JP3335661B2 - Operating method of coke oven - Google Patents

Operating method of coke oven

Info

Publication number
JP3335661B2
JP3335661B2 JP09071092A JP9071092A JP3335661B2 JP 3335661 B2 JP3335661 B2 JP 3335661B2 JP 09071092 A JP09071092 A JP 09071092A JP 9071092 A JP9071092 A JP 9071092A JP 3335661 B2 JP3335661 B2 JP 3335661B2
Authority
JP
Japan
Prior art keywords
coal
coke oven
charged
charging
blended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09071092A
Other languages
Japanese (ja)
Other versions
JPH05287277A (en
Inventor
野村誠治
孝 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09071092A priority Critical patent/JP3335661B2/en
Publication of JPH05287277A publication Critical patent/JPH05287277A/en
Application granted granted Critical
Publication of JP3335661B2 publication Critical patent/JP3335661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コークス炉炭化室内に
おける炉幅方向で異なる配合炭を装入し、コークス強度
を損なうことなく実炉炉壁に作用する膨張圧を低減する
コークス炉の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the operation of a coke oven in which coking coal different in the furnace width direction in a coke oven carbonization chamber is charged to reduce the expansion pressure acting on the actual furnace wall without deteriorating the coke strength. About the method.

【0002】[0002]

【従来の技術】コークス炉の炭化室で石炭を乾留する
時、石炭の膨張によりコークス炉の炉壁に作用する圧力
のことを一般に石炭の膨張圧と呼んでいるが、この膨張
圧が高いと、たとえばU.S.Steel Fairf
ield製鐵所の第2コークス炉のようにコークス炉の
炉壁が損傷して操業不能になる(J.F.McDerm
ott et al.,Iron & Steel M
aker,13(1986),51)こともあり、膨張
圧管理は炉体管理上重要な課題である。
2. Description of the Related Art When a coal is carbonized in a carbonization chamber of a coke oven, the pressure acting on the furnace wall of the coke oven due to the expansion of the coal is generally referred to as the expansion pressure of the coal. For example, U.S.A. S. Steel Fairf
Like the No. 2 coke oven at the Field Steel Works, the wall of the coke oven is damaged and becomes inoperable (JF McDerm).
ott et al. , Iron & Steel M
aker, 13 (1986), 51), and the expansion pressure management is an important issue in furnace body management.

【0003】日本においても、今後炉体の老朽化が進行
し炉体の強度が低下する一方で、調湿炭法などの石炭事
前処理技術の導入により炭化室内の石炭装入密度が上昇
し、膨張圧は増加する傾向にあり、膨張圧による炉体損
傷が懸念されている。また、原料面からみても石炭膨張
圧が高いとされている石炭化度が高い(揮発分が低い)
石炭の配合割合が増加する傾向にあり、膨張圧に対する
注意が必要となりつつある。
[0003] In Japan as well, in the future the aging of the furnace body will progress and the strength of the furnace body will decrease, while the introduction of coal pretreatment techniques such as the humidified coal method will increase the coal charging density in the coking chamber. The expansion pressure tends to increase, and there is a concern that the furnace body may be damaged by the expansion pressure. In addition, the coal expansion is considered to be high even from the viewpoint of the raw material, and the degree of coalification is high (the volatile matter content is low)
There is a tendency for the blending ratio of coal to increase, and it is becoming necessary to pay attention to the expansion pressure.

【0004】膨張圧を低減する方法としては、配合炭の
石炭粒度を小さくしたり、粉コークスなどの不活性成分
を添加する方法が知られている。しかし、石炭粒度を減
少すると、装入密度が低下し、生産性の低下を招くとと
もに、ハンドリング上も発塵が増えるなどの問題があ
り、膨張圧低減の実用的な方法ではない。一方、不活性
成分を添加するとコークス強度が著しく低下するという
問題点がある。
[0004] As a method of reducing the expansion pressure, a method of reducing the coal particle size of the blended coal or adding an inert component such as coke breeze is known. However, when the particle size of the coal is reduced, the charging density is lowered, and the productivity is lowered. In addition, there are problems such as increased dust generation during handling, and this is not a practical method for reducing the expansion pressure. On the other hand, when an inert component is added, there is a problem that the coke strength is significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は、室炉式コー
クス炉の炭化室炉幅方向で異なる配合炭を装入し、炭化
室中央部に装入する配合炭として、不活性物質を含む配
合炭や、揮発分が高く石炭微細組織成分中の不活性成分
量が多い配合炭、粒度の小さい配合炭、粘結性の低い配
合炭を用い、コークス強度を損なうことなく膨張圧を抑
制するコークス炉の操業方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION According to the present invention, a coking coal different in the width direction of a coking chamber of a coke oven furnace is charged, and an inert substance is contained in the coking coal charged into the center of the coking chamber. Suppress the expansion pressure without impairing coke strength by using blended coal, blended coal with a high volatile content and a large amount of inactive components in the coal microstructure component, blended coal with small particle size, or blended coal with low cohesion An object of the present invention is to provide a method of operating a coke oven.

