and the lower side is passed through the through-hole 52 after passing through the object to be measured. It is good also as a structure provided in the state located in the downward side of the measurement location in the conveyor 4 so that the light-receiving action part in the light-receiving part 2 may be received. In the example shown in FIG. 16, the light emitted downward through the through hole 52 is guided to the light receiving unit 2 by the optical fiber 53. In addition, the light receiving unit 2 may be arranged on the lower side of the conveyor 4 so that light emitted downward through the through hole 52 is directly incident on the light receiving unit 2.

(7)上記実施形態では、投光手段の光源としてハロゲンランプを用いたが、これに限らず、水銀灯、Ne放電管等の各種の光源を用いてもよく、受光部における受光手段としの受光センサは、CCD型ラインセンサに限らずMOS型ラインセンサ等の他の検出手段を用いるようにしてもよい。 (7) In the above embodiment, the halogen lamp is used as the light source of the light projecting means. However, the present invention is not limited to this, and various light sources such as a mercury lamp and a Ne discharge tube may be used. The sensor is not limited to the CCD line sensor, and other detection means such as a MOS line sensor may be used.

(8)上記実施形態では、被計測物からの透過光に基づいて品質評価用の受光情報及び基準用の受光情報を計測するようにしたが、この構成に代えて、被計測物Mからの反射光に基づいて品質評価用の受光情報及び基準用の受光情報を計測するようにしてもよい。 (8) In the above embodiment, the light receiving information for quality evaluation and the light receiving information for reference are measured based on the transmitted light from the object to be measured, but instead of this configuration, the light from the object to be measured M is measured. The light reception information for quality evaluation and the light reception information for reference may be measured based on the reflected light.

(9)上記実施形態では、被計測物Mの内部品質として、糖度や酸度を例示したが、これに限らず、食味の情報等、それ以外の内部品質を計測してもよい。 (9) In the above embodiment, the sugar content and the acidity are exemplified as the internal quality of the measurement object M. However, the internal quality is not limited to this, and other internal quality such as taste information may be measured.

内部品質評価装置の正面図Front view of internal quality evaluation equipment 内部品質評価装置の側面図Side view of internal quality evaluation equipment 内部品質評価装置の側面図Side view of internal quality evaluation equipment 内部品質評価装置の一部切欠正面図Partially cutaway front view of internal quality evaluation equipment 内部品質評価装置の正面図Front view of internal quality evaluation equipment 投光部の切欠平面図Notched plan view of the light emitting part 受光部の一部切欠平面図Partial cutaway plan view of the light receiving part 受光部の一部切欠側面図Partially cutaway side view of the light receiver 分光器の構成を示す模式図Schematic diagram showing the configuration of the spectrometer 受光用シャッター機構を示す図Diagram showing light receiving shutter mechanism フィルター切換機構を示す図Diagram showing filter switching mechanism 制御ブロック図Control block diagram 温度調整装置の原理説明図Principle of temperature control device 設置状態を示す平面図Plan view showing installation 計測作動のタイミングチャートTiming chart of measurement operation 別実施形態の内部品質評価装置の正面図Front view of internal quality evaluation apparatus according to another embodiment

符号の説明Explanation of symbols

1 投光手段
2 受光手段
60a,60b 温度調整手段
63a,63b 温度検出手段
65 切換指令手段
100 温度制御手段
101 評価手段
Q 空気層
DESCRIPTION OF SYMBOLS 1 Light projection means 2 Light reception means 60a, 60b Temperature adjustment means 63a, 63b Temperature detection means 65 Switching command means 100 Temperature control means 101 Evaluation means Q Air layer

Claims (4)

