【0001】
【発明の属する技術分野】
この発明は建築用板材およびその製造方法、詳しくは例えば建物の外壁タイルとして利用される合成樹脂を主成分とした建築用板材およびその製造方法に関する。
【0002】
【従来の技術】
従来、建物の壁または床などに利用される建築用板材として、例えば特公平3−16463号の「建材用パネル(建築用板材)」が知られている。
【0003】
【特公平3−16463号】
【0004】
従来の建材用パネルは、あらかじめ多孔質無機粒体の孔内に粉体の生石灰または焼石膏などを充填した骨材を作製し、得られた骨材を合成樹脂中に均一に攪拌混合し、その後、この混合物を硬化してパネル形状としたものである。
例えばポリフェノール樹脂などの熱硬化性合成樹脂の組織中からは、縮合反応を伴う硬化時(成型時)に、10〜20%もの水分が外部に放出される。こうして放出された水分は、多孔質無機粒体の孔内に詰め込まれた例えば生石灰と反応し、消石灰に変化する。これにより、成型後の合成樹脂成型物の乾燥が不十分な状態のまま、合成樹脂成型物と他の部材とを接触させた場合に発生する他の部材の湿潤、腐食変質などを防ぐことができる。また、ここでは合成樹脂より比重が小さい多孔質無機粒体を合成樹脂中に混入するため、建材用パネルの軽量化も図れる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の建材用パネルにあっては、あらかじめ多孔質無機粒体の孔内に粉体の生石灰、焼石膏などが充填された複雑で手間のかかる骨材を作製しておく必要があった。そのため、骨材の製造コスト、ひいていは建材用パネルの製造コストが高くなっていた。しかも、建材用パネルの工程数も増加していた。また、このように生石灰または焼石膏が多孔質無機粒体の孔内に充填されているので、充填後の生石灰および焼石膏の総表面積は、実質的に略多孔質無機粒体の孔の断面積と略同程度となり、生石灰または焼石膏が除湿剤および難燃剤などとしてその機能を十分に果たすことができなかった。これにより、合成樹脂の硬化後、前記水分を除去するため、建材用パネルを熱風により乾燥する際の乾燥時間も長くなっていた。
【0006】
【発明の目的】
この発明は、軽量で低コスト、しかも工程数の削減が図れ、さらに成形後の乾燥時間を短縮できるとともに、高い難燃性および断熱性も得られる建築用板材およびその製造方法を提供することを、その目的としている。
また、この発明は、高強度を有する建築用板材およびその製造方法を提供することを、その目的としている。
さらに、この発明は、耐久性を高めることができる建築用板材およびその製造方法を提供することを、その目的としている。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、合成樹脂中に粒体の人工軽量骨材および粉体の生石灰が別々に分散された建築用板材である。
建築用板材の品種は限定されない。例えば、建材用のタイル(外壁用、内壁用、床用など)、建材用のパネル(外壁用、内壁用など)を採用することができる。建築用板材の形状、寸法などは任意である。
合成樹脂の種類は限定されない。例えば、熱硬化性合成樹脂、熱可塑性合成樹脂、ゴム系の合成樹脂などを採用することができる。ただし、合成樹脂の硬化時に官能基を有する化合物から水の分子が脱離する縮合反応の繰り返す合成樹脂(例えば熱硬化性合成樹脂)、または、架橋剤としてハイドシリル基を有する有機架橋剤などを使用した場合などのゴム系の合成樹脂を採用したとき、合成樹脂から放出された水が、生石灰との反応により除去されるので、この発明の効果が顕著となる。
【0008】
人工軽量骨材の種類は限定されない。例えば、パーライト、黒曜石などを粉砕、造粒、焼成して直径1cm以下の大きさに膨張させたものを採用することができる。
生石灰のブレーン値は限定されない。例えば平均粒径1mm程度である。
人工軽量骨材および生石灰の添加量は限定されない。
ここで、人工軽量骨材と生石灰とが別々に添加されるとは、特公平3−16463号に記載された従来技術のように、あらじめ多孔質無機粒体の孔内に粉体の生石灰が充填された骨材を除く添加の形態であれば限定されない。例えば、人工軽量骨材の添加後に生石灰を添加してもよい。また、生石灰の添加後に人工軽量骨材を添加してもよい。さらに、人工軽量骨材と生石灰とをそれぞれ単体として同時に添加してもよい。
【0009】
請求項2に記載の発明は、前記合成樹脂に対して人工軽量骨材を50〜70容量%、生石灰を5〜10容量%添加した請求項1に記載の建築用板材である。
人工軽量骨材の添加量が50容量%未満では樹脂分が多くなり、重量が重くなるとともに、断熱効果が低下する。また、70容量%を超えると樹脂分が少なくなり、耐久性が低下する。
また、生石灰の添加量が5容量%未満では水分の除去量が少なくなり、建築用板材が乾燥しにくくなる。しかも、難燃性が低下する。また、10容量%を超えると水分除去の時間が短くなり、乾燥が早くなり過ぎて作業性が低下する。
