JP2582283B2 - Building material made of phosphoric acid cured product - Google Patents

Building material made of phosphoric acid cured product

Info

Publication number
JP2582283B2
JP2582283B2 JP63145525A JP14552588A JP2582283B2 JP 2582283 B2 JP2582283 B2 JP 2582283B2 JP 63145525 A JP63145525 A JP 63145525A JP 14552588 A JP14552588 A JP 14552588A JP 2582283 B2 JP2582283 B2 JP 2582283B2
Authority
JP
Japan
Prior art keywords
heat insulating
reaction
foam
insulating material
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63145525A
Other languages
Japanese (ja)
Other versions
JPH01314156A (en
Inventor
英男 元木
重博 流谷
久志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S K KAKEN KK
Original Assignee
S K KAKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S K KAKEN KK filed Critical S K KAKEN KK
Priority to JP63145525A priority Critical patent/JP2582283B2/en
Publication of JPH01314156A publication Critical patent/JPH01314156A/en
Application granted granted Critical
Publication of JP2582283B2 publication Critical patent/JP2582283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機械的強度に優れ、なおかつ耐火性、断熱
性、意匠性等の機能を有する建材に関するものである。
Description: TECHNICAL FIELD The present invention relates to a building material having excellent mechanical strength and having functions such as fire resistance, heat insulation, and design.

(従来の技術) 従来断熱材は各種知られているが、機械的強度が低い
ため、それのみでは建材としては用いることができず、
また該断熱材に支持板等を一体にした建材が大半であり
断熱材上で硬化一体化するものは無かった。
(Prior art) Conventionally, various types of heat insulating materials are known, but because of their low mechanical strength, they cannot be used alone as building materials.
In addition, most of the building materials were obtained by integrating a support plate or the like with the heat insulating material, and none of them was cured and integrated on the heat insulating material.

(発明が解決しようとする問題点) 上記のごとく断熱材例えば、ポリ塩化ビニルフォー
ム、ポリウレタンフォーム、ポリエチレンフォーム、ポ
リスチレンフォーム、ユリアフォーム等の有機質の物や
石綿パーライト板、泡ガラス、硅酸カルシウム板、発泡
コンクリート、発泡モルタル等の無機質の物などそれ自
体では機械的強度が低いためそのまま表面建材等に用い
ることができず、また機械的強度付与のためフレキシブ
ルボードなどを支持板として表面に伴用する場合は発泡
断熱材にフレキシブルボードを接着するため接着材等の
工程が必要であった。本発明は、これらの問題点を解決
し、工場ラインはもちろんのこと現場でも施工可能で、
なおかつ耐火性と表面硬度と耐候性の向上を付与し美装
性と意匠性に優れた建材としての用途を広げるものであ
る。
(Problems to be Solved by the Invention) As described above, heat insulating materials such as organic substances such as polyvinyl chloride foam, polyurethane foam, polyethylene foam, polystyrene foam, urea foam, asbestos perlite board, foam glass, calcium silicate board Inorganic materials such as foamed concrete and foamed mortar cannot be used as such as surface building materials due to their low mechanical strength. In addition, a flexible board is used as a support plate to provide mechanical strength. In such a case, a step of using an adhesive or the like was required to adhere the flexible board to the foamed heat insulating material. The present invention solves these problems, and can be installed not only at the factory line but also at the site,
In addition, it is intended to improve the fire resistance, the surface hardness, and the weather resistance, and to broaden the use as a building material having excellent appearance and design.

(問題点を解決するための手段) 第1図のごとく第1層として断熱材例えば、ポリ塩化
ビニルフォーム、ポリウレタンフォーム、ポリエチレン
フォーム、ポリスチレンフォーム、ユリアフォーム等の
有機質の物や石綿パーライト板、泡ガラス、硅酸カルシ
ウム板、発泡コンクリート、発泡モルタル等の無機質の
物を用いる。また、ここで無機質断熱材としては、水溶
性アルカリ金属硅酸塩、水溶性リン酸塩、水硬性硅酸石
灰セメントから選ばれる少なくとも1種およびその硬化
剤、金属系発泡剤、発泡安定剤よりなる無機質常温発泡
断熱材のようなものでも良い。続いて第2層として酸化
マグネシウムとリン酸アンモニウムの混合粉体に水を加
えたスラリーを、鏝等によって塗付すると酸−塩基が縮
合し硬化反応により混合物は硬化し、かつ同時に断熱層
と密着する。この第2層は第1図および第2図のごと
く、第1層の片面もしくは両面に塗付することが可能で
ある。また、第3図及び第4図のごとく、リン酸アンモ
ニウムと酸化マグネシウムの反応硬化物と断熱材の界面
および/または硬化物中および/または硬化物表面およ
び/または断熱材表面に主として曲げ強度を向上させる
目的でシート状もしくはネット状の補強材を用いること
も可能である。ここで、本発明におけるシート状もしく
はネット状の補強材としては、クラフト紙、ガラスチョ
ップストランドマット、ガラス繊維メッシュ、ナイロン
等のネット、織布、不織布、メタルラス等があげられ
る。同様に、酸化マグネシウムとリン酸アンモニウムの
混合粉体に水を加えたスラリー中に、補強材として充填
材と無機および/または有機などの繊維状物質を混入し
てもよい。ここで充填材とは炭酸カルシウム、ケイ砂、
クレー、カオリン酸、陶土、けい酸アルミニウム、けい
藻土、ホワイトカーボン、ベントナイト、マイカ、タル
ク、ゼオライト、セピオライト、金属粉末等が、無機お
よび/または有機などの繊維状物質とは、ウォラストナ
イト針状鉱物、グラスウール、ロックウール、カーボン
繊維、ナイロン繊維、ポリプロピレン繊維、セルロース
繊維等があげられる。またパーライト、発泡シリカ、ガ
ラスマイクロバルーン等の軽量骨材も強度、硬度を阻害
しない範囲内で、使用でき、また、曲げ強度、表面強度
向上や鏝塗り作業性を向上させる目的で合成樹脂エマル
ション、水溶性高分子等を適宜添加することも可能であ
る。
(Means for solving the problems) As shown in FIG. 1, the first layer is made of a heat insulating material such as an organic material such as polyvinyl chloride foam, polyurethane foam, polyethylene foam, polystyrene foam, urea foam, asbestos pearlite board, or foam. Use inorganic materials such as glass, calcium silicate plate, foamed concrete, foamed mortar and the like. In addition, as the inorganic heat insulating material, at least one selected from a water-soluble alkali metal silicate, a water-soluble phosphate, and a hydraulic lime lime cement and a curing agent thereof, a metal-based foaming agent, and a foam stabilizer are used. It may be an inorganic cold foam insulation material. Subsequently, when a slurry obtained by adding water to a mixed powder of magnesium oxide and ammonium phosphate as a second layer is applied with a trowel or the like, the acid-base is condensed and the mixture is cured by a curing reaction, and at the same time, adheres to the heat insulating layer. I do. This second layer can be applied to one or both sides of the first layer as shown in FIGS. As shown in FIGS. 3 and 4, the bending strength is mainly applied to the interface between the reaction cured product of ammonium phosphate and magnesium oxide and the heat insulating material and / or in the cured product and / or the surface of the cured product and / or the surface of the heat insulating material. It is also possible to use a sheet-like or net-like reinforcing material for the purpose of improvement. Here, examples of the sheet-like or net-like reinforcing material in the present invention include kraft paper, glass chop strand mat, glass fiber mesh, net such as nylon, woven fabric, nonwoven fabric, metal lath, and the like. Similarly, a filler and a fibrous substance such as an inorganic and / or organic substance may be mixed as a reinforcing material in a slurry obtained by adding water to a mixed powder of magnesium oxide and ammonium phosphate. Here, fillers are calcium carbonate, silica sand,
Clay, kaolinic acid, porcelain earth, aluminum silicate, diatomaceous earth, white carbon, bentonite, mica, talc, zeolite, sepiolite, metal powder, etc., and fibrous substances such as inorganic and / or organic are wollastonite needles. Minerals, glass wool, rock wool, carbon fiber, nylon fiber, polypropylene fiber, cellulose fiber and the like. Also, lightweight aggregates such as pearlite, expanded silica, and glass microballoons can be used within a range that does not impair the strength and hardness. It is also possible to appropriately add a water-soluble polymer or the like.

つぎにリン酸硬化体と酸化マグネシウムの反応硬化物
表面にテクスチャーを付与するには第5図のごとく、テ
クスチャーパターンの凹凸にある鋳型中にリン酸硬化体
と酸化マグネシウムの粉体と水からなるスラリーを流し
込み、該スラリーに断熱材を接触させ反応硬化と共に密
着させたり、該スラリーを塗付した後、乾燥前に凹凸状
の型枠を押しつける方法がある。このときシート状もし
くはネット状の補強材を断熱材の界面および/またはス
ラリー中および/またはスラリー表面に設置し、そのま
ま硬化させてもよい。
Next, in order to impart a texture to the surface of the reaction cured product of the phosphoric acid cured product and magnesium oxide, as shown in FIG. 5, the phosphoric acid cured product, magnesium oxide powder and water are contained in a mold having a texture pattern having irregularities. There is a method in which a slurry is poured and a heat insulating material is brought into contact with the slurry so that the slurry is brought into close contact with reaction hardening, or after the slurry is applied, an uneven mold is pressed before drying. At this time, a sheet-like or net-like reinforcing material may be provided at the interface of the heat insulating material and / or in the slurry and / or on the slurry surface and cured as it is.

以上のごとく第1層に第2層を塗付後、硬化乾燥した
上に第6図のごとく、アルコキシ置換オルガノシランよ
りなる分子量10000以下のポリマーもしくはオリゴマー
を用いたシリコーン樹脂塗料組成物を第3層として塗付
含浸することも可能である。
After applying the second layer to the first layer as described above, curing and drying, a silicone resin coating composition using a polymer or oligomer having a molecular weight of 10,000 or less consisting of an alkoxy-substituted organosilane as shown in FIG. It is also possible to apply and impregnate as a layer.

(作用) 第1層の断熱材に対して酸化マグネシウムとリン酸ア
ンモニウムの混合粉体に水を加えてなるスラリーを塗付
したとき該スラリーは断熱材中に含浸して硬化する。し
たがってフレキシブルボードのように成型し反応硬化さ
せたものを接着するというような接着工程を必要としな
い。また、該スラリーは酸化マグネシウムとリン酸アン
モニウムの混合粉体に水を加えるものである。本発明者
らは、先願としてリン酸アルミニウムと酸化マグネシウ
ムの反応硬化物をあげた。(昭和63年特許願第3979号)
そこでは、これら反応硬化物が発熱反応によって硬化す
るため反応が最初から急激に進みポットライフの調整が
必要となったためあらかじめ粉体層をつくりそれに水を
スプレーして反応させるという工法を用いてポットライ
フの問題をさけた。通常、酸化マグネシウムの粉体にリ
ン酸アンモニウム水溶液を加えた場合も、反応は最初か
ら発熱反応となり急速に進み硬化するため鏝塗り等の余
裕がない。それに反してリン酸アンモニウムの粉末を使
用すると、図7のごとくリン酸アンモニウム粉末が水に
溶解する時、吸熱反応となり液温が下がり、一時的にリ
ン酸アンモニウムと酸化マグネシウムの反応が抑制され
るため、可使時間(ポットライフ)を確保できる。この
ため該スラリーを第1層の発泡断熱材の表面上に塗付し
反応硬化させるという一連の作業が可能になった。つぎ
に、該スラリーの反応硬化物は結晶水を含んでいるため
耐火性を有し第1層の断熱材の表面に塗付し反応硬化さ
せた場合その耐火性を向上させるだけでなく内部の断熱
材の温度上昇を押さえ燃えにくくする。
(Operation) When a slurry obtained by adding water to a mixed powder of magnesium oxide and ammonium phosphate is applied to the first layer of the heat insulating material, the slurry impregnates the heat insulating material and hardens. Therefore, there is no need for a bonding step of bonding a molded and reaction-cured material such as a flexible board. The slurry is obtained by adding water to a mixed powder of magnesium oxide and ammonium phosphate. The present inventors have cited a reaction cured product of aluminum phosphate and magnesium oxide as a prior application. (Patent Application No. 3979 of 1988)
Here, these reaction hardened products are hardened by an exothermic reaction, so the reaction rapidly progressed from the beginning and it was necessary to adjust the pot life.Therefore, a method of forming a powder layer in advance and spraying it with water to react was used. Avoided life issues. Usually, even when an aqueous solution of ammonium phosphate is added to the powder of magnesium oxide, the reaction becomes an exothermic reaction from the beginning and proceeds rapidly and hardens, so there is no room for ironing or the like. On the other hand, when the ammonium phosphate powder is used, when the ammonium phosphate powder is dissolved in water as shown in FIG. 7, an endothermic reaction occurs and the temperature of the solution decreases, and the reaction between ammonium phosphate and magnesium oxide is temporarily suppressed. Therefore, pot life (pot life) can be secured. For this reason, it became possible to perform a series of operations of applying the slurry on the surface of the first layer of the foamed heat insulating material and curing the slurry by reaction. Next, since the reaction-hardened product of the slurry contains water of crystallization, it has fire resistance, and when applied to the surface of the first layer of heat insulating material and cured by reaction, not only improves the fire resistance, but also improves the internal resistance. It suppresses the temperature rise of the heat insulating material and makes it difficult to burn.

つぎに第3層としてアルコキシ置換オルガノシランよ
りなる分子量10000以下のポリマーもしくはオリゴマー
を用いたシリコーン樹脂塗料組成物を塗付含浸した場
合、酸化マグネシウムとリン酸アンモニウムの反応硬化
体中の酸性基により該シリコーン樹脂の硬化が促進され
強固な塗膜を形成する。しかも、該樹脂の表面エネルギ
ーが低いため撥水性、耐汚染性に優れ耐候性が大きく向
上し、単独のみならずさらに他の塗料組成物などを塗付
し美装性に優れた建材として壁や天井にはもちろん床等
にも使用できる。
Next, when a silicone resin coating composition using a polymer or oligomer having a molecular weight of 10,000 or less consisting of an alkoxy-substituted organosilane as a third layer is applied and impregnated, the acidic layer in the reaction-cured product of magnesium oxide and ammonium phosphate is applied to the third layer. The curing of the silicone resin is accelerated to form a strong coating film. Moreover, since the resin has a low surface energy, it has excellent water repellency, excellent stain resistance and greatly improved weather resistance. It can be used for ceilings as well as floors.

以下、本発明の効果について実施例をもって示す。 Hereinafter, the effects of the present invention will be described with reference to examples.

(実施例1) 断熱材として900×900×25mmの発泡ポリスチレンフォ
ーム(旭ダウ製 スタイロフォーム)を準備し、平滑な
台に乗せた。そしてその外周に発泡ポリスチレンフォー
ム表面から高さ5mmとなるような枠をセットした。
(Example 1) Expanded polystyrene foam (Styrofoam manufactured by Asahi Dow) having a size of 900 x 900 x 25 mm was prepared as a heat insulating material and placed on a smooth table. A frame having a height of 5 mm from the surface of the expanded polystyrene foam was set on the outer periphery.

一方、リン酸アンモニウム粉末(太平化学産業製 リ
ン酸アンモニウム)3kgと硬焼酸化マグネシウム粉末
(宇部化学製 酸化マグネシウム)3kgをあらかじめ、
Vブレンダーで均一に混合した後、水2.5kg中にミキサ
ーで撹拌しながら当混合粉体を投入して均一のスラリー
を得た。このスラリーをすでにセットしておいたスチレ
ンフォーム上にバイブレーターをかけながら流し込んだ
ところ表面平滑になり混合流し込み後5分後に発熱を伴
って硬化した。
On the other hand, 3 kg of ammonium phosphate powder (ammonium phosphate manufactured by Taihei Chemical Industry) and 3 kg of hard-burned magnesium oxide powder (magnesium oxide manufactured by Ube Chemical) are
After uniformly mixing with a V-blender, the mixed powder was charged into 2.5 kg of water while stirring with a mixer to obtain a uniform slurry. When this slurry was poured onto a styrene foam which had already been set with a vibrator, the surface became smooth, and the mixture was cured with heat generation 5 minutes after the mixture was poured.

こうして、図1のように片面に無機硬化層を持った表
面の緻密な複合断熱パネルを得た。
Thus, a dense composite heat insulating panel having a surface having an inorganic cured layer on one side as shown in FIG. 1 was obtained.

(実施例2) 断熱材として900×1800×20mmの炭酸カルシウム等を
充填した塩化ビニル樹脂発泡体(フジ化学製 ロックセ
ルボード 密度0.09g/cm3)を準備した。また、内しろ
が900×1800の型枠を作りセットした。
(Example 2) was prepared 900 × 1800 × 20 mm vinyl chloride resin foam filled with calcium carbonate or the like as a heat insulating material (Fuji Kagaku locked cell board density 0.09 g / cm 3). In addition, we made a 900x1800 formwork and set it.

一方、リン酸アンモニウム粉末7kgと硬焼酸化マグネ
シウム粉末3kg、100メッシュアンダーの珪砂10kgを均一
に混合した。これを10℃に冷却した水4.5kgに投入撹拌
して均一なスラリーを得た。このスラリーの内半分を上
述型枠に投入、平滑にならした後上記塩化ビニル樹脂発
泡体を上に乗せ引き続いてその上にさらに残りのスラリ
ーを均一に流し込んで平滑にならした。混合7分後に発
熱硬化したので脱形した。
On the other hand, 7 kg of ammonium phosphate powder, 3 kg of hard-burned magnesium oxide powder, and 10 kg of silica sand of 100 mesh under were uniformly mixed. This was poured into 4.5 kg of water cooled to 10 ° C. and stirred to obtain a uniform slurry. The inner half of the slurry was put into the mold and smoothed, and then the above-mentioned vinyl chloride resin foam was placed thereon. Subsequently, the remaining slurry was further uniformly poured on the foam and smoothed. After 7 minutes of mixing, the composition was heat-cured and was removed.

こうして、図2のように両面に無機硬化層を持った表
面の緻密な複合断熱パネルを得た。
Thus, a dense composite heat insulating panel having a surface having an inorganic cured layer on both surfaces as shown in FIG. 2 was obtained.

(実施例3) 片面にガラスチョップストランドマット(日東紡製
重量300g/m2)を接着させた900×1800×20mmのパーライ
ト保温板(東邦パーライト製)を準備した。これを平滑
な台上にセットした。
(Example 3) A glass chop strand mat (manufactured by Nitto Boshoku Co., Ltd.)
A 900 × 1800 × 20 mm perlite heat insulating plate (manufactured by Toho Perlite) having a weight of 300 g / m 2 ) was prepared. This was set on a smooth table.

