JP2004203870A - Urea derivative, method for producing the same and polymer of the same - Google Patents

Urea derivative, method for producing the same and polymer of the same Download PDF

Info

Publication number
JP2004203870A
JP2004203870A JP2003413746A JP2003413746A JP2004203870A JP 2004203870 A JP2004203870 A JP 2004203870A JP 2003413746 A JP2003413746 A JP 2003413746A JP 2003413746 A JP2003413746 A JP 2003413746A JP 2004203870 A JP2004203870 A JP 2004203870A
Authority
JP
Japan
Prior art keywords
polymer
formula
urea
residue
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003413746A
Other languages
Japanese (ja)
Other versions
JP4552174B2 (en
Inventor
Shoji Nagaoka
昭二 永岡
Takao Sato
崇雄 佐藤
Hirotaka Ihara
博隆 伊原
Shinichiro Ishihara
晋一郎 石原
Takashi Maruyama
学士 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2003413746A priority Critical patent/JP4552174B2/en
Publication of JP2004203870A publication Critical patent/JP2004203870A/en
Application granted granted Critical
Publication of JP4552174B2 publication Critical patent/JP4552174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a urea type glycoside vinyl monomer which is a derivative of glucose or cellobiose originating from cellulose and is not described in a literature, capable of being utilized as an adhesive or oxygen gas barrier coating agent, etc., a method for producing the same and a polymer produced therefrom. <P>SOLUTION: This urea derivative is expressed by formula (I) (wherein, R is H or CH<SB>3</SB>; and G is H, glucose or cellobiose residue) and obtained by performing the reaction of 1-aminosaccharide with a (meth)acryloylethyl isocyanate. Further the polymer is obtained by polymerizing the compound in the presence of a polymerization initiator. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、接着剤、酸素ガスバリアコート剤等として有用な、文献未記載の糖鎖をもつウレア誘導体、その製造方法、及びそれから製造されるポリマーに関する。   The present invention relates to a urea derivative having a sugar chain not described in any literature, useful as an adhesive, an oxygen gas barrier coating agent, and the like, a production method thereof, and a polymer produced therefrom.

多くの使い捨て容器、包装材料の用途に接着剤が使用されている。種々の天然糖類(デンプン、デキストリン等)あるいはカルボキシメチルセルロース、デンプン由来アミロース及びミルク由来カゼイン等、生分解性で且つ接着特性を有している天然物の誘導体が接着剤用途に使用できることが分かっており、かかる包装用途に使用されている。しかしながら、それらは主としてその性能故に合成物に取って代わられ続けてきている。
また、内容物が劣化あるいは変質しやすい食品、医薬品、電子部品などの分野においては、酸素ガスバリア性などのガスバリア性が優れていることが求められている。糖類、例えばデンプン類、は水酸基を有し水素結合能が高いためにガスバリア性に優れているが、機械的強度に劣り、また親水性が高いために高湿度条件下では酸素ガスバリア性が著しく損なわれる。
Adhesives are used in many disposable containers and packaging materials. It is known that various natural sugars (starch, dextrin, etc.) or derivatives of natural products such as carboxymethylcellulose, starch-derived amylose and milk-derived casein that are biodegradable and have adhesive properties can be used for adhesive applications. Used in such packaging applications. However, they have been replaced by synthetics mainly due to their performance.
Further, in the fields of foods, pharmaceuticals, electronic parts and the like whose contents are easily deteriorated or deteriorated, excellent gas barrier properties such as oxygen gas barrier properties are required. Saccharides such as starches are excellent in gas barrier properties due to their hydroxyl groups and high hydrogen-bonding ability, but their mechanical strength is poor and their hydrophilicity is high, so oxygen gas barrier properties are significantly impaired under high humidity conditions. It is.

環境問題あるいは自然保護に関して新しい考え方がなされ、強調されるようになって、再生可能な天然資源を基にした製品を求める市場が広がりつつあり、包装分野でも顕著である。多様な製品の原料として、天然資源からできる高分子を応用することがますます重要となってきており、天然の多糖類、その分解物あるいはその誘導体を、接着剤やコーティング剤として使用できることが望まれている。   New ideas regarding environmental issues or nature conservation have been made and emphasized, and the market for products based on renewable natural resources is expanding and is also prominent in the packaging field. It is becoming increasingly important to apply polymers made from natural resources as raw materials for various products, and it is hoped that natural polysaccharides, their degradation products or their derivatives can be used as adhesives and coating agents. It is rare.

従来、側鎖に還元糖を有する高分子を製造できる化合物は数多く報告されており(例えば、特開平3−236395号公報、Makromol.Chem.1987年188巻1217頁、J.Carbohydr.Chem.1989年8巻597頁、Macromolecules 1997年30巻2016頁、等)、更に、側鎖に還元糖を持ちウレア結合を有する化合物としては、例えば、特許文献1には、シリカゲルのマトリックス中にウレア結合を有する糖類が分散されたガラス被覆用または積層ガラス中間膜用樹脂が開示されている。   Conventionally, many compounds that can produce a polymer having a reducing sugar in the side chain have been reported (for example, JP-A-3-236395, Makromol. Chem. 1987, Vol. 188, 1217, J. Carbohydr. Chem. 1989). In addition, as a compound having a reducing sugar in the side chain and having a urea bond, for example, Patent Document 1 discloses a urea bond in a silica gel matrix. Disclosed is a glass coating or laminated glass interlayer resin in which saccharides are dispersed.

特開2002−60253号公報Japanese Patent Laid-Open No. 2002-60253

しかしながら、これらの機能・作用は十分とは言えず、更に優れた材料が求められている。   However, these functions and actions are not sufficient, and more excellent materials are demanded.

光合成により生産されるセルロースは、地球上で最も多く生産される有機高分子である。しかし、セルロースは強固な分子間・分子内水素結合を有しているため高結晶性、剛直性高分子であり加工性が悪く、大部分は微生物や酵素によって分解され、利用されている部分はごくわずかであり、加工性等に関して利用可能な形態に変換できれば、その価値は非常に大きい。
従って、本発明はセルロースの有効利用に関し、接着剤、酸素ガスバリアコート剤あるいは生体適合材料として有用な、セルロース由来のグルコース、セロビオース等の誘導体である、文献未記載のウレアタイプのグリコシドビニルモノマー及びその重合体を提供することを課題とする。
Cellulose produced by photosynthesis is the most produced organic polymer on the earth. However, since cellulose has strong intermolecular and intramolecular hydrogen bonds, it is a highly crystalline and rigid polymer, and its processability is poor. Most of it is decomposed by microorganisms and enzymes, and the parts used are The value is very large if it can be converted into a usable form in terms of processability and the like.
Therefore, the present invention relates to effective use of cellulose, urea-type glycoside vinyl monomers not described in the literature, which are derivatives derived from cellulose, such as glucose and cellobiose, useful as adhesives, oxygen gas barrier coating agents, or biocompatible materials. It is an object to provide a polymer.

本発明者等は、かかる課題を解決するため鋭意研究の結果、セルロースの構成単位であるグルコースの還元性水酸基をアミノ化し、(メタ)アクリロイルオキシエチルイソシアネートとを反応させることにより、簡便にウレア骨格に糖鎖を導入できること、該誘導体からポリマーが得られること、該ポリマーが優れた接着性、酸素ガスバリア性を有していることを見出し、本発明に到達した。   As a result of diligent research to solve such problems, the inventors of the present invention simply aminated the reducing hydroxyl group of glucose, which is a constituent unit of cellulose, and reacted with (meth) acryloyloxyethyl isocyanate to easily form a urea skeleton. The present inventors have found that a sugar chain can be introduced into the polymer, that a polymer can be obtained from the derivative, and that the polymer has excellent adhesion and oxygen gas barrier properties.

すなわち本発明は、
(1)式(I):

Figure 2004203870
(式中、Rは水素原子又はメチル基を、Gは水素原子、グルコース残基又はセロビオース残基を表す。)で表されるウレア誘導体。 That is, the present invention
(1) Formula (I):
Figure 2004203870
(Wherein R represents a hydrogen atom or a methyl group, and G represents a hydrogen atom, a glucose residue or a cellobiose residue).

(2)式(II):

Figure 2004203870
(式中、Gは水素原子、グルコース残基又はセロビオース残基を表す。)で表される1−アミノ糖と(メタ)アクリロイルオキシエチルイソシアネートとを反応させることを特徴とする、式(I): (2) Formula (II):
Figure 2004203870
(Wherein G represents a hydrogen atom, a glucose residue or a cellobiose residue), a 1-amino sugar represented by (meth) acryloyloxyethyl isocyanate is reacted, :

Figure 2004203870
(式中、Rは水素原子又はメチル基を、Gは水素原子、グルコース残基又はセロビオース残基を表す。)で表されるウレア誘導体の製造方法、
Figure 2004203870
(Wherein R represents a hydrogen atom or a methyl group, G represents a hydrogen atom, a glucose residue or a cellobiose residue),

(3)式(III):

Figure 2004203870
(式中、Rは水素原子又はメチル基を、Gは水素原子、グルコース残基又はセロビオース残基を、nは2以上の整数を表す。)で表されるポリマー、
(4)上記(3)記載の式(III)で表されるポリマーを含有した酸素ガスバリアコート剤、及び、
(5)上記(3)記載の式(III)で表されるポリマーを含有した接着剤、
を提供するものである。 (3) Formula (III):
Figure 2004203870
(Wherein R represents a hydrogen atom or a methyl group, G represents a hydrogen atom, a glucose residue or a cellobiose residue, and n represents an integer of 2 or more),
(4) an oxygen gas barrier coating agent containing a polymer represented by formula (III) described in (3) above, and
(5) an adhesive containing a polymer represented by the formula (III) described in (3) above,
Is to provide.

上記のとおり、本発明によると、セルロースの有効利用に関し、セルロース由来のグルコース、セロビオース等の誘導体である、文献未記載のウレアタイプのグリコシドビニルモノマー、その製造方法、及びそれらから製造されるポリマーが提供される。本発明のモノマーから製造されるポリマーの応用範囲は広く、特に、接着剤、酸素ガスバリアコート剤等として利用が可能である。   As described above, according to the present invention, a urea-type glycoside vinyl monomer not described in any literature, which is a derivative of cellulose derived from cellulose, cellobiose, and the like, a method for producing the same, and a polymer produced therefrom are used for effective use of cellulose. Provided. The range of applications of the polymer produced from the monomer of the present invention is wide, and in particular, it can be used as an adhesive, an oxygen gas barrier coating agent or the like.

本発明の、上記式(I)で表されるウレア誘導体としては、具体的には、N−(メタ)アクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(β−D−グルコピラノシル)])−ウレア、N−(メタ)アクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(β−D−グルコピラノシル)−β−D−グルコピラノシル])−ウレア、N−(メタ)アクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(α−D−グルコピラノシル)−α−D−グルコピラノシル])−ウレア、N−(メタ)アクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(β−D−グルコピラノシル)−4−O−(β−D−グルコピラノシル)−β−D−グルコピラノシル])−ウレアである。   As the urea derivative represented by the above formula (I) of the present invention, specifically, N- (meth) acryloyloxyethyl-N ′-(1- [1-deoxy-4-O- (β- D-glucopyranosyl)])-urea, N- (meth) acryloyloxyethyl-N ′-(1- [1-deoxy-4-O- (β-D-glucopyranosyl) -β-D-glucopyranosyl])-urea N- (meth) acryloyloxyethyl-N ′-(1- [1-deoxy-4-O- (α-D-glucopyranosyl) -α-D-glucopyranosyl])-urea, N- (meth) acryloyloxy Ethyl-N ′-(1- [1-deoxy-4-O- (β-D-glucopyranosyl) -4-O- (β-D-glucopyranosyl) -β-D-glucopyranosyl])-urea.

これらウレア誘導体は、上記式(II)で表される1−アミノ糖と2−(メタ)アクリロイルオキシエチルイソシアネートとを反応させることにより製造される。
出発物質である1−アミノ糖は、公知の方法(例えば、J.Carbohydr.Chem.1989年8巻597頁)により対応する糖から容易に製造できる。
These urea derivatives are produced by reacting a 1-amino sugar represented by the above formula (II) with 2- (meth) acryloyloxyethyl isocyanate.
The starting 1-amino sugar can be easily produced from the corresponding sugar by a known method (for example, J. Carbohydr. Chem. 1989, Vol. 597).

反応は溶媒の存在下実施される。
使用できる溶媒としては、1−アミノ糖を溶解でき反応を阻害しない溶媒であればいずれでもよく、例えば、水、アルコール、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルスルホキシド、等を挙げることができるが、特に水が好ましい。
溶媒には、水酸化ナトリウム、水酸化カリウムなどの塩基性物質を添加することによって、反応の副生成物を低減することができる。塩基性物質の添加量は、溶媒に対して1×10-4から1×10-1mol/L程度が好ましい。
反応条件は、使用する溶媒等により異なるが、溶媒が水の場合、好ましくは0℃〜室温程度、反応は1〜2時間程度で完了する。
反応終了後、目的物は、析出した結晶を濾去し、濾液を凍結乾燥あるいは濾液に目的物を溶解しない有機溶媒等を添加し、得られた粗生成物を、再結晶、あるいはカラム等で精製することにより、容易に単離することができる。
The reaction is carried out in the presence of a solvent.
As the solvent that can be used, any solvent that can dissolve 1-amino sugar and does not inhibit the reaction may be used, and examples thereof include water, alcohol, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, and the like. Water is preferred.
By adding a basic substance such as sodium hydroxide or potassium hydroxide to the solvent, reaction by-products can be reduced. The addition amount of the basic substance is preferably about 1 × 10 −4 to 1 × 10 −1 mol / L with respect to the solvent.
The reaction conditions vary depending on the solvent used, but when the solvent is water, the reaction is preferably performed at about 0 ° C. to room temperature, and the reaction is completed in about 1 to 2 hours.
After completion of the reaction, the target product is filtered off the precipitated crystals, the filtrate is lyophilized, or an organic solvent that does not dissolve the target product is added to the filtrate, and the resulting crude product is recrystallized or subjected to a column or the like. It can be easily isolated by purification.

本発明では、上記式(I)で表されるウレア誘導体を重合した、上記式(III)で表されるポリマーが提供される。
重合方法は、溶液重合、バルク重合、乳化重合、懸濁重合、塊状重合等が挙げられるが、溶液重合が好ましく、用いられる溶媒としては、式(I)で表されるウレア誘導体可溶性の極性溶媒、例えば、水、ジメチルホルムアミド、ジメチルスルホキシド等が例示されるが、中でも水が好ましい。
反応は重合開始剤存在下実施される。用いられる重合開始剤としては、通常用いられるものが使用でき、例えば、2,2−アゾビスイソブチロニトリル、アゾビスバレロニトリル、2,2−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二塩酸塩などの脂肪族アゾ化合物、過酸化ベンゾイル、過酸化ラウロイルなどの有機過酸化物、過硫酸アンモニウム、過酸化カリウムなどの無機過酸化物等を例示することができる。
重合は、実質的に酸素の不存在下で行うのが好ましく、反応温度は特に限定されないが、低いほど重合度が高くなる傾向がある。反応時間は1時間から1日程度で十分である。
反応終了後、ポリマーは、反応液にポリマー不溶の溶媒を添加することにより不溶物として、あるいは反応液を透析により精製したのち、凍結乾燥することにより単離される。
The present invention provides a polymer represented by the above formula (III) obtained by polymerizing a urea derivative represented by the above formula (I).
Examples of the polymerization method include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, bulk polymerization, and the like. Solution polymerization is preferable, and the solvent used is a polar solvent soluble in urea derivatives represented by the formula (I) Examples thereof include water, dimethylformamide, dimethyl sulfoxide and the like, and water is particularly preferable.
The reaction is carried out in the presence of a polymerization initiator. As the polymerization initiator to be used, those usually used can be used, for example, 2,2-azobisisobutyronitrile, azobisvaleronitrile, 2,2-azobis [2- (2-imidazolin-2-yl ) Propane] Aliphatic azo compounds such as dihydrochloride, organic peroxides such as benzoyl peroxide and lauroyl peroxide, and inorganic peroxides such as ammonium persulfate and potassium peroxide.
The polymerization is preferably carried out in the substantial absence of oxygen, and the reaction temperature is not particularly limited, but the lower the tendency, the higher the degree of polymerization. A reaction time of about 1 hour to 1 day is sufficient.
After completion of the reaction, the polymer is isolated as an insoluble material by adding a polymer-insoluble solvent to the reaction solution, or by purifying the reaction solution by dialysis and then freeze-drying.

本発明のポリマーは、側鎖に還元糖残基を有するために、生体適合材料、例えば人工臓器(人工血液)のコーティング材等、あるいは接着剤、酸素ガスバリアコート剤等の広い範囲で応用が可能である。   Since the polymer of the present invention has a reducing sugar residue in the side chain, it can be applied in a wide range of biocompatible materials such as artificial organ (artificial blood) coating materials, adhesives, oxygen gas barrier coating agents, etc. It is.

以下、実施例を挙げて、本発明を詳細に説明する。
実施例1
セロビオシルアミン[4−O−(β−D−グルコピラノシル)−β−D−グルコピラノシルアミン]10g(純度81%、23.73mmol)を、1×10-3M水酸化カリウム水溶液100mlに溶解させた。その溶液に、2−イソシアナートエチルメタクリレイト9.20g(59.33mmol)を加え、3℃に保ったまま12時間激しく攪拌した。
反応終了後、析出した固体を濾去し、濾液を50mlのジエチルエーテルで4回洗浄した。次いで水相を凍結乾燥することにより白色固体を得た。
得られた白色固体を水2ml、メタノール10mlの混合溶媒に溶解し、ジエチルエーテル80mlとアセトン20mlの混合溶媒中に滴下、冷却した。析出した沈殿物をデカンテーションにより分離し、減圧下乾燥することにより、ウレア誘導体(式(I)、R=メチル基、G=グルコース残基)[N−メタアクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(β−D−グルコピラノシル)−β−D−グルコピラノシル])−ウレア]8.78gを得た。
元素分析値(C1932213として)
計算値 C:45.96% H:6.49% N:5.64%
測定値 C:44.56% H:6.56% N:5.29%
得られたウレア誘導体の赤外線吸収スペクトルを測定したところ(図1)、1590cm-1付近にN−Hの相互伸縮振動に由来するピークが、1640cm-1にアミド結合C=O伸縮振動に由来するピークが、1740cm-1にエステルのC=O伸縮振動に由来するピークがそれぞれ確認された。またプロトン核磁気共鳴スペクトルを測定し、得られた結果を図2に示した。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
Cellobiosylamine [4-O- (β-D-glucopyranosyl) -β-D-glucopyranosylamine] 10 g (purity 81%, 23.73 mmol) was dissolved in 100 ml of 1 × 10 −3 M potassium hydroxide aqueous solution. I let you. To the solution, 9.20 g (59.33 mmol) of 2-isocyanate ethyl methacrylate was added, and the mixture was vigorously stirred for 12 hours while being kept at 3 ° C.
After completion of the reaction, the precipitated solid was removed by filtration, and the filtrate was washed 4 times with 50 ml of diethyl ether. The aqueous phase was then lyophilized to give a white solid.
The obtained white solid was dissolved in a mixed solvent of 2 ml of water and 10 ml of methanol, and dropped into a mixed solvent of 80 ml of diethyl ether and 20 ml of acetone and cooled. The deposited precipitate was separated by decantation and dried under reduced pressure to give a urea derivative (formula (I), R = methyl group, G = glucose residue) [N-methacryloyloxyethyl-N ′-(1 -[1-deoxy-4-O- (β-D-glucopyranosyl) -β-D-glucopyranosyl])-urea] 8.78 g was obtained.
Elemental analysis (as C 19 H 32 N 2 O 13 )
Calculated value C: 45.96% H: 6.49% N: 5.64%
Measurement value C: 44.56% H: 6.56% N: 5.29%
The resulting The infrared absorption spectrum of the urea derivative was measured (Fig. 1), a peak derived from each other stretching vibration of N-H in the vicinity of 1590 cm -1 is derived from the amide bond C = O stretching vibration 1640 cm -1 A peak derived from the C═O stretching vibration of the ester was confirmed at 1740 cm −1 . The proton nuclear magnetic resonance spectrum was measured, and the obtained results are shown in FIG.

実施例2
実施例1で得られたウレア誘導体2.4g(5.85mmol)を、脱気水10mlに溶解し、氷冷下でN2通気を30分間行った。次いで、N,N,N,N−テトラエチルエチレンジアミンを0.585mmol、開始剤として過硫酸アンモニウム0.585mmolを添加し、氷冷下、N2雰囲気下で3時間反応した。
反応終了後、反応液を2倍に稀釈し、分画分子量3000のセルロースチューブに入れ、3日間透析を行い精製したのち、凍結乾燥し、式(III)(R=メチル基)で表されるポリマー1.2gを得た。
得られたポリマーについてサイズ排除クロマトグラフィー分析により分子量を算出したところ、プルランを標準物質として、分子量3.3×106(重合度6700)であった。
得られたポリマーの赤外線吸収スペクトルを図3に示し、プロトン核磁気共鳴スペクトルを図4に示す。
Example 2
2.4 g (5.85 mmol) of the urea derivative obtained in Example 1 was dissolved in 10 ml of degassed water, and N 2 aeration was performed for 30 minutes under ice cooling. Next, 0.585 mmol of N, N, N, N-tetraethylethylenediamine and 0.585 mmol of ammonium persulfate as an initiator were added, and the mixture was reacted under an N 2 atmosphere for 3 hours under ice cooling.
After completion of the reaction, the reaction solution is diluted twice, put into a cellulose tube having a molecular weight cut off of 3000, purified by dialysis for 3 days, freeze-dried, and represented by the formula (III) (R = methyl group). 1.2 g of polymer was obtained.
When the molecular weight of the obtained polymer was calculated by size exclusion chromatography analysis, the molecular weight was 3.3 × 10 6 (degree of polymerization 6700) using pullulan as a standard substance.
The infrared absorption spectrum of the obtained polymer is shown in FIG. 3, and the proton nuclear magnetic resonance spectrum is shown in FIG.

実施例3
炭酸水素アンモニウム飽和水溶液(水25ml、炭酸水素アンモニウム8.77g)に
グルコース5gを添加し、37℃、24時間反応し、1−グルコシルアミンを得た(アセトン再結)。
得られた1−グルコシルアミン4g(10.68mmol)を、1.0×10-3M水酸化カリウム水溶液50mlに溶解し、2−イソシアナートエチルメタクリレイト4.14g(26.64mmol)を加え、1℃で12時間攪拌した。
反応終了後、析出した固体を濾去し、濾液をジエチルエーテルで洗浄し未反応の2−イソシアナートエチルメタクリレイトを除去したのち、水相を凍結乾燥することにより白色固体を得た。
得られた白色固体をアセトンで精製することにより、ウレア誘導体(式(I)、R=メチル基、G=水素原子)[N−メタアクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(β−D−グルコピラノシル)])−ウレア]を得た。
融点 106.5〜107.2℃
得られたウレア誘導体の赤外線吸収スペクトルを図5に、プロトン核磁気共鳴スペクトルを図6に示す。
Example 3
Glucose 5 g was added to a saturated aqueous solution of ammonium bicarbonate (water 25 ml, ammonium bicarbonate 8.77 g) and reacted at 37 ° C. for 24 hours to obtain 1-glucosylamine (acetone recrystallization).
4 g (10.68 mmol) of 1-glucosylamine thus obtained was dissolved in 50 ml of 1.0 × 10 −3 M potassium hydroxide aqueous solution, and 4.14 g (26.64 mmol) of 2-isocyanatoethyl methacrylate was added. Stir at 1 ° C. for 12 hours.
After completion of the reaction, the precipitated solid was removed by filtration, the filtrate was washed with diethyl ether to remove unreacted 2-isocyanatoethyl methacrylate, and the aqueous phase was lyophilized to obtain a white solid.
The resulting white solid was purified with acetone to give a urea derivative (formula (I), R = methyl group, G = hydrogen atom) [N-methacryloyloxyethyl-N ′-(1- [1-deoxy- 4-O- (β-D-glucopyranosyl)])-urea] was obtained.
Melting point: 106.5-107.2 ° C
The infrared absorption spectrum of the obtained urea derivative is shown in FIG. 5, and the proton nuclear magnetic resonance spectrum is shown in FIG.

実施例4
実施例3で得られたウレア誘導体0.763g(1.61mmol)を脱気水5mlに溶解し、氷冷下でN2通気を30分間行った。次いで、N,N,N,N−テトラエチルエチレンジアミンを27.8mg(0.161mmol)、開始剤として過硫酸アンモニウム3.66mg(0.0161mmol)を添加し、氷冷下、N2雰囲気下で3時間反応した。
反応終了後、水10mlを加え、分画分子量3000のセルロースチューブに入れ、3日間透析を行い精製したのち、凍結乾燥し、式(III)で表されるポリマー(R=メチル基、G=水素原子)を得た。
得られたポリマーの赤外線吸収スペクトルを図7に、プロトン核磁気共鳴スペクトルを図8に示す。
Example 4
0.763 g (1.61 mmol) of the urea derivative obtained in Example 3 was dissolved in 5 ml of degassed water, and N 2 aeration was performed for 30 minutes under ice cooling. Next, 27.8 mg (0.161 mmol) of N, N, N, N-tetraethylethylenediamine and 3.66 mg (0.0161 mmol) of ammonium persulfate as an initiator were added, and the mixture was ice-cooled under N 2 atmosphere for 3 hours. Reacted.
After completion of the reaction, 10 ml of water was added, put into a cellulose tube having a molecular weight cut off of 3000, purified by dialysis for 3 days, freeze-dried, and polymer represented by the formula (III) (R = methyl group, G = hydrogen). Atom).
The infrared absorption spectrum of the obtained polymer is shown in FIG. 7, and the proton nuclear magnetic resonance spectrum is shown in FIG.

実施例5
実施例1において、セロビオシルアミンに代えてマルトシルアミン[4−O−(α−グルコピラノシル)−α−D−グルコピラノシルアミン]を用いた以外は実施例1と同様に実施することにより、ウレア誘導体(式(I)、R=メチル基、G=グルコース残基)[N−メタアクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(α−D−グルコピラノシル)−α−D−グルコピラノシル])−ウレア]を得た。
Example 5
In Example 1, urea was used in the same manner as in Example 1 except that maltosylamine [4-O- (α-glucopyranosyl) -α-D-glucopyranosylamine] was used instead of cellobiosylamine. Derivative (formula (I), R = methyl group, G = glucose residue) [N-methacryloyloxyethyl-N ′-(1- [1-deoxy-4-O- (α-D-glucopyranosyl) -α] -D-glucopyranosyl])-urea].

実施例6
実施例2において、実施例1で得られたウレア誘導体に代えて、実施例5で得られたウレア誘導体2.4gを用いた以外は実施例2と同様に実施し、ポリマー(式(III)、R=メチル基、G=グルコース残基)を得た。
Example 6
In Example 2, the same procedure as in Example 2 was carried out except that 2.4 g of the urea derivative obtained in Example 5 was used instead of the urea derivative obtained in Example 1, and the polymer (formula (III)) , R = methyl group, G = glucose residue).

実施例7
セロトリオシルアミン100mg(純度86%、0.17mmol)を、1.0×10-3M水酸化カリウム水溶液1mlに溶解し、2−イソシアナートエチルメタクリレイト0.06mg(0.43mmol)を加え、1℃で12時間攪拌した。
反応終了後、析出した固体を濾去し、濾液をジエチルエーテルで洗浄して未反応の2−イソシアナートエチルメタクリレイトを除去したのち、水相を凍結乾燥することにより白色固体を得た。
得られた白色固体をアセトンで精製することにより、ウレア誘導体(式(I)、R=メチル基、G=セロビオース残基)[N−メタアクリロイルオキシエチル−N’−(1−[1−デオキシ−4−O−(β−D−グルコピラノシル)−4−O−(β−D−グルコピラノシル)−β−D−グルコピラノシル])−ウレア]を得た。
得られたウレア誘導体の赤外線吸収スペクトルを図9に示し、プロトン核磁気共鳴スペクトルを図10に示す。
Example 7
100 mg (purity 86%, 0.17 mmol) of cellotriosylamine was dissolved in 1 ml of 1.0 × 10 −3 M potassium hydroxide aqueous solution, and 0.06 mg (0.43 mmol) of 2-isocyanatoethyl methacrylate was added. Stir at 1 ° C. for 12 hours.
After completion of the reaction, the precipitated solid was removed by filtration, and the filtrate was washed with diethyl ether to remove unreacted 2-isocyanatoethyl methacrylate, and then the aqueous phase was lyophilized to obtain a white solid.
The resulting white solid was purified with acetone to give a urea derivative (formula (I), R = methyl group, G = cellobiose residue) [N-methacryloyloxyethyl-N ′-(1- [1-deoxy]. -4-O- (β-D-glucopyranosyl) -4-O- (β-D-glucopyranosyl) -β-D-glucopyranosyl])-urea] was obtained.
The infrared absorption spectrum of the obtained urea derivative is shown in FIG. 9, and the proton nuclear magnetic resonance spectrum is shown in FIG.

実施例8
実施例2において、実施例1で得られたウレア誘導体に代えて、実施例7で得られたウレア誘導体20mgを用いた以外は、実施例2に準じて実施し、ポリマー(式(III)、R=メチル基、G=セロビオース残基)を得た。
得られたポリマーの赤外線吸収スペクトルを図11に、プロトン核磁気共鳴スペクトルを図12に示す。
Example 8
In Example 2, it replaced with the urea derivative obtained in Example 1, and carried out according to Example 2 except having used 20 mg of urea derivatives obtained in Example 7, and polymer (formula (III), R = methyl group, G = cellobiose residue).
The infrared absorption spectrum of the obtained polymer is shown in FIG. 11, and the proton nuclear magnetic resonance spectrum is shown in FIG.

実施例9 接着性の評価例
実施例2で得られたポリマーの5%水溶液を調整し、硫酸紙に塗布後貼り合わせ、100℃で30分間乾燥した。
貼り合わせ面を手で剥がしたところ、紙層が剥離するほど強力に接着されていた。
Example 9 Evaluation Example of Adhesive A 5% aqueous solution of the polymer obtained in Example 2 was prepared, applied to sulfuric acid paper and bonded, and dried at 100 ° C. for 30 minutes.
When the bonded surface was peeled off by hand, it was strongly bonded to the extent that the paper layer peeled off.

実施例10 酸素ガス透過性の評価例
実施例2で得られたポリマーの5%水溶液を調整し、厚み15μmのコロナ処理ナイロンフィルム(興人製、ボニールRX)に、乾燥後1.2μmの塗布量でメイヤーバーにて塗布し、次いで100℃で2分間乾燥し、ポリマーコーティングフィルムを得た。
得られたフィルムを、ガス透過度測定器(モダンコントロール社製、OX−TRAN100)にて酸素ガス透過度を測定した。比較としてこの実施例に用いたコロナ処理ナイロンフィルムについて、ポリマーをコーティングすることなくそのまま酸素ガス透過度を測定した。
結果を表1に示す。
Example 10 Evaluation Example of Oxygen Gas Permeability A 5% aqueous solution of the polymer obtained in Example 2 was prepared and applied to a corona-treated nylon film having a thickness of 15 μm (manufactured by Kojin Co., Ltd., Bonyl RX) after applying 1.2 μm. An amount was applied with a Mayer bar, and then dried at 100 ° C. for 2 minutes to obtain a polymer coating film.
The resulting film was measured for oxygen gas permeability with a gas permeability meter (OX-TRAN100, manufactured by Modern Control). For comparison, the oxygen gas permeability of the corona-treated nylon film used in this example was measured without coating the polymer.
The results are shown in Table 1.

Figure 2004203870
Figure 2004203870

実施例11 酸素ガス透過性の評価例
実施例2、4、6及び8で得られたポリマーの5%水溶液を調整し、厚み12μmのPETフィルムに、乾燥後1.2μmの塗布量でメイヤーバーにて塗布し、次いで100℃で2分間乾燥し、ポリマーコーティングフィルムを得た。
得られたフィルムを、実施例10と同様にして酸素ガス透過度を測定した。
結果を表2に示す。

Figure 2004203870
Example 11 Oxygen Gas Permeability Evaluation Example A 5% aqueous solution of the polymer obtained in Examples 2, 4, 6 and 8 was prepared and applied to a PET film having a thickness of 12 μm with a coating amount of 1.2 μm after drying. And then dried at 100 ° C. for 2 minutes to obtain a polymer coating film.
The obtained film was measured for oxygen gas permeability in the same manner as in Example 10.
The results are shown in Table 2.
Figure 2004203870

実施例1で得られたウレア誘導体の赤外線吸収スペクトルを示す図である。1 is an infrared absorption spectrum of a urea derivative obtained in Example 1. FIG. 実施例1で得られたウレア誘導体のプロトン核磁気共鳴スペクトルを示す図である。2 is a diagram showing a proton nuclear magnetic resonance spectrum of a urea derivative obtained in Example 1. FIG. 実施例2で得られたポリマーの赤外線吸収スペクトルを示す図である。6 is a graph showing an infrared absorption spectrum of the polymer obtained in Example 2. FIG. 実施例2で得られたポリマーのプロトン核磁気共鳴スペクトルを示す図である。3 is a diagram showing a proton nuclear magnetic resonance spectrum of the polymer obtained in Example 2. FIG. 実施例3で得られたウレア誘導体の赤外線吸収スペクトルを示す図である。4 is a graph showing an infrared absorption spectrum of a urea derivative obtained in Example 3. FIG. 実施例3で得られたウレア誘導体のプロトン核磁気共鳴スペクトルを示す図である。4 is a diagram showing a proton nuclear magnetic resonance spectrum of a urea derivative obtained in Example 3. FIG. 実施例4で得られたポリマーの赤外線吸収スペクトルを示す図である。6 is a graph showing an infrared absorption spectrum of the polymer obtained in Example 4. FIG. 実施例4で得られたポリマーのプロトン核磁気共鳴スペクトルを示す図である。6 is a diagram showing a proton nuclear magnetic resonance spectrum of the polymer obtained in Example 4. FIG. 実施例7で得られたポリマーの赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polymer obtained in Example 7. 実施例7で得られたポリマーのプロトン核磁気共鳴スペクトルを示す図である。6 is a diagram showing a proton nuclear magnetic resonance spectrum of the polymer obtained in Example 7. FIG. 実施例8で得られたポリマーの赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the polymer obtained in Example 8. 実施例8で得られたポリマーのプロトン核磁気共鳴スペクトルを示す図である。6 is a diagram showing a proton nuclear magnetic resonance spectrum of the polymer obtained in Example 8. FIG.

Claims (5)

式(I):
Figure 2004203870
(式中、Rは水素原子又はメチル基を、Gは水素原子、グルコース残基又はセロビオース残基を表す。)で表されるウレア誘導体。
Formula (I):
Figure 2004203870
(Wherein R represents a hydrogen atom or a methyl group, and G represents a hydrogen atom, a glucose residue or a cellobiose residue).
式(II):
Figure 2004203870
(式中、Gは水素原子、グルコース残基又はセロビオース残基を表す。)で表される1−アミノ糖と(メタ)アクリロイルオキシエチルイソシアネートとを反応させることを特徴とする、式(I):
Figure 2004203870
(式中、Rは水素原子又はメチル基を、Gは水素原子、グルコース残基又はセロビオース残基を表す。)で表されるウレア誘導体の製造方法。
Formula (II):
Figure 2004203870
(Wherein G represents a hydrogen atom, a glucose residue or a cellobiose residue), a 1-amino sugar represented by (meth) acryloyloxyethyl isocyanate is reacted, :
Figure 2004203870
(Wherein R represents a hydrogen atom or a methyl group, and G represents a hydrogen atom, a glucose residue or a cellobiose residue).
式(III):
Figure 2004203870
(式中、Rは水素原子又はメチル基を、Gは水素原子、グルコース残基又はセロビオース残基を、nは2以上の整数を表す。)で表されるポリマー。
Formula (III):
Figure 2004203870
(Wherein, R represents a hydrogen atom or a methyl group, G represents a hydrogen atom, a glucose residue or a cellobiose residue, and n represents an integer of 2 or more).
請求項3記載の式(III)で表されるポリマーを含有した酸素ガスバリアコート剤。 An oxygen gas barrier coating agent containing a polymer represented by the formula (III) according to claim 3. 請求項3記載の式(III)で表されるポリマーを含有した接着剤。 An adhesive containing a polymer represented by the formula (III) according to claim 3.
JP2003413746A 2002-12-13 2003-12-11 Urea derivative, process for producing the same, and polymer thereof Expired - Fee Related JP4552174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413746A JP4552174B2 (en) 2002-12-13 2003-12-11 Urea derivative, process for producing the same, and polymer thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002362300 2002-12-13
JP2003413746A JP4552174B2 (en) 2002-12-13 2003-12-11 Urea derivative, process for producing the same, and polymer thereof

Publications (2)

Publication Number Publication Date
JP2004203870A true JP2004203870A (en) 2004-07-22
JP4552174B2 JP4552174B2 (en) 2010-09-29

Family

ID=32828645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413746A Expired - Fee Related JP4552174B2 (en) 2002-12-13 2003-12-11 Urea derivative, process for producing the same, and polymer thereof

Country Status (1)

Country Link
JP (1) JP4552174B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012460A (en) * 2006-07-07 2008-01-24 Kohjin Co Ltd Lectin adsorbent using sugar-side-chain-type polymer
JP2013510588A (en) * 2009-11-16 2013-03-28 サントル ナシオナル ドゥ ラ ルシェルシュ シアンティフィーク(セーエヌエールエス) Polymers