【0001】
【発明の属する技術分野】
本発明は、容器へ装入した溶銑にインペラーを浸漬、回転して脱硫する方法及び装置に関する。
【0002】
【従来の技術】
溶銑を脱硫処理する方法の一つとして、図5に示すように、溶銑4を溶銑鍋等の容器3に装入し、脱硫剤を添加してインペラー100で撹拌して脱硫する方法がある。このようなインペラー撹拌による溶銑脱硫法を行う場合には、表層の脱硫スラグ5がインペラー羽根2’,2’間の隙間から溶銑中へ侵入し、インペラーからの吐出流によって溶銑中へ分散される。このときに分散される脱硫スラグの量が多いほど、脱硫スラグ中の脱硫剤と溶銑との反応界面積が増加し、効率よく脱硫が進む。ところが、インペラーの上部には脱硫スラグが付着しやすいため、そのまま操業を続けるとスラグが徐々に堆積し、インペラー軸周囲を囲むようにブリッジを形成して成長し、やがてインペラー上部に陣笠状にスラグが堆積する。インペラー上部にスラグが陣笠状に堆積した状態では、脱硫剤がインペラー羽根間の隙間から溶銑中へ侵入できなくなり、インペラーの回転による脱硫スラグの溶銑への巻き込み、分散が悪化するため、脱硫率が低下してしまう。
【0003】
インペラー撹拌の際に脱硫スラグがインペラーに付着するのを防止する方法として、(1)脱硫剤等の添加剤組成をコントロールしてスラグの付着を防止する方法、(2)インペラーに付着したスラグを可及的に速やかに取り除く方法(特許文献1)、(3)インペラー上面に30〜70度の傾斜をもつスラグ付着防止板を設けてスラグを付着しにくくする方法(特許文献2)がある。
【0004】
しかしながら、添加剤組成をコントロールする方法では、スラグ付着を防止する効果が充分に得られない。また、インペラーに付着したスラグを可及的に速やかに取り除く方法は、スラグ除去作業を頻繁に行う必要があるため生産性を落とし、頻繁な除去作業によってインペラーが損傷しすい。また、インペラー上面に30〜70度の傾斜をもつスラグ付着防止板を設ける方法は、スラグ付着量をある程度低減できるが充分とは言えず、処理回数を重ねるにつれてスラグ付着量が増加するため、やがてインペラー上部にスラグが陣笠状に付着し、脱硫率の低下を来たす。従って、このような傾斜板を設ける場合でも、インペラー上部に付着したスラグを定期的に除去する必要がある。
【特許文献1】
実開平3−72299号公報
【特許文献2】
特開2001−248976号公報
【0005】
【発明が解決しようとする課題】
本発明は、脱硫スラグがインペラーに付着しても、脱硫剤の溶銑への巻き込み、分散状態の悪化を抑制し、脱硫率を高値に維持することができる脱硫方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、インペラーの羽根の上端の高さを交互に高く又は低くなるようにすることで上述した「陣笠状のスラグ付着」を回避できることを見出した。
【0007】
すなわち、本発明により提供される溶銑の脱硫方法は、容器に溶銑を装入し、脱硫剤を添加すると共に、2枚以上の羽根を有するインペラーを浸漬、回転させ、溶銑を撹拌することにより脱硫する方法において、上記羽根の上端の高さが交互に高く又は低くなる高低差をもつインペラーを用いて溶銑を撹拌することを特徴とする。
【0008】
また、本発明により提供される溶銑の脱硫装置は、溶銑を装入する容器、及び、容器内の溶銑を撹拌するインペラーを備えた脱硫装置において、前記インペラーに2枚以上の羽根を、当該羽根の上端の高さが交互に高く又は低くなる高低差をもたせて設置したことを特徴とする。
【0009】
本発明によれば、隣接し合う羽根相互に、各羽根の上端の高さが交互に高く又は低くなるように高低差をもたせて、高い羽根同士の間の角度を大きくしたことによって、羽根の上部に脱硫スラグが付着しても、羽根と羽根の間に陣笠状になるまで堆積が成長せず、連続操業による脱硫率の低下を回避することができ、スラグを除去する頻度を少なくすることができる。
【0010】
インペラーの羽根の上端の高さが交互に高く又は低くなるように高低差をもたせる方法としては、回転軸方向の長さが相対的に長い羽根と短い羽根を交互に設置する方法がある。或いは、インペラーの羽根を上下2段に設置し、上段の羽根を下段の羽根の一つおきに且つ下段の羽根の真上に位置合わせする方法がある。
【0011】
羽根の下端から相対的に高い上端までの高低差は、羽根の下端から相対的に低い上端までの高低差の1.5倍以上3倍以下とすることが好ましい。
【0012】
本発明によれば、脱硫スラグ中CaF2濃度が6%以下となるような蛍石の使用量が少ない条件で溶銑の脱硫を行う場合でも、脱硫スラグがインペラーの羽根の上部に陣笠状に堆積することを防止することができるので、蛍石の多量使用による不都合を回避することができる。