一方、実施例2で用いた配合比率のリン酸塩混合スラ
リーをそのパーライト板上のガラスチョップストランド
マットの接着していない方の面に均一平滑に塗付し、た
だちに重量300g/m2のガラスチョップストランドマット
を硬化前のリン酸塩スラリーに乗せ上よりローラーをこ
ろがしてマットをスラリー上になじませそのまま反応、
発熱、硬化させた。
On the other hand, the phosphate mixed slurry having the compounding ratio used in Example 2 was evenly and evenly applied to the non-adhered surface of the glass chop strand mat on the pearlite plate, and immediately the glass having a weight of 300 g / m 2 was applied. Place the chop strand mat on the phosphate slurry before curing, roll the roller from above and spread the mat on the slurry, react as it is,
Exothermic, cured.

こうして図3のように片面にガラスチョップストラン
ドマットが貼られ他の面にガラスチョップストランドマ
ットを表面に一体化したリン酸塩硬化層を持った断熱パ
ネルを得た。
Thus, as shown in FIG. 3, a heat insulating panel having a phosphate hardened layer having a glass chop strand mat integrated on one surface and a glass chop strand mat integrated on the other surface was obtained on the other surface.

(実施例4) 内しろが450×450mmの型枠を準備した。(Example 4) A mold having an inner margin of 450 x 450 mm was prepared.

つぎに、リン酸アンモニウム粉末4kgにマグネシアク
リンカー(宇部化学製 マグネシアクリンカー)を5kg
秤量混合した混合粉末をつくり20℃の水4kgと混合して
スラリーを得た。このスラリーを上述の型に3kg流し込
み均一にならした。その面に重量73g/m2で25mmあたり、
10本の目開きを持ったガラス繊維メッシュ(日東紡製)
をすばやく乗せ更にユリアフォーム(中国化工製 ハイ
ラック、比重0.07 厚さ25mm)を乗せその上にガラス繊
維メッシュを乗せ、残りのスラリーから3kg流し込み、
均一にならしたところ4分後に発熱、硬化した。
Next, 5 kg of magnesia clinker (Magnesia clinker manufactured by Ube Chemical) was added to 4 kg of ammonium phosphate powder.
A weighed mixed powder was prepared and mixed with 4 kg of water at 20 ° C. to obtain a slurry. 3 kg of this slurry was poured into the above-mentioned mold and made uniform. 25mm per weight 73 g / m 2 on its surface,
Glass fiber mesh with 10 openings (Nittobo)
Quickly put on it, put on a urea foam (China Chemical Co., high rack, specific gravity 0.07, thickness 25mm), put a glass fiber mesh on top of it, pour 3kg from the remaining slurry,
When uniformed, it generated heat and cured after 4 minutes.

こうして図4のように両面にガラスネットが埋め込ま
れた無機硬化体を複合化したパネルを得られた。
Thus, a panel was obtained as shown in FIG. 4, in which the inorganic cured body in which the glass nets were embedded on both sides was combined.

(実施例5) 内しろ300×300mmで表面に深さ2mmで一片10mm角の凹
部模様を10個、横10個持ったゴム製の型枠を準備した。
(Example 5) A rubber mold having an inner margin of 300 × 300 mm, 10 recessed patterns each having a depth of 2 mm and a length of 2 mm and a side of 10 mm, and 10 transverse sides was prepared.

そこにリン酸アンモニウム粉末2kg、マグネシアクリ
ンカー粉末2kgにウォラストナイト針状鉱物を5kg入れ、
混合後、水3kg入れて混練した。その混練物をゴム型に
入れナイロン製の5mm目開きのネットをそれに乗せて押
し込み、その上より比重が0.10の発泡ポリスチレンフォ
ームを押しつけ、そのまま発熱、硬化させた。
Add 5 kg of wollastonite needle mineral to 2 kg of ammonium phosphate powder and 2 kg of magnesia clinker powder,
After mixing, 3 kg of water was added and kneaded. The kneaded material was put in a rubber mold, a nylon net having a mesh size of 5 mm was put on the net, and was pushed in. A foamed polystyrene foam having a specific gravity of 0.10 was pressed thereon, and the heat was generated and cured.

その硬化後ゴム製の型枠を脱型したところ、表面に凹
凸の化粧パターンを持った断熱パネルを得た。
After the curing, the rubber mold was removed from the mold to obtain a heat insulation panel having a decorative pattern with irregularities on the surface.

(実施例6) 実施例5で作った300×300mm角の断熱パネルに無機顔
料で着色したアルコキシ置換オルガノシラン含有アクリ
ルシリコーン樹脂塗料組成物(四国化研工業株式会社製
リリカタイト)をエアレスガンでスプレーした。
(Example 6) An acrylic silicone resin coating composition containing alkoxy-substituted organosilane and colored with an inorganic pigment (Lillicatite, manufactured by Shikoku Chemical Industry Co., Ltd.) was sprayed on the heat-insulating panel of 300 × 300 mm square prepared in Example 5 with an airless gun. .