【0010】
請求項3に記載の発明は、表面に石粉または砂が付着された請求項1または請求項2に記載の建築用板材である。
石粉または砂の原料は限定されない。
石粉および砂の平均粒径は限定されない。また、建築用板材の表面に対する石粉または砂の付着量は限定されない。
【0011】
請求項4に記載の発明は、裏面にガラスクロスが付着された請求項1〜請求項3のうち、何れか1項に記載の建築用板材である。
ガラスクロスは、ガラス繊維からなる織布、不織布、編布などの布帛である。
ガラスクロスの厚さ、目付は限定されない。
ガラスクロスを裏面に付着する方法も限定されない。例えば、混合物が完全に硬化する前にガラスクロスを建築用板材の裏面と接触させてもよい。また、混合物の硬化後、接着剤により建築用板材の裏面にガラスクロスを接着してもよい。
【0012】
請求項5に記載の発明は、合成樹脂中に、粒体の人工軽量骨材および粉体の石灰石を、合成樹脂に対して人工軽量骨材50〜70容量%、生石灰を5〜10容量%の割合で別々に添加して攪拌混合する攪拌混合工程と、その後、得られた混合物を硬化する硬化工程とを備えた建築用板材の製造方法である。
【0013】
請求項6に記載の発明は、前記硬化工程では、硬化中の前記混合物の裏面にガラスクロスを付着し、硬化後に得られた建築用板材を乾燥する乾燥工程では、その乾燥が完了する前に該建築用板材の表面に石粉または砂を付着する請求項5に記載の建築用板材の製造方法である。
【0014】
【作用】
請求項1に記載の建築用板材によれば、例えば、合成樹脂中に粒体の人工軽量骨材および粉体の生石灰を別々に添加して攪拌混合し、その混合物を金型に充填して硬化することで、建築用板材を成型する。
合成樹脂中に人工軽量骨材を添加したので、建築用板材の軽量化が図れるとともに難燃性および断熱性も高まる。また、生石灰の添加により難燃性がさらに高まるとともに、硬化された建築用板材の乾燥時間を短縮することができる。さらには、従来のようにあらかじめ多孔質無機粒体の孔内に粉体の生石灰などを充填する必要がないため、建築用板材の低コスト化が図れるとともに、工程数も削減することができる。また、合成樹脂を使用することで、建築用板材の曲げ強度が高まり、下地が悪い場所、例えば躯体のつなぎ目など、動きやすいところでも、ひび割れが発生しにくい。
【0015】
請求項2に記載の建築用板材によれば、合成樹脂に対して人工軽量骨材を50〜70容量%、生石灰を5〜10容量%添加するので、建築用板材の軽量化、高い難燃性および硬化後の乾燥時間の短縮を、建築用板材として最適な状態とすることができる。
【0016】
請求項3に記載の建築用板材および請求項6に記載の建築用板材の製造方法によれば、建築用板材の表面に石粉または砂を付着したので、建築用板材の耐久性および難燃性を高めることができる。
【0017】
請求項4に記載の建築用板材および請求項6に記載の建築用板材の製造方法によれば、建築用板材の裏面にガラスクロスを付着したので、建築用板材が高強度となるとともに、耐久性もさらに高まる。
【0018】
【発明の実施の形態】
以下、この発明の実施例を図面を参照して説明する。
図1〜図3において、10はこの発明の一実施例に係る建築用板材である。この建築用板材10は、合成樹脂11中に粒体の人工軽量骨材12および粉体の生石灰13が別々に分散された外壁用タイルである。
建築用板材10は、縦60mm、横200mm、厚さ10mmの平面視して矩形状を有するタイルである。
合成樹脂11の素材としては、シリコーンゴムのペーストが採用されている。人工軽量骨材12の素材としては、空気孔を有するパーライトが採用されている。
建築用板材10の表面全域には石粉14が付着している。石粉14に代えて砂でもよい。さらに、建築用板材10の裏面全域には、粗い網目形状を有するガラスクロス15を付着している。
【0019】
次に、図4および図5を参照して、この建築用板材10の製造方法を詳細に説明する。
まず、図4に示すように、所定量の架橋剤(ポリオルガノハイドロジェンシロキサン)が添加された合成樹脂11のペーストと、粒体の人工軽量骨材12と、粉体の生石灰13とを、合成樹脂11に対して人工軽量骨材12を50容量%、生石灰13を10容量%の割合で別々に添加し、ミキサにより所定時間だけ攪拌混合する。これにより、混合物16のペーストが得られる。
次に、平面視して矩形状の金型17を準備し、その底面にガラスクロス15を載置する(図5(a))。
【0020】
その後、金型17の中に、混合物16のペーストを所定量だけ流し込む(図5(b))。架橋剤の作用により、シリコーンゴムが部分的に架橋して合成樹脂11が硬化し、弾性材となる。このとき、架橋剤中のハイドロシリル基の加水分解および脱水素縮合反応などの副反応により、合成樹脂11から水分が放出される。この水分は、合成樹脂11に添加された生石灰13と反応し、消石灰となる。次に、図5(c)に示すように、硬化した混合物16を金型17から取り出す。そして、混合物16の表面に石粉14を均一に散布する。これを図示しない乾燥装置に挿入し、所定温度、所定時間乾燥する。その後、混合物16を矩形状にカットすることで、図1および図2に示す前記建築用板材10が作製される。