【0013】
【発明の実施の形態】
本発明においては、溶銑鍋等の容器に溶銑を装入し、脱硫剤を添加すると共に、2枚以上の羽根を有するインペラーを浸漬、回転させ、溶銑を撹拌することにより脱硫する方法において、上記羽根の上端の高さが交互に高く又は低くなる高低差をもつインペラーを用いて溶銑を撹拌する。
【0014】
図1は、本発明で用いるインペラー(101)の一例であり、図1aは側面図、図1bは平面図である。インペラー101は、回転軸1の先端部に回転軸方向の長さLaが相対的に長い羽根2aと長さLbが短い羽根2bを、90度間隔で交互に設置して構成されている。すなわちインペラー101の場合、4枚のインペラーの羽根の長さを2種に分け、対角に位置する2枚の羽根2aの長さLaは、他の2枚の羽根2bの長さLbより長い。これらの4枚の羽根を、下端Bをそろえて回転軸1の周囲に設置しているので、長い羽根2aの上端Taの高さと、短い羽根2bの上端Tbの高さの間に高低差(Ta−Tb)があり、隣接しあう羽根の間では高さが異なる2種の上端Ta、Tbが交互に入れ替わる。
【0015】
図2は、上記インペラー101を備えた本発明の脱硫装置(201)の一例である。脱硫装置201は、溶銑鍋等の容器3、及び、容器内に装入された溶銑4を撹拌するために耐火物製の羽根2a、2bを有するインペラー101を備える。この装置の容器内に溶銑を装入し、脱硫剤を添加する。なお、脱硫剤を添加後に溶銑を装入してもよい。
【0016】
脱硫剤としては、安価で脱硫能が高い点からCaOを主原料とし、蛍石を副原料として併用することが好ましい。蛍石の使用量が多いほど脱硫能は向上するが、コストアップ、脱硫スラグからのフッ素溶出という環境上の問題、耐火物溶損速度の増加という問題を来たす。そのため、脱硫能を考慮しながら蛍石の使用量を少なくすることが望ましいが、蛍石の使用量が少なすぎると脱硫スラグ中CaF2濃度が低くなり流動性が悪化するため、インペラーへのスラグ付着を抑制することが困難になる。従来のインペラー撹拌においては、脱硫スラグ中CaF2濃度が6%以下になると脱硫スラグの流動性が急激に悪化するため、インペラー上部への脱硫スラグの付着、堆積は顕著であった。これに対して本発明の方法によれば、脱硫スラグ中CaF2濃度が6%以下になってもインペラー上部への脱硫スラグの付着、堆積を抑制するので、蛍石の使用量を低減することができる。
【0017】
脱硫装置201の容器3内に溶銑を装入し、脱硫剤を添加した後、溶銑中に浸漬したインペラー101を回転することにより溶銑を撹拌し、添加した脱硫剤を充分に分散させる。この際に脱硫スラグ5が生成し、溶銑4の湯面4a上に浮遊するが、インペラー101は、対角に位置する2枚の羽根の上端Taの高さを、他の2枚の羽根の上端Tbの高さよりも高くしたことにより、羽根の上部に脱硫スラグが付着しても、羽根と羽根の間に陣笠状になるまで堆積が成長せず、連続操業による脱硫率の低下を回避することができ、スラグを除去する頻度を少なくできる。インペラー101は、上端の高さが高い羽根同士の間の角度が180度と大きいために羽根と羽根の間にスラグがブリッジを形成し難くなり、陣笠状にまで堆積が成長しないと考えられる。
【0018】
本発明においてインペラーに設置する羽根の数は特に制限されないが、インペラー101のように羽根の数を合計4枚とし、上端の高さが相対的に高い羽根と低い羽根を各々1対ずつ対角状に設置し、隣接する高い羽根と低い羽根の間隔を90度とした場合には、陣笠状の堆積形成を抑制する効果が特に優れているので好ましい。
【0019】
また、インペラーには、同じ寸法の羽根同士を対角状に且つ同じ高さに合わせて設置することが好ましい。同じ寸法の羽根を回転軸を中心にして対称に且つ同じ高さに設置することによって、インペラーの重心が中心軸上に位置されるので、インペラー回転時に回転装置に余分な負荷がかからずにすむ。
【0020】
羽根の下端から相対的に高い上端までの高低差、すなわち図1においては(Ta−B)で表され、羽根2aの長さLaに等しい高さは、羽根の下端から相対的に低い上端までの高低差、すなわち図1においては(Tb−B)で表され、羽根2bの長さLbに等しい高さの1.5倍以上3倍以下であることが好ましい。この高低差が1.5倍未満では脱硫スラグのインペラー上部への付着、堆積による脱硫率悪化を抑制する効果がやや低下してしまう。一方、この高低差が3を超えると、上端の高さが低い羽根による攪拌動力が低下し、溶銑を攪拌する効果が薄れるため、脱硫効率が低下してしまう。
【0021】