【0006】[0006]

【課題を解決するための手段】本発明は、室炉式コーク
ス炉に原料石炭を装入して乾留する際、炉幅方向中央部
に、粉コークス、無煙炭、半無煙炭、セミ・コークス、
石油コークスなど、粘結性に乏しい炭材を含む配合炭を
装入し、あるいは、炉幅方向中央部に、壁側に装入する
配合炭に比べ揮発分が高く石炭微細組織成分中の不活性
成分量が多い配合炭、壁側に装入する配合炭に比べ粒度
の小さい配合炭、また、壁側に装入する配合炭に比べ、
粘結性の低い配合炭を装入することを特徴とするコーク
ス炉の操業方法、である。
SUMMARY OF THE INVENTION According to the present invention, when raw coal is charged into a coke oven and dry-distilled, coke breeze, anthracite, semi-anthracite, semi-coke,
A blended coal containing poorly caking coal, such as petroleum coke, is charged, or at the center of the furnace in the furnace width direction, the volatile content is higher than that of a blended coal charged on the wall side. the amount of active ingredient is large coal blend, small coal blend having compared particle size in coal blend to be charged into the wall, also compared to the coal blend to be charged into the wall,
A method of operating a coke oven characterized by charging a coal blend with low cohesion.

【0007】[0007]

【作用】以下、本発明を作用とともに、詳細に説明す
る。
Hereinafter, the present invention will be described in detail together with the operation.

【0008】炉壁に作用する膨張圧の経時変化について
は、調湿炭や予熱炭などで実現される装入密度が高い領
域では、軟化溶融層が炭化室中央部で会合する時に膨張
圧は著しく高い値(最大値)を示し、かつ、この軟化溶
融層内のガスの圧力が膨張圧の原因であることが知られ
ている。また、不活性物質(粉コークス、無煙炭、半無
煙炭、セミ・コークス、石油コークスなど、粘結性の
い炭材)を添加したり、石炭そのものの粒度を小さくす
ることにより膨張圧が低減されることが知られている。
[0008] With respect to the change with time of the expansion pressure acting on the furnace wall, in the region where the charging density realized by the humidified coal or the preheated coal is high, the expansion pressure when the softened molten layer meets at the center of the carbonization chamber is reduced. It is known that the gas has a remarkably high value (maximum value) and that the pressure of the gas in the softened molten layer is the cause of the expansion pressure. Further, the expansion inert material (coke, anthracite, semi-anthracite, semi-coke, petroleum coke, Do <br/> Isumizai of caking property) or added, by reducing the particle size of the coal itself It is known that the pressure is reduced.

【0009】本発明者らは、揮発分が高く石炭微細組織
成分中の不活性成分量が多い石炭では軟化溶融層内のガ
ス圧が小さくなることを見いだした。また発明者らは、
軟化溶融層が炭化室中央部で会合する時にのみ膨張圧は
著しく高い値(最大値)を示すので、この最大値のみを
低減できれば炉体への影響を極力低減できることを発見
した。
The present inventors have found that in coal having a high volatile content and a large amount of inactive components in the coal microstructure component, the gas pressure in the softened molten layer is reduced. The inventors also
Since the expansion pressure shows a remarkably high value (maximum value) only when the softened molten layer associates at the center of the carbonization chamber, it has been found that if only this maximum value can be reduced, the influence on the furnace body can be reduced as much as possible.

【0010】これらのことから発明者らは、乾留時間全
域において膨張圧を低減せずとも、軟化溶融層会合位置
(炭化室炉幅方向中心)近傍に不活性物質を含む配合炭
や、揮発分が高く石炭微細組織成分中の不活性成分量が
多い配合炭、粒度の小さい配合炭、粘結性の低い配合炭
を装入し、軟化溶融層会合時の軟化溶融層内ガス圧のみ
を著しく低減することにより、コークス強度をほとんど
損なうことなく、最大膨張圧を低減できることを見いだ
した。
[0010] From these facts, the present inventors have found that, without reducing the expansion pressure throughout the carbonization time, blended coal containing an inert substance near the associating position of the softening molten layer (the center in the width direction of the furnace in the carbonization chamber) or volatile coal High coal content, high content of inert components in coal microstructure component, small particle size coal, low caking coal, and only the gas pressure in the softened molten layer during the softened molten layer association It has been found that by reducing the pressure, the maximum inflation pressure can be reduced without substantially impairing the coke strength.

【0011】本発明は上記知見に基づいて完成された。
すなわち、室炉式コークス炉の炭化室炉幅方向で異なる
配合炭を装入し、軟化溶融層が会合する炭化室中央部に
装入する配合炭として、軟化溶融層内のガス圧が低い配
合炭(揮発分が高く石炭微細組織成分中の不活性成分量
が多い配合炭、粒度の小さい配合炭、粘結性の低い配合
炭、不活性物質を含む配合炭)を用いることにより、最
大膨張圧を抑制することが可能である。
The present invention has been completed based on the above findings.
That is, different blended coals are charged in the width direction of the coking chamber of the coke oven, and as the blended coal charged into the center of the coking chamber where the softened molten layer meets, the gas pressure in the softened molten layer is low. Maximum expansion by using charcoal (coal coal with high volatile content, large amount of inert component in coal microstructure component, small particle size coal, low caking coal, and coal containing inert substance) It is possible to suppress the pressure.

【0012】炭化室中央部のコークスは、もともと気孔
率が大きく、強度の弱い部分であるので、このように、
炭化室中央部にのみ、のぞましくは10mm〜100m
m幅程度の領域に、上述した粘結性の低い配合炭、不活
性物質を含む配合炭を用いても、炭化室内全体としての
コークス強度は低下せず、従来技術の課題を解決するこ
とが可能である。
Since the coke in the center of the carbonization chamber is originally a portion having a large porosity and a low strength,
Only in the center of the carbonization chamber, preferably 10mm-100m
Even if the above-described low-coking coal blend or a coal blend containing an inert substance is used in a region of about m width, the coke strength of the entire coking chamber does not decrease, and the problem of the related art can be solved. It is possible.

【0013】[0013]

【実施例】【Example】

実施例1 実験1では、表1に示すような4種類の石炭(粉砕粒度
−3mm 85%)を表2に示すような割合で配合した
配合炭Aを、全量、炉幅400mm、高さ600mm、
長さ600mmの試験コークス炉に装入密度0.85d
ry−t/m3で装入し、炉温1250℃で18時間乾
留し、石炭乾留過程における膨張圧を測定した。
Example 1 In Experiment 1, blended coal A in which four types of coal (crushed particle size-3 mm 85%) as shown in Table 1 were blended at a ratio as shown in Table 2, the total amount, furnace width 400 mm, height 600 mm ,
Charge density 0.85d in test coke oven 600mm long
The mixture was charged at ry-t / m 3 and carbonized at a furnace temperature of 1250 ° C. for 18 hours, and the expansion pressure in the coal carbonization process was measured.

【0014】一方実験2では図1(a)〜(c)に示す
ように石炭装入ホッパー1を改造し、配合炭Aを炉壁側
に、粉コークス(粒度0.5mm以下98%)を5%含
む配合炭Bを中央部に装入して、上述した試験炉で膨張
圧を測定した。またこの時装入密度は0.85dry−
t/m3 であり、配合炭AとBの重量比は、A 90%
B 10%とした。
On the other hand, in Experiment 2, as shown in FIGS. 1 (a) to 1 (c), the coal charging hopper 1 was modified so that coal blend A was supplied to the furnace wall side and coke breeze (particle size: 0.5% or less 98%). Blended coal B containing 5% was charged into the center, and the expansion pressure was measured in the test furnace described above. At this time, the charging density is 0.85 dry-
t / m 3 , and the weight ratio of blended coals A and B is A 90%
B was set to 10%.

【0015】乾留後のコークスは、窒素ガスにより乾式
消火を行い、ドラム強度(JISK 2151による)
と反応後強度(1100℃で二酸化炭素と2時間反応さ
せた後の強度)を測定した。
The coke after carbonization is dry-fired with nitrogen gas, and the drum strength (according to JIS K 2151)
And the strength after reaction (strength after reaction with carbon dioxide at 1100 ° C. for 2 hours).

【0016】上記試験の結果を図2、および表3に示
す。
The results of the above test are shown in FIG.

