JP2004204250A - Ag ALLOY FILM, PLANAR DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION - Google Patents

Ag ALLOY FILM, PLANAR DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION Download PDF

Info

Publication number
JP2004204250A
JP2004204250A JP2002371651A JP2002371651A JP2004204250A JP 2004204250 A JP2004204250 A JP 2004204250A JP 2002371651 A JP2002371651 A JP 2002371651A JP 2002371651 A JP2002371651 A JP 2002371651A JP 2004204250 A JP2004204250 A JP 2004204250A
Authority
JP
Japan
Prior art keywords
alloy film
film
atomic
alloy
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002371651A
Other languages
Japanese (ja)
Other versions
JP3994386B2 (en
Inventor
Hideo Murata
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002371651A priority Critical patent/JP3994386B2/en
Publication of JP2004204250A publication Critical patent/JP2004204250A/en
Application granted granted Critical
Publication of JP3994386B2 publication Critical patent/JP3994386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ag alloy film in which a reflectance in a visible light range takes a fixed value while keeping a high reflectance and which has low electric resistance and combines heat resistance, corrosion resistance, adhesion to a substrate and patterning characteristics, and also to provide a sputtering target material for depositing the Ag alloy film and a planar display device having low power consumption. <P>SOLUTION: The Ag alloy film has a composition containing, as additive elements, 0.1 to 0.7 atomic%, in total, of Zr and/or Hf and further 0.1 to 1.0 atomic%, in total, of one or more elements selected from the group consisting of Al, Mn, Cu, Ge and Sn and having the balance essentially Ag and in which the sum total of the above additive elements is made to ≤1.5 atomic%. Further, the sputtering target material for depositing the Ag alloy film with the above composition is also provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、平面表示装置(フラットパネルデスプレイ。以下、FPDという)に加え、各種半導体デバイス、薄膜センサー、磁気ヘッド等の薄膜電子部品において、低い電気抵抗と耐食性、耐熱性、密着性を要求される電子部品用Ag合金膜、Ag合金膜を有する平面表示装置およびAg合金膜形成用スパッタリングターゲット材に関するものである。FPDとしては例えば液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンスディスプレイ(以下、ELDという)、電子ペーパー等に利用される電気泳動型ディスプレイ等に用いることが好適である。
【0002】
【従来の技術】
ガラス基板上に薄膜デバイスを作製するFPD、薄膜センサ−、セラミック基板上に素子を形成する磁気ヘッド等に用いる電気配線膜、電極等には、従来から耐食性、耐熱性、基板との密着性に優れる金属である純Cr膜、純Ta膜、純Ti膜、純Al膜等の純金属膜またはそれらを主体とする合金膜が用いられてきたが、近年、上記のような薄膜デバイス用金属膜では、より低電気抵抗の金属膜が要求されている。特に、FPDの分野においては、大型化、高精細化、高速応答が可能な薄膜トランジスタ(TFT)を駆動素子とする方式が広く採用されており、その配線膜には信号遅延を防止するために低電気抵抗化の要求がある。たとえば、ノートパソコン等に用いられる12インチ以上の大型カラーLCDに用いられる配線では比抵抗を30μΩcm以下に、より大型の15インチのデスクトップパソコン用には10μΩcm以下とすることが要求されており、今後さらに高精細、高速応答が要求される20インチ以上の液晶テレビや小型の携帯情報端末等ではさらなる低電気抵抗の金属膜が要求されている。このため、低抵抗なAlやAl合金膜が用いられている。
【0003】
しかしながら、Al合金膜であっても、今後の大型ディスプレイ、携帯機器用ディスプレイ等で要求されるさらなる高精細化、動画に対応した高速応答性の向上を実現する為には十分とは言えない。
例えば、液晶ディスプレイにおいては、現在主流のアモルファスシリコンTFT駆動方式より高速応答が可能なポリシリコンTFT駆動方式を利用した液晶TV等の開発が進められている。ポリシリコンTFTの製造プロセスは、アモルファスシリコンTFTよりもさらに高い温度となるために、配線材料にはさらに高い耐熱性が要求される。このため、融点の低いAl合金では十分な耐熱性が確保できない。また、ポリシリコンTFTを駆動素子として用いる自発光な平面表示装置として有機ELディスプレイが注目されている。有機ELディスプレイでは液晶ディスプレイと異なり電流駆動となるためさらに低い電気抵抗の配線が求められている。そのため、Al合金に替えてさらに低電気抵抗であるAgの適用が検討されている。
【0004】
また、特に小型の携帯情報端末においては、耐衝撃性や軽量化のためにガラス基板等に替えて、樹脂基板や樹脂フィルム等を用いた平面表示装置が要求されている。Al合金で低電気抵抗の配線膜を得るには加熱処理が必要であり、樹脂基板や樹脂フィルム等の場合に十分な加熱処理を行えないため、低電気抵抗を得難いという欠点も有している。このため、加熱処理を行わないプロセスにおいてもAl合金より低電気抵抗のAgの適応が検討されている。
【0005】
さらに、小型の電池駆動の携帯情報端末や携帯ゲームにおいては、液晶ディスプレイを表示素子として用いるが、液晶ディスプレイの光源となるバックライトの消費電力が大きく、使用時間が短くなるという問題があった。このため、近年、外光を効率よく利用しバックライトを基本的に使用しない反射型液晶ディスプレイの開発や、反射型と従来の透過型を組み合わせた半透過型液晶ディスプレイの開発が行われ、実用化されている。
【0006】
このような反射型、半透過型ディスプレイに用いる反射膜や反射電極にも、金属の中でも可視光範囲での反射率が高く、電気抵抗も低い元素であるAlまたはAl合金薄膜が多く用いられてきた。しかし、近年、ディスプレイの表示品質向上のために、その反射膜にはペーパーホワイトと呼ばれる可視光範囲での反射率が一定値となるフラットな反射特性とさらに高い反射率が要求され、Al合金より高反射なAgの適応が検討されている。
【0007】
AgはAlより融点が高く、低電気抵抗、高反射であるために今後の配線材料あるいは反射膜として有望であるが、電子部品用の薄膜として用いる場合、基板に対する密着性が低く、さらに耐熱性、耐食性が低いという欠点を有する。
例えば、AgをFPDの配線膜として用いた場合、基板(例えばガラスやSiウェハ−、樹脂基板、樹脂フィルム、ステンレス箔等の耐食性の高い金属箔)に対する膜の密着性が低く、プロセス中に剥がれるという問題を生じる。また、薄膜デバイスを製造する際の薄膜の応力緩和に伴う原子移動を原因とするヒロックの発生と平面表示装置製造時に基板材質や加熱雰囲気の影響により膜粒子が凝集し、膜表面の平滑性が低下したり、膜の連続性が失われることにより大幅に電気抵抗の増大や、反射率の低下が起こる事がある。また、耐食性が低いことに起因して、基板上に成膜した後、数日大気に放置しただけで変色したり、ディスプレイの製造時に使用する薬液により腐食され、大幅に電気抵抗が上昇したり、膜が剥離する等の問題があった。
【0008】
そこで、上記の問題を解決するために、AgにCuを0.1原子%以上添加したAg合金タ−ゲットを用いることで導電率と光学特性に優れたAg系薄膜を成膜できることが記載されているものがある(例えば、特許文献1参照)。また、接着層上にPt、Pd、Au、Cu、Niを添加するAg合金を用いた反射型導電膜を用いることが記載されているものがある(例えば、特許文献2参照)。また、AgにPdを0.1〜3重量%、Al、Au、Pt、Cu、Ta、Cr、Ti、Ni、Co、Si等を合計で0.1〜3重量%添加する合金を用いた電子部品用金属材料等が提案されているものがある(例えば、特許文献3参照)。また、AgにRuを25重量%以下、CuまたはAuを25重量%以下添加する低抵抗なAg合金膜を開示するものがある(例えば、特許文献4、特許文献5参照)。また、耐熱性を向上させるために、AgにNd等の元素を添加するAg合金が記載されている(例えば、特許文献6参照)。
【0009】
【特許文献1】
特開平8−260135号公報
【特許文献2】
特開平11−119664号公報
【特許文献3】
特開2001―192752号公報
【特許文献4】
特開2001−102325号公報
【特許文献5】
特開2002―266068号公報
【特許文献6】
特開2002―226927号公報
【0010】
【発明が解決しようとする課題】
しかし、従来これらに開示されるAg合金では、本来Agの有する特性である低い電気抵抗および高い反射率と、種々の電子部品が要求する耐食性、耐熱性、密着性、パタニング性の全てを満足できるAg合金膜を得ることはむずかしい。具体的には、例えばCuや、貴金属元素であるPd、Pt、Auを添加した場合は電気抵抗の増加は少ないが耐熱性に問題がある。また、遷移金属であるTa、Cr、Ti、Ni、Co等や半金属であるAl等の元素は添加した場合、密着性、耐食性、耐熱性を改善するためには、添加量が多くなり電気抵抗が増加し、含有量が1原子%を越えると比抵抗が5μΩcmを越えてしまいAgの持つ低抵抗な利点が失われてしまう。また、可視光範囲の低波長側での反射率の低下が大きくなるなど、Agの持つ低電気抵抗かつ高反射な利点が失われてしまう。また、Auは反射率の低下の少ない元素であるが、Agに添加するとエッチング時に残さが生じ易くパタニング性が低下する問題がある。
【0011】
本発明の目的は、低い電気抵抗と高い反射率、さらに耐熱性、耐食性、そして基板への密着性およびパタニング性を兼ね備えたAg合金膜とそのAg合金膜を形成するためのスパッタリングターゲット材および低消費電力な平面表示装置を提供することにある。
例えば反射型液晶ディスプレイ、FED、有機EL等のようなガラス基板やSiウェハ−上に形成する平面表示装置や樹脂フィルム基板等のフレキシブルな表示装置等において要求される高い反射率を維持した上で、可視光範囲での反射率が一定値になり、かつ低い電気抵抗を有し表示装置製造時のプロセス中での耐熱性、耐食性を兼ね備えた低コストなAg合金膜、平面表示装置とそのAg合金膜を形成するためのスパッタリングターゲットを提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するべく、鋭意検討を行った結果、Agに選択した元素を複合添加してAg合金膜とすることにより、本来Agの持つ低い電気抵抗と高い反射率を大きく損なうことなく耐食性および耐熱性を向上し、さらに基板への密着性、パタニング性も改善できることを見いだし、本発明に到達した。
【0013】
すなわち、本発明は、添加元素として、Zrおよび/またはHfを合計で0.1〜0.7原子%、(Al、Mn、Cu、Ge、Sn)からなる群から選択される1種または2種以上の元素を合計で0.1〜1.0原子%含有し、かつ前記添加元素の総和が1.5原子%以下であり残部実質的にAgからなるAg合金膜である。
【0014】
また、本発明は、添加元素として、Zrを合計で0.1〜0.5原子%、(Mn、Ge、Cu)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%含有し、かつ前記添加元素の総和が1.0原子%以下であり残部実質的にAgからなるAg合金膜である。
【0015】
また、本発明は、平面表示装置用ポリシリコンTFT用の配線膜である上記組成のAg合金膜である。
また、本発明は、平面表示装置に用いられるガラス基板またはSiウェハー上に形成された上記組成のAg合金膜である。
また、本発明は、有機ELディスプレイ用の配線膜である上記組成のAg合金膜である。
また、本発明は、比抵抗値が4μΩcm以下の上記組成のAg合金膜である。また、本発明は、平面表示装置用の反射膜である上記組成のAg合金膜である。
また、本発明は、上記組成のAg合金膜を有する平面表示装置である。
【0016】
また、本発明は、添加元素として、Zrおよび/またはHfを合計で0.1〜0.7原子%、(Al、Mn、Cu、Ge、Sn)からなる群から選択される1種または2種以上の元素を合計で0.1〜1.0原子%含有し、かつ前記添加元素の総和が1.5原子%以下であり残部実質的にAgからなるAg合金膜形成用スパッタリングターゲット材である。
【0017】
また、本発明は、添加元素として、Zrを合計で0.1〜0.5原子%、(Mn、Ge、Cu)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%含有し、かつ前記添加元素の総和が1.0原子%以下であり残部実質的にAgからなるAg合金膜形成用スパッタリングターゲット材である。
【0018】
【発明の実施の形態】
本発明の特徴は、Ag自体の低電気抵抗と高い反射率をできる限り維持しながら、Agの有する欠点である耐食性、耐熱性や密着性を補うのに最適な合金構成を見いだしたところにある。
【0019】
以下に、本発明のAg合金膜において、元素の選択理由ならびにその添加量に関して説明する。
ZrやHfはAgに添加することによって耐熱性と密着性を改善する効果がある。その理由は明確でないが、次のように推測される。ZrやHfはAgと化合物を形成しやすい元素である。そのため、Agの原子移動を抑制し、耐熱性を向上させる効果を有するものと考えられる。また、Agの原子移動を抑制することで、微細かつ均一組織の膜になるため、Agの凝集を抑制して、密着性が改善するものと考えられる。しかし、Zrおよび/またはHfのみを添加したAg合金膜では、例えば平面表示装置を製造する際の洗浄工程や加熱工程で変色等が発生しやすい問題があり、耐食性の改善効果は十分ではない。
【0020】
そこで、本発明では、耐食性を改善させるために、さらに(Al、Mn、Cu、Ge、Sn)の群から選択される1種または2種以上の元素をAgに添加する。上記添加元素による改善効果の理由は明確ではないが、次のように推測される。(Al、Mn、Cu、Ge、Sn)は、Agに対して固溶する元素である。これらの元素はAgに固溶することでAgの原子移動を抑制し微細で緻密な膜組織となるとともにAgの性質を変化させていると考えられる。このため、膜中ボイドが減少するとともに粒界腐食も抑制され、表示装置等を製造する際のプロセスにおいて発生する薬液等による腐食に対して耐性を向上させているものと考えられる。
【0021】
耐熱性と密着性との改善に効果があるZrおよび/またはHfと、耐食性の改善に効果のある(Al、Mn、Cu、Ge、Sn)の群から選ばれる元素を複合添加することにより、両方の特性が相殺されることなく両立できることを見出したところに本発明の重要な特徴がある。つまり、この2群の複合添加により、耐食性、耐熱性、密着性を兼ね備えたAg合金膜を得ることが可能となる。なお、その添加量を増加させると、耐熱性、密着性、耐食性の効果は向上するが、一方で電気抵抗の上昇と反射率の低下を招く。そこで、Agに添加する元素は、必要最少量でありながら十分な効果が得られるように調整する必要がある。
【0022】
そこで、次にAgに添加する元素の添加量に関して説明をする。
Zrおよび/またはHfを添加することによる耐熱性と密着性の改善効果は、添加量が0.1原子%からあらわれるが、一方0.7原子%を超えると耐熱性や耐食性の改善には優れるものの電気抵抗が増加してしまい、可視光範囲の低波長域で反射率の低下が大きくなる。よって、Zrおよび/またはHfの添加量は、0.1〜0.7原子%が好ましい。さらに、より低い電気抵抗を得るためや可視光範囲の低波長域の反射率を抑制するためにはZrおよび/またはHfの添加量の上限を0.5原子%以下とすることが望ましい。
さらに(Al、Mn、Cu、Ge、Sn)を添加することによる耐食性の改善効果は、添加量が0.1原子%からあらわれるが、一方添加量が増加するに従い電気抵抗が上昇し、反射率が低下するとともに可視光範囲で反射率が一定になる反射特性も得にくくなってしまう。例えば、Snの場合は添加量が1.0原子%を超えると比抵抗値が8μΩcmを超えてしまう。また、比抵抗値の増加が比較的少ないCuでは、添加量が1.0原子%を超えると耐熱性が低下する。したがって、(Al、Mn、Cu、Ge、Sn)の添加量の上限は、1.0原子%が望ましい。
【0023】
また、Zrおよび/またはHfと(Al、Mn、Cu、Ge、Sn)の群から選ばれる元素を添加する場合の総和は1.5原子%以下とすることが望ましい。その理由は、この添加量を超えると低電気抵抗と高反射率、耐食性、耐熱性、密着性パタニング性を兼ね備えたAg合金膜が得にくくなるためである。
【0024】
さらに、低い電気抵抗と高い反射特性を有し、工業的に求められる低コストのAg合金膜を得るためには、Zrを0.1〜0.5原子%、(Mn、Cu、Ge)の群から選ばれる元素は合計で0.1〜0.7原子%、添加元素の総和が1.0原子%以下とすることがより望ましい。それは、(Al、Mn、Cu、Ge、Sn)の中では(Mn、Ge、Cu)が、Zrと組み合わせた場合、より少ない添加量で耐食性、密着性の改善が可能であるためである。その理由は明確ではないが、(Mn、Ge、Cu)はAgに対して固溶域が広い元素であり、Agと化合物を形成せず、かつZr、Hfとは化合物を形成する元素であることに起因していると考えられる。すなわち、(Mn、Ge、Cu)はAgとの固溶域が広くAgと混ざりやすいため、Agの性質を改善し、耐食性の改善に特に効果が高い。このため、少ない添加量で膜特性が改善できると考えられる。
【0025】
上記添加元素の中でHfは高価な元素である。また、Zrおよび/またはHf以外の添加元素として貴金属であるAu、Pd、Pt、Ruも好ましいが、これらも高価な元素である。また、PdやAuは添加した場合の耐食性の向上は著しいが、エッチング時にむらや残さが生じる場合がある。このため、Zrと組み合わせた場合、(Mn、Ge、Cu)が最適であり、Zrの添加量を0.1〜0.5原子%、(Mn、Ge、Cu)の群から選ばれる元素は合計で0.1〜0.7原子%、添加元素の総和を1.0原子%以下とさらに少なくすることにより、4μΩcm以下の低い電気抵抗と高い反射率、工業的に求められる低コストかつ耐食性、耐熱性、密着性、パタニング性を兼ね備えたAg合金膜を得ることができるのでより好ましい。
【0026】
また、本発明のAg合金膜は上述のように耐熱性、耐食性、密着性を有し、必要最少量の上記添加元素を含有させることで、Agが本来有する高い反射率も維持できる。また、同時に可視光範囲である光学波長400〜700nmの範囲の平均反射率が94%以上でかつ一定値を維持することが可能となり、反射型液晶ディスプレイ等の反射膜、反射電極膜として用いることも可能である。これらの反射膜用途においては、Ag合金膜を大気加熱する工程等があり、従来のAg合金膜では膜表面の白濁や部分的に腐食する等により、反射率の低下や可視光範囲の光学波長である400〜700nmの範囲において低波長側の反射率の低下により、黄色味がかった反射特性となることがあった。本発明のAg合金膜は上述のように耐熱性、耐食性、密着性を有し、均一かつ高い反射率を維持することが可能であるため、反射膜としても有用である。
【0027】
本発明のAg合金膜を形成する際に用いる基板として、ガラス基板、Siウェハーを用いることが好適である。これらの基板は平面表示装置を製造する上でプロセス安定性に優れるとともに、本発明のAg合金膜を形成する際に基板を加熱することで、室温で成膜する場合より低い電気抵抗と高い密着性を有するAg合金膜を得ることが可能となるためである。
【0028】
また、本発明のAg合金膜はスパッタリング等により形成した場合でも4μΩcm以下の低い比抵抗値を得ることが可能であるが、基板を加熱処理することでさらに低い比抵抗値の膜とすることが可能となる。このため、ガラス基板、Siウェハーを用いて加熱工程を有するポリシリコンTFTを形成するプロセスを用いる有機ELディスプレイや液晶ディスプレイ等の配線膜に好適である。また、高い反射率を要求される平面表示装置の反射膜としても好適である。
【0029】
また、本発明のAg合金膜を形成する場合、ターゲット材を用いたスパッタリング法が最適である。スパッタリング法ではターゲット材とほぼ同組成の膜が形成できるためであり、本発明のAg合金膜を安定に形成することが可能となる。このため本発明は、Ag合金膜と同じ組成を有するAg合金膜形成用スパッタリングターゲット材である。
【0030】
ターゲット材の製造方法については種々あるが、一般にターゲット材に要求される高純度、均一組織、高密度等を達成できるものであれば良い。例えば、真空溶解法により所定の組成に調整した溶湯を金属製の鋳型に鋳込み、さらにその後、鍛造、圧延等により板状に加工し、機械加工により所定の形状のターゲットに仕上げることで製造できる。また、さらに均一な組織を得るために粉末焼結法、またはスプレーフォーミング法(液滴堆積法)等の急冷凝固したインゴットを用いても良い。
【0031】
なお、本発明のAg合金膜形成用スパッタリングターゲット材は、上述したZr、Hfおよび(Al、Mn、Cu、Ge、Sn)から選択した元素以外の成分元素は実質的にAgとしているが、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素、炭素やアルカリ金属、アルカリ土類元素、遷移金属、半金属を不可避的不純物として含んでもよい。
例えば、ガス成分の酸素、炭素、窒素は各々50ppm以下、Cr、Mo、Wは100ppm以下、Fe、Coは500ppm以下等であり、ガス成分を除いた純度として99.9%以上であることが望ましい。
【0032】
また、平面表示素子を製造する場合に用いる基板は、上述のようにガラス基板、Siウェハー等が好適であるが、スパッタリングで薄膜を形成できるものであればよく、例えば樹脂基板、金属基板、その他樹脂箔、金属箔等でもよい。
【0033】
本発明のAg合金膜は、安定した電気抵抗を得るために膜厚としては100〜300nmとすることが好ましい。膜厚が100nm未満であると、膜が薄いために電子の表面散乱影響で電気抵抗が上昇してしまうとともに、膜の表面形態が変化し易くなる。一方、膜厚が300nmを超えると、比抵抗値は低いが、膜応力によって膜が剥がれ易くなったり、膜を形成する際に時間が掛かり、生産性が低下するためである。
【0034】
【実施例】
Agに各種の添加元素を加えたAg合金膜の目標組成と実質的に同一となるように原料を配合し真空溶解炉にて溶解した後、鋳造することでAg合金インゴットを作製した。次に塑性加工により板状に加工した後、機械加工により直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。そのターゲット材を用いてスパッタリング法により平滑なガラス基板またはSiウェハー上に膜厚200nmの純Ag膜およびAg合金膜を形成し、4探針法により比抵抗値を測定した。また、分光測色計(ミノルタ製CM−2002)を用いて可視光範囲である光学波長400〜700nmの範囲の分光反射率を測定し、その平均反射率を評価した。
【0035】
次に、表示装置等の電子部品としての所定の製造工程を経た後での膜特性の変化を評価するために、上記で作製した純Ag膜およびAg合金膜を以下の条件で評価した。
まず、耐熱性を評価するため、真空中で温度250℃、2時間の加熱処理をしたものと、大気中で温度250℃、1時間の加熱処理をした純Ag膜およびAg合金膜を作製し、それぞれの比抵抗値と平均反射率を評価した。さらに大気中で加熱処理した純Ag膜およびAg合金膜表面の変色状況を観察し、白点および白濁を生じていないものを良好と評価した。
次に、耐食性試験として、純AgおよびAg合金膜を温度85℃、湿度90%の環境に24時間放置した後の比抵抗値と平均反射率を評価した。
さらに、純Ag膜およびAg合金膜の密着性を評価するために、真空中で加熱処理を行った純Ag膜およびAg合金膜に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にテープを貼り、斜め45°に引き剥がした。その際に基板上に残った桝目を面積率で表わし、密着性として評価した。
【0036】
また、パタニング性の評価として真空中で加熱処理を行った純Ag膜およびAg合金膜に、東京応化製のOFPR−800レジストをスピンコートにより塗布し、フォトマスクを用いて紫外線でレジストを露光後、東京応化製の有機アルカリ現像液NMD−3で現像してレジストパターンを作製し、リン酸、硝酸、酢酸、水の混合液でエッチングを行い、金属膜パターンを形成した。その金属膜のパターンの剥れ、エッジの形状およびその周囲の残さ等について光学顕微鏡で観察し、膜剥れがなく残さがないものを良好と評価した。以上の測定および評価の結果を、表1および表2に示す。
【0037】
【表1】

Figure 2004204250
【0038】
【表2】
Figure 2004204250
【0039】
表1および表2から、純Ag膜(試料No.1)は、成膜時には3.0μΩcm以下の低い比抵抗値を有し、加熱処理を行うとさらに電気抵抗は低下する。しかし、耐食試験後は比抵抗値が増加する。また、成膜時の平均反射率は最も高いが、大気加熱を行うと大幅に低下し、膜表面が白濁してしまうことがわかる。さらに、その密着性が低く、膜剥れが生じてパタニング性が劣ることがわかる。また、従来提案されているAgにPd、Cu、Ruを添加したAg合金膜(試料No.2、3)では、本発明のAg合金膜と比較すると比抵抗値が高く、耐食試験後に比抵抗値が増大する。また、平均反射率も本発明のAg合金より低く、特に加熱処理後に平均反射率が低下するとともに、膜表面に白い円径の斑点である白点が生じるため、耐熱性に問題がある。さらに密着性が低く、エッチング時に残さが生じることがわかる。
さらに、AgにCuを添加したAg合金膜(試料No.4)では耐熱性が特に悪く大気加熱後に比抵抗値が増加し、大幅に平均反射率が低下するとともに、膜表面が白濁してしまう。また、Agに希土類元素であるNdを加えたAg合金膜(試料No.5)は比抵抗値が高く、大気加熱を行うと膜表面に白点が発生する。
【0040】
AgにZrを単独で添加したAg合金膜は(試料No.6)は、耐食試験後の比抵抗値が上昇するとともに、反射率が低下し、膜表面に白点が発生するなど、十分な耐食性が得られない。
一方、本発明のAgにZrおよび/またはHfと(Al、Mn、Cu、Ge、Sn)を複合添加したAg合金膜(試料No.8〜17)は、成膜時の比抵抗値が4.0μΩcm以下と低く、加熱処理後および耐食試験後でも低い比抵抗値を維持していることがわかる。さらに、94%以上の高い平均反射率を加熱処理後、耐食試験後も維持し、さらに、密着性も大幅に改善される上に、パタニング性に優れていることがわかる。
【0041】
そして、その改善効果は上記添加量の増加により向上し、各元素の効果が0.1原子%以上で明確となる。ただし、試料No.19〜21のAg合金膜から、Zrの添加量が0.7原子%超、(Al、Mn、Cu、Ge、Sn)の添加量が1.0原子%超、添加量の総和が1.5原子%を越えると4.0μΩcm以下の比抵抗値と94%以上の高い平均反射率が得られないことが分かる。また、(Al、Mn、Cu、Ge、Sn)の中ではCu、Mn、Geが他の元素より、添加した場合の密着性が高く、より少ない添加量で高い特性を得ることが可能なことがわかる。また、その際に、さらに低い比抵抗値と96%以上の高い平均反射率を得るためには、Zr、Hfの添加量を0.5原子%以下、Cu、Mn、Geを加えた添加量の総和を1.0原子%以下とすることが望ましいことがわかる。この範囲とすることにより、加熱処理をおこなうと3.0μΩcm以下の低い比抵抗値を安定に得ることができる。また、(試料No.18)のAg合金膜はSiウェハ−上に形成した膜であるが、ガラス基板上に成膜した場合と同等の膜特性が得られていることがわかる。
【0042】
また、それぞれ成膜ままの純Ag膜(試料No.1)、Ag−0.7原子%Pd−1.0原子%Cu膜(試料No.2)、Ag−0.5原子%Ru−0.8原子%Cu膜(試料No.3)、Ag−0.3原子%Zr−0.3原子%Cu膜(試料No.8)の可視光範囲である光学波長400〜700nmの分光反射率を図1に、大気中で加熱処理した分光反射率を図2に示す。
成膜ままでは純Ag膜は可視光範囲で高く、均一でフラットな反射特性を有している。しかし、上述のように耐食性、密着性等が低い問題がある。Ag合金膜の中では、本発明のAg−0.3原子%Zr−0.3原子%Cu膜は、他のAg合金膜よりも高反射でフラットな反射特性を有していることがわかる。加熱処理を行うと純Ag膜、Ag−0.7原子%Pd−1.0原子%Cu膜、Ag−0.5原子%Ru−0.8原子%Cu膜は分光反射率、特に低波長側での低下が大きく、黄色味がかった反射特性となってしまう。それに対して本発明のAg合金膜は加熱処理後も高くフラットは反射特性を維持することができていることがわかる。
【0043】
【発明の効果】
以上のように本発明であれば、低い電気抵抗と高い反射率を有し、耐熱性、耐食性、そして基板との密着性およびパタニング性を改善したAg合金膜を得ることが可能である。よって、高精細、高速応答が要求される平面表示装置、高い耐熱性が要求されるポリシリコンTFTを用いる有機ELディスプレイ等の配線膜や、高い反射率が要求される反射型液晶ディスプレイ等の反射膜に有用であり、産業上の利用価値は高い。
【図面の簡単な説明】
【図1】本発明のAg合金膜および純Ag膜、従来のAg合金膜の基板成膜時の可視光範囲の光学波長400〜700nmの分光反射率を示した図である。
【図2】本発明のAg合金膜および純Ag膜、従来のAg合金膜の加熱処理後の可視光範囲の光学波長400〜700nmの分光反射率を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, in addition to a flat panel display (flat panel display; hereinafter, referred to as an FPD), various semiconductor devices, thin film sensors, thin film electronic components such as magnetic heads are required to have low electric resistance, corrosion resistance, heat resistance, and adhesion. The present invention relates to an Ag alloy film for an electronic component, a flat panel display having the Ag alloy film, and a sputtering target material for forming the Ag alloy film. The FPD is used for, for example, a liquid crystal display (hereinafter, referred to as LCD), a plasma display panel (hereinafter, referred to as PDP), a field emission display (hereinafter, referred to as FED), an electroluminescent display (hereinafter, referred to as ELD), electronic paper, and the like. It is preferably used for an electrophoretic display or the like.
[0002]
[Prior art]
Conventionally, corrosion resistance, heat resistance, and adhesion to substrates have been used for FPDs and thin film sensors for manufacturing thin film devices on glass substrates, electric wiring films and electrodes used for magnetic heads and the like for forming elements on ceramic substrates. Pure metal films such as a pure Cr film, a pure Ta film, a pure Ti film, a pure Al film, and the like, which are excellent metals, or alloy films mainly composed of them have been used. In recent years, such metal films for thin film devices as described above have been used. Then, a metal film with lower electric resistance is required. In particular, in the field of FPD, a method using a thin film transistor (TFT) as a driving element capable of increasing the size, increasing the definition, and responding at a high speed has been widely adopted. There is a demand for electrical resistance. For example, the wiring used for a large color LCD of 12 inches or more used for a notebook personal computer or the like is required to have a specific resistance of 30 μΩcm or less, and for a larger 15-inch desktop personal computer, it is required to have a specific resistance of 10 μΩcm or less. Further, a liquid crystal television having a size of 20 inches or more and a small portable information terminal, etc., which require high definition and high speed response, require a metal film having a further lower electric resistance. For this reason, a low-resistance Al or Al alloy film is used.
[0003]
However, even with an Al alloy film, it cannot be said that it is sufficient to realize higher definition and improvement in high-speed response corresponding to moving images, which are required for large displays and displays for portable devices in the future.
For example, in a liquid crystal display, the development of a liquid crystal TV and the like using a polysilicon TFT driving method capable of responding at a higher speed than the current mainstream amorphous silicon TFT driving method is underway. Since the temperature of the manufacturing process of the polysilicon TFT is higher than that of the amorphous silicon TFT, higher heat resistance is required for the wiring material. Therefore, sufficient heat resistance cannot be ensured with an Al alloy having a low melting point. In addition, an organic EL display has attracted attention as a self-luminous flat display device using a polysilicon TFT as a driving element. Unlike the liquid crystal display, the organic EL display is driven by current, so that a wiring having a lower electric resistance is required. Therefore, the use of Ag, which has a lower electric resistance, instead of the Al alloy is being studied.
[0004]
In particular, particularly in a small portable information terminal, a flat display device using a resin substrate, a resin film, or the like instead of a glass substrate or the like is required for impact resistance and weight reduction. Heat treatment is required to obtain a wiring film having a low electric resistance with an Al alloy, and since a sufficient heat treatment cannot be performed in the case of a resin substrate, a resin film, or the like, there is also a disadvantage that it is difficult to obtain a low electric resistance. . For this reason, application of Ag having lower electric resistance than Al alloy is being studied even in a process in which heat treatment is not performed.
[0005]
Furthermore, in a small battery-powered portable information terminal or a portable game, a liquid crystal display is used as a display element, but there is a problem that the power consumption of a backlight, which is a light source of the liquid crystal display, is large and the use time is short. For this reason, in recent years, a reflective liquid crystal display that efficiently uses external light and basically does not use a backlight, and a transflective liquid crystal display that combines a reflective type and a conventional transmissive type have been developed. Has been
[0006]
As a reflection film or a reflection electrode used in such a reflection type or transflective display, Al or an Al alloy thin film which is an element having a high reflectance in a visible light range and a low electric resistance among metals has been often used. Was. However, in recent years, in order to improve the display quality of the display, the reflection film is required to have a flat reflection characteristic in which the reflectance in a visible light range called paper white and a higher reflectance are more constant than Al alloy. Application of highly reflective Ag is being studied.
[0007]
Ag has a higher melting point than Al, and has low electrical resistance and high reflection, so it is promising as a wiring material or a reflective film in the future. However, when used as a thin film for electronic components, it has low adhesion to a substrate and furthermore has heat resistance. And has the disadvantage of low corrosion resistance.
For example, when Ag is used as a wiring film of an FPD, the film has low adhesion to a substrate (for example, glass or a Si wafer, a resin substrate, a resin film, or a highly corrosion-resistant metal foil such as a stainless steel foil), and peels off during the process. The problem arises. In addition, hillocks are generated due to atom transfer due to stress relaxation of the thin film when manufacturing a thin film device, and film particles are aggregated due to the influence of a substrate material and a heating atmosphere at the time of manufacturing a flat display device, and the smoothness of the film surface is reduced. When the film is lowered or the continuity of the film is lost, the electric resistance may be greatly increased or the reflectance may be significantly reduced. In addition, due to the low corrosion resistance, after film formation on a substrate, discoloration occurs only by leaving it in the air for a few days, or it is corroded by chemicals used in display manufacturing, causing a significant increase in electrical resistance. There was a problem that the film was peeled off.
[0008]
Therefore, in order to solve the above problem, it is described that an Ag-based thin film having excellent electrical conductivity and optical characteristics can be formed by using an Ag alloy target in which Cu is added to Cu at 0.1 atomic% or more. (For example, see Patent Document 1). Further, there is a description that a reflective conductive film using an Ag alloy to which Pt, Pd, Au, Cu, and Ni are added is used on an adhesive layer (for example, see Patent Document 2). Further, an alloy was used in which 0.1 to 3% by weight of Pd was added to Ag and 0.1 to 3% by weight of Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, Si, etc. were added in total. There have been proposed metal materials for electronic components and the like (for example, see Patent Document 3). Further, there is one that discloses a low-resistance Ag alloy film in which Ru is added to Ag by 25% by weight or less and Cu or Au by 25% by weight or less (for example, see Patent Documents 4 and 5). Further, an Ag alloy in which an element such as Nd is added to Ag to improve heat resistance is described (for example, see Patent Document 6).
[0009]
[Patent Document 1]
JP-A-8-260135
[Patent Document 2]
JP-A-11-119664
[Patent Document 3]
JP 2001-192752 A
[Patent Document 4]
JP 2001-102325 A
[Patent Document 5]
JP 2002-266068 A
[Patent Document 6]
JP 2002-226927 A
[0010]
[Problems to be solved by the invention]
However, conventionally, the Ag alloys disclosed therein can satisfy all of the low electrical resistance and high reflectance, which are properties inherent to Ag, and the corrosion resistance, heat resistance, adhesion, and patterning properties required of various electronic components. It is difficult to obtain an Ag alloy film. Specifically, for example, when Cu or the noble metal elements Pd, Pt, and Au are added, the increase in electric resistance is small, but there is a problem in heat resistance. In addition, when elements such as transition metals such as Ta, Cr, Ti, Ni, and Co and semimetals such as Al are added, in order to improve adhesion, corrosion resistance, and heat resistance, the amount of addition is increased. When the resistance increases and the content exceeds 1 atomic%, the specific resistance exceeds 5 μΩcm, and the low resistance advantage of Ag is lost. In addition, the advantages of Ag having low electrical resistance and high reflection are lost, such as a large decrease in reflectance on the low wavelength side of the visible light range. Au is an element that hardly causes a decrease in reflectivity. However, when it is added to Ag, there is a problem that a residue is easily generated at the time of etching and patterning property is deteriorated.
[0011]
An object of the present invention is to provide an Ag alloy film having low electric resistance and high reflectance, heat resistance, corrosion resistance, and adhesion and patterning properties to a substrate, a sputtering target material for forming the Ag alloy film, and a sputtering target material. An object of the present invention is to provide a power-consuming flat display device.
For example, while maintaining a high reflectance required for a flexible display device such as a flat display device formed on a glass substrate or a Si wafer or a resin film substrate such as a reflective liquid crystal display, an FED, and an organic EL, or the like. A low-cost Ag alloy film having a constant reflectance in the visible light range and having a low electric resistance and having both heat resistance and corrosion resistance during the process of manufacturing a display device, a flat display device and its Ag An object of the present invention is to provide a sputtering target for forming an alloy film.
[0012]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by adding a selected element to Ag to form an Ag alloy film, the low electrical resistance and high reflectivity inherent to Ag It has been found that the corrosion resistance and heat resistance can be improved without significantly impairing the adhesion, and that the adhesion to the substrate and the patterning property can be improved.
[0013]
That is, the present invention provides, as an additive element, one or two selected from the group consisting of (Al, Mn, Cu, Ge, Sn) in total of 0.1 to 0.7 atomic% of Zr and / or Hf. An Ag alloy film containing a total of 0.1 to 1.0 atomic% of at least one kind of element, the total of the additional elements is 1.5 atomic% or less, and the balance is substantially composed of Ag.
[0014]
Further, in the present invention, as an additive element, one or two or more elements selected from the group consisting of 0.1 to 0.5 atomic% of Zr in total and (Mn, Ge, Cu) in total of 0 to 0 are added. An Ag alloy film containing 0.1 to 0.7 atomic% and the total sum of the additional elements is 1.0 atomic% or less, and the balance is substantially made of Ag.
[0015]
Further, the present invention is an Ag alloy film having the above composition, which is a wiring film for a polysilicon TFT for a flat panel display device.
Further, the present invention is an Ag alloy film having the above composition formed on a glass substrate or a Si wafer used for a flat panel display.
Further, the present invention is an Ag alloy film having the above composition, which is a wiring film for an organic EL display.
Further, the present invention is an Ag alloy film having the above composition having a specific resistance of 4 μΩcm or less. Further, the present invention is an Ag alloy film having the above composition, which is a reflective film for a flat panel display.
Further, the present invention is a flat display device having an Ag alloy film having the above composition.
[0016]
Further, the present invention provides, as an additional element, one or two elements selected from the group consisting of (Al, Mn, Cu, Ge, Sn) in total of 0.1 to 0.7 atomic% of Zr and / or Hf. A sputtering target material for forming an Ag alloy film, comprising a total of 0.1 to 1.0 atomic% of at least one kind of element, and the total of the additional elements is 1.5 atomic% or less, and the balance is substantially Ag. is there.
[0017]
Further, in the present invention, as an additive element, one or two or more elements selected from the group consisting of 0.1 to 0.5 atomic% of Zr in total and (Mn, Ge, Cu) in total of 0 to 0 are added. A sputtering target material for forming an Ag alloy film containing 0.1 to 0.7 atomic%, and the total of the additional elements is 1.0 atomic% or less and the balance is substantially made of Ag.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The feature of the present invention lies in finding out an optimal alloy composition for compensating for the disadvantages of Ag such as corrosion resistance, heat resistance and adhesion while maintaining the low electrical resistance and high reflectivity of Ag itself as much as possible. .
[0019]
Hereinafter, the reasons for selecting the elements and the amounts of the elements added in the Ag alloy film of the present invention will be described.
Zr and Hf have the effect of improving heat resistance and adhesion by being added to Ag. The reason is not clear, but is presumed as follows. Zr and Hf are elements that easily form a compound with Ag. Therefore, it is considered that the compound has an effect of suppressing the movement of Ag atoms and improving heat resistance. Further, by suppressing the atom transfer of Ag, a film having a fine and uniform structure can be obtained. Therefore, it is considered that the aggregation of Ag is suppressed and the adhesion is improved. However, an Ag alloy film to which only Zr and / or Hf is added has a problem that discoloration or the like is likely to occur in, for example, a cleaning step or a heating step in manufacturing a flat panel display device, and the effect of improving corrosion resistance is not sufficient.
[0020]
Therefore, in the present invention, in order to improve corrosion resistance, one or more elements selected from the group of (Al, Mn, Cu, Ge, Sn) are further added to Ag. The reason for the improvement effect of the above-mentioned additional element is not clear, but is presumed as follows. (Al, Mn, Cu, Ge, Sn) is an element that forms a solid solution with Ag. It is considered that these elements dissolve in Ag to suppress the movement of Ag atoms to form a fine and dense film structure and change the properties of Ag. For this reason, it is considered that voids in the film are reduced and grain boundary corrosion is suppressed, and resistance to corrosion by a chemical solution or the like generated in a process of manufacturing a display device or the like is considered to be improved.
[0021]
By adding Zr and / or Hf, which is effective for improving heat resistance and adhesion, and an element selected from the group of (Al, Mn, Cu, Ge, Sn) which is effective for improving corrosion resistance, An important feature of the present invention lies in the finding that both characteristics can be compatible without being offset. That is, by the composite addition of the two groups, it becomes possible to obtain an Ag alloy film having both corrosion resistance, heat resistance and adhesion. When the amount of addition is increased, the effects of heat resistance, adhesion, and corrosion resistance are improved, but on the other hand, an increase in electric resistance and a decrease in reflectance are caused. Therefore, it is necessary to adjust the amount of the element to be added to Ag so that a sufficient effect can be obtained even though the necessary minimum amount is obtained.
[0022]
Therefore, the amount of the element added to Ag will be described next.
The effect of improving the heat resistance and adhesion by adding Zr and / or Hf appears from 0.1 atomic%, whereas if it exceeds 0.7 atomic%, the heat resistance and corrosion resistance are improved. However, the electric resistance is increased, and the decrease in reflectance is large in a low wavelength region of the visible light range. Therefore, the addition amount of Zr and / or Hf is preferably 0.1 to 0.7 atomic%. Further, in order to obtain a lower electric resistance or to suppress the reflectance in a low wavelength region of the visible light range, it is desirable that the upper limit of the amount of Zr and / or Hf is 0.5 atomic% or less.
Further, the effect of improving corrosion resistance by adding (Al, Mn, Cu, Ge, Sn) appears from the addition amount of 0.1 atomic%, but as the addition amount increases, the electrical resistance increases and the reflectance increases. And it becomes difficult to obtain a reflection characteristic in which the reflectance is constant in the visible light range. For example, in the case of Sn, when the addition amount exceeds 1.0 atomic%, the specific resistance value exceeds 8 μΩcm. In addition, in the case of Cu whose increase in specific resistance is relatively small, if the addition amount exceeds 1.0 atomic%, the heat resistance decreases. Therefore, the upper limit of the addition amount of (Al, Mn, Cu, Ge, Sn) is desirably 1.0 atomic%.
[0023]
Further, it is desirable that the total sum of the addition of elements selected from the group consisting of Zr and / or Hf and (Al, Mn, Cu, Ge, Sn) be 1.5 atomic% or less. The reason for this is that if the addition amount exceeds this, it becomes difficult to obtain an Ag alloy film having low electric resistance, high reflectance, corrosion resistance, heat resistance, and adhesive patterning.
[0024]
Further, in order to obtain a low-cost Ag alloy film having low electric resistance and high reflection characteristics and industrially required, Zr is 0.1 to 0.5 atomic% and (Mn, Cu, Ge) It is more desirable that the total of the elements selected from the group be 0.1 to 0.7 atomic%, and the sum of the added elements be 1.0 atomic% or less. This is because, when (Mn, Ge, Cu) is combined with Zr in (Al, Mn, Cu, Ge, Sn), the corrosion resistance and adhesion can be improved with a smaller amount of addition. Although the reason is not clear, (Mn, Ge, Cu) is an element having a wide solid solution region with Ag, does not form a compound with Ag, and Zr and Hf are elements which form a compound. It is thought to be due to That is, since (Mn, Ge, Cu) has a wide solid solution region with Ag and is easily mixed with Ag, it is particularly effective in improving the properties of Ag and improving corrosion resistance. Therefore, it is considered that the film characteristics can be improved with a small amount of addition.
[0025]
Hf is an expensive element among the above-mentioned additional elements. In addition, as additional elements other than Zr and / or Hf, noble metals such as Au, Pd, Pt and Ru are also preferable, but these are also expensive elements. Further, when Pd or Au is added, the corrosion resistance is remarkably improved, but unevenness or residue may occur during etching. Therefore, when combined with Zr, (Mn, Ge, Cu) is optimal, the amount of Zr added is 0.1 to 0.5 atomic%, and the element selected from the group of (Mn, Ge, Cu) is By further reducing the total amount of the added elements to 0.1 atom% or less and 0.1 to 0.7 atom% in total, a low electric resistance of 4 μΩcm or less and a high reflectance, low cost and corrosion resistance required industrially It is more preferable because an Ag alloy film having both heat resistance, adhesion and patterning properties can be obtained.
[0026]
Further, the Ag alloy film of the present invention has heat resistance, corrosion resistance, and adhesiveness as described above, and can maintain the high reflectance inherent to Ag by containing a minimum necessary amount of the above-mentioned additional element. At the same time, the average reflectance in the optical wavelength range of 400 to 700 nm, which is a visible light range, can be maintained at a constant value of 94% or more and can be used as a reflective film or a reflective electrode film of a reflective liquid crystal display. Is also possible. In these reflective film applications, there is a step of heating the Ag alloy film to the atmosphere, and the conventional Ag alloy film causes a decrease in reflectance and an optical wavelength in the visible light range due to cloudiness or partial corrosion of the film surface. In the range of 400 to 700 nm, the reflectance on the low wavelength side is reduced, so that yellowish reflection characteristics may be obtained. As described above, the Ag alloy film of the present invention has heat resistance, corrosion resistance, and adhesion, and can maintain a uniform and high reflectance. Therefore, the Ag alloy film is also useful as a reflective film.
[0027]
It is preferable to use a glass substrate or a Si wafer as the substrate used when forming the Ag alloy film of the present invention. These substrates have excellent process stability in manufacturing a flat panel display, and have a lower electric resistance and a higher adhesion than a film formed at room temperature by heating the substrate when forming the Ag alloy film of the present invention. This is because it becomes possible to obtain an Ag alloy film having properties.
[0028]
Further, the Ag alloy film of the present invention can obtain a low specific resistance value of 4 μΩcm or less even when formed by sputtering or the like. However, by heating the substrate, a film having a lower specific resistance value can be obtained. It becomes possible. Therefore, it is suitable for a wiring film such as an organic EL display or a liquid crystal display using a process of forming a polysilicon TFT having a heating step using a glass substrate or a Si wafer. Further, it is also suitable as a reflection film of a flat display device which requires a high reflectance.
[0029]
When forming the Ag alloy film of the present invention, a sputtering method using a target material is optimal. This is because a film having substantially the same composition as the target material can be formed by the sputtering method, so that the Ag alloy film of the present invention can be formed stably. Therefore, the present invention is a sputtering target material for forming an Ag alloy film having the same composition as the Ag alloy film.
[0030]
Although there are various methods for manufacturing the target material, any method can be used as long as it can achieve high purity, uniform structure, high density, and the like generally required for the target material. For example, it can be manufactured by pouring a molten metal adjusted to a predetermined composition by a vacuum melting method into a metal mold, further processing it into a plate shape by forging, rolling, or the like, and finishing it into a target having a predetermined shape by machining. Further, in order to obtain a more uniform structure, an ingot obtained by rapid solidification such as a powder sintering method or a spray forming method (droplet deposition method) may be used.
[0031]
In the sputtering target material for forming an Ag alloy film according to the present invention, the constituent elements other than the elements selected from Zr, Hf, and (Al, Mn, Cu, Ge, Sn) are substantially Ag. Gas components such as oxygen, nitrogen, carbon, alkali metals, alkaline earth elements, transition metals, and metalloids may be contained as inevitable impurities as long as the effects of the present invention are not impaired.
For example, oxygen, carbon, and nitrogen of gas components are each 50 ppm or less, Cr, Mo, and W are 100 ppm or less, Fe and Co are 500 ppm or less, and the purity excluding gas components is 99.9% or more. desirable.
[0032]
In addition, the substrate used for manufacturing the flat display element is preferably a glass substrate, a Si wafer, or the like as described above, but may be any as long as it can form a thin film by sputtering, such as a resin substrate, a metal substrate, and the like. A resin foil, a metal foil or the like may be used.
[0033]
The thickness of the Ag alloy film of the present invention is preferably 100 to 300 nm in order to obtain stable electric resistance. When the film thickness is less than 100 nm, the electric resistance increases due to the surface scattering effect of electrons because the film is thin, and the surface morphology of the film tends to change. On the other hand, when the film thickness exceeds 300 nm, the specific resistance value is low, but the film is easily peeled off by the film stress, and it takes time to form the film, and the productivity is reduced.
[0034]
【Example】
Raw materials were blended so as to be substantially the same as the target composition of the Ag alloy film in which Ag was added with various additive elements, melted in a vacuum melting furnace, and then cast to produce an Ag alloy ingot. Next, after forming into a plate shape by plastic working, a sputtering target material having a diameter of 100 mm and a thickness of 5 mm was produced by machining. Using the target material, a pure Ag film and an Ag alloy film having a thickness of 200 nm were formed on a smooth glass substrate or a Si wafer by a sputtering method, and the specific resistance value was measured by a four probe method. Further, the spectral reflectance in the optical wavelength range of 400 to 700 nm, which is the visible light range, was measured using a spectral colorimeter (CM-2002 manufactured by Minolta), and the average reflectance was evaluated.
[0035]
Next, in order to evaluate a change in film characteristics after a predetermined manufacturing process as an electronic component such as a display device, the pure Ag film and the Ag alloy film produced above were evaluated under the following conditions.
First, in order to evaluate the heat resistance, a heat treatment was performed at 250 ° C. for 2 hours in a vacuum, and a pure Ag film and an Ag alloy film were heat-treated at 250 ° C. for 1 hour in air. The specific resistance and the average reflectance were evaluated. Further, the discoloration state of the surface of the pure Ag film and the Ag alloy film that was heat-treated in the air was observed, and those having no white spots and white turbidity were evaluated as good.
Next, as a corrosion resistance test, a specific resistance value and an average reflectance after the pure Ag and Ag alloy films were left in an environment of a temperature of 85 ° C. and a humidity of 90% for 24 hours were evaluated.
Further, in order to evaluate the adhesion between the pure Ag film and the Ag alloy film, the heat-treated pure Ag film and the Ag alloy film were cut in a grid pattern at intervals of 2 mm on the film surface. , And peeled off at an angle of 45 °. At that time, the cells remaining on the substrate were expressed by area ratio and evaluated as adhesion.
[0036]
In addition, as an evaluation of the patterning property, OFPR-800 resist manufactured by Tokyo Ohka Co., Ltd. was applied to the pure Ag film and the Ag alloy film which were subjected to the heat treatment in vacuum by spin coating, and the resist was exposed to ultraviolet light using a photomask. Then, a resist pattern was prepared by developing with an organic alkali developing solution NMD-3 manufactured by Tokyo Ohka, and etching was performed with a mixed solution of phosphoric acid, nitric acid, acetic acid and water to form a metal film pattern. The pattern of the metal film was peeled off, the shape of the edge and the residue around the metal film were observed with an optical microscope, and a film having no film peeling and no residue was evaluated as good. Tables 1 and 2 show the results of the above measurement and evaluation.
[0037]
[Table 1]
Figure 2004204250
[0038]
[Table 2]
Figure 2004204250
[0039]
From Tables 1 and 2, the pure Ag film (Sample No. 1) has a low specific resistance of 3.0 μΩcm or less at the time of film formation, and the electric resistance further decreases when heat treatment is performed. However, the specific resistance increases after the corrosion resistance test. Further, it can be seen that the average reflectance at the time of film formation is the highest, but is significantly reduced by heating in the atmosphere, and the film surface becomes cloudy. Further, it can be seen that the adhesion is low, the film is peeled off, and the patterning property is inferior. Further, the conventionally proposed Ag alloy films obtained by adding Pd, Cu, and Ru to Ag (samples Nos. 2 and 3) have higher specific resistance values than the Ag alloy films of the present invention, and have a specific resistance after the corrosion resistance test. The value increases. Further, the average reflectance is lower than that of the Ag alloy of the present invention. In particular, the average reflectance is reduced after the heat treatment, and white spots, which are spots having a white circular diameter, are generated on the film surface. Further, it can be seen that the adhesion is low and a residue is generated at the time of etching.
Further, the Ag alloy film obtained by adding Cu to Ag (Sample No. 4) is particularly poor in heat resistance, the specific resistance increases after heating in the air, the average reflectance is significantly reduced, and the film surface becomes cloudy. . Further, the Ag alloy film (Sample No. 5) in which Nd, which is a rare earth element, is added to Ag has a high specific resistance value, and white spots are generated on the film surface when heated in air.
[0040]
The Ag alloy film obtained by adding Zr alone to Ag (Sample No. 6) has a sufficient resistance such that the specific resistance value after the corrosion resistance test increases, the reflectance decreases, and white spots are generated on the film surface. Corrosion resistance cannot be obtained.
On the other hand, the Ag alloy film (Sample Nos. 8 to 17) of the present invention, in which Zr and / or Hf and (Al, Mn, Cu, Ge, Sn) are added in a complex manner, has a specific resistance of 4 at the time of film formation. It can be seen that the specific resistance was low even after the heat treatment and after the corrosion resistance test. Furthermore, it can be seen that the high average reflectance of 94% or more is maintained after the heat treatment and after the corrosion resistance test, and the adhesion is greatly improved, and the patterning is excellent.
[0041]
The improvement effect is improved by increasing the amount of addition, and the effect of each element becomes clear at 0.1 atomic% or more. However, the sample No. From the Ag alloy films of Nos. 19 to 21, the addition amount of Zr exceeds 0.7 at%, the addition amount of (Al, Mn, Cu, Ge, Sn) exceeds 1.0 at%, and the total amount of addition is 1. It can be seen that if it exceeds 5 atomic%, a specific resistance value of 4.0 μΩcm or less and a high average reflectance of 94% or more cannot be obtained. Further, among (Al, Mn, Cu, Ge, Sn), Cu, Mn, and Ge have higher adhesiveness when added than other elements, and high characteristics can be obtained with a smaller addition amount. I understand. At this time, in order to obtain a lower specific resistance value and a higher average reflectance of 96% or more, the addition amount of Zr and Hf is 0.5 atom% or less, and the addition amount of Cu, Mn, and Ge is added. Is desirably set to 1.0 atomic% or less. Within this range, a low specific resistance value of 3.0 μΩcm or less can be stably obtained by performing the heat treatment. In addition, although the Ag alloy film of (Sample No. 18) was a film formed on a Si wafer, it can be seen that the same film characteristics as when formed on a glass substrate were obtained.
[0042]
Further, as-formed pure Ag films (Sample No. 1), Ag-0.7 at% Pd-1.0 at% Cu films (Sample No. 2), and Ag-0.5 at% Ru-0. 0.8 atomic% Cu film (sample No. 3), spectral reflectance of Ag-0.3 atomic% Zr-0.3 atomic% Cu film (sample No. 8) at an optical wavelength of 400 to 700 nm in the visible light range. 1 is shown in FIG. 1, and the spectral reflectance after heat treatment in the atmosphere is shown in FIG.
As formed, the pure Ag film is high in the visible light range and has uniform and flat reflection characteristics. However, as described above, there is a problem that the corrosion resistance and the adhesion are low. Among the Ag alloy films, it can be seen that the Ag-0.3 atomic% Zr-0.3 atomic% Cu film of the present invention has higher reflection and flat reflection characteristics than other Ag alloy films. . When the heat treatment is performed, the pure Ag film, the Ag-0.7 atomic% Pd-1.0 atomic% Cu film, and the Ag-0.5 atomic% Ru-0.8 atomic% Cu film have a spectral reflectance, particularly a low wavelength. The drop on the side is large, resulting in yellowish reflection characteristics. In contrast, it can be seen that the Ag alloy film of the present invention is high even after the heat treatment, and can maintain the flat and reflective characteristics.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an Ag alloy film having low electric resistance and high reflectance, and having improved heat resistance, corrosion resistance, adhesion to a substrate, and patterning properties. Therefore, a wiring film such as an organic EL display using a polysilicon TFT which requires high heat resistance and a reflection type liquid crystal display which requires a high reflectivity are required. It is useful for membranes and has high industrial value.
[Brief description of the drawings]
FIG. 1 is a diagram showing the spectral reflectance of an optical wavelength of 400 to 700 nm in the visible light range when a substrate of an Ag alloy film of the present invention, a pure Ag film, and a conventional Ag alloy film is formed on a substrate.
FIG. 2 is a view showing the spectral reflectance of the Ag alloy film of the present invention, the pure Ag film, and the conventional Ag alloy film in the visible light range of 400 to 700 nm in optical wavelength after heat treatment.

Claims (10)

添加元素として、Zrおよび/またはHfを合計で0.1〜0.7原子%、(Al、Mn、Cu、Ge、Sn)からなる群から選択される1種または2種以上の元素を合計で0.1〜1.0原子%含有し、かつ前記添加元素の総和が1.5原子%以下であり残部実質的にAgからなることを特徴とするAg合金膜。As an additional element, Zr and / or Hf is 0.1 to 0.7 atomic% in total, and one or two or more elements selected from the group consisting of (Al, Mn, Cu, Ge, Sn) are added. Wherein the total content of the additional elements is 1.5 atomic% or less, and the balance is substantially made of Ag. 添加元素として、Zrを0.1〜0.5原子%、(Mn、Ge、Cu)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%含有し、かつ前記添加元素の総和が1.0原子%以下であり残部実質的にAgからなることを特徴とするAg合金膜。As an additive element, Zr is 0.1 to 0.5 atomic%, and one or two or more elements selected from the group consisting of (Mn, Ge, Cu) are 0.1 to 0.7 atomic% in total. An Ag alloy film, wherein the total content of the additional elements is 1.0 atomic% or less, and the balance is substantially composed of Ag. 平面表示装置用ポリシリコン薄膜トランジスタの配線膜であることを特徴とする請求項1または2に記載のAg合金膜。The Ag alloy film according to claim 1, wherein the Ag alloy film is a wiring film of a polysilicon thin film transistor for a flat panel display device. ガラス基板またはSiウェハー上に形成されることを特徴とする請求項1または2に記載のAg合金膜。The Ag alloy film according to claim 1, wherein the Ag alloy film is formed on a glass substrate or a Si wafer. 有機エレクトロルミネッセンスディスプレイ用の配線膜であることを特徴とする請求項1または2に記載のAg合金膜。The Ag alloy film according to claim 1, wherein the Ag alloy film is a wiring film for an organic electroluminescence display. 比抵抗値が4μΩcm以下であることを特徴とする請求項1または2に記載のAg合金膜。The Ag alloy film according to claim 1, wherein the Ag alloy film has a specific resistance of 4 μΩcm or less. 平面表示装置用の反射膜であることを特徴とする請求項1または2に記載のAg合金膜。The Ag alloy film according to claim 1, wherein the Ag alloy film is a reflective film for a flat panel display device. 請求項1乃至2のいずれかに記載のAg合金膜を有することを特徴とする平面表示装置。A flat display device comprising the Ag alloy film according to claim 1. 添加元素として、Zrおよび/またはHfを合計で0.1〜0.7原子%、(Al、Mn、Cu、Ge、Sn)からなる群から選択される1種または2種以上の元素を合計で0.1〜1.0原子%含有し、かつ前記添加元素の総和が1.5原子%以下であり残部実質的にAgからなることを特徴とするAg合金膜形成用スパッタリングタ−ゲット材。As an additional element, Zr and / or Hf is 0.1 to 0.7 atomic% in total, and one or two or more elements selected from the group consisting of (Al, Mn, Cu, Ge, Sn) are added. A sputtering target material for forming an Ag alloy film, characterized in that it contains 0.1 to 1.0 at.%, And the total of the additional elements is 1.5 at.% Or less and the balance is substantially made of Ag. . 添加元素として、Zrを0.1〜0.5原子%、(Mn、Ge、Cu)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%含有し、かつ前記添加元素の総和が1.0原子%以下であり残部実質的にAgからなることを特徴とするAg合金膜形成用スパッタリングタ−ゲット材。As an additive element, Zr is 0.1 to 0.5 atomic%, and one or two or more elements selected from the group consisting of (Mn, Ge, Cu) are 0.1 to 0.7 atomic% in total. A sputtering target material for forming an Ag alloy film, wherein the total amount of the additional elements is 1.0 atomic% or less and the balance is substantially composed of Ag.
JP2002371651A 2002-12-24 2002-12-24 Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film Expired - Fee Related JP3994386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371651A JP3994386B2 (en) 2002-12-24 2002-12-24 Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371651A JP3994386B2 (en) 2002-12-24 2002-12-24 Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film

Publications (2)

Publication Number Publication Date
JP2004204250A true JP2004204250A (en) 2004-07-22
JP3994386B2 JP3994386B2 (en) 2007-10-17

Family

ID=32810485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371651A Expired - Fee Related JP3994386B2 (en) 2002-12-24 2002-12-24 Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film

Country Status (1)

Country Link
JP (1) JP3994386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089926A (en) * 2012-10-31 2014-05-15 Toppan Forms Co Ltd Silver film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089926A (en) * 2012-10-31 2014-05-15 Toppan Forms Co Ltd Silver film

Also Published As

Publication number Publication date
JP3994386B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP4496518B2 (en) Thin film wiring
KR100638977B1 (en) Ag-BASE ALLOY WIRING/ELECTRODE FILM FOR FLAT PANEL DISPLAY, Ag-BASE ALLOY SPUTTERING TARGET, AND FLAT PANEL DISPLAY
KR100506474B1 (en) Ag FILM AND SPUTTERING-TARGET FOR FORMING THE Ag FILM
JP4305809B2 (en) Ag alloy-based sputtering target material
WO2011102396A1 (en) Al alloy film for display device
JP2013060655A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
JP4804867B2 (en) Transparent conductive film, transparent electrode, electrode substrate and manufacturing method thereof
JP4023728B2 (en) Sputtering target, method for producing conductive film using the same, and transparent conductive film formed by the method
JP3656898B2 (en) Ag alloy reflective film for flat panel display
JP2005171378A (en) Al ALLOY FILM FOR WIRING FILM AND SPUTTERING TARGET MATERIAL FOR FORMING WIRING FILM
JP4714477B2 (en) Ag alloy film and manufacturing method thereof
JP2004126497A (en) Light reflection film, liquid crystal display element using the same, and sputtering target for light reflection film
WO2006132412A1 (en) Silver alloy for electrode, wiring and electromagnetic shielding
TWI247812B (en) Aluminum alloy film for wiring and sputter target material for forming the film
JP3994386B2 (en) Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film
JP2004061844A (en) Ag ALLOY FILM FOR DISPLAY DEVICE, Ag ALLOY REFLECTING FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION
JP6292466B2 (en) Metal thin film and Mo alloy sputtering target material for metal thin film formation
JP6380837B2 (en) Sputtering target material for forming coating layer and method for producing the same
JP4103067B2 (en) Ag alloy reflective film for flat panel display
JP3778425B2 (en) Ag alloy film for electronic parts used for display device and sputtering target material for forming Ag alloy film for electronic parts used for display device
JP3778443B2 (en) Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film
JP4062599B2 (en) Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film
JP2003293054A (en) Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
JP3982793B2 (en) Ag alloy reflective film for display device
JP2013060656A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees