JP2009270380A - 60 min heatproof building material and its manufacturing method - Google Patents

60 min heatproof building material and its manufacturing method Download PDF

Info

Publication number
JP2009270380A
JP2009270380A JP2008123540A JP2008123540A JP2009270380A JP 2009270380 A JP2009270380 A JP 2009270380A JP 2008123540 A JP2008123540 A JP 2008123540A JP 2008123540 A JP2008123540 A JP 2008123540A JP 2009270380 A JP2009270380 A JP 2009270380A
Authority
JP
Japan
Prior art keywords
weight
composite
metal compound
thermoplastic resin
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008123540A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hasegawa
克之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAITEKKU KK
Original Assignee
MAITEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAITEKKU KK filed Critical MAITEKKU KK
Priority to JP2008123540A priority Critical patent/JP2009270380A/en
Publication of JP2009270380A publication Critical patent/JP2009270380A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fire resistant building material capable of passing a 60 min fire resistance test and being mass-producible. <P>SOLUTION: This 60 min heatproof building material is composed of a core material (a) made of (a-1) a composite resin sheet constituted by heating, compressing, and molding composite chips comprising 85-70 wt.% of a hydration metal compound and 15-30 wt.% of a thermoplastic resin or (a-2) a composite mortar sheet formed by mixing the composite chips comprising 85-70 wt.% of the hydration metal compound and 15-30 wt.% of the thermoplastic resin with a wall material such as cement or gypsum or the like, an intermediate layer (b) composed of fiber nets provided on both surfaces of the core material and nipping and holding the core material, and an outer layer (c) composed of an inorganic fire resistant layer formed by the cement or the gypsum composition formed on one surface or both surfaces of the core matrial through the fiber nets. This heatproof building material has the physical properties causing no weight loss of 30% or more in a noncombustibility test and no collapse due to burning of the core material in the 60 min fire resistance test. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は外壁・内壁下地用軽量セメントボードの改良に関し、特に芯材して熱可塑性樹脂と水和金属化合物とからなる複合材を有効利用し、60分耐火試験を通過するように改良された耐火建材およびその製造方法に関する。   The present invention relates to an improvement of a lightweight cement board for an outer wall / inner wall base, and in particular, has been improved so that a composite material composed of a thermoplastic resin and a hydrated metal compound is effectively used as a core material and passed a 60-minute fire resistance test. The present invention relates to a fireproof building material and a manufacturing method thereof.

外壁・内壁下地用軽量セメントボードは米国では40年の長きにわたって外壁・内壁下地として使用されてきた。日本では屋根工事・外壁工事に用いられている。   Lightweight cement boards for outer and inner wall substrates have been used as outer and inner wall substrates for 40 years in the United States. In Japan, it is used for roof construction and exterior wall construction.

このセメントボードはポルトランドセメントにシェイルという火山れき(軽量骨材)を混入し水で練り合わせたものを芯材とし、その表裏に耐アルカリ性ガラス繊維メッシュをセメントスラリーで埋め込んだもので、対クラック性、耐久性、防耐火性を発揮するほか、しなやかな特性(可とう性)を持っているため、曲面施工が可能であるという特徴を有している。   This cement board is made by mixing Portland cement with volcanic rubble (lightweight aggregate) called keil and kneading with water, and using an alkali-resistant glass fiber mesh embedded in the cement slurry on the front and back. In addition to exhibiting durability and fire resistance, it has a flexible characteristic (flexibility), so it has the feature that curved surface construction is possible.

この種セメントボードは木造の軸組、枠組構法、鉄骨造にも使用できるもので、素材として不燃材認定の対象となっている。通気構法の無機系断熱材充填工法で、30分防火構造(木造軸組・枠組)、45分準耐火(木造軸組・枠組)の認定を受けるに至っているが、60分耐火構造とするためには、不十分であり、現状では外壁ではコンクリート壁とすることが要求されており、他方、内壁ではガラス繊維を封入した12mm厚の石こうボードを使用することが要求されているため、この種の耐火構造を実現するには作業性、施工コストから極めて困難な状況となっている。   This kind of cement board can also be used for wooden frames, frame construction methods, and steel structures, and is subject to non-combustible material certification as a material. It has been certified as a 30-minute fireproof structure (wooden frame / framework) and 45-minute quasi-fireproof (wooden frame / framework) with the ventilation method of inorganic insulation, but to make it a 60-minute fireproof structure. This is not sufficient, and at present, the outer wall is required to be a concrete wall, while the inner wall is required to use a 12 mm thick gypsum board encapsulating glass fiber. It is extremely difficult to realize a fire-resistant structure of this type due to workability and construction cost.

そこで、耐火被覆材としてケイ酸カルシウム板と繊維補強セメントボードもしくは石膏ボードを一体化したもの(特許文献1)や繊維強化セメントボード1の片面にガラスメッシュあるいはカーボンメッシュとウレタン発砲体を積層し、積層後プラスターボードを付設する積層構造体(特許文献2)が提案されている。   Therefore, as a fireproof covering material, a glass silicate plate and a fiber reinforced cement board or a gypsum board integrated (Patent Document 1) or a fiber reinforced cement board 1 is laminated with a glass mesh or a carbon mesh and a urethane foam. A laminated structure (Patent Document 2) in which a plaster board is attached after lamination has been proposed.

特開平5−71169号公報Japanese Patent Application Laid-Open No. 5-711169 特開2006−112038号公報JP 2006-112038 A

しかしながら、特許文献1は鉄骨構造の柱もしくは梁の耐火被覆を目的としたもので、一般外壁内壁下地用途には適さない。他方、特許文献2記載の積層構造では積層数が多く、量産には適さない。そこで、 本発明はかかる問題点に鑑み、量産性に優れ、しかも軽量薄型で60分耐火構造試験に適合するセメントボードを提供することを課題とする。   However, Patent Document 1 is intended for a fireproof coating of a steel structure column or beam, and is not suitable for a general outer wall inner wall base application. On the other hand, the stacked structure described in Patent Document 2 has a large number of stacked layers and is not suitable for mass production. Then, this invention makes it a subject to provide the cement board which is excellent in mass-productivity, is lightweight and thin, and fits a 60-minute fireproof structure test in view of this problem.