被計測物に光を投射する投光手段と、被計測物からの透過光又は反射光を分光してその分光した光を受光する受光手段と、前記受光手段の計測結果に基づいて被計測物の品質評価値を求める評価手段とを備えて構成された分光分析装置であって、
前記受光手段の温度を検出する温度検出手段と、前記受光手段を温調する温度調整手段と、前記温度検出手段にて検出される前記受光手段の温度が目標温度に維持されるように前記温度調整手段の作動を制御する温度制御手段とが備えられ、
前記温度制御手段が、切換指令手段の切り換え指令に基づいて、高温側の目標温度を設定して前記温度調整手段の作動を制御する高温側調整状態と、前記高温側の目標温度よりも低い低温側の目標温度を設定して前記温度調整手段の作動を制御する低温側調整状態とに切り換え自在に構成されている分光分析装置。
Light projecting means for projecting light onto the object to be measured, light receiving means for separating the transmitted light or reflected light from the object to be measured and receiving the dispersed light, and the object to be measured based on the measurement result of the light receiving means A spectroscopic analysis apparatus comprising an evaluation means for obtaining a quality evaluation value of
The temperature detecting means for detecting the temperature of the light receiving means, the temperature adjusting means for adjusting the temperature of the light receiving means, and the temperature so that the temperature of the light receiving means detected by the temperature detecting means is maintained at a target temperature. Temperature control means for controlling the operation of the adjusting means,
Based on the switching command of the switching command means, the temperature control means sets a high temperature side target temperature to control the operation of the temperature adjusting means, and a low temperature lower than the high temperature side target temperature. A spectroscopic analyzer configured to be switchable to a low temperature side adjustment state in which a target temperature on the side is set and the operation of the temperature adjustment means is controlled.
前記受光手段の外周部に空気層を形成する状態で前記受光手段を囲うケーシングが設けられ、前記温度調整手段が前記空気層に対して温調作用するように構成されている請求項1記載の分光分析装置。   The casing according to claim 1, wherein a casing is provided to surround the light receiving means in a state where an air layer is formed on an outer peripheral portion of the light receiving means, and the temperature adjusting means is configured to regulate the temperature of the air layer. Spectroscopic analyzer. 前記温度調整手段が前記受光手段の両横側箇所に振り分けて位置させる状態で一対備えられ、前記温度制御手段が前記一対の温度調整手段を制御するように構成されている請求項2記載の分光分析装置。   3. The spectroscopic apparatus according to claim 2, wherein a pair of the temperature adjusting means is provided in a state where the temperature adjusting means is distributed and positioned on both lateral sides of the light receiving means, and the temperature control means controls the pair of temperature adjusting means. Analysis equipment. 前記被計測物が果菜類である請求項1〜3のうちのいずれか1項に記載の分光分析装置。   The spectroscopic analyzer according to any one of claims 1 to 3, wherein the object to be measured is fruit and vegetables.
JP2004231344A 2004-08-06 2004-08-06 Spectroscopic analyzer Pending JP2006047209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231344A JP2006047209A (en) 2004-08-06 2004-08-06 Spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231344A JP2006047209A (en) 2004-08-06 2004-08-06 Spectroscopic analyzer

Publications (1)

Publication Number Publication Date
JP2006047209A true JP2006047209A (en) 2006-02-16

Family

ID=36025909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231344A Pending JP2006047209A (en) 2004-08-06 2004-08-06 Spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JP2006047209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149833A (en) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp Spectrophotometer, and light source changeover method of the same
WO2018043404A1 (en) * 2016-08-30 2018-03-08 静岡製機株式会社 Device for measuring the quality of grains
CN111968080A (en) * 2020-07-21 2020-11-20 山东农业大学 Hyperspectrum and deep learning-based method for detecting internal and external quality of Feicheng peaches
WO2022091403A1 (en) * 2020-11-02 2022-05-05 日本たばこ産業株式会社 Measurement device for living tissue, suction device, measurement method for living tissue, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149833A (en) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp Spectrophotometer, and light source changeover method of the same
WO2018043404A1 (en) * 2016-08-30 2018-03-08 静岡製機株式会社 Device for measuring the quality of grains
CN111968080A (en) * 2020-07-21 2020-11-20 山东农业大学 Hyperspectrum and deep learning-based method for detecting internal and external quality of Feicheng peaches
CN111968080B (en) * 2020-07-21 2023-06-23 山东农业大学 Method for detecting quality of inside and outside of Feicheng peaches based on hyperspectral and deep learning
WO2022091403A1 (en) * 2020-11-02 2022-05-05 日本たばこ産業株式会社 Measurement device for living tissue, suction device, measurement method for living tissue, and program
JPWO2022091403A1 (en) * 2020-11-02 2022-05-05
JP7453407B2 (en) 2020-11-02 2024-03-19 日本たばこ産業株式会社 Measuring device for living tissue, suction device, measuring method for living tissue, and program

Similar Documents

Publication Publication Date Title
US6657722B1 (en) Side multiple-lamp type on-line inside quality inspecting device
US7316322B2 (en) Quality evaluation apparatus for fruits and vegetables
JP2006047209A (en) Spectroscopic analyzer
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP4192012B2 (en) Quality evaluation equipment and quality measurement equipment
JP3611519B2 (en) Agricultural product internal quality evaluation system
JP3576105B2 (en) Internal quality measurement device
JP2004184172A (en) Quality evaluation apparatus for greens and fruits
JP4312123B2 (en) Projector for spectroscopic analyzer
JP2004219375A (en) Apparatus for evaluating quality of fruits and vegetables
JP3989360B2 (en) Quality evaluation device calibration method
JP2004219376A (en) Quality evaluation system for fruits and vegetables
JP4322185B2 (en) Photodetector for spectroscopic analyzer
JP3576158B2 (en) Agricultural product internal quality evaluation device
JP2002168772A (en) Spectroscope
JP2005037294A (en) Quality evaluation apparatus of fruit vegetables
JP4378240B2 (en) Equipment for evaluating internal quality of fruits and vegetables
JP2004184171A (en) Quality evaluating apparatus for greens and fruits
JP4362423B2 (en) Spectroscopic analyzer
JP2002107294A (en) Spectral analyzer
JP3919491B2 (en) Agricultural product quality measuring device
JP2004226102A (en) Quality evaluation device of fruits and vegetables
JP2003098079A (en) Quality measuring device for agricultural products
JP2003287496A (en) Spectrophotometer
JP4222908B2 (en) Light receiving device for internal quality evaluation and internal quality evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090917