【0021】
このように、合成樹脂11中に粒体の人工軽量骨材12および粉体の生石灰13を別々に添加して攪拌混合し、その後、得られた混合物16を硬化させることで建築用板材10を成型するので、軽量で低コスト、しかも工程数の削減が図れ、さらには成形後の乾燥時間を短縮できるとともに、高い難燃性および断熱性も得ることができる。また、合成樹脂を使用することで、建築用板材の曲げ強度が高くなり、下地が悪い場所、例えば躯体のつなぎ目など、動きやすいところでも、ひび割れが発生しにくい。
また、合成樹脂11に対して人工軽量骨材12を50〜70容量%、生石灰13を5〜10容量%添加するようにしたので、建築用板材10の軽量化、高い難燃性および合成樹脂11を硬化した後の乾燥時間の短縮を、建築用板材10としてそれぞれより好適な状態とすることができる。
さらに、建築用板材10の表面に石粉14を付着したので、建築用板材10の耐久性および難燃性を高めることができる。
【0022】
【発明の効果】
請求項1に記載の建築用板材によれば、合成樹脂中に粒体の人工軽量骨材および粉体の生石灰を別々に添加して攪拌混合し、その後、得られた混合物を硬化させて建築用板材を成型するので、軽量で低コスト、しかも工程数の削減が図れ、さらには成形後の乾燥時間を短縮できるとともに、高い難燃性および断熱性も得ることができる。また、合成樹脂を使用するので、建築用板材の曲げ強度が高まり、下地が悪い場所、例えば躯体のつなぎ目など、動きやすいところでも、ひび割れが発生しにくい。
【0023】
請求項2に記載の建築用板材によれば、合成樹脂に対して人工軽量骨材を50〜70容量%、生石灰13を5〜10容量%添加するようにしたので、建築用板材の軽量化、高い難燃性および合成樹脂を硬化した後の乾燥時間の短縮を、建築用板材としてそれぞれより好適な状態とすることができる。
【0024】
請求項3に記載の建築用板材および請求項6に記載の建築用板材の製造方法によれば、建築用板材の表面に石粉または砂を付着したので、建築用板材の耐久性および難燃性を高めることができる。
【0025】
請求項4に記載の建築用板材および請求項6に記載の建築用板材の製造方法によれば、建築用板材の裏面にガラスクロスを付着したので、建築用板材が高強度となるとともに、耐久性もさらに高まる。
【図面の簡単な説明】
【図1】この発明の一実施例に係る建築用板材の上方からの斜視図である。
【図2】この発明の一実施例に係る建築用板材の下方からの斜視図である。
【図3】この発明の一実施例に係る建築用板材の断面図である。
【図4】この発明の一実施例に係る建築用板材の製造方法における混合物の作製工程を説明する模式図である。
【図5】(a)〜(d)は、この発明の一実施例に係る建築用板材の製造方法を説明する模式図である。
【符号の説明】
10 建築用板材、
11 合成樹脂、
12 人工軽量骨材、
13 生石灰、
14 石粉、
15 ガラスクロス。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a building plate and a method of manufacturing the same, and more particularly, to a building plate mainly composed of a synthetic resin used as, for example, an outer wall tile of a building and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a building plate material used for a wall or a floor of a building, for example, a “building material panel (building plate material)” of Japanese Patent Publication No. 3-16463 is known.
[0003]
[Tokuhei 3-16463]
[0004]
Conventional building material panels produce aggregates in which powdered quicklime or calcined gypsum is filled in advance in the pores of the porous inorganic particles, and the obtained aggregates are uniformly stirred and mixed in a synthetic resin. Thereafter, the mixture is cured to form a panel.