本発明は、隣接し合う羽根の相互に、各羽根の上端の高さが交互に高く又は低くなるように高低差をもたせることによって、高い羽根同士の間の角度を大きくし、羽根と羽根の間に陣笠状にスラグが堆積することを抑制するものである。
【0022】
図3は、本発明で用いる他のインペラー(102)の一例であり、図3aは側面図、図3bは平面図である。インペラー102は、回転軸1の先端部に、回転軸方向の長さLが同じ羽根6a、6bを、上端の高さが交互に高く又は低くなるように、90度間隔で設置して構成されている。インペラー102のように、各羽根の下端の高さが異なる場合には、最も低い下端から各羽根の上端までの工程差により、羽の高さの比を計算する。すなわちインペラー102の場合は、羽根の下端から相対的に高い上端までの高低差とは、最も低い下端である羽根6bの下端Bから相対的に高い位置に設置された羽根6aの上端Taまでの高低差であり、(Ta−B)で表される。一方、羽根の下端から相対的に低い上端までの高低差とは、最も低い下端である羽根6bの下端Bから相対的に低い位置に設置された羽根6bの上端Tbまでの高低差であり、(Tb−B)で表される。そして高低差(Ta−B)が高低差(Tb−B)の1.5倍以上3倍以下であることが好ましい。
【0023】
図4は、本発明で用いる他のインペラー(103)の一例であり、図4aは側面図、図4bは平面図である。インペラー103は、回転軸1の先端部に羽根を上下2段に分けて設置している。下段には軸方向の長さLaが互いに同じ羽根7を90度間隔で4枚配列し、上段には軸方向の長さLbが互いに同じ羽根8を180度間隔で2枚配列し、上段の羽根を下段の羽根の一つおきに且つ下段の羽根の真上に位置合わせした構成となっている。
【0024】
インペラー103の場合は、羽根7と羽根8が2段に設置されている位置では羽根8の上端Taがあり、下段の羽根7のみ設置されている位置では羽根7の上端Tbがあり、隣接しあう羽根の間では高さが異なる2種の上端Ta、Tbが交互に入れ替わる。インペラー103のように羽根を上下2段に設置する場合は、下段の羽根の下端から下段の羽根の上端までの高低差(Tb−B)と、下段の羽根の下端から上段の羽根の上端までの高低差(Ta−B)により羽の高さの比を計算する。高低差(Ta−B)が高低差(Tb−B)の1.5倍以上3倍以下であることが好ましい。
【0025】
【実施例】
(従来例1)
鍋に1350〜1400℃の溶銑(平均組成を表1に示す)250tを装入し、4枚羽根インペラーにより回転速度100rpmで攪拌した。インペラーは新品のAl2O3−SiO2系耐火物製であり、同じ高さ(850mm)の羽根を90度の均等角度で設置した。攪拌しながら鍋内の溶銑中に脱硫剤として生石灰を6kg/t及び蛍石を脱硫スラグ中CaF2濃度が約5%となるように添加した。脱硫剤添加後のインペラー攪拌時間は15分間とした。なお、インペラー浸漬深さは、羽根の上端と溶銑の静止湯面との距離が溶銑深さの1/4となるようにした。
【0026】
この脱硫処理を連続して30チャージ行った。処理後の溶銑の組成(5チャージごとの平均値)及び脱硫スラグ中CaF2濃度を表1に示す。脱硫処理回数の増加に伴いインペラー上部へのスラグ付着量が増加していくことが目視観察により確認され、21〜25チャージ以上連続処理すると、脱硫率が目標の85%以上を達成できなくなった。
【0027】
【表1】
【0028】
(従来例2)
鍋に1350〜1400℃の溶銑(平均組成を表2に示す)250tを装入し、4枚羽根インペラーにより回転速度100rpmで攪拌した。インペラーは新品のAl2O3−SiO2系耐火物製であり、同じ高さ(850mm)の羽根を90度の均等角度で設置した。攪拌しながら鍋内の溶銑中に脱硫剤として生石灰を6kg/t及び蛍石を脱硫スラグ中CaF2濃度が0〜8.5%となるように添加した。脱硫剤添加後のインペラー攪拌時間は15分間とした。なお、インペラー浸漬深さは、羽根の上端と溶銑の静止湯面との距離が溶銑深さの1/4となるようにした。
【0029】
この脱硫処理を、脱硫スラグ中CaF2濃度を変更して連続して30チャージずつ行った。処理後の溶銑の組成(処理後半21〜30チャージ目の平均値)及び脱硫スラグ中CaF2濃度を表2に示す。
【0030】
脱硫スラグ中CaF2濃度が6%を超えるとインペラー上部へのスラグ付着量の増加が抑制されることが目視観察により確認され、30チャージ連続処理しても脱硫率が目標の85%以上を達成できた。
【0031】
【表2】
【0032】
(従来例3)
鍋に1350〜1400℃の溶銑(平均組成を表3に示す。)250tを装入し、4枚羽根インペラーにより回転速度100rpmで攪拌した。インペラーは新品のAl2O3−SiO2系耐火物製であり、同じ高さ(850mm)の羽根を90度の均等角度で設置した。攪拌しながら鍋内の溶銑中に脱硫剤として生石灰を6kg/t及び蛍石を脱硫スラグ中CaF2濃度が約5%となるように添加した。脱硫剤添加後のインペラー攪拌時間は15分間とした。なお、インペラー浸漬深さは、羽根の上端と溶銑の静止湯面との距離が溶銑深さの1/4となるようにした。
【0033】
この脱硫処理を、連続して30チャージ行った。処理後の溶銑の組成(処理後半21〜30チャージ目の平均値)及び脱硫スラグ中CaF2濃度を表3に示す。
【0034】
4枚羽根インペラーではスラグが陣笠状に堆積することが目視観察により確認され、処理後半21〜30チャージ目の平均脱硫率が目標の85%以上を達成できなかった。
【0035】
【表3】
【0036】
(実施例1)
鍋に1350〜1400℃の溶銑(平均組成を表4に示す。)250tを装入し、4枚羽根インペラーにより回転速度100rpmで攪拌した。インペラーは新品のAl2O3−SiO2系耐火物製であり、高い羽根(回転軸方向の長さが相対的に長い羽根)2枚と低い羽根(回転軸方向の長さが相対的に短い羽根)2枚を交互に90度の均等角度で設置した。高い羽根の高さは900mmとし、低い羽根の高さを高い羽根の高さの1.0〜4.0の範囲で変更した。
【0037】
攪拌しながら鍋内の溶銑中に脱硫剤として生石灰を6kg/t及び蛍石を脱硫スラグ中CaF2濃度が約5%となるように添加した。脱硫剤添加後のインペラー攪拌時間は15分間とした。なお、インペラー浸漬深さは、高い羽根の上端と溶銑の静止湯面との距離が溶銑深さの1/4となるようにした。
【0038】
この脱硫処理を、連続して30チャージずつ行った。処理後の溶銑の組成(処理後半21〜30チャージ目の平均値)及び脱硫スラグ中CaF2濃度を表4に示す。
【0039】
インペラーの羽根の高さの比を1.5〜3.0とすることで、処理後半21〜30チャージ目の平均脱硫率が目標の90%以上を達成できた。
【0040】
【表4】
【0041】
(実施例2)
鍋に1350〜1400℃の溶銑(平均組成を表5に示す)250tを装入し、2段羽根インペラーにより回転速度100rpmで攪拌した。インペラーは新品のAl2O3−SiO2系耐火物製であり、上段下段とも羽根の高さ(回転軸方向の長さ)を450mmとし、上段と下段の羽根の間隔は羽根の高さの1/4とし、下段は4枚の羽根を90度の均等角度で設置し、上段は2枚の羽根を対角状に且つ下段の羽根の真上に位置合わせして設置した。
【0042】
攪拌しながら鍋内の溶銑中に脱硫剤として生石灰を6kg/t及び蛍石を脱硫スラグ中CaF2濃度が約5%となるように添加した。脱硫剤添加後のインペラー攪拌時間は15分間とした。なお、インペラー浸漬深さは、高い羽根の上端と溶銑の静止湯面との距離が溶銑深さの1/4となるようにした。
【0043】
この脱硫処理を、連続して30チャージ行った。処理後の溶銑の組成(処理後半21〜30チャージ目の平均値)及び脱硫スラグ中CaF2濃度を表5に示す。
【0044】
処理後半21〜30チャージ目の平均脱硫率が目標の85%以上を達成できた。
【0045】
【表5】
【0046】
【発明の効果】
本発明によれば、インペラー攪拌により溶銑の脱硫処理を行う際に、脱硫スラグがインペラー上部に陣笠状に堆積するのを抑制して、脱硫スラグの溶銑への巻き込み、分散状態の悪化を回避でき、20チャージ以上連続して脱硫処理を行っても脱硫率を高値で維持することができた。
【図面の簡単な説明】
【図1】本発明に用いられるインペラーの一構成例を示す図であり、図1aは側面図、図1bは平面図である。
【図2】本発明に属する溶銑の脱硫装置の一構成例を示す図である。
【図3】本発明に用いられるインペラーの別の構成例を示す図であり、図3aは側面図、図3bは平面図である。
【図4】本発明に用いられるインペラーの別の構成例を示す図であり、図4aは側面図、図4bは平面図である。
【図5】従来のインペラーを備えた溶銑の脱硫装置の一例を示す図である。
【符号の説明】
100…従来のインペラー
101、102、103…インペラー
201…脱硫装置
1…回転軸
2’…従来のインペラー羽根
2(2a、2b)…羽根
3…容器
4…溶銑
5…脱硫スラグ
6(6a、6b)、7、8…羽根[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for immersing and rotating an impeller in hot metal charged in a container and rotating the impeller for desulfurization.
[0002]
[Prior art]
As one of the methods for desulfurizing hot metal, as shown in FIG. 5, there is a method in which hot metal 4 is charged into a container 3 such as a hot metal pot, a desulfurizing agent is added, and stirring is performed by an impeller 100 to perform desulfurization. When performing the hot metal desulfurization method by such impeller stirring, the desulfurized slag 5 on the surface layer enters the hot metal from the gap between the impeller blades 2 ′, 2 ′, and is dispersed into the hot metal by the discharge flow from the impeller. . At this time, the larger the amount of the desulfurized slag dispersed, the larger the reaction interface area between the desulfurizing agent in the desulfurized slag and the hot metal, and the more efficiently the desulfurization proceeds. However, desulfurized slag easily adheres to the upper part of the impeller, so if the operation is continued as it is, slag will gradually accumulate, grow and form a bridge around the impeller shaft, and eventually form a slag in the form of a slag on the upper part of the impeller. Accumulates. When slag is deposited in a cascade shape on the upper part of the impeller, the desulfurizing agent cannot enter the hot metal through the gap between the impeller blades, and the desulfurization rate of the desulfurization rate increases because the rotation of the impeller causes the desulfurization slag to get into the hot metal and disperse. Will drop.
[0003]
As a method for preventing the desulfurized slag from adhering to the impeller during the stirring of the impeller, (1) a method for controlling the composition of additives such as a desulfurizing agent to prevent the slag from adhering, and (2) a method for preventing the slag from adhering to the impeller. There is a method of removing the slag as quickly as possible (Patent Document 1), and (3) a method of providing a slag adhesion preventing plate having an inclination of 30 to 70 degrees on the upper surface of the impeller to make the slag less likely to adhere (Patent Document 2).
[0004]
However, the method of controlling the additive composition cannot sufficiently obtain the effect of preventing slag adhesion. In addition, the method of removing slag attached to the impeller as quickly as possible requires frequent removal of slag, which lowers productivity, and the frequent removal operation damages the impeller. In addition, the method of providing a slag adhesion preventing plate having an inclination of 30 to 70 degrees on the upper surface of the impeller can reduce the slag adhesion amount to some extent, but it cannot be said that it is sufficient, and the slag adhesion amount increases as the number of treatments increases, and eventually, The slag adheres to the upper part of the impeller in a cascade shape, and the desulfurization rate decreases. Therefore, even when such an inclined plate is provided, it is necessary to periodically remove the slag attached to the upper portion of the impeller.
[Patent Document 1]
Japanese Utility Model Publication No. 3-72299 [Patent Document 2]
JP-A-2001-248976
[Problems to be solved by the invention]
An object of the present invention is to provide a desulfurization method and a desulfurization method that can suppress the entrapment of a desulfurizing agent into hot metal and the deterioration of a dispersed state, and maintain a high desulfurization rate even when desulfurized slag adheres to an impeller. And
[0006]
[Means for Solving the Problems]
The inventor of the present invention has found that the above-described “adhered slag attachment” can be avoided by alternately increasing or decreasing the height of the upper end of the impeller blade.
[0007]
That is, the method of desulfurizing hot metal provided by the present invention comprises charging hot metal into a container, adding a desulfurizing agent, immersing and rotating an impeller having two or more blades, rotating the hot metal, and desulfurizing the hot metal by stirring. The method is characterized in that the hot metal is stirred using an impeller having a height difference in which the height of the upper end of the blade is alternately increased or decreased.
[0008]
Further, the hot metal desulfurization apparatus provided by the present invention is a desulfurization apparatus including a vessel for charging hot metal, and an impeller for stirring the hot metal in the vessel, wherein the impeller includes two or more blades. Are provided with a difference in height at which the height of the upper end is alternately increased or decreased.
[0009]
According to the present invention, the adjacent blades are provided with a height difference such that the height of the upper end of each blade is alternately increased or decreased, and the angle between the high blades is increased. Even if desulfurized slag adheres to the upper part, sediment does not grow until it becomes a cascade between the blades, and it is possible to avoid a decrease in the desulfurization rate due to continuous operation, and reduce the frequency of removing slag Can be.
[0010]
As a method of providing a height difference so that the height of the upper end of the impeller blades is alternately increased or decreased, there is a method of alternately installing blades having a relatively long length in the rotation axis direction and short blades. Alternatively, there is a method in which the blades of the impeller are installed in two upper and lower stages, and the upper blade is positioned at every other lower blade and directly above the lower blade.
[0011]
It is preferable that the height difference from the lower end of the blade to the relatively higher upper end be 1.5 times or more and 3 times or less the height difference from the lower end of the blade to the relatively lower upper end.
[0012]
According to the present invention, even if the desulfurization slag CaF 2 concentration perform desulfurization hot metal at conditions to utilize less fluorite such that 6% or less, deposited Jingasa shape desulfurization slag on top of the blades of the impeller Therefore, it is possible to avoid inconvenience due to the use of a large amount of fluorite.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the method of charging hot metal into a container such as a hot metal ladle, adding a desulfurizing agent, immersing and rotating an impeller having two or more blades, rotating, and desulfurizing the hot metal by stirring, The hot metal is stirred using an impeller having a height difference in which the height of the upper end of the blade is alternately increased or decreased.