本発明者らは鋭意研究の結果、60分耐火構造とするためには、セメントボードの内面にある芯材の耐火性が重要であり、ここに水和金属化合物、好ましくは水酸化アルミニウム、水酸化マグネシウムまたは水酸化カルシウムを70重量%以上、好ましくは75重量%以上配合した複合材で芯材を形成するか、またはセメントまたは石こうあるいはケイ酸カルシウムで芯材を形成するときの骨材として使用すると、通常30分または45準耐火構造のセメントボードが60分耐火構造となる物性を備えるようになることを見出し、本発明を完成したものであり、
その要旨とするところは(a-1)熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%からなる複合チップを加熱圧縮成形してなる複合樹脂シートまたは(a-2) 熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%からなる複合チップを骨材としてセメント、モルタル又は石こう等の壁材中に混合して形成してなる複合モルタルシートからなる芯材(a)と、該芯材の両面に付設され、芯材を挟持するファイバーネットからなる中間層(b)と、該ファイバーネットを介して芯材の片面又は両面に形成されたセメント、モルタル又は石こう組成物からなる無機耐火層からなる外層(c)とからなることを特徴とする。
As a result of diligent research, the present inventors have found that the fire resistance of the core material on the inner surface of the cement board is important in order to obtain a 60-minute fire-resistant structure, where a hydrated metal compound, preferably aluminum hydroxide, water, Used as an aggregate when forming a core with a composite material containing 70% by weight or more, preferably 75% by weight or more of magnesium oxide or calcium hydroxide, or forming a core with cement, gypsum or calcium silicate Then, it was found that a cement board having a 30-minute or 45-quasi-refractory structure usually has a physical property that becomes a fire-resistant structure for 60 minutes, and the present invention has been completed.
The gist is (a-1) a composite resin sheet obtained by heat compression molding a composite chip comprising 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin or (a-2) It is composed of a composite mortar sheet formed by mixing a composite chip composed of 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin as an aggregate in a wall material such as cement, mortar or gypsum. A core material (a), an intermediate layer (b) made of a fiber net attached to both surfaces of the core material and sandwiching the core material, and a cement formed on one or both surfaces of the core material via the fiber net, It consists of the outer layer (c) which consists of an inorganic fireproof layer which consists of a mortar or a gypsum composition, It is characterized by the above-mentioned.

本発明によれば、芯材が熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合耐火シートからなるので、耐火性に富むとともに、その両面をファイバーネットにより挟持しているので、不燃試験でも30%以上の重量ロスがなく、芯材はファイバーネットによりしっかりと挟持され、60分耐火試験でも焼け崩れがなく、十分な耐火性能を有することになる。
熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合チップを骨材としてセメント又は石こう等の壁材中に混合して形成してなる複合モルタルシート(a-2)もモルタル材料の耐火性能が水和金属化合物の配合によりさらに向上するので、芯材が上記複合耐火シートである場合に比して優るとも劣ることはない60分耐火性能を示すことになる。
According to the present invention, the core material is composed of the composite fireproof sheet formed by mixing and molding the hydrated metal compound 85 to 70% by weight with respect to 15 to 30% by weight of the thermoplastic resin. Because it is clamped by the fiber net, there is no weight loss of 30% or more even in the incombustible test, the core material is firmly clamped by the fiber net, and it does not collapse in the 60-minute fire resistance test and has sufficient fire resistance performance. Become.
A composite mortar sheet formed by mixing a composite chip formed by mixing 85 to 70% by weight of a hydrated metal compound with 15 to 30% by weight of a thermoplastic resin into a wall material such as cement or gypsum as an aggregate. In (a-2), the fire resistance of the mortar material is further improved by the blending of the hydrated metal compound. Therefore, the fire resistance of the mortar material is not inferior to that of the composite fireproof sheet. It will be.

図1は本発明の好ましい構造を備えるセメントボードであって、(a-1)熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合耐火シートからなる芯材(a)と、該芯材の両面に付設され、複合耐火シートを挟持するファイバーネットからなる中間層(b)と、該ファイバーネットを介して複合耐火シートの片面又は両面に形成されたセメント、モルタル又は石こう組成物からなる無機耐火層からなる外層(c)とからなる。   FIG. 1 shows a cement board having a preferred structure according to the present invention. (A-1) From a composite refractory sheet obtained by mixing and molding 85 to 70% by weight of a hydrated metal compound to 15 to 30% by weight of a thermoplastic resin. A core material (a), an intermediate layer (b) made of a fiber net attached to both surfaces of the core material and sandwiching the composite fireproof sheet, and formed on one or both surfaces of the composite fireproof sheet via the fiber net And an outer layer (c) comprising an inorganic refractory layer comprising a cement, mortar or gypsum composition.

上記複合耐火シートは図2に示すように、芯材(a)として熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合チップを骨材としてセメント,モルタル又は石こう等の壁材中に混合して形成してなる軽量複合モルタルシート(a-2)であってもよい。   As shown in FIG. 2, the composite refractory sheet is cemented with a composite chip formed by mixing 85 to 70% by weight of a hydrated metal compound with 15 to 30% by weight of a thermoplastic resin as a core (a). , A lightweight composite mortar sheet (a-2) formed by mixing in a wall material such as mortar or gypsum.

上記複合耐火シート(a-1)が熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を添加してなる粉状又は粒状組成物を溶融混練して固化させた複合素材を一旦破砕した後加熱圧縮成形してなる複合材であるのが好ましい。熱可塑性樹脂が15重量%以下であると、水和金属化合物との混練性、破砕された複合材の成形性に問題が出る。他方、30重量%を超えると、不燃試験での重量ロスに影響を与えるので、30%以下の重量ロスに維持するのが困難となるので好ましくない。特に15重量%以上25重量%以下が好ましい。   A composite material obtained by melting and kneading a powdery or granular composition obtained by adding 85 to 70% by weight of a hydrated metal compound to 15 to 30% by weight of the thermoplastic resin in the composite fireproof sheet (a-1) It is preferable that the composite material is formed by crushing and then heat compression molding. When the thermoplastic resin is 15% by weight or less, there are problems in kneadability with the hydrated metal compound and moldability of the crushed composite material. On the other hand, if it exceeds 30% by weight, it will affect the weight loss in the nonflammability test, which makes it difficult to maintain the weight loss below 30%, which is not preferable. In particular, it is preferably 15% by weight or more and 25% by weight or less.

ここで、熱可塑性樹脂としてはポリエチレン(PE)、ポリエチレンテレフタラート(PET,PETE)、ポリ塩化ビニル(PVC)、ポリ乳酸(PLA)、ポリプロピレン(PP)、ポリアミド(PA)、ポリカーボネート(PC)、テフロン(登録商標)(PTFE)ポリウレタン(PU)、ポリスチレン(PS)、飽和ポリエステル、ABS樹脂(ABS)、アクリル樹脂(PMMA)、ポリアセタール樹脂(POM)等の各種の熱可塑性樹脂を用途に応じて選択することができる。   Here, as the thermoplastic resin, polyethylene (PE), polyethylene terephthalate (PET, PETE), polyvinyl chloride (PVC), polylactic acid (PLA), polypropylene (PP), polyamide (PA), polycarbonate (PC), Teflon (registered trademark) (PTFE) Polyurethane (PU), polystyrene (PS), saturated polyester, ABS resin (ABS), acrylic resin (PMMA), polyacetal resin (POM), etc. You can choose.

複合材として添加する水和金属化合物としては、例えば水酸化アルミニウム(分解開始温度200℃、吸熱量470cal/g)、水酸化カルシウム(分解開始温度380℃、吸熱量222cal/g)、水酸化マグネシウム(分解開始温度340℃、吸熱量320cal/g)、カルシウムアルミネート(分解開始温度250℃、吸熱量340cal/g)などの各種添加物を選択することができ、この種水和金属化合物の物性を阻害しない範囲で各種の難燃化剤が併用されてよく、ZnO,硼酸亜鉛、錫酸亜鉛、カーボンブラック、硝酸銅、硝酸鉄、スルホン酸金属塩、フォスファゼン化合物、ナノコンポジットフィラー、フームドシリカ、PAN等を適宜使用することもできる。   Examples of the hydrated metal compound added as a composite material include aluminum hydroxide (decomposition start temperature 200 ° C., endothermic amount 470 cal / g), calcium hydroxide (decomposition start temperature 380 ° C., endothermic amount 222 cal / g), magnesium hydroxide. Various additives such as (decomposition start temperature 340 ° C., endothermic amount 320 cal / g), calcium aluminate (decomposition start temperature 250 ° C., endothermic amount 340 cal / g) can be selected, and the physical properties of this seed hydrated metal compound Various flame retardants may be used in combination as long as they do not interfere with ZnO, zinc borate, zinc stannate, carbon black, copper nitrate, iron nitrate, metal sulfonate, phosphazene compound, nanocomposite filler, fumed silica, PAN Etc. can also be used as appropriate.

熱可塑性樹脂と水和金属化合物の組み合わせは水和金属化合物の分解温度が熱可塑性樹脂の溶融温度以下であるように選択されるのが肝要であり、分解温度と吸熱量を考慮して2種以上を混合して用いることができる。   It is important that the combination of the thermoplastic resin and the hydrated metal compound is selected so that the decomposition temperature of the hydrated metal compound is lower than the melting temperature of the thermoplastic resin. The above can be mixed and used.

両者を均一に混合するためには熱可塑性樹脂に対する水和金属化合物の配合量が70重量%以上と極めて高いため、混合時のせん断熱により樹脂分が溶融し、水和金属化合物との十分な混合ができるように、熱可塑性樹脂と水和金属化合物の種類および混合比率が最適化される。熱可塑性樹脂はその溶融温度、流動性にもよるが粉状または粒状として水和金属化合物と混合されるのが好ましい場合が多い。また破砕された中間片を加熱圧縮して流動化させ一体化成形できるように中間片の溶融流動化物性を調整するために、2種以上の熱可塑性樹脂を混合するのがよい場合がある。例えば、熱可塑性樹脂の流動性を調整するためにエラストマーを一部配合する場合もある。   In order to mix the two uniformly, the blending amount of the hydrated metal compound with respect to the thermoplastic resin is as extremely high as 70% by weight or more, so the resin component melts due to the shear heat during mixing, and sufficient with the hydrated metal compound. The types and mixing ratios of the thermoplastic resin and the hydrated metal compound are optimized so that the mixing can be performed. Depending on the melting temperature and fluidity of the thermoplastic resin, it is often preferable to mix it with the hydrated metal compound in the form of powder or granules. Moreover, in order to adjust the melt fluidization physical property of an intermediate piece so that the crushed intermediate piece can be heat-compressed, fluidized, and integrally molded, it may be good to mix 2 or more types of thermoplastic resins. For example, a part of the elastomer may be blended to adjust the fluidity of the thermoplastic resin.

中間層(b)をなすファイバーネットは通常、ガラス繊維ネットが使用されるが、カーボン樹脂等の合成樹脂繊維が使用されても支障がない。   A glass fiber net is usually used as the fiber net forming the intermediate layer (b), but there is no problem even if a synthetic resin fiber such as a carbon resin is used.

上記外層(c)としてはセメントボートとして通常使用されるセメント、モルタル又は石こう等の組成物が使用されるが、骨材を使用する場合は、上記熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合チップを使用するのが無機耐火性能を向上させるので好ましい。上記複合チップは熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を添加してなる粉状組成物を溶融混練して固化させた複合素材を平均粒径およそ30mmφ以下に破砕して細骨材、粗骨材として調製することができる。上記複合チップは熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を添加してなる粉状又は粒状組成物に天然又は合成ファイバーを添加し、溶融混練して固化させた複合素材を破砕して製造するようにしてもよい。混練時の分解を防ぐ意味で溶融温度の比較的低い樹脂、ポリエチレン、ポリ塩化ビニル、アクリル樹脂を使用する場合は水酸化アルミニウムでよいが、さらに高い溶融温度を有する場合は水酸化アルミニウムの一部または全部を水酸化マグネシウムまたは水酸化カルシウムと混合して使用するのがよい。   As the outer layer (c), a composition such as cement, mortar or gypsum which is usually used as a cement boat is used. When an aggregate is used, it is hydrated with respect to 15 to 30% by weight of the thermoplastic resin. It is preferable to use a composite chip formed by mixing and molding 85 to 70% by weight of a metal compound because the inorganic fire resistance is improved. In the composite chip, a composite material obtained by melting and kneading a powder composition obtained by adding 85 to 70% by weight of a hydrated metal compound to 15 to 30% by weight of a thermoplastic resin has an average particle diameter of about 30 mmφ or less. It can be crushed and prepared as fine aggregate and coarse aggregate. The composite chip is obtained by adding natural or synthetic fiber to a powdery or granular composition obtained by adding 85 to 70% by weight of a hydrated metal compound to 15 to 30% by weight of a thermoplastic resin, and melt-kneading to solidify. The composite material may be crushed and manufactured. In order to prevent decomposition during kneading, aluminum hydroxide may be used when a resin having a relatively low melting temperature, polyethylene, polyvinyl chloride, or acrylic resin is used. Alternatively, the whole may be mixed with magnesium hydroxide or calcium hydroxide.

本発明に係る耐火建材は工場生産して現場でそのまま使用できるようにしてもよいが、図3及び図4に示すように、(a-1)熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合樹脂シートまたは(a-2) 熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合チップを骨材としてセメント又は石こう等の壁材中に混合して形成してなる複合モルタルシートからなる芯材(a)の両面に、グラスファイバーネットからなる中間層(b)を付設して挟持する半製品であっても、現場でその表面にセメント層を形成するようにして使用することもできるので有用である。   Although the refractory building material according to the present invention may be produced in a factory and used on site as it is, as shown in FIGS. 3 and 4, (a-1) hydrated with respect to 15 to 30% by weight of the thermoplastic resin. A composite resin sheet formed by mixing and molding 85 to 70% by weight of a metal compound or (a-2) a composite chip formed by mixing and molding 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin. Half of the intermediate layer (b) made of a glass fiber net is attached to both sides of a core material (a) made of a composite mortar sheet formed by mixing in a wall material such as cement or gypsum as an aggregate. Even a product is useful because it can be used in the field by forming a cement layer on its surface.

本発明によれば、以下の3種の方法により60分耐火建材を製造することができる。
ます、第1の方法は、図5に示すように、混練機(ニーダ)に粉状又は粒状熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を投入し、両者をせん断をかけて溶融混練し、固化させた複合素材(b)を平均粒径おおよそ30mmφ以下に破砕(c)して破砕中間片(d)を製造し、該破砕中間片を加熱成形面上に配置した型枠内に投入し(e)、上方から加熱成形面で型枠内に押し込め、溶融一体化して複合耐熱シート(f)を形成し、複合耐熱シートの両面に接着剤を介してグラスファイバーネットを付設し(g)、グラスファイバーネット面にセメント、モルタル又は石こう層を塗布し、乾燥させて仕上げる工程(h)からなる。
According to the present invention, a refractory building material can be produced for 60 minutes by the following three methods.
First, as shown in FIG. 5, in the first method, 85 to 70% by weight of a hydrated metal compound is added to 15 to 30% by weight of powdered or granular thermoplastic resin in a kneader (kneader). The composite material (b) melted and kneaded by shearing and solidified is crushed (c) to an average particle size of approximately 30 mmφ or less to produce a crushed intermediate piece (d), and the crushed intermediate piece is placed on the thermoformed surface. It is put into the placed mold (e), pressed into the mold from the top by the thermoforming surface, melted and integrated to form a composite heat-resistant sheet (f), and glass is bonded to both sides of the composite heat-resistant sheet via an adhesive. It comprises a step (h) of attaching a fiber net (g), applying a cement, mortar or gypsum layer to the surface of the glass fiber net and drying it.

第2の方法は、図6に示すように、混練機(ニーダ)に粉状又は粒状熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を投入し、せん断をかけて溶融混練し、固化させた複合素材(b)を平均粒径おおよそ30mmφ以下に破砕(c)して破砕中間片(d)を製造し、下加熱成形面上にグラスファイバーネットを配置し、その上に配置される上下を開放した型枠内に上記破砕中間片を投入し、該型枠内の破砕中間片上面にグラスファイバーネットを付設して成形準備し(e)、上方から加熱成形面で型枠内に押し込め、上記破砕中間片を溶融一体化するとともにその表裏面をグラスファイバーネットで挟持した複合耐熱シート(g)を形成し、グラスファイバーネット面にセメント又は石こう層を塗布し、乾燥させて仕上げる工程からなる。   In the second method, as shown in FIG. 6, 85 to 70% by weight of a hydrated metal compound is added to 15 to 30% by weight of powdered or granular thermoplastic resin in a kneader (kneader) and subjected to shearing. The composite material (b) that has been melt-kneaded and solidified is crushed (c) to an average particle size of approximately 30 mmφ or less to produce a crushed intermediate piece (d), and a glass fiber net is disposed on the lower thermoforming surface, The above-mentioned crushing intermediate piece is put into a mold that is open on the top and bottom, and a glass fiber net is attached to the top surface of the crushing intermediate piece in the mold to prepare for molding (e), and the heat-molded surface from above Into the mold, melt and integrate the crushing intermediate piece, and form a composite heat-resistant sheet (g) sandwiched between the front and back surfaces with a glass fiber net, and apply a cement or gypsum layer to the glass fiber net surface, Dry and finish Consisting of gel process.

第3の方法は、図5及び図6の工程において複合樹脂ボードに代えて複合モルタルボードを用いる場合で、図7に示すように、混練機(ニーダ)に粉状又は粒状熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を投入し、せん断をかけて溶融混練し、固化させた複合素材(b)を平均粒径おおよそ30mmφ以下に破砕(c)して破砕中間片(d)を製造し、該破砕中間片(d)を骨材としてモルタル材と混合した組成物を型枠に注入凝固成形して複合モルタルボード(f)を形成するが、複合モルタルボード(f)の成形の際に、成形面上にグラスファイバーネット(b)を配置し、その上に配置される上下を開放した型枠内に上記破砕中間片とセメント、モルタル又は石こうを混合した組成物を投入し(e)、上方から押し型で型枠内に押し込め、ファイバーネットから外方に組成物を幾分滲出させ、グラスファイバーネット面にモルタル層を形成した後(f),さらに該型枠内の組成物上面にグラスファイバーネットを付設し(g)、ファイバーネット面にセメント又は石こう層を塗布し、乾燥させ仕上げる(h)ことができる。図7の場合は、ファイバーネットは片面ずつ形成したが、モルタルボードととともに両面を同時に形成し、モルタル面を形成することもできるし、先にモルタルボードを形成した後、両面にファイバーネットを付設し、モルタル層を形成することもできる。ここで、モルタル層とはセメント、モルタルまたは石こう等の無機耐火物層を意味する。   The third method is a case where a composite mortar board is used instead of the composite resin board in the steps of FIG. 5 and FIG. 6, and as shown in FIG. 85 to 70% by weight of a hydrated metal compound is added to 30% by weight, melted and kneaded under shear, and the solidified composite material (b) is crushed (c) to an average particle size of approximately 30 mmφ or less and crushed A composite mortar board (f) is formed by producing a piece (d) and injecting and solidifying a composition obtained by mixing the crushed intermediate piece (d) with a mortar material into a mold to form a composite mortar board (f). In the molding of f), a composition in which the glass fiber net (b) is arranged on the molding surface, and the above-mentioned crushing intermediate piece and cement, mortar, or gypsum are mixed in a mold that is arranged on the top and bottom. Throw objects (e), upward After being pushed into the mold with a push-push mold, the composition is slightly exuded from the fiber net to form a mortar layer on the glass fiber net surface (f), and then the glass on the upper surface of the composition in the mold A fiber net can be attached (g), and a cement or gypsum layer can be applied to the surface of the fiber net and dried to finish (h). In the case of FIG. 7, the fiber net is formed on each side, but both sides can be formed simultaneously with the mortar board to form the mortar surface, or after the mortar board is formed first, the fiber net is attached to both sides. And a mortar layer can also be formed. Here, the mortar layer means an inorganic refractory layer such as cement, mortar or gypsum.

熱可塑性樹脂と水和金属化合物は粉状組成物として混練するのが混練機のせん断により溶融混練が可能であるので好ましい。混練機としては、せん断の掛かりやすい混練機を使用するのが好ましく、1軸又は2軸押し出し機を使用するよりも加圧ニーダ、インテンシブミキサーを使用するのが好ましい。   It is preferable to knead the thermoplastic resin and the hydrated metal compound as a powdery composition because they can be melt-kneaded by shearing with a kneader. As the kneader, it is preferable to use a kneader which is easily sheared, and it is preferable to use a pressure kneader or an intensive mixer rather than a uniaxial or biaxial extruder.

破砕は公知の破砕機を使用することができる。熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を含んでなる粉状組成物をせん断をかけて溶融し混練して固化させた複合素材を破砕して中間片を作成する。中間片には粉又は粒状の破砕粒、薄片状の破砕片及び塊状の破砕塊が含まれるが、次工程での成形性、流動性を考慮すると平均粒径おおよそ30mmφ以下であるのが好ましい。   A known crusher can be used for crushing. An intermediate piece is prepared by crushing a composite material obtained by melting, kneading and solidifying a powdered composition containing 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin. To do. The intermediate piece includes powdered or granular crushed particles, flaky crushed pieces, and crushed crushed lumps, but considering the formability and fluidity in the next step, the average particle size is preferably about 30 mmφ or less.

かかる中間片の加熱加圧は上下のローラで加圧してもよく、上下一対の加熱成形金型内で溶融して流動化し、一体成形するようにするのがよい。   The intermediate piece may be heated and pressed by upper and lower rollers, or may be melted and fluidized in a pair of upper and lower thermoforming molds and integrally molded.

図10は芯材として複合樹脂シートを使用する場合の半製品の連続成形方法の概念図であり、搬送ベルト上にガラス繊維メッシュシートを連続的に送り出すとともに、一定の間隔で型枠を載せ、次いで破砕中間片をその型枠内に充填し、均一に広げた後に加熱圧縮して中間片を型枠内で一部溶融流動化して一体化する。所定の温度まで降下すると、押し型を開放し、その上にガラス繊維メッシュを敷いて接着剤またはセメント層を塗布し、縁を切断して半製品を製造することができる。   FIG. 10 is a conceptual diagram of a semi-finished continuous molding method in the case of using a composite resin sheet as a core, continuously feeding a glass fiber mesh sheet onto a conveyor belt, and placing a formwork at regular intervals, Next, the crushing intermediate piece is filled in the mold, spread uniformly, and then heated and compressed, and the intermediate piece is partially melted and fluidized in the mold to be integrated. When lowered to a predetermined temperature, the mold can be opened, a glass fiber mesh is laid thereon, an adhesive or cement layer is applied, and the edges are cut to produce a semi-finished product.

図11は芯材として複合モルタルシートを使用する場合の半製品の連続成形方法の概念図であり、搬送ベルト上に一定の間隔で型枠を載せ、その上にガラス繊維メッシュシートを連続的に送り出すとともにスラリー材を塗布し、次いで破砕中間片を骨材として混合した複合モルタル組成物をその型枠内に充填し、均一に広げた後に成型し、一体化する。次いで、その上にガラス繊維メッシュを敷いてスラリー材を塗布し、ガラス繊維メッシュ縁を切断して養生し、半製品を製造することができる。   FIG. 11 is a conceptual diagram of a method for continuously forming a semi-finished product when a composite mortar sheet is used as a core material. A mold frame is placed on a conveyor belt at regular intervals, and a glass fiber mesh sheet is continuously formed thereon. The composite mortar composition prepared by feeding and applying the slurry material and then mixing the crushed intermediate piece as an aggregate is filled in the mold, uniformly spread, and then molded and integrated. Then, a glass fiber mesh is spread on it, a slurry material is applied thereto, the edge of the glass fiber mesh is cut and cured, and a semi-finished product can be manufactured.

本発明に係る耐火建材は従来のセメントボードと同様に塗り壁システムに適用することができる。図11は塗り壁システムの構成を示す斜視図であって、構造用合板の上に透湿防水シートを張り、一定の間隔で並列配置した胴縁材を介してセメントボード(本発明に係る耐火建材)をウッドスクリューを用いて構造用合板全面に付設する。そして、このセメントボードの上に適宜ガラス繊維テープを張り、その上に外壁ベースコートを施し、そのベースコート上に外壁材を付設して外張断熱工法を達成する。本発明に係るセメントボードは60分耐火性能を有するため、図12に示す塗り壁システムは優れた耐火構造を有することになる。   The fireproof building material according to the present invention can be applied to a painted wall system in the same manner as a conventional cement board. FIG. 11 is a perspective view showing a configuration of a painted wall system, in which a moisture-permeable waterproof sheet is stretched on a structural plywood, and cement board (fireproof according to the present invention) is disposed through a trunk material arranged in parallel at regular intervals. Building material) is attached to the entire surface of the structural plywood using wood screws. Then, a glass fiber tape is appropriately put on the cement board, an outer wall base coat is applied thereon, and an outer wall material is attached on the base coat to achieve an outer insulation method. Since the cement board according to the present invention has a fire resistance performance of 60 minutes, the painted wall system shown in FIG. 12 has an excellent fire resistance structure.

以下、本発明を図面に示す具体例に基づいて詳細に説明する。図8及び図9は本発明に係る耐火建材の製造方法の好ましい実施形態を示す。芯材を製造する場合、水和金属化合物、例えば水酸化アルミニウムや水酸化マグネシウム、あるいは炭酸カルシウムを準備する。この水和金属化合物や炭酸カルシウムは平均外径10μm〜35μmの粉状のものを用いる。   Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. 8 and 9 show a preferred embodiment of a method for producing a refractory building material according to the present invention. When manufacturing the core material, a hydrated metal compound such as aluminum hydroxide, magnesium hydroxide, or calcium carbonate is prepared. As the hydrated metal compound or calcium carbonate, a powdery one having an average outer diameter of 10 μm to 35 μm is used.

また、熱可塑性樹脂は、例えば適当な大きさの粉状又は粒状のポリプロピレンやポリエチレンなどの熱可塑性樹脂を準備する。   Moreover, as the thermoplastic resin, for example, a thermoplastic resin such as powder or granular polypropylene or polyethylene having an appropriate size is prepared.

他方、混練機の加熱ヒータを作動させ、混練機内部を熱可塑性樹脂の溶融温度、例えば100°C〜300°Cの範囲内の温度まで上昇させておき、粉状熱可塑性樹脂を混練機内に投入し、せん断をかけ攪拌しながら溶融させる。樹脂の投入は一度に行ってもよく、複数回に分けて行ってもよい。樹脂の溶融中に攪拌羽根の回転による溶融樹脂の攪拌によって熱が発生するので、加熱ヒータによる加熱温度は樹脂の溶融温度よりも多少低温であってもよい。   On the other hand, the heater of the kneading machine is operated, and the inside of the kneading machine is raised to the melting temperature of the thermoplastic resin, for example, a temperature in the range of 100 ° C to 300 ° C, and the powdery thermoplastic resin is put into the kneading machine. Charge and melt with stirring and stirring. The resin may be charged at a time or may be divided into a plurality of times. Since heat is generated by the stirring of the molten resin by the rotation of the stirring blade during the melting of the resin, the heating temperature by the heater may be slightly lower than the melting temperature of the resin.

熱可塑性樹脂が十分に軟化又は溶融すると、準備した充填剤、例えば水和金属化合物や炭酸カルシウムを一度に又は複数回に分けて混練機内に投入し、軟化・溶融した熱可塑性樹脂と充填剤及び着色剤を実質的に均一になるように混練する。混練には加圧式ニーダが好ましいが、その他の混練機であっても混練物を硬化させては破砕し、再度溶融混練する作業を繰り返すことにより均一混練性を向上させるのが好ましい。充填剤は一度に大量に投入すると、軟化・溶融した樹脂の温度が低下してしまうことがあるので、混練機への投入前に複合素材の原料を予め加熱ヒータ等で適当な温度に加熱してもよい。   When the thermoplastic resin is sufficiently softened or melted, the prepared filler, for example, a hydrated metal compound or calcium carbonate, is charged into the kneader at once or in several times, and the softened and melted thermoplastic resin and filler and The colorant is kneaded so as to be substantially uniform. For kneading, a pressure kneader is preferable, but even with other kneaders, it is preferable to improve the uniform kneadability by repeating the operations of curing and crushing the kneaded material and then melt-kneading again. If a large amount of filler is added at once, the temperature of the softened and melted resin may decrease, so the raw material of the composite material should be heated to an appropriate temperature with a heater or the like before being added to the kneader. May be.

また、熱可塑性樹脂を溶融状態のままで長時間加熱すると、樹脂本来の物性が損なわれることもあるので、十分に溶融した後、短時間で混練を完了させるのが好ましい。本件発明者の実験によれば、溶融してから混練が完了するまでの時間は5分〜30分程度が好ましいことが判明したが、加熱温度や熱可塑性樹脂の物性によって異なるので、最適な時間は実験などによって求めるのがよい。   Further, if the thermoplastic resin is heated for a long time in a molten state, the original physical properties of the resin may be impaired. Therefore, it is preferable to complete the kneading in a short time after sufficiently melting. According to the experiments of the present inventors, it has been found that the time from melting to completion of kneading is preferably about 5 to 30 minutes. However, the optimum time varies depending on the heating temperature and the physical properties of the thermoplastic resin. Should be obtained by experimentation.

十分な混練が済むと、混練物を取り出し、破砕機で適切な寸法、例えば一辺が3mm〜40mmの大きさの粒状、片状又は塊状に破砕し、中間片とする。   After sufficient kneading, the kneaded product is taken out and crushed into an appropriate size, for example, a granule, piece or lump having a size of 3 mm to 40 mm on one side to obtain an intermediate piece.

こうして中間片が得られると、図8及び図9に示す具体的成形法を採用し、芯材(a)の成形を行い、図5又は図6の方法を採用し、ファイバーネット(b)及び外層(c)を形成してセメントボードを製造する。   When the intermediate piece is thus obtained, the specific molding method shown in FIGS. 8 and 9 is adopted, the core material (a) is molded, the method of FIG. 5 or 6 is adopted, and the fiber net (b) and An outer layer (c) is formed to produce a cement board.

図8において、まず、(a)では成型する厚みに応じた型枠を上面に備える加熱成形台を用意する。次いで(b) では成形芯材の体積に相応するように計量された中間片を投入する。このとき、破砕中間片が型枠からはみ出しやすいので、型枠の内枠に沿ってホーミング用枠を挿入する場合もある。そして、中間片を均等に広げる(c)。その後、加熱プレスを行う(d)。成形が終了すると、図9に示されるように、上加熱成形台を開放し(e)、冷却後型枠から成形物を取り出す(f)。そして、はみ出た耳部分を切断して芯材を製造する(j)。   In FIG. 8, first, in (a), a thermoforming table having a mold frame on the upper surface corresponding to the thickness to be molded is prepared. Next, in (b), an intermediate piece measured so as to correspond to the volume of the molded core is introduced. At this time, since the crushing intermediate piece easily protrudes from the mold, a homing frame may be inserted along the inner frame of the mold. Then, the intermediate piece is spread evenly (c). Thereafter, heating press is performed (d). When the molding is completed, as shown in FIG. 9, the upper heating molding table is opened (e), and the molded product is taken out from the mold after cooling (f). Then, the protruding ear part is cut to produce a core material (j).

好ましい熱可塑性樹脂としてポリプロピレン15〜20重量%に5重量%以下のエラストマーを配合し、これに水酸化アルミニウムに10重量%以下の水酸化マグネシウムを配合した充填材を80〜75重量%を配合し、両者をほぼ均一に混練し、固化した複合素材を平均粒径25mm程度に破砕した中間片を加熱一体成形した厚み3〜10mmの芯材に従来と同様のガラス繊維ネットを敷設し、セメント層を形成したものは60分耐火試験に合格する物性を有することを確認した。   As a preferred thermoplastic resin, 15 to 20% by weight of polypropylene is blended with an elastomer of 5% by weight or less, and 80 to 75% by weight of a filler in which aluminum hydroxide is blended with 10% by weight or less of magnesium hydroxide is blended. The same glass fiber net is laid on a core material of 3 to 10 mm thickness, which is formed by heating and integrally molding an intermediate piece obtained by kneading the two materials almost uniformly and crushing the solidified composite material to an average particle size of about 25 mm, and cement layer It was confirmed that those having formed had physical properties that passed the 60-minute fire resistance test.

本発明に係る第1実施例の耐火建材(セメントボード)の模式的断面図である。It is a typical sectional view of the fireproof building material (cement board) of the 1st example concerning the present invention. 本発明に係る第2実施例の耐火建材(セメントボード)の模式的断面図である。It is typical sectional drawing of the fireproof building material (cement board) of 2nd Example which concerns on this invention. 本発明に係る第1実施例の耐火建材(セメントボード)の半製品の模式的断面図である。It is typical sectional drawing of the semi-finished product of the fireproof building material (cement board) of 1st Example which concerns on this invention. 本発明に係る第2実施例の耐火建材(セメントボード)の半製品の模式的断面図である。It is typical sectional drawing of the semi-finished product of the fireproof building material (cement board) of 2nd Example which concerns on this invention. 本発明に係る第1実施例の耐火建材(セメントボード)の製造方法を示す概要図である。It is a schematic diagram which shows the manufacturing method of the fireproof building material (cement board) of 1st Example which concerns on this invention. 本発明に係る第1実施例の耐火建材(セメントボード)の製造方法の変形例を示す概要図である。It is a schematic diagram which shows the modification of the manufacturing method of the fireproof building material (cement board) of 1st Example which concerns on this invention. 本発明に係る第2実施例の耐火建材(セメントボード)の製造方法を示す概要図である。It is a schematic diagram which shows the manufacturing method of the fireproof building material (cement board) of 2nd Example which concerns on this invention. 本発明に係る第1実施例の耐火建材(セメントボード)の芯材の具体的製造方法を示す概要図である。It is a schematic diagram which shows the specific manufacturing method of the core material of the fireproof building material (cement board) of 1st Example which concerns on this invention. 図8に続く工程を示す概要図である。It is a schematic diagram which shows the process following FIG. 本発明に係る第1実施例の耐火建材(セメントボード)の連続製造方法を示す概要図である。It is a schematic diagram which shows the continuous manufacturing method of the refractory building material (cement board) of 1st Example which concerns on this invention. 本発明に係る第2実施例の耐火建材(セメントボード)の連続製造方法を示す概要図である。It is a schematic diagram which shows the continuous manufacturing method of the fireproof building material (cement board) of 2nd Example which concerns on this invention. 本発明に係る耐火建材の施工例を示す一部分解斜視図である。It is a partially exploded perspective view which shows the construction example of the fireproof building material which concerns on this invention.

Claims (10)

(a-1)熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%からなる複合チップを加熱圧縮成形してなる複合樹脂シートまたは(a-2) 熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%からなる複合チップを骨材としてセメント又は石こう等の壁材中に混合して形成してなる複合モルタルシートからなる芯材(a)と、該芯材の両面に付設され、芯材を挟持するファイバーネットからなる中間層(b)と、該ファイバーネットを介して芯材の片面又は両面に形成されたセメント、モルタル又は石こう組成物からなる無機耐火層からなる外層(c)とからなり、不燃試験で30%以上の重量ロスがなく、60分耐火試験で芯材の焼け崩れがないことを特徴とする耐火建材。   (A-1) a composite resin sheet formed by heat compression molding a composite chip comprising 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin or (a-2) 15 to 30 of a thermoplastic resin A core material (a) composed of a composite mortar sheet formed by mixing a composite chip comprising 85 to 70% by weight of a hydrated metal compound with respect to weight% as a aggregate in a wall material such as cement or gypsum; An intermediate layer (b) comprising a fiber net attached to both surfaces of the core material and sandwiching the core material, and an inorganic material comprising a cement, mortar or gypsum composition formed on one or both surfaces of the core material via the fiber net A fireproof building material comprising an outer layer (c) composed of a fireproof layer, having no weight loss of 30% or more in a nonflammable test, and having no core collapse in a 60 minute fireproof test. 上記複合樹脂シート(a-1)が熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を添加してなる組成物を溶融混練して固化させた複合素材を一旦破砕した後加熱圧縮成形してなる複合材である請求項1記載の耐火建材。   The composite material in which the composite resin sheet (a-1) was melt-kneaded and solidified by adding 85 to 70% by weight of a hydrated metal compound to 15 to 30% by weight of the thermoplastic resin was once crushed. The refractory building material according to claim 1, which is a composite material formed by post-heat compression molding. 上記外層(c)が熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を混合成形してなる複合チップを骨材として含むセメント、モルタル又は石こう組成物からなる無機耐火層である請求項1記載の耐火建材。   An inorganic refractory layer made of a cement, mortar or gypsum composition, wherein the outer layer (c) is a composite chip formed by mixing 85 to 70% by weight of a hydrated metal compound with 15 to 30% by weight of a thermoplastic resin. The fireproof building material according to claim 1. 上記複合チップが熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を添加してなる組成物を溶融混練して固化させた複合素材を破砕してなる複合材である請求項3記載の耐火建材。   The composite chip is a composite material obtained by crushing a composite material obtained by melting and kneading a composition obtained by adding 85 to 70% by weight of a hydrated metal compound to 15 to 30% by weight of a thermoplastic resin. Item 3. A fireproof building material according to item 3. 上記複合チップが熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を添加してなる組成物に天然又は合成ファイバーを添加し、溶融混練して固化させた複合素材を破砕してなる複合材である請求項3記載の耐火建材。   The composite material is composed of natural or synthetic fibers added to a composition in which 85 to 70% by weight of a hydrated metal compound is added to 15 to 30% by weight of a thermoplastic resin. The fireproof building material according to claim 3, which is a composite material. 水和金属化合物が水酸化アルミニウム、水酸化マグネシウムまたは水酸化カルシウムの1種または2種以上からなる請求項1記載の耐火建材。   The refractory building material according to claim 1, wherein the hydrated metal compound comprises one or more of aluminum hydroxide, magnesium hydroxide or calcium hydroxide. (a-1)熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%からなる複合チップを加熱圧縮成形してなる複合樹脂シートまたは(a-2) 熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%からなる複合チップを骨材としてセメント又は石こう等の壁材中に混合して形成してなる複合モルタルシートからなる芯材(a)と、該芯材の両面に付設され、芯材を挟持するグラスファイバーネットからなる中間層(b)とからなることを特徴とする60分耐火建材用半製品。   (A-1) a composite resin sheet formed by heat compression molding a composite chip comprising 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin or (a-2) 15 to 30 of a thermoplastic resin A core material (a) composed of a composite mortar sheet formed by mixing a composite chip comprising 85 to 70% by weight of a hydrated metal compound with respect to weight% as a aggregate in a wall material such as cement or gypsum; A semi-finished product for 60-minute refractory building materials comprising an intermediate layer (b) made of glass fiber net attached to both sides of the core material and sandwiching the core material. 熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を含んでなる粉状又は粒状組成物をせん断をかけて溶融混練して固化させた複合素材を平均粒径おおよそ30mmφ以下に破砕して中間片を製造する工程と、
該破砕中間片を加熱成形面上に配置した型枠内に投入し、上方から加熱成形面で型枠内に押し込め、溶融一体化して複合樹脂シートを形成する工程と、
複合耐熱シートの両面に接着剤を介してファイバーネットを付設する工程と、
グラスファイバーネット面にセメント、モルタル又は石こう層を塗布し、乾燥させる工程からなることを特徴とする60分耐火建材の製造方法。
A composite material obtained by solidifying a powdered or granular composition containing 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin by shearing and solidifying the powder is approximately 30 mmφ or less. Crushing to produce an intermediate piece,
The step of throwing the crushing intermediate piece into a mold frame arranged on the thermoforming surface, pressing it into the mold frame from above with the thermoforming surface, and fusing and forming a composite resin sheet;
Attaching a fiber net to both sides of the composite heat-resistant sheet via an adhesive;
A method for producing a 60-minute refractory building material comprising a step of applying a cement, mortar, or gypsum layer to a glass fiber net surface and drying.
熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を含んでなる粉状又は粒状組成物をせん断をかけて溶融混練して固化させた複合素材を平均粒径おおよそ30mmφ以下に破砕して中間片を製造する工程と、
加熱成形面上にファイバーネットを配置し、その上に配置される上下を開放した型枠内に上記破砕中間片を投入し、その上面にファイバーネットを付設し、上方から加熱成形面で型枠内に押し込め、上記破砕中間片を溶融一体化するとともにその表裏面をファイバーネットで挟持した複合耐熱シートを形成する工程と、
ファイバーネット面にセメント、モルタル又は石こう層を塗布し、乾燥させる工程からなることを特徴とする60分耐火建材の製造方法。
A composite material obtained by solidifying a powdered or granular composition containing 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin by shearing and solidifying the powder is approximately 30 mmφ or less. Crushing to produce an intermediate piece,
Place the fiber net on the heat forming surface, put the above crushing intermediate piece into the mold frame that is placed on the upper and lower sides, attach the fiber net on the upper surface, and form the mold on the heat forming surface from above A step of forming a composite heat-resistant sheet that is pressed into the molten intermediate piece and the front and back surfaces of the intermediate piece are sandwiched between fiber nets;
A method for producing a 60-minute refractory building material comprising a step of applying a cement, mortar or gypsum layer to a fiber net surface and drying it.
熱可塑性樹脂15〜30重量%に対し水和金属化合物85〜70重量%を含んでなる粉状又は粒状組成物をせん断をかけて溶融し混練して固化させた複合素材を破砕して複合骨材を製造する工程と、
成形面上にファイバーネットを配置し、その上に上記破砕中間片を骨材としてセメント又は石こう等の無機耐火材と混合したモルタル組成物を投入し、さらに該モルタル組成物上面にグラスファイバーネットを付設し、上方から押圧成形し、ファイバーネットから外方に組成物を幾分滲出させ、グラスファイバーネット面にセメント、モルタル又は石こう層を形成し、乾燥させる工程からなることを特徴とする60分耐火建材の製造方法。
A composite material obtained by crushing a powdered or granular composition containing 85 to 70% by weight of a hydrated metal compound with respect to 15 to 30% by weight of a thermoplastic resin, shearing, kneading, and solidifying the composite material is obtained by crushing the composite bone A process of manufacturing the material;
A fiber net is arranged on the molding surface, and a mortar composition mixed with an inorganic refractory material such as cement or gypsum is used as an aggregate on the crushed intermediate piece, and a glass fiber net is further placed on the top surface of the mortar composition. 60 minutes characterized by comprising a step of attaching, pressing from above, extruding the composition somewhat outward from the fiber net, forming a cement, mortar or gypsum layer on the glass fiber net surface and drying Manufacturing method for fireproof building materials.
JP2008123540A 2008-05-09 2008-05-09 60 min heatproof building material and its manufacturing method Pending JP2009270380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123540A JP2009270380A (en) 2008-05-09 2008-05-09 60 min heatproof building material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123540A JP2009270380A (en) 2008-05-09 2008-05-09 60 min heatproof building material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009270380A true JP2009270380A (en) 2009-11-19

Family

ID=41437178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123540A Pending JP2009270380A (en) 2008-05-09 2008-05-09 60 min heatproof building material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009270380A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964792A (en) * 2014-04-16 2014-08-06 徐琪 Preparation method for resin/ cement composite light weight board
JP2016216967A (en) * 2015-05-18 2016-12-22 東北資材工業株式会社 Building material surface forming composite, lightweight building component and manufacturing method thereof
US10421251B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
US11225046B2 (en) 2016-09-08 2022-01-18 United States Gypsum Company Gypsum board with perforated cover sheet and system and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964792A (en) * 2014-04-16 2014-08-06 徐琪 Preparation method for resin/ cement composite light weight board
JP2016216967A (en) * 2015-05-18 2016-12-22 東北資材工業株式会社 Building material surface forming composite, lightweight building component and manufacturing method thereof
US10421251B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
US10421250B2 (en) 2015-06-24 2019-09-24 United States Gypsum Company Composite gypsum board and methods related thereto
US11040513B2 (en) 2015-06-24 2021-06-22 United States Gypsum Company Composite gypsum board and methods related thereto
US12090744B2 (en) 2015-06-24 2024-09-17 United States Gypsum Company Composite gypsum board and methods related thereto
US11225046B2 (en) 2016-09-08 2022-01-18 United States Gypsum Company Gypsum board with perforated cover sheet and system and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR101283793B1 (en) Functional inorganic board and manufacturing method thereof
JP2009270380A (en) 60 min heatproof building material and its manufacturing method
CN103332957A (en) Fireproof and waterproof magnesium oxide board and production process thereof
WO1999025166A1 (en) Radio wave absorbing materials, radio wave absorber, and radio wave anechoic chamber and the like made by using the same
US20140221553A1 (en) Composite materials and shaped articles
JP2009012453A (en) Process for producing artificial marble
CN106590005A (en) Plastic-wood composite floor and preparation method thereof
CN107849303B (en) Poly (vinyl chloride) substrate and method for producing same
WO2011135388A2 (en) Method for producing building products and the product formed by the method
JP3902889B2 (en) Recycled composite foam, molded product thereof, and manufacturing method thereof
JP2009001597A (en) Method for producing thermoplastic resin composition containing cellulose fiber
KR20140093499A (en) Multipurpose material using non-woven fabric or felt and manfacturing method thereof
JP6504775B2 (en) Pellet-like recycled plastic material and method for producing pellet-like recycled plastic material
JP2009029066A (en) Manufacturing method of combustible fiber-reinforced resin molded article
WO2016082189A1 (en) Method for fabricating environmentally-friendly material by using recycled waste
JP2006199970A (en) Composite foam and molded article thereof and method for producing the same
JPH07314439A (en) Covered powder-grain, molding, and its production
KR960012431B1 (en) Method for manufacturing a plastic plate
AU2013219194A1 (en) A rigid composite material
JP4829712B2 (en) Synthetic wood
US20070132133A1 (en) Method for manufacturing resin composite formed product
KR20220102594A (en) Interior material containing polystyrene material
JP4625190B2 (en) Recyclable rigid foam resin body
JP2001181437A (en) Composite material and its raw material composition and method for producing composite material
JP2007113328A (en) Construction panel, floor structural body, wall structural body, door structural body, and roof structural body