For example, from the structure of a thermosetting synthetic resin such as a polyphenol resin, as much as 10 to 20% of water is released to the outside during curing (at the time of molding) involving a condensation reaction. The water released in this way reacts with, for example, quicklime packed in the pores of the porous inorganic particles, and changes into slaked lime. Thereby, while the synthetic resin molded article after the molding is not sufficiently dried, it is possible to prevent the other members from being wet, corroded and deteriorated when the synthetic resin molded article is brought into contact with other members. it can. In addition, since the porous inorganic particles having a specific gravity smaller than that of the synthetic resin are mixed into the synthetic resin, the weight of the building material panel can be reduced.
[0005]
[Problems to be solved by the invention]
However, in the case of the conventional building material panel, it was necessary to prepare a complicated and laborious aggregate in which the powdery lime, calcined gypsum and the like were filled in the pores of the porous inorganic particles in advance. . Therefore, the manufacturing cost of the aggregate, and eventually the manufacturing cost of the building material panel, has been high. Moreover, the number of steps for building material panels has also increased. In addition, since the quicklime or calcined gypsum is filled in the pores of the porous inorganic particles as described above, the total surface area of the quicklime or calcined gypsum after the filling is substantially the same as that of the pores of the substantially porous inorganic granules. The area was about the same as the area, and quicklime or calcined gypsum could not sufficiently fulfill its function as a dehumidifier and a flame retardant. As a result, after the hardening of the synthetic resin, the drying time for drying the building material panel with hot air has been long in order to remove the water.
[0006]
[Object of the invention]
An object of the present invention is to provide an architectural plate material that is lightweight, low-cost, can reduce the number of steps, can further reduce the drying time after molding, and can also obtain high flame retardancy and heat insulation, and a method for manufacturing the same. , Its purpose.
Another object of the present invention is to provide a building plate having high strength and a method for manufacturing the same.
Further, another object of the present invention is to provide a building plate material capable of enhancing durability and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is an architectural plate material in which synthetic artificial lightweight aggregate and powdered lime are separately dispersed in a synthetic resin.
The variety of building boards is not limited. For example, building material tiles (for exterior walls, interior walls, floors, etc.) and construction material panels (for exterior walls, interior walls, etc.) can be employed. The shape, dimensions, and the like of the building plate are arbitrary.
The type of the synthetic resin is not limited. For example, a thermosetting synthetic resin, a thermoplastic synthetic resin, a rubber-based synthetic resin, or the like can be used. However, a synthetic resin (for example, a thermosetting synthetic resin) in which a condensation reaction in which water molecules are eliminated from a compound having a functional group when the synthetic resin is cured (for example, a thermosetting synthetic resin), or an organic cross-linking agent having a hydrsilyl group is used as a cross-linking agent. When a rubber-based synthetic resin is used in such a case, since the water released from the synthetic resin is removed by the reaction with quicklime, the effect of the present invention is remarkable.
[0008]
The type of artificial lightweight aggregate is not limited. For example, pearlite, obsidian, or the like may be pulverized, granulated, fired, and expanded to a size of 1 cm or less in diameter.
The brane value of quicklime is not limited. For example, the average particle size is about 1 mm.
The amounts of the artificial lightweight aggregate and quick lime are not limited.
Here, the fact that the artificial lightweight aggregate and the quick lime are separately added means that the powder of the porous inorganic particles is previously introduced into the pores of the porous inorganic particles as in the prior art described in Japanese Patent Publication No. Hei 3-16463. It is not limited as long as it is in the form of addition except for the aggregate filled with quicklime. For example, quicklime may be added after the addition of the artificial lightweight aggregate. Also, an artificial lightweight aggregate may be added after the addition of quicklime. Further, the artificial lightweight aggregate and quick lime may be added simultaneously as a single substance.
[0009]
The invention according to claim 2 is the architectural plate material according to claim 1, wherein 50 to 70% by volume of artificial lightweight aggregate and 5 to 10% by volume of quicklime are added to the synthetic resin.
When the amount of the artificial lightweight aggregate is less than 50% by volume, the resin content increases, the weight increases, and the heat insulating effect decreases. On the other hand, when the content exceeds 70% by volume, the resin content decreases, and the durability decreases.
On the other hand, if the amount of quicklime added is less than 5% by volume, the amount of water removed is small, and the building plate material is not easily dried. Moreover, the flame retardancy is reduced. On the other hand, if the content exceeds 10% by volume, the time for removing moisture is shortened, and the drying becomes too fast, resulting in reduced workability.
[0010]
According to a third aspect of the present invention, there is provided the building plate according to the first or second aspect, wherein stone powder or sand is attached to the surface.
The raw material of the stone powder or sand is not limited.
The average particle size of the stone powder and sand is not limited. Further, the amount of stone powder or sand adhering to the surface of the building plate is not limited.
[0011]
The invention according to claim 4 is the building plate material according to any one of claims 1 to 3, wherein a glass cloth is attached to a back surface.
The glass cloth is a cloth made of glass fiber, such as a woven cloth, a nonwoven cloth, or a knitted cloth.
The thickness and basis weight of the glass cloth are not limited.
The method for attaching the glass cloth to the back surface is not limited. For example, the glass cloth may be brought into contact with the backside of the building board before the mixture is completely cured. Further, after the mixture is cured, a glass cloth may be bonded to the back surface of the building plate material with an adhesive.
[0012]
According to a fifth aspect of the present invention, in the synthetic resin, the artificial lightweight aggregate of granular material and the limestone of powder are 50 to 70% by volume of the artificial lightweight aggregate and 5 to 10% by volume of quicklime with respect to the synthetic resin. And a stirring step of stirring and mixing separately and then a curing step of curing the resulting mixture.
[0013]
The invention according to claim 6 is that, in the curing step, a glass cloth is attached to a back surface of the mixture during curing, and in a drying step of drying a building material obtained after curing, before the drying is completed. The method for manufacturing a building plate according to claim 5, wherein stone powder or sand is adhered to a surface of the building plate.
[0014]
[Action]
According to the architectural plate material of claim 1, for example, artificial light-weight aggregate of granular material and quicklime of powder are separately added to the synthetic resin and mixed by stirring, and the mixture is filled in a mold. By curing, a building plate is formed.
Since the artificial lightweight aggregate is added to the synthetic resin, the weight of the building plate can be reduced, and the flame retardancy and the heat insulation can be enhanced. Further, the flame retardancy is further enhanced by the addition of quicklime, and the drying time of the hardened building plate can be shortened. Further, since it is not necessary to previously fill powdery lime or the like into the pores of the porous inorganic particles as in the related art, the cost of the building plate can be reduced, and the number of steps can be reduced. In addition, by using the synthetic resin, the bending strength of the building plate material is increased, and cracks are less likely to occur in places where the foundation is poor, for example, in places where the building is easy to move, such as joints of the frame.
[0015]
According to the building plate of the second aspect, the artificial lightweight aggregate is added to the synthetic resin in an amount of 50 to 70% by volume and the quicklime is added in an amount of 5 to 10% by volume. The property and the shortening of the drying time after curing can be set to an optimum state as a building plate material.
[0016]
According to the method for manufacturing a building plate according to claim 3 and the method for manufacturing a building plate according to claim 6, stone powder or sand is adhered to a surface of the building plate, so that durability and flame retardancy of the building plate are used. Can be increased.
[0017]
According to the method for manufacturing a building plate according to claim 4 and the method for manufacturing a building plate according to claim 6, a glass cloth is adhered to the back surface of the building plate, so that the building plate has high strength and durability. Sex is further enhanced.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3, reference numeral 10 denotes a building plate according to an embodiment of the present invention. The architectural plate 10 is an outer wall tile in which a synthetic artificial lightweight aggregate 12 and a powdered lime 13 are separately dispersed in a synthetic resin 11.
The architectural plate 10 is a tile having a length of 60 mm, a width of 200 mm, and a thickness of 10 mm and having a rectangular shape in plan view.
As a material of the synthetic resin 11, a paste of silicone rubber is employed. As a material of the artificial lightweight aggregate 12, perlite having air holes is employed.
Stone powder 14 adheres to the entire surface of the building plate 10. Sand may be used instead of the stone powder 14. Further, a glass cloth 15 having a coarse mesh shape is attached to the entire back surface of the building plate 10.
[0019]
Next, with reference to FIG. 4 and FIG. 5, a method of manufacturing the architectural plate 10 will be described in detail.
First, as shown in FIG. 4, a paste of a synthetic resin 11 to which a predetermined amount of a crosslinking agent (polyorganohydrogensiloxane) has been added, an artificial lightweight aggregate 12 of granules, and a quicklime 13 of powder 50% by volume of artificial lightweight aggregate 12 and 10% by volume of quick lime 13 are separately added to synthetic resin 11, and the mixture is stirred and mixed by a mixer for a predetermined time. Thereby, a paste of the mixture 16 is obtained.
Next, a rectangular mold 17 is prepared in plan view, and a glass cloth 15 is placed on the bottom surface thereof (FIG. 5A).
[0020]
Thereafter, a predetermined amount of the paste of the mixture 16 is poured into the mold 17 (FIG. 5B). Due to the action of the cross-linking agent, the silicone rubber is partially cross-linked and the synthetic resin 11 is hardened to become an elastic material. At this time, water is released from the synthetic resin 11 by side reactions such as hydrolysis and dehydrocondensation reaction of the hydrosilyl group in the crosslinking agent. This water reacts with quick lime 13 added to the synthetic resin 11 to become slaked lime. Next, as shown in FIG. 5C, the cured mixture 16 is taken out of the mold 17. Then, the stone powder 14 is uniformly dispersed on the surface of the mixture 16. This is inserted into a drying device (not shown) and dried at a predetermined temperature for a predetermined time. Thereafter, the mixture 16 is cut into a rectangular shape, whereby the building plate 10 shown in FIGS. 1 and 2 is produced.
[0021]
In this way, the artificial lightweight aggregate 12 of the granular material and the quicklime 13 of the powder are separately added to the synthetic resin 11 and mixed by stirring, and then the obtained mixture 16 is cured to form the building plate 10. Since molding is performed, it is possible to reduce the number of steps in weight and cost and to reduce the number of steps. Further, the drying time after molding can be shortened, and high flame retardancy and heat insulation can be obtained. In addition, by using a synthetic resin, the bending strength of the building plate material is increased, and cracks are less likely to occur even in a place where the base is poor, for example, in an easily movable place such as a joint of a frame.
In addition, the artificial lightweight aggregate 12 is added to the synthetic resin 11 in an amount of 50 to 70% by volume, and the quicklime 13 is added to the synthetic resin 11 in an amount of 5 to 10% by volume. The shortening of the drying time after hardening 11 can be made each more suitable state as the building board 10.
Further, since the stone powder 14 is attached to the surface of the building plate 10, the durability and flame retardancy of the building plate 10 can be improved.
[0022]
【The invention's effect】
According to the architectural plate material of claim 1, the artificial light-weight aggregate of the granular material and the quicklime of the powder are separately added to the synthetic resin, and the mixture is stirred and mixed. Since the plate material is molded, it is lightweight and low-cost, and the number of steps can be reduced. Further, the drying time after molding can be shortened, and high flame retardancy and heat insulation can be obtained. In addition, since the synthetic resin is used, the bending strength of the building plate material is increased, and cracks are less likely to occur in places where the foundation is poor, for example, in places that are easy to move, such as joints of the frame.
[0023]
According to the building plate of the second aspect, the artificial lightweight aggregate is added to the synthetic resin in an amount of 50 to 70% by volume, and the quicklime 13 is added in an amount of 5 to 10% by volume. The high flame retardancy and the shortening of the drying time after hardening the synthetic resin can be respectively made more suitable states as building board materials.
[0024]
According to the method for manufacturing a building plate according to claim 3 and the method for manufacturing a building plate according to claim 6, stone powder or sand is adhered to a surface of the building plate, so that durability and flame retardancy of the building plate are used. Can be increased.
[0025]
According to the method for manufacturing a building plate according to claim 4 and the method for manufacturing a building plate according to claim 6, a glass cloth is adhered to the back surface of the building plate, so that the building plate has high strength and durability. Sex is further enhanced.
[Brief description of the drawings]
FIG. 1 is a perspective view from above of a building plate according to an embodiment of the present invention.
FIG. 2 is a perspective view from below of a building plate according to one embodiment of the present invention.
FIG. 3 is a sectional view of a building plate according to an embodiment of the present invention.
FIG. 4 is a schematic diagram illustrating a process for producing a mixture in the method for producing a building board according to one embodiment of the present invention.
FIGS. 5A to 5D are schematic views illustrating a method for manufacturing a building plate according to an embodiment of the present invention.
[Explanation of symbols]
10 Building materials,
11 synthetic resin,
12 Artificial lightweight aggregate,
13 quicklime,
14 stone powder,
15 Glass cloth.