[0014]
FIG. 1 is an example of an impeller (101) used in the present invention, FIG. 1A is a side view, and FIG. 1B is a plan view. The impeller 101 is configured such that blades 2a having a relatively long length La in the rotation axis direction and blades 2b having a short length Lb are alternately installed at the tip of the rotation shaft 1 at intervals of 90 degrees. That is, in the case of the impeller 101, the lengths of the four impeller blades are divided into two types, and the length La of the two diagonally located blades 2a is longer than the length Lb of the other two blades 2b. . Since these four blades are arranged around the rotary shaft 1 with the lower end B aligned, the height difference between the height of the upper end Ta of the long blade 2a and the height of the upper end Tb of the short blade 2b ( Ta-Tb), and two kinds of upper ends Ta and Tb having different heights alternate between adjacent blades.
[0015]
FIG. 2 shows an example of the desulfurization apparatus (201) of the present invention provided with the impeller 101. The desulfurization apparatus 201 includes a vessel 3 such as a hot metal pot, and an impeller 101 having refractory blades 2a and 2b for stirring hot metal 4 charged in the vessel. Hot metal is charged into the vessel of this apparatus, and a desulfurizing agent is added. The hot metal may be charged after the desulfurizing agent is added.
[0016]
As the desulfurizing agent, it is preferable to use CaO as a main raw material and fluorite as an auxiliary raw material in view of its low cost and high desulfurization ability. The greater the amount of fluorite used, the better the desulfurization ability, but it raises costs, raises environmental issues such as elution of fluorine from the desulfurized slag, and increases the rate of erosion of refractories. Therefore, it is desirable to reduce the amount of fluorite used in consideration of the desulfurization ability. However, if the amount of fluorite is too small, the CaF 2 concentration in the desulfurized slag decreases and the fluidity deteriorates. It becomes difficult to suppress the adhesion. In the conventional impeller stirring, when the CaF 2 concentration in the desulfurized slag becomes 6% or less, the fluidity of the desulfurized slag rapidly deteriorates, and the adhesion and deposition of the desulfurized slag on the upper part of the impeller are remarkable. On the other hand, according to the method of the present invention, even when the CaF 2 concentration in the desulfurized slag becomes 6% or less, the adhesion and accumulation of the desulfurized slag on the upper part of the impeller are suppressed, so that the use amount of fluorite is reduced. Can be.
[0017]
After the hot metal is charged into the container 3 of the desulfurization apparatus 201 and the desulfurizing agent is added, the hot metal is stirred by rotating the impeller 101 immersed in the hot metal, and the added desulfurizing agent is sufficiently dispersed. At this time, the desulfurization slag 5 is generated and floats on the molten metal surface 4a of the hot metal 4. The impeller 101 adjusts the height of the upper end Ta of the two diagonally located blades to the height of the other two blades. By making the height higher than the height of the upper end Tb, even if desulfurized slag adheres to the upper part of the blade, the deposit does not grow until it becomes a cascade between the blades, thereby avoiding a decrease in the desulfurization rate due to continuous operation. And the frequency of removing slag can be reduced. In the impeller 101, since the angle between the blades having the high upper ends is as large as 180 degrees, it is difficult for the slag to form a bridge between the blades, and it is considered that the deposit does not grow to a camp-shape.
[0018]
In the present invention, the number of blades installed on the impeller is not particularly limited, but the number of blades is four in total as in the case of the impeller 101, and a pair of upper and lower blades having a relatively high upper end and a lower pair are each diagonal. It is preferable that the blades are arranged in a shape and the interval between the adjacent high blades and the low blades is 90 degrees, because the effect of suppressing the formation of the cascade-like deposition is particularly excellent.
[0019]
Further, it is preferable that the impellers are provided with blades of the same size diagonally and at the same height. By installing the blades of the same dimensions symmetrically and at the same height about the rotation axis, the center of gravity of the impeller is located on the center axis, so that no extra load is applied to the rotating device when the impeller rotates. Yes.
[0020]
The height difference from the lower end of the blade to the relatively higher upper end, that is, the height difference represented by (Ta-B) in FIG. 1 and equal to the length La of the blade 2a is from the lower end of the blade to the relatively lower upper end. 1, that is, 1.5 to 3 times the height equal to the length Lb of the blade 2b, which is represented by (Tb-B) in FIG. If this height difference is less than 1.5 times, the effect of suppressing the deterioration of the desulfurization rate due to the attachment and accumulation of the desulfurized slag on the upper part of the impeller will be slightly reduced. On the other hand, when the height difference exceeds 3, the stirring power of the blade having a lower upper end is reduced, and the effect of stirring the hot metal is reduced, so that the desulfurization efficiency is reduced.
[0021]
The present invention provides a height difference between adjacent blades so that the height of the upper end of each blade is alternately higher or lower, thereby increasing the angle between the high blades and the blade and the blade. It is intended to prevent slag from accumulating in the form of a camp in between.
[0022]
FIG. 3 is an example of another impeller (102) used in the present invention. FIG. 3A is a side view, and FIG. 3B is a plan view. The impeller 102 is configured such that the blades 6a and 6b having the same length L in the rotation axis direction are arranged at 90 ° intervals at the tip end of the rotation shaft 1 so that the height of the upper end is alternately increased or decreased. ing. When the heights of the lower ends of the blades are different, as in the case of the impeller 102, the ratio of the heights of the blades is calculated based on a process difference from the lowest lower end to the upper end of each blade. That is, in the case of the impeller 102, the height difference from the lower end of the blade to the relatively higher upper end is defined as the distance from the lower end B of the blade 6b, which is the lowest lower end, to the upper end Ta of the blade 6a installed at a relatively higher position. It is a height difference and is represented by (Ta-B). On the other hand, the height difference from the lower end of the blade to the relatively lower upper end is the height difference from the lower end B of the blade 6b, which is the lowest lower end, to the upper end Tb of the blade 6b installed at a relatively low position, (Tb-B). The height difference (Ta-B) is preferably 1.5 times or more and 3 times or less the height difference (Tb-B).
[0023]
FIG. 4 is an example of another impeller (103) used in the present invention. FIG. 4A is a side view, and FIG. 4B is a plan view. The impeller 103 has blades at the tip of the rotating shaft 1 divided into upper and lower stages. In the lower stage, four blades 7 having the same axial length La are arranged at 90 ° intervals, and in the upper stage, two blades 8 having the same axial length Lb are arranged at 180 ° intervals. The configuration is such that the blades are positioned every other lower blade and directly above the lower blade.
[0024]
In the case of the impeller 103, the upper end Ta of the blade 8 is located at the position where the blade 7 and the blade 8 are installed in two stages, and the upper end Tb of the blade 7 is located at the position where only the lower blade 7 is installed. Two kinds of upper ends Ta and Tb having different heights alternate between the matching blades. When the blades are installed in two upper and lower stages as in the impeller 103, the height difference (Tb-B) from the lower end of the lower blade to the upper end of the lower blade, and the height difference from the lower end of the lower blade to the upper end of the upper blade The height ratio of the wings is calculated from the height difference (Ta-B) of the wings. It is preferable that the height difference (Ta-B) is 1.5 times or more and 3 times or less the height difference (Tb-B).
[0025]
【Example】
(Conventional example 1)
250 t of hot metal (average composition shown in Table 1) at 1350 to 1400 ° C. was charged into a pan, and stirred at a rotation speed of 100 rpm by a four-blade impeller. Impeller is Al 2 O 3 -SiO 2 -based refractory made of new, and the wings of the same height (850 mm) was placed at equal angle of 90 degrees. While stirring, 6 kg / t of quicklime and fluorite were added as a desulfurizing agent to the hot metal in the pot so that the CaF 2 concentration in the desulfurized slag became about 5%. The impeller stirring time after the addition of the desulfurizing agent was 15 minutes. The impeller immersion depth was such that the distance between the upper end of the blade and the hot metal surface of the hot metal was 銑 of the hot metal depth.
[0026]
This desulfurization treatment was continuously performed for 30 charges. Table 1 shows the composition of hot metal after the treatment (average value for every 5 charges) and the CaF 2 concentration in the desulfurized slag. It was confirmed by visual observation that the amount of slag adhered to the upper portion of the impeller increased with an increase in the number of times of desulfurization treatment. When continuous treatment was performed for 21 to 25 charges or more, the desulfurization rate could not achieve the target of 85% or more.
[0027]
[Table 1]
[0028]
(Conventional example 2)
250 t of hot metal (average composition is shown in Table 2) at 1350 to 1400 ° C. was charged into a pan, and stirred at a rotation speed of 100 rpm by a 4-blade impeller. Impeller is Al 2 O 3 -SiO 2 -based refractory made of new, and the wings of the same height (850 mm) was placed at equal angle of 90 degrees. Stirring desulfurization slag CaF 2 concentration 6 kg / t and fluorspar quicklime as desulfurizing agent in molten pig iron in the pot was added to a 0 to 8.5%. The impeller stirring time after the addition of the desulfurizing agent was 15 minutes. The impeller immersion depth was such that the distance between the upper end of the blade and the hot metal surface of the hot metal was 銑 of the hot metal depth.
[0029]
This desulfurization treatment was carried out continuously for 30 charges by changing the CaF 2 concentration in the desulfurized slag. Table 2 shows the composition of the hot metal after the treatment (the average value in the last 21 to 30th charge) and the CaF 2 concentration in the desulfurized slag.
[0030]
It has been confirmed by visual observation that if the CaF 2 concentration in the desulfurized slag exceeds 6%, the increase in the amount of slag attached to the upper part of the impeller is suppressed, and the desulfurization rate achieves the target of 85% or more even after 30 consecutive charges. did it.
[0031]
[Table 2]
[0032]
(Conventional example 3)
250t of hot metal (average composition is shown in Table 3) at 1350 to 1400 ° C was charged into a pan, and stirred at a rotation speed of 100 rpm by a four-blade impeller. Impeller is Al 2 O 3 -SiO 2 -based refractory made of new, and the wings of the same height (850 mm) was placed at equal angle of 90 degrees. While stirring, 6 kg / t of quicklime and fluorite were added as a desulfurizing agent to the hot metal in the pot so that the CaF 2 concentration in the desulfurized slag became about 5%. The impeller stirring time after the addition of the desulfurizing agent was 15 minutes. The impeller immersion depth was such that the distance between the upper end of the blade and the hot metal surface of the hot metal was 銑 of the hot metal depth.
[0033]
This desulfurization treatment was continuously performed for 30 charges. Table 3 shows the composition of the hot metal after the treatment (average value of the 21st to 30th charges in the latter half of the treatment) and the CaF 2 concentration in the desulfurized slag.
[0034]
It was confirmed by visual observation that slag was deposited in a cascade shape in the four-blade impeller, and the average desulfurization rate in the latter half of the 21st to 30th charges could not reach the target of 85% or more.
[0035]
[Table 3]
[0036]
(Example 1)
250 t of hot metal (average composition is shown in Table 4) at 1350-1400 ° C. was charged into a pan, and stirred at a rotation speed of 100 rpm by a 4-blade impeller. The impeller is made of a new Al 2 O 3 —SiO 2 refractory, and has two high blades (blades having a relatively long length in the rotation axis direction) and low blades (a relatively long blade in the rotation axis direction). Short blades) The two blades were alternately installed at an equal angle of 90 degrees. The height of the high blade was 900 mm and the height of the low blade was changed in the range of 1.0 to 4.0 of the height of the high blade.
[0037]
While stirring, 6 kg / t of quicklime and fluorite were added as a desulfurizing agent to the hot metal in the pot so that the CaF 2 concentration in the desulfurized slag became about 5%. The impeller stirring time after the addition of the desulfurizing agent was 15 minutes. The impeller immersion depth was such that the distance between the upper end of the high blade and the hot metal surface of the hot metal was 4 of the hot metal depth.
[0038]
This desulfurization treatment was performed continuously for 30 charges. Table 4 shows the composition of the hot metal after the treatment (average value of the 21st to 30th charges in the latter half of the treatment) and the CaF 2 concentration in the desulfurized slag.
[0039]
By setting the height ratio of the impeller blades to 1.5 to 3.0, the average desulfurization rate in the last 21 to 30th charges of the treatment was 90% or more of the target.
[0040]
[Table 4]
[0041]
(Example 2)
250 t of hot metal (average composition shown in Table 5) at 1350 to 1400 ° C. was charged into a pan, and stirred at a rotation speed of 100 rpm by a two-stage impeller. The impeller is made of a new Al 2 O 3 —SiO 2 refractory, and the upper and lower tiers have a blade height (length in the rotation axis direction) of 450 mm, and the upper and lower tiers have the same height as the blade height. In the lower stage, four blades were installed at an equal angle of 90 degrees, and in the upper stage, two blades were installed diagonally and positioned just above the lower blade.
[0042]
While stirring, 6 kg / t of quicklime and fluorite were added as a desulfurizing agent to the hot metal in the pot so that the CaF 2 concentration in the desulfurized slag became about 5%. The impeller stirring time after the addition of the desulfurizing agent was 15 minutes. The impeller immersion depth was such that the distance between the upper end of the high blade and the hot metal surface of the hot metal was 4 of the hot metal depth.
[0043]
This desulfurization treatment was continuously performed for 30 charges. Table 5 shows the composition of the hot metal after the treatment (average value of the 21st to 30th charges in the latter half of the treatment) and the CaF 2 concentration in the desulfurized slag.
[0044]
The average desulfurization rate in the 21st to 30th charges in the latter half of the treatment was able to achieve the target of 85% or more.
[0045]
[Table 5]
[0046]
【The invention's effect】
According to the present invention, when performing desulfurization treatment of hot metal by impeller stirring, desulfurization slag is suppressed from accumulating in the shape of a jar in the upper part of the impeller, entrainment of the desulfurization slag into hot metal, and deterioration of the dispersion state can be avoided. Even when the desulfurization treatment was continuously performed for 20 or more charges, the desulfurization rate could be maintained at a high value.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a configuration of an impeller used in the present invention. FIG. 1A is a side view, and FIG. 1B is a plan view.
FIG. 2 is a diagram showing an example of the configuration of a hot metal desulfurization apparatus according to the present invention.
FIGS. 3A and 3B are diagrams showing another example of the configuration of the impeller used in the present invention, wherein FIG. 3A is a side view and FIG. 3B is a plan view.
FIGS. 4A and 4B are diagrams showing another configuration example of the impeller used in the present invention, FIG. 4A is a side view, and FIG. 4B is a plan view.
FIG. 5 is a view showing an example of a conventional hot metal desulfurization apparatus provided with an impeller.
[Explanation of symbols]
100 ... conventional impellers 101, 102, 103 ... impeller 201 ... desulfurizer 1 ... rotating shaft 2 '... conventional impeller blades 2 (2a, 2b) ... blades 3 ... container 4 ... hot metal 5 ... desulfurization slag 6 (6a, 6b) ), 7, 8 ... feather