【0017】実験1に対して、本発明を実施した実験2
では、軟化溶融層が会合する12時間ごろまではほぼ等
しい膨張圧を示すが、軟化溶融層会合時の最大膨張圧は
ほぼ半減した。またこの場合コークス強度もほとんど低
下していないことがわかる。
In contrast to Experiment 1, Experiment 2 in which the present invention was implemented
In this example, the expansion pressure was substantially the same until about 12 hours when the softened molten layer was associated, but the maximum expansion pressure at the time when the softened molten layer was associated was reduced by almost half. In this case, it is also found that the coke strength hardly decreased.

【0018】実施例2 実験1では、表2に示す配合炭Aを、実施例1と同様の
試験コークス炉で乾留し、石炭乾留過程における膨張圧
を測定した。
Example 2 In Experiment 1, blended coal A shown in Table 2 was carbonized in the same test coke oven as in Example 1, and the expansion pressure in the coal carbonization process was measured.

【0019】一方実験2では図1(a)〜(c)に示す
ように改造した石炭装入ホッパー1を用い、配合炭Dを
炉壁側に、配合炭Dよりも揮発分が高く石炭微細組織成
分中の不活性成分量が多い配合炭Cを中央部に装入し
て、膨張圧を測定した。この時配合炭CとDの重量比
は、C 50% D 50%とした。また、CとDを等
量ずつ混合するとAと同じになる。
On the other hand, in experiment 2, a coal charging hopper 1 modified as shown in FIGS. 1 (a) to 1 (c) was used, and the coal blend D was placed on the furnace wall side. Blended coal C having a large amount of inactive components in the tissue components was charged into the center, and the inflation pressure was measured. At this time, the weight ratio of the blended coals C and D was C 50% D 50%. When C and D are mixed in equal amounts, the result becomes the same as A.

【0020】乾留後のコークスは、窒素ガスにより乾式
消火を行い、実施例1と同様にドラム強度と反応後強度
を測定した。
The coke after carbonization was subjected to dry fire extinguishing with nitrogen gas, and the drum strength and post-reaction strength were measured as in Example 1.

【0021】上記試験の結果を表4に示す。Table 4 shows the results of the above test.

【0022】実験1に対して、本発明を実施した実験2
では、軟化溶融層会合時の最大膨張圧が約20%減少し
た。またこの場合コークス強度はほとんど変化していな
いことがわかる。
In contrast to Experiment 1, Experiment 2 in which the present invention was implemented
In, the maximum expansion pressure at the time of associating the softened molten layer was reduced by about 20%. Also, in this case, it can be seen that the coke strength hardly changes.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、室
炉式コークス炉の炭化室炉幅方向で異なる配合炭を装入
することにより、コークス強度を低下させずに軟化溶融
層会合時の最大膨張圧を抑制することが可能である。し
たがって、本発明により、膨張圧による炉体損傷を回避
しながら安定したコークス炉操業を継続することができ
るとともに、膨張圧が高い高石炭化度低イナート炭の増
使用が可能となり、原料炭選択の範囲を拡大することが
できる。また、調湿炭や予熱炭装入などにより石炭装入
嵩密度が上昇し、最大膨張圧が上昇する環境下において
も、本発明の適用により最大膨張圧を抑制しつつ生産性
を増大させることが可能であり、その経済的効果は大き
い。
As described above, according to the present invention, different coking coals are inserted in the width direction of the coking chamber of the coke oven of the coke oven type so that the coke strength can be reduced without reducing the coke strength. Can be suppressed. Therefore, according to the present invention, stable coke oven operation can be continued while avoiding furnace body damage due to expansion pressure, and it is possible to increase the use of high inertia coal having a high expansion pressure and a high degree of coalification. Range can be expanded. In addition, even in an environment in which the bulk density of coal is increased due to charging of humidified coal or preheated coal and the maximum expansion pressure is increased, application of the present invention suppresses the maximum expansion pressure and increases productivity. Is possible, and the economic effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における、炉幅方向に異なる石炭を装入
するためのホッパーを示す図で、図1(a)は正面図、
(b)は平面図、(c)は側面図である。
FIG. 1 is a view showing a hopper for charging different coals in a furnace width direction in an embodiment, FIG. 1 (a) is a front view,
(B) is a plan view, and (c) is a side view.

【図2】膨張圧の経時変化を示すグラフ。FIG. 2 is a graph showing the change over time of the expansion pressure.

【符号の説明】[Explanation of symbols]

1…ホッパー 1: hopper

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C10B 47/10 C10B 57/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C10B 47/10 C10B 57/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室炉式コークス炉に原料石炭を装入して
乾留する際、炉幅方向中央部の10mm〜100mmの
領域に、粘結性に乏しい炭材を含む配合炭を装入するこ
とを特徴とするコークス炉の操業方法。
When a raw coal is charged into a room-type coke oven and carbonized, a coal blend containing a carbon material having poor caking properties is charged into a region of 10 mm to 100 mm in a central portion in a furnace width direction. A method of operating a coke oven characterized by the above-mentioned.
【請求項2】 室炉式コークス炉に原料石炭を装入して
乾留する際、炉幅方向中央部の10mm〜100mmの
領域に、壁側に装入する配合炭に比べ揮発分が高く石炭
微細組織成分中の不活性成分量が多い配合炭を装入する
ことを特徴とするコークス炉の操業方法。
2. When charging raw coal in a room-type coke oven and dry-distilling the coal, a coal having a higher volatile content in a 10 mm to 100 mm region in the central part in the furnace width direction than a blended coal charged on the wall side.
A method for operating a coke oven, comprising charging a coal blend containing a large amount of inert components in a microstructure component .
【請求項3】 室炉式コークス炉に原料石炭を装入して
乾留する際、炉幅方向中央部の10mm〜100mmの
領域に、壁側に装入する配合炭に比べ粒度の小さい配合
炭を装入することを特徴とするコークス炉の操業方法。
3. A coal blend having a smaller particle size than a coal blend charged into a wall in a 10 mm to 100 mm region in a central portion in a furnace width direction when raw coal is charged into a room-type coke oven and carbonized. A method for operating a coke oven characterized by charging a coke oven.
【請求項4】 室炉式コークス炉に原料石炭を装入して
乾留する際、炉幅方向中央部の10mm〜100mmの
領域に、壁側に装入する配合炭に比べ、粘結性の低い配
合炭を装入することを特徴とするコークス炉の操業方
法。
4. When charging raw coal in a room-type coke oven and dry-distilling it, a coking coal of a coking coal charged into a wall of 10 mm to 100 mm at the center in the furnace width direction is used as compared with coal blended into a wall . A method of operating a coke oven characterized by charging low blended coal.
JP09071092A 1992-04-10 1992-04-10 Operating method of coke oven Expired - Fee Related JP3335661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09071092A JP3335661B2 (en) 1992-04-10 1992-04-10 Operating method of coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09071092A JP3335661B2 (en) 1992-04-10 1992-04-10 Operating method of coke oven

Publications (2)

Publication Number Publication Date
JPH05287277A JPH05287277A (en) 1993-11-02
JP3335661B2 true JP3335661B2 (en) 2002-10-21

Family

ID=14006092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09071092A Expired - Fee Related JP3335661B2 (en) 1992-04-10 1992-04-10 Operating method of coke oven

Country Status (1)

Country Link
JP (1) JP3335661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454365B1 (en) * 2002-05-03 2004-10-26 주식회사 포스코 High strength coke containing semianthracite coal
CN105524673A (en) * 2015-12-24 2016-04-27 四川德胜集团钒钛有限公司 Sintering fuel and use method thereof

Also Published As

Publication number Publication date
JPH05287277A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
JP3027084B2 (en) Method for producing molded coke for metallurgy
US3883399A (en) Charging coke oven blended coal and an overlay of briquettes
JP3335661B2 (en) Operating method of coke oven
GB1563072A (en) Process for preparing blast furnace coke
JPH026815B2 (en)
US2473987A (en) Process of coking high volatile coal involving incorporation therein of a limited amount of blast furnace flue dust
KR20170053988A (en) Method for producing cokes
KR101864524B1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP3395604B2 (en) Method for charging dry coal into coke oven
JP3171909B2 (en) Operating method of coke oven
JP3854355B2 (en) High strength coke manufacturing method
JPH05230558A (en) Production of sintered ore
JPH0259196B2 (en)
JP4625253B2 (en) Method for producing blast furnace coke
JP7493121B1 (en) Coke manufacturing method
JP4099920B2 (en) Method for producing highly reactive coke
WO2024202185A1 (en) Coke production method
JP3607762B2 (en) Coke production method for blast furnace
JPH09255967A (en) Production of coke for blast furnace
JPH11181440A (en) Production of coke
JPH06264069A (en) Production of coke
JP2001181649A (en) Method for producing coke
JPH07103374B2 (en) Coke production method
JPH0218359B2 (en)
JP3620386B2 (en) Coke oven charging coal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

LAPS Cancellation because of no payment of annual fees