その結果、図6のように表面に凹凸の化粧パターンを
持ち、かつ表面を化粧されたパネルができた。これを床
材として床面に施工したところ若干のクッション製を有
する表面硬質の化粧断熱床ができた。
As a result, as shown in FIG. 6, a panel having a decorative pattern on the surface and having a decorative surface was obtained. When this was used as a floor material and applied to the floor, a hard-faced decorative insulation floor having a slight cushion was obtained.

(比較例1) 実施例2で用いた炭酸カルシウム等を充填した塩化ビ
ニル樹脂発泡板に、セメント5kgに標準砂8kgで混練した
モルタルを表面に厚さ4mmに均一に塗付した。
(Comparative Example 1) Mortar obtained by kneading 5 kg of cement with 8 kg of standard sand was uniformly applied to the surface of the vinyl chloride resin foam board filled with calcium carbonate or the like used in Example 2 to a thickness of 4 mm.

そうしたところ硬化が遅く2日たって移動しようとし
たところ表面モルタルが割れてはがれた。
In such a case, the surface mortar was cracked and peeled off when the curing was slow and it was attempted to move two days later.

また別なものをそのままそっとおいておいたところ下
地断熱板との間ではがれ、表面にクラックが入り実用に
供しなかった。
When another product was left alone, it peeled off from the base insulating plate, cracked on the surface, and was not put to practical use.

(比較例2) 実施例5に用いたゴム製枠に半水石膏を水で混合した
ものを流し込み、すばやくナイロンメッシュを乗せて押
し込み、ただちに発泡ポリスチレンフォームを押しつ
け、そのまま硬化脱型した。
(Comparative Example 2) A mixture of hemihydrate gypsum and water was poured into the rubber frame used in Example 5, and the nylon mesh was quickly pushed in, and immediately pressed with a foamed polystyrene foam, followed by curing and demolding as it was.

その表面にアクリルシリコン樹脂を塗装、乾燥したと
ころ一応300mm角のパネルを得た。
Acrylic silicone resin was applied to the surface and dried to obtain a panel of 300 mm square.

これを取り扱ったところ、ポリスチレンフォーム層が
剥離した。また、水につけたところでは表面の化粧塗装
層が膨れて剥離し石膏表面は劣化し強度がおちていた。
When this was handled, the polystyrene foam layer peeled off. In addition, when it was soaked in water, the decorative coating layer on the surface swelled and peeled off, and the gypsum surface deteriorated and had a reduced strength.

以上実施例の1〜6と比較例の1〜2の建材につい
て、JIS A 1408「建築用ボード類の曲げ試験方法」3.5
(1)曲げ破壊荷重(kg f)の試験をおこなったところ
次のような結果となった。(但し、試験体は同JIS A 14
08 2.2に規定する3号試験体をもちいた。) 表−1に示すように実施例1〜6はいずれも実用に供
する程度の曲げ強さをもち断熱材への密着性もよくま
た、硬化時間も適当であり、なおかつ表面にアルコキシ
置換オルガノシランよりなる分子量10000以下のポリマ
ーもしくはオリゴマーを用いたシリコーン樹脂塗料組成
物を塗付すると耐候性に優れた建材となることが明らか
になった。
JIS A 1408 “Bending test method for building boards”, 3.5 to 3.5 for the building materials of Examples 1 to 6 and Comparative Examples 1 to 2
(1) The following results were obtained when a test for bending fracture load (kgf) was performed. (However, the specimen is JIS A 14
08 No. 3 specimen specified in 2.2 was used. ) As shown in Table 1, all of Examples 1 to 6 have a bending strength enough to be put to practical use, have good adhesion to a heat insulating material, have an appropriate curing time, and have a surface that is more than an alkoxy-substituted organosilane. It was revealed that when a silicone resin coating composition using a polymer or oligomer having a molecular weight of 10,000 or less was applied, a building material having excellent weather resistance was obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第6図…本願発明の建材の各態様 第7図…第1リン酸アルミニウムと酸化マグネシウム混
合粉体に水を加えた場合の反応温度の経過と、リン酸ア
ンモニウムと酸化マグネシウム混合粉体に水を加えた場
合の反応温度の経過の比較図 1……発泡断熱材 2……リン酸アルミニウムと酸化マグネシウムとの反応
硬化体 3……補強材 4……鋳型 5……変性アクリルシリコーン樹脂塗料組成物 a……第1リン酸アルミニウム粉末+酸化マグネシウム
+水の反応温度経過 b……リン酸アンモニウム粉末+酸化マグネシウム粉末
+水の反応温度経過
1 to 6: each aspect of the building material of the present invention Fig. 7: progress of reaction temperature when water is added to mixed powder of aluminum phosphate and magnesium oxide, and mixing of ammonium phosphate and magnesium oxide Comparison diagram of the reaction temperature when water is added to the powder 1. Foamed heat insulating material 2. Reaction cured product of aluminum phosphate and magnesium oxide 3. Reinforcing material 4. Mold 5. Modified acrylic Silicone resin coating composition a: Reaction temperature course of first aluminum phosphate powder + magnesium oxide + water b: Reaction temperature course of ammonium phosphate powder + magnesium oxide powder + water

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1層として断熱材を置き第2層としてそ
の片面もしくは両面に、リン酸アンモニウムと酸化マグ
ネシウムの反応硬化物を積層してなる建材。
1. A building material comprising a heat insulating material as a first layer and a reaction cured product of ammonium phosphate and magnesium oxide laminated on one or both surfaces thereof as a second layer.
【請求項2】第1層として断熱材を置き第2層としてそ
の片面もしくは両面に、充填材と無機および/または有
機などの繊維上物質を含むリン酸アンモニウムと酸化マ
グネシウムの反応硬化物を積層してなる建材。
2. A heat-insulating material as a first layer and a reaction-hardened product of ammonium phosphate and magnesium oxide containing a filler and inorganic and / or organic substances on fibers are laminated on one or both surfaces thereof as a second layer. Building materials
【請求項3】リン酸アンモニウムと酸化マグネシウムの
反応硬化物と、断熱材との界面および/または硬化物中
および/または硬化物表面および/または断熱材表面に
シート状もしくはネット状の補強材を含んでなる請求項
第1項または第2項記載の建材。
3. A sheet-like or net-like reinforcing material is provided at the interface between the reaction hardened product of ammonium phosphate and magnesium oxide and the heat insulating material and / or in the hardened material and / or on the hardened material surface and / or the heat insulating material surface. The building material according to claim 1 or 2, comprising a building material.
【請求項4】リン酸アンモニウムと酸化マグネシウムの
反応硬化物表面に、凹凸状のテクスチャーを持たせた請
求項第1項から第3項のいずれかに記載の建材。
4. The building material according to claim 1, wherein the surface of the cured product of the reaction between ammonium phosphate and magnesium oxide has an uneven texture.
【請求項5】リン酸アンモニウムと酸化マグネシウムの
反応硬化物表面に第3層としてアルコキシ置換オルガノ
シランよりなる分子量10000以下のポリマーもしくはオ
リゴマーを用いたシリコーン樹脂塗料組成物を塗付含浸
してなる請求項第1項から第4項のいずれかに記載の建
材。
5. A silicone resin coating composition comprising a polymer or oligomer having a molecular weight of 10,000 or less consisting of an alkoxy-substituted organosilane as a third layer on the surface of a cured reaction product of ammonium phosphate and magnesium oxide. Item 5. A building material according to any one of Items 1 to 4.
【請求項6】断熱材が有機質および/または無機質であ
る請求項第1項から第5項のいずれかに記載の建材。
6. The building material according to claim 1, wherein the heat insulating material is organic and / or inorganic.
【請求項7】有機質断熱材がポリスチレンフォーム、ポ
リウレタンフォーム、ポリエチレンフォーム、ユリアフ
ォーム、ポリ塩化ビニルフォームから選ばれる少なくと
も1種であることを特徴とする請求項第6項記載の建
材。
7. The building material according to claim 6, wherein the organic heat insulating material is at least one selected from polystyrene foam, polyurethane foam, polyethylene foam, urea foam, and polyvinyl chloride foam.
【請求項8】無機質断熱材が石綿パーライト板、泡ガラ
ス、硅酸カルシウム板、発泡コンクリート、発泡モルタ
ルから選ばれる少なくとも1種であることを特徴とする
請求項第6項記載の建材。
8. The building material according to claim 6, wherein the inorganic heat insulating material is at least one selected from asbestos perlite board, foam glass, calcium silicate board, foam concrete, and foam mortar.
【請求項9】無機質断熱材が、水溶性アルカリ金属硅酸
塩、水溶性リン酸塩、水硬性硅酸石灰セメントから選ば
れる少なくとも1種及びその硬化剤、金属系発泡剤、発
泡安定剤よりなる無機質常温発泡断熱材であることを特
徴とする請求項第6項記載の建材。
9. An inorganic heat insulating material comprising at least one selected from the group consisting of a water-soluble alkali metal silicate, a water-soluble phosphate, and a hydraulic lime lime cement, and a hardener, a metal-based foaming agent, and a foam stabilizer. The building material according to claim 6, which is an inorganic cold foam insulation material.
【請求項10】リン酸アンモニウムと酸化マグネシウム
の反応硬化物は両者の粉体混合物に水を加えてなるスラ
リーを発泡断熱材の表面に塗付反応硬化し密着させたも
のであるところの請求項第1項記載の建材の製造方法。
10. The reaction-hardened product of ammonium phosphate and magnesium oxide is obtained by applying a slurry obtained by adding water to a powder mixture of both to the surface of a foamed heat insulating material, reacting and hardening the slurry. 2. The method for producing a building material according to claim 1.
【請求項11】リン酸アンモニウムと酸化マグネシウム
の反応硬化物は両者の粉体と、充填材と、無機および/
または有機などの繊維状物質との混合物に水を加えてな
るスラリーを発泡断熱材の表面に塗付反応硬化し密着さ
せたものであるところの請求項第2項記載の建材の製造
方法。
11. A reaction hardened product of ammonium phosphate and magnesium oxide comprises powder of both, filler, inorganic and / or inorganic oxide.
3. The method for producing a building material according to claim 2, wherein a slurry obtained by adding water to a mixture with a fibrous substance such as an organic material is applied to the surface of the foamed heat insulating material by reaction hardening and adhered thereto.
【請求項12】リン酸アンモニウムと酸化マグネシウム
の反応硬化物は両者の粉体混合物に水を加えてなるスラ
リーを凹凸状の鋳型に流しこみ硬化させ表面に凹凸状の
テクスチャーを付与したものであり、該スラリーの硬化
前に発泡断熱材を接触させ反応硬化と共に密着させると
ころの請求項第4項記載の建材の製造方法。
12. A reaction hardened product of ammonium phosphate and magnesium oxide is obtained by pouring a slurry obtained by adding water to a powder mixture of both into an uneven mold and hardening to give an uneven texture on the surface. 5. The method for producing a building material according to claim 4, wherein the foamed heat insulating material is brought into contact with the slurry before the slurry is cured, and is brought into close contact with the reaction curing.
JP63145525A 1988-06-13 1988-06-13 Building material made of phosphoric acid cured product Expired - Fee Related JP2582283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63145525A JP2582283B2 (en) 1988-06-13 1988-06-13 Building material made of phosphoric acid cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145525A JP2582283B2 (en) 1988-06-13 1988-06-13 Building material made of phosphoric acid cured product

Publications (2)

Publication Number Publication Date
JPH01314156A JPH01314156A (en) 1989-12-19
JP2582283B2 true JP2582283B2 (en) 1997-02-19

Family

ID=15387236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145525A Expired - Fee Related JP2582283B2 (en) 1988-06-13 1988-06-13 Building material made of phosphoric acid cured product

Country Status (1)

Country Link
JP (1) JP2582283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418308A (en) * 2011-07-29 2012-04-18 河源市固体废物集中处置中心有限公司 Water permeable bricks produced by using building waste residue and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9502906D0 (en) * 1995-02-15 1995-04-05 Refrigeration Const Serv Ltd Thermal and fire resistant barrier
AT512737B1 (en) * 2012-03-23 2016-06-15 Fronius Int Gmbh welding machine
US9714516B1 (en) 2015-06-15 2017-07-25 Jaime Hernandez Modular panel system particularly for below grade applications
CN108797821A (en) * 2017-04-27 2018-11-13 祁魁 A kind of light body fireproof heated board
NL2019108B1 (en) * 2017-06-22 2019-01-07 Champion Link Int Corp Floor panel and method of producing such a floor panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418308A (en) * 2011-07-29 2012-04-18 河源市固体废物集中处置中心有限公司 Water permeable bricks produced by using building waste residue and manufacturing method thereof

Also Published As

Publication number Publication date
JPH01314156A (en) 1989-12-19

Similar Documents

Publication Publication Date Title
CA1141640A (en) Building components
KR102250722B1 (en) Cementitious article comprising hydrophobic finish
US6409951B1 (en) Process for producing an inorganic molded product
US5728458A (en) Light-weight high-strength composite pad
WO2009087610A2 (en) Composite material and process for the preparation thereof
JP2582283B2 (en) Building material made of phosphoric acid cured product
NO128340B (en)
KR101703881B1 (en) Manufacturing Method of Insulation Panel with excellent Solidity and Water Resistance and Insulation Panel made thereby
WO2008020561A1 (en) Process for producing cured magnesia cement foam, cured foam obtained by the process, and molded object comprising the cured object
US5143670A (en) Slab shaped building components and method of forming same
KR100795837B1 (en) Negative Ion Emission Wall Structure Of Building Using Environmental Porous Rock
RU174634U1 (en) INSULATING FACING PLATE
TWI784032B (en) Method for producing cured polymeric skins
RU2208110C2 (en) Process of manufacture of heat insulation plate for wall facing
JP2883586B2 (en) Glass fiber reinforced gypsum product and method for producing the same
JP2006169810A (en) Floor structure of building, and its construction method
JPH081854A (en) Refractory board
JP3869252B2 (en) Lightweight insulated tile
JP3919924B2 (en) Fireproof structural board
JP2023519661A (en) Glass mat tile backer panel and method for manufacturing glass mat tile backer panel
JP3308487B2 (en) Fireproof structural board and method of manufacturing the same
JP3995856B2 (en) Wood piece cement board and method for producing the wood piece cement board
JPH0615620A (en) Manufacture of precast concrete slab
JPH0752307A (en) Panel board
JP2003300767A (en) Inorganic board and manufacturing method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees