JP2004204089A - Method for producing coke for blast furnace - Google Patents

Method for producing coke for blast furnace Download PDF

Info

Publication number
JP2004204089A
JP2004204089A JP2002375814A JP2002375814A JP2004204089A JP 2004204089 A JP2004204089 A JP 2004204089A JP 2002375814 A JP2002375814 A JP 2002375814A JP 2002375814 A JP2002375814 A JP 2002375814A JP 2004204089 A JP2004204089 A JP 2004204089A
Authority
JP
Japan
Prior art keywords
coal
coke
blended
strength
coals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002375814A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山本
Koji Hanaoka
浩二 花岡
Koichi Nushishiro
晃一 主代
Tetsuo Uchida
哲郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002375814A priority Critical patent/JP2004204089A/en
Publication of JP2004204089A publication Critical patent/JP2004204089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a method for simply producing coke for blast furnaces in which dispersion of coke properties such as strength is slight. <P>SOLUTION: The method for producing the coke for blast furnaces comprises dry distilling a blended coal in which at least one kind of raw material coal of single grade in an blend amount of ≥30 mass% is compounded. In the method for producing the coke, a raw material coal having high expansion pressure in which expansion pressure exhibits expansion characteristics of ≥10 kPa is compounded in an amount of ≥5% in the blended coal. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原料炭を単味で多量に配合してなる配合炭を用いて強度等のコークス特性のばらつきの小さい高炉用コークスを簡便に製造する方法を提案する。
【0002】
【従来の技術】
一般的な高炉用コークスの製造においては、10〜20銘柄(種類)の原料炭を配合してなる配合炭を用いるのが普通である。このように、配合炭中に多種類の原料炭を少量ずつ配合する理由は、配合炭の石炭化度や流動性等が標準品位となるように調整するのに都合がよく、得られるコークスの強度や粒度、灰分などのコークス品質が安定するからである。
ところで、原料炭とする石炭は、産出国や、炭鉱、炭層などによってそれぞれ特性(石炭化度や流動性)が異なるので、安定した品質のコークスを製造するためには、石炭の配合管理が重要になる。特に、コークス強度の低下は、高炉操業時に炉内の通気性悪化を招き、高炉炉況不調の原因となるため、コークスの強度維持は配合管理を行う上で極めて重要である。
【0003】
しかしながら、原料炭となる石炭は、近年、価格競争力のある石炭に集約されてきており、石炭ヤードや入船の状況により同一銘柄の石炭を多量に配合する必要に迫られている。この場合、単味銘柄の石炭を多量に使用しなければならなくなるため、多銘柄(種類)の石炭(原料炭)を少量ずつ配合するのに比べると、その多量に配合する銘柄の石炭品位(特性)の影響を受けやすく、いわゆる品位変動等によるコークス強度のばらつきが増大する。この弊害を避けるため、どうしても平均品位を高くしておくなどの対策が必要とされていた。
【0004】
従来、多銘柄の原料炭を配合してなる配合炭から得られたコークスの強度推定については、例えば、配合炭を2種石炭の組み合わせからなる集合体とみなして、コークス強度を精度よく推定する方法などが提案されている(特許文献1)。しかし、この方法では、少数の単味銘柄の原料炭を多量に配合する場合を想定しておらず、しかも、そうした単味銘柄の原料炭の品位測定は通常、入船毎に行われているため、平均品位は正確に測定できるが、各品位はばらつきがあるため、これら単味銘柄の原料炭を多量に用いた場合のコークス品位の変動については推定が困難であり、コークス品位のばらつきが大きくなるという問題があった。
【0005】
【特許文献1】特開昭49−255966号公報
【0006】
【発明が解決しようとする課題】
そこで、本発明の目的は、配合炭中に単味銘柄の原料炭を多量に配合したときに起こる上述した問題を克服することができ、ひいては強度等のコークス特性のばらつきが小さい、高炉用コークスを簡便に製造する方法を提案することにある。
【0007】
【課題を解決するための手段】
上記の目的の実現に向けた研究の中で、発明者らは、単味銘柄の原料炭を多量に配合してなる配合炭を用いてコークスを製造した時のそのコークス強度のばらつきの原因がコークス中の粗大な気孔であることを突き止め、そして、その粗大な気孔を低減させるためには、前記配合炭中に、高膨張圧炭を所定量添加することが有効であることを見い出し、本発明を完成するに到った。
【0008】
すなわち、本発明は、配合量が単独で30 mass%以上の単味銘柄の原料炭を少なくとも一種は配合してなる配合炭を乾留することで、高炉用コークスを製造する方法において、前記配合炭中に、膨張圧が10 KPa以上の膨張特性を示す高膨張圧原料炭を5%以上配合することを特徴とする高炉用コークスの製造方法である。
【0009】
【発明の実施の形態】
高炉用コークスを室炉で製造するために使用する配合炭中には、一般に、特性の異なる複数種の石炭(原料炭)が配合されている。これらの原料炭は、それぞれが天然の産物であるため、単味銘柄(同一銘柄)であっても、その組織や成分あるいは炭化度や流動性などの諸特性にはばらつきがあるのが普通である。
【0010】
この場合、もし配合設計のときに使用する前記原料炭のうちの少なくとも一つの配合量が多くなった場合、すなわち単味銘柄の原料炭を多量に使用する場合、配合炭のたとえば炭化度や流動性などの特性が平均特性となるように配合設計を行ったとしても、実際には前記ばらつきに大きく影響を受け、製品コークスの強度等のコークス特性が大きく変動することがわかった。
【0011】
一般に、原料炭配合設計において、単味銘柄の原料炭配合割合が増大すると、コークス強度に大きなばらつきができるとしても、そのばらつきについては、他の銘柄の原料炭を組み合わせることによってある程度は解消できる。しかしながら、このようなばらつきの抑制効果というのは、前記特定銘柄原料炭の配合量が30 mass%程度になると臨界となり、これを超えると、他銘柄の原料炭との組み合わせ配合をもってしても強度等のコークス特性が急激に大きくばらつく傾向がある。この傾向は特異銘柄の原料炭、あるいは配合炭の平均品位に近い原料炭を多量に使用する場合のいずれの場合も、天然の産物に由来するばらつきのため避けることができず、このばらつきを避けるためには、使用量を制限する他ないのである。
【0012】
発明者らは、単味銘柄の原料炭を多量に配合した場合に、上述したコークス特性のばらつきが生じる原因を、その典型的な例について検討したところ、その多くは、コークス中の粗大気孔によるものであることがわかった。
すなわち、発明者らは、見掛け密度測定法により、コークス中の全気孔量を測定する一方、水銀圧入式の気孔径分布測定法により、200 μm以下の気孔量を測定することにより、その両者の差を粗大気孔量として定量化し、コークスのこの粗大気孔量とコークス強度との関係を調べた。その結果、コークス中の粗大気孔量の増大に伴ってコークス強度のばらつきもまた大きくなっていることがわかったのである。
このことは、単味銘柄の原料炭の配合割合が多くなった場合、たとえば、配合炭中に、イナート成分(不活性成分:フジニットやセミフジニット)が局所的に偏在する部分などができ、このことが、コークス化する際に局所的に融着性の劣化を招き、そのために、粗大な空隙(気孔)がそのまま残留することになることが原因と考えられるのである。
【0013】
そこで、本発明では、コークス化時の融着性の劣化を防ぎ、粗大気孔の残留を防ぐ方法として、新たに、配合炭中に前記の多量に配合する単味銘柄原料炭の配合をする場合は、その原料炭に併せて、膨張圧が10 KPa以上の膨張特性を示す高膨張圧石炭をも所定量配合することを試みた。その結果、この高膨張圧石炭が膨満して前記粗大気孔の部分を封塞し、その数を著しく低減することがわかった。即ち、膨張圧10KPa以上の高膨張圧を示す石炭は、溶融、再固化の温度が高く、そのために、他の石炭が再固化してセミコークス化し気孔構造ができあがりつつある段階において、この高膨張圧炭が溶融および膨張することになるため、いわゆる前記粗大気孔を塞いで低減する作用になることがわかった。
【0014】
そして、発明者らの研究によれば、上述した粗大気孔(空隙)の低減という上記作用効果を得るためには、前記高膨張圧石炭を少なくとも5mass%以上配合することが必要になることがわかった。該高膨張圧石炭をこの程度配合量すれば、コークス中の粗大気孔(空隙)の減少に有効であり、ひいては単味銘柄原料石炭を多量に配合した際のコークス強度のばらつきを従来と同程度またはそれ以上に抑えることができるようになる。
【0015】
ただし、この高膨張圧石炭をあまり多量に配合すると、コークス炉内でコークスケーキが膨張し押し詰まり等の操業トラブルを引き起こす原因となる。そこで、本発明では、この高膨張圧石炭の配合割合としては、20 mass%程度以下を上限とすることが好ましいと言える。より好ましくは、5mass%〜15 mass%程度とする。
【0016】
【実施例】
以下、実施例を示して本発明をより詳細に説明する。
表1に示す特性をもつ原料炭A〜D及びその他の石炭を使用し、表2に示す配合を行った配合炭(1)〜(16)を調製し、調湿炭設備により水分を6%程度に調整し、その後、前記配合炭(装入炭)炭化室内容積が41.3m3のコークス炉内に装入(嵩密度0.78t/m3に調整)して加熱乾留し、CDQ設備で乾式消火したコークスを製造し、これをサンプリングして供試材を得た。得られた供試材について次のような冷間強度試験を行った。なお、表1の原料炭A、Bは配合炭に添加する単味原料炭として使用し、原料炭C、Dは高膨張圧石炭として使用する銘柄例を示し、いずれも豪州炭の中で得ることのできる原料炭である。
【0017】
上記冷間強度試験は、タンブラー試験TI(6/400)によった。
また、原料炭の膨張圧の試験は、図1に示す膨張圧測定装置を利用した。なお、この試験では、測定する石炭を粉砕して1〜3mmの粒度に調整し、その後、この粉砕石炭をφ50×70 mmのカーボンるつぼ中に入れ、700 ℃の電気炉中にて1時間加熱保持した後、4℃/minの昇温速度で炭中温度1000 ℃まで加熱して乾留し、その乾留中、直径の1/4の位置で大気圧との差圧を測定し、その最大ガス圧を膨張圧と定義してこれを用いた。なお、るつぼ中心で測定した場合、石炭の収縮等で亀裂等が発生し測定が困難であるため、上記位置(直径の1/4)でガス圧を測定した。
【0018】
【表1】

Figure 2004204089
【0019】
【表2】
Figure 2004204089
【0020】
表2に示す配合炭(1)〜(16)は、その中に配合されている単味銘柄炭として使用するA、B炭と高膨張圧炭として使用するC、D炭以外に、その他の石炭として、揮発分21〜37%、最高流動度MF1.8〜3.6(log ddpm)の標準炭を5〜6銘柄を配合して、加重平均の揮発分29%±0.2%、MF2.5±0.02(log ddpm)となるように調整したものである。なお、その他の石炭の膨張圧は、いずれも3KPa以下のものである。
【0021】
かかる配合炭(1)〜(16)について、同じ配合炭を用いて5日間操業し、得られた製品コークスについて、1日に6回のコークス強度の測定を行った。そして、コークス強度は、その5日間の平均値としては、TI(6/400)で84.3〜84.5と、ほぼ一定であった。
【0022】
図2は、A炭またはB炭の配合割合を20〜35 mass%の範囲に変化させた配合炭(1)〜(16)につき、コークス強度の偏差(σTI)を測定しA、B石炭配合量との関係を示すものである。この図から明らかなように、高膨張圧石炭を添加していない、A炭使用の配合炭(1)〜(4)を◇で、B炭使用の配合炭(5)〜(8)を□で示したように、タンブラー強度の偏差(σTI)が増加しており、コークス強度の下限値を一定に管理するためには、コークス強度の平均値を高く設定する必要があることがわかった。
一方で、高膨張圧石炭であるC炭またはD炭を5%以上配合したA炭使用の配合炭(9)〜(12)及びB炭使用の(13)〜(16)を示す◆、■の場合、A炭またはB炭を30 mass%以上配合した場合でも、コークス強度の偏差はほとんど増加しないという結果となった。そして、A炭またはB炭の30 mass%未満での配合は、C炭、D炭の5%以上の添加で若干の効果は生じるが、不要であるとも言える。
【0023】
図3は、上記の配合炭の冷間強度試験でサンプリングした供試材(配合炭(1)〜(16))の粗大気孔量とタンブラー強度(TI)の偏差との関係を示したものである。全気孔量は、サンプリングしたコークス供試材について、水銀法により見掛け密度を測定し、真比重を1.9g/cm3として、全気孔量を計算によって求めた。また、気孔径分布の測定も行ったが、これは水銀圧入法による200μm以下の気孔量を測定した。そして、全気孔量と200μm以下の気孔量との差を粗大気孔量とした。
その結果、高膨張圧炭を添加しない配合炭(1)〜(8)である◇□の場合、A炭またはB炭を30%以上配合したことで粗大気孔量が増加し、コークス強度の偏差が増加した。一方、高膨張圧石炭であるC炭またはD炭を5 mass%添加した◆、■で示すものの場合、A炭またはB炭を30 mass%以上添加しても粗大気孔量はほとんど増加せず、その結果、コークス強度の偏差が増加せずばらつきを抑制することができた。
【0024】
【発明の効果】
以上説明したように、本発明によれば、特定の単味銘柄の配合割合が極端に増加した場合でも少量の高膨張圧石炭を適正量配合することで、コークス強度のばらつきを簡便に低減させることができる。このため、所定のコークス強度を満たすために配合炭の平均品位を上げる必要がなく、安価な石炭を多量に使用することができる。
【図面の簡単な説明】
【図1】膨張圧測定装置の模式図である。
【図2】単味銘柄の原料炭配合割合とσTI(6/400)の関係を示すグラフである。
【図3】コークス中の粗大気孔量とσTI(6/400)の関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention proposes a method for easily producing blast furnace coke with small variations in coke characteristics such as strength using a blended coal obtained by blending a large amount of raw coal in a simple manner.
[0002]
[Prior art]
In the manufacture of general blast furnace coke, it is common to use blended coal obtained by blending 10 to 20 brands (kinds) of raw coal. As described above, the reason why the various types of coking coal are blended little by little into the blended coal is that it is convenient to adjust the coalification degree and fluidity of the blended coal to the standard grade, and the resulting coke This is because coke quality such as strength, particle size, and ash content is stabilized.
By the way, coal (coking coal) has different characteristics (degree of coalification and fluidity) depending on the country of origin, coal mine, coal seam, etc. Therefore, in order to produce coke of stable quality, coal blend management is important. become. In particular, a decrease in coke strength causes deterioration of air permeability in the furnace during operation of the blast furnace and causes a malfunction in the blast furnace condition. Therefore, maintaining the coke strength is extremely important in controlling the blending.
[0003]
However, in recent years, coal used as raw coal has been concentrated into price-competitive coal, and there is a need to blend a large amount of the same brand of coal depending on the situation of coal yards and ship entry. In this case, a large amount of plain brand coal must be used. Therefore, compared to blending a large number of brands (types) of coal (coking coal) little by little, the coal quality of the brand blended in the large amount (coal) ( ), And variations in coke strength due to so-called quality fluctuations increase. In order to avoid this adverse effect, it was necessary to take measures such as keeping the average quality high.
[0004]
Conventionally, regarding the strength estimation of coke obtained from a blended coal obtained by blending multi-brand coking coal, for example, the blended coal is regarded as an aggregate composed of a combination of two types of coal, and the coke strength is accurately estimated. A method has been proposed (Patent Document 1). However, this method does not assume that a large number of coking coals of a small number of plain brands are blended, and that the measurement of the quality of such coking coals of plain brands is usually performed for each ship entering the vessel. The average grade can be measured accurately, but because the grades vary, it is difficult to estimate the variation in coke grade when using a large amount of coking coal of these plain brands, and the variation in coke grade is large. There was a problem of becoming.
[0005]
[Patent Document 1] JP-A-49-255966
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to overcome the above-described problems that occur when a large amount of plain-grade coking coal is blended in a blended coal, and, consequently, coke characteristics for a blast furnace having a small variation in coke characteristics such as strength. Is to propose a method for easily producing the same.
[0007]
[Means for Solving the Problems]
In the research aimed at realizing the above objectives, the inventors found that the cause of the variation in coke strength when coke was produced using blended coal obtained by blending a large amount of plain brand coking coal. To find out that the pores are coarse pores in the coke, and to reduce the coarse pores, it has been found that it is effective to add a predetermined amount of high-expansion pressure coal to the blended coal. The invention has been completed.
[0008]
That is, the present invention relates to a method for producing coke for blast furnaces by dry-distilling a coal blend obtained by blending at least one kind of raw coal of a simple brand having a blending amount of at least 30 mass% alone. A method for producing coke for a blast furnace, characterized in that 5% or more of high-expansion-pressure raw coal exhibiting an expansion characteristic of 10 KPa or more in expansion pressure is blended therein.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Generally, a plurality of types of coal (raw coal) having different characteristics are blended in a blended coal used for producing blast furnace coke in a room furnace. Since each of these coking coals is a natural product, even if it is a simple brand (same brand), its structure, components, and various characteristics such as carbonization and fluidity usually vary. is there.
[0010]
In this case, if the blending amount of at least one of the raw coals used in blending design is increased, that is, if a large amount of plain brand raw coal is used, for example, the degree of carbonization or flow of the blended coal is increased. It has been found that even if the blending design is performed so that the properties such as the properties become the average properties, the coke characteristics such as the strength of the product coke greatly vary in practice, greatly affected by the variation.
[0011]
Generally, in the coking coal blending design, if the mixing ratio of the coking coal of the plain brand increases, even if the coke strength greatly varies, the variation can be solved to some extent by combining the coking coals of other brands. However, the effect of suppressing such variation becomes critical when the blending amount of the specific brand coking coal is about 30 mass%, and when it exceeds this, the strength is increased even when combined with other brand coking coal. , Etc., tend to vary greatly sharply. This tendency cannot be avoided in the case of using a large amount of coking coal of a special brand or coking coal close to the average grade of blended coal due to the variation derived from natural products. The only way to do this is to limit the amount used.
[0012]
The present inventors have examined the causes of the above-described variation in coke characteristics when a large amount of plain brand coking coal is blended, and examined typical examples thereof, and found that many of them were caused by coarse pores in coke. Turned out to be something.
In other words, the inventors measured the total porosity in the coke by the apparent density measurement method, and measured the porosity of 200 μm or less by the mercury intrusion type pore size distribution measurement method. The difference was quantified as coarse atmospheric porosity, and the relationship between the coarse atmospheric porosity of coke and coke strength was examined. As a result, it was found that the variation in coke strength also increased with an increase in the amount of coarse atmospheric pores in coke.
This means that, when the blending ratio of plain brand coking coal is increased, for example, in the blended coal, a part where an inert component (inactive component: FUJINIT or SEMIFUJINIT) is locally unevenly formed, etc. However, it is considered that the cause is that the cohesion locally deteriorates the fusibility, and therefore coarse pores (pores) remain as it is.
[0013]
Therefore, in the present invention, as a method for preventing the deterioration of the cohesiveness at the time of coking and preventing the residual coarse pores, a new blend of the simple brand raw coal blended in a large amount in the blended coal. Tried to mix a predetermined amount of a high expansion pressure coal exhibiting an expansion characteristic of an expansion pressure of 10 KPa or more in addition to the raw coal. As a result, it was found that the high-expansion-pressure coal swelled and closed the coarse air holes, thereby significantly reducing the number thereof. In other words, coal having a high expansion pressure of 10 KPa or more has a high melting and re-solidifying temperature. Therefore, at the stage where other coals are re-solidified to form semi-coke and have a pore structure, this high expansion is achieved. It has been found that since the compressed coal melts and expands, the so-called coarse atmospheric pores are blocked and reduced.
[0014]
According to the study of the inventors, it is found that it is necessary to mix the high expansion pressure coal at least 5 mass% or more in order to obtain the above-mentioned effect of reducing the above coarse atmospheric pores (voids). Was. When the high expansion pressure coal is blended to this extent, it is effective in reducing coarse atmospheric pores (voids) in the coke, and as a result, the variation in coke strength when a large amount of plain brand raw material coal is blended is the same as that of the conventional coal. Or more.
[0015]
However, if this high expansion pressure coal is blended in an excessively large amount, the coke cake expands in the coke oven and causes operational troubles such as clogging. Therefore, in the present invention, it can be said that the upper limit of the blending ratio of the high expansion pressure coal is preferably about 20 mass% or less. More preferably, it is about 5 mass% to 15 mass%.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Using raw coals A to D having the characteristics shown in Table 1 and other coals, blended coals (1) to (16) prepared by blending as shown in Table 2 were prepared. was adjusted to an extent, then heated carbonized the coal blend (Sonyusumi) carbonization chamber volume (adjusted to a bulk density 0.78t / m 3) charged into a coke oven of 41.3 m 3 to dry in CDQ facilities Extinguished coke was produced and sampled to obtain a test material. The following cold strength test was performed on the obtained test materials. Coking coals A and B in Table 1 are used as plain coking coal to be added to blended coal, and coking coals C and D show examples of brands used as high expansion coal, and both are obtained from Australian coal. Coking coal that can be used.
[0017]
The cold strength test was based on a tumbler test TI (6/400).
The test of the expansion pressure of the raw coal was performed using the expansion pressure measuring device shown in FIG. In this test, the coal to be measured was pulverized to adjust the particle size to 1 to 3 mm, and then the pulverized coal was placed in a φ50 × 70 mm carbon crucible and heated in an electric furnace at 700 ° C. for 1 hour. After holding, it was heated at a heating rate of 4 ° C./min to a temperature in the coal of 1000 ° C. and carbonized. During the carbonization, the pressure difference from the atmospheric pressure was measured at a quarter of the diameter, and the maximum gas The pressure was defined as the inflation pressure and used. When the measurement was performed at the center of the crucible, cracks and the like occurred due to shrinkage of the coal and the measurement was difficult, so the gas pressure was measured at the above position (1/4 of the diameter).
[0018]
[Table 1]
Figure 2004204089
[0019]
[Table 2]
Figure 2004204089
[0020]
The blended coals (1) to (16) shown in Table 2 are other than A and B coals used as plain brand coals and C and D coals used as high expansion pressure coals blended therein. As coal, 5 to 6 brands of standard coal having a volatile content of 21 to 37% and a maximum flowability of MF 1.8 to 3.6 (log ddpm) are blended, and a weighted average volatile content of 29% ± 0.2% and MF 2.5 ± Adjusted to be 0.02 (log ddpm). The expansion pressure of other coals is 3 KPa or less.
[0021]
For the blended coals (1) to (16), the same blended coal was operated for 5 days, and the obtained product coke was measured for coke strength six times a day. Then, the coke strength was almost constant as 84.3 to 84.5 in TI (6/400) as an average value for the five days.
[0022]
FIG. 2 shows the deviation of coke strength (σTI) of blended coal (1) to (16) in which the blending ratio of coal A or coal B was changed to the range of 20 to 35 mass%, and blending of coal A and coal B. It shows the relationship with the quantity. As is clear from this figure, the blended coals (1) to (4) using the coal A without adding the high expansion pressure coal are indicated by ◇, and the blended coals (5) to (8) using the coal B are indicated by □. As shown in (2), the deviation of the tumbler strength (σTI) has increased, and it has been found that the average value of the coke strength needs to be set high in order to keep the lower limit of the coke strength constant.
On the other hand, blended coals (9) to (12) using coal A and coals (13) to (16) using coal B containing 5% or more of coal C or D, which are high expansion pressure coals, are shown {◆}. In this case, even when 30 mass% or more of coal A or coal B was blended, the deviation in coke strength hardly increased. If the amount of coal A or coal B is less than 30 mass%, a slight effect is produced by adding coal C or coal D at 5% or more, but it can be said that it is unnecessary.
[0023]
FIG. 3 shows the relationship between the coarse pore volume and the deviation of the tumbler strength (TI) of the test materials (blended coal (1) to (16)) sampled in the cold strength test of the blended coal. is there. The total porosity was obtained by measuring the apparent density of the sampled coke sample by the mercury method, and calculating the total porosity by setting the true specific gravity to 1.9 g / cm 3 . The pore size distribution was also measured, and the pore size of 200 μm or less was measured by a mercury intrusion method. The difference between the total pore volume and the pore volume of 200 μm or less was defined as the coarse atmospheric pore volume.
As a result, in the case of blended coals (1) to (8) without the addition of high expansion pressure coal, the amount of coarse atmospheric pores increased due to blending of coal A or coal 30% or more, and the deviation of coke strength increased. On the other hand, in the case of adding C or D coal, which is a high expansion pressure coal, of 5 mass%, the coarse atmospheric porosity hardly increases even if the A coal or B coal is added at 30 mass% or more. As a result, it was possible to suppress the variation without increasing the deviation of the coke strength.
[0024]
【The invention's effect】
As described above, according to the present invention, even when the blending ratio of a specific plain brand is extremely increased, a small amount of high expansion pressure coal is blended in an appropriate amount to easily reduce variation in coke strength. be able to. For this reason, it is not necessary to raise the average quality of the blended coal in order to satisfy the predetermined coke strength, and a large amount of inexpensive coal can be used.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an inflation pressure measuring device.
FIG. 2 is a graph showing a relationship between a blending ratio of coking coal of a simple brand and σTI (6/400).
FIG. 3 is a graph showing the relationship between coarse atmospheric porosity in coke and σTI (6/400).

Claims (1)

30 mass%以上の配合量をもつ単味銘柄の原料炭を少なくとも一種は配合してなる配合炭を乾留することで高炉用コークスを製造する方法において、前記配合炭中に、膨張圧が10 KPa以上の膨張特性を示す高膨張圧原料炭を5%以上配合することを特徴とする高炉用コークスの製造方法。A method for producing coke for a blast furnace by dry-distilling a coal blend of at least one kind of simple brand coking coal having a blending amount of 30 mass% or more, wherein the expansion pressure is 10 KPa A method for producing blast furnace coke, comprising blending 5% or more of high expansion pressure raw coal exhibiting the above expansion characteristics.
JP2002375814A 2002-12-26 2002-12-26 Method for producing coke for blast furnace Pending JP2004204089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375814A JP2004204089A (en) 2002-12-26 2002-12-26 Method for producing coke for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375814A JP2004204089A (en) 2002-12-26 2002-12-26 Method for producing coke for blast furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008199627A Division JP4888452B2 (en) 2008-08-01 2008-08-01 Method for producing blast furnace coke

Publications (1)

Publication Number Publication Date
JP2004204089A true JP2004204089A (en) 2004-07-22

Family

ID=32813429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375814A Pending JP2004204089A (en) 2002-12-26 2002-12-26 Method for producing coke for blast furnace

Country Status (1)

Country Link
JP (1) JP2004204089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069258A (en) * 2006-09-14 2008-03-27 Jfe Steel Kk Manufacturing method of high-strength coke
JP2012153908A (en) * 2012-05-25 2012-08-16 Jfe Steel Corp Method for manufacturing high-strength coke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069258A (en) * 2006-09-14 2008-03-27 Jfe Steel Kk Manufacturing method of high-strength coke
JP2012153908A (en) * 2012-05-25 2012-08-16 Jfe Steel Corp Method for manufacturing high-strength coke

Similar Documents

Publication Publication Date Title
US10308513B2 (en) Method for producing graphite bodies
JP2008111068A (en) Manufacturing process of coke for blast furnace
JP2004204089A (en) Method for producing coke for blast furnace
JP2014015502A (en) Coke and method of producing the same
JP2007246786A (en) Ferrocoke and method for producing sintered ore
JP4888452B2 (en) Method for producing blast furnace coke
EP3266855A1 (en) Coal briquettes, method and apparatus for manufacturing the same, and method and apparatus for manufacturing molten iron
JP2018048297A (en) Estimation method of coke strength
US10377672B2 (en) Methods for producing polygranular graphite bodies
JP2002105458A (en) Coal blending method for producing high-strength high- reactivity coke
JP4306406B2 (en) Method for producing blast furnace coke
JP2006225411A (en) Manufacturing method of blast furnace coke
JPH0617056A (en) Production of coke for balst furnace
JPS6047095A (en) Preparation of coke for metallurgy
JP5011833B2 (en) Coke manufacturing method
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JPH05238716A (en) Method for kneading special carbon material
JP4917300B2 (en) Method for producing iron coke and raw material for iron coke
JP3136927B2 (en) Carbonaceous brick for blast furnace with excellent alkali resistance and method for producing the same
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
KR101503443B1 (en) Composition for cokes and method of manufacturing the cokes
JP3335661B2 (en) Operating method of coke oven
KR101910405B1 (en) Ferrocoke manufacturing method
JP3582388B2 (en) Manufacturing method of coke for metallurgy
JP2009249596A (en) Method of manufacturing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Effective date: 20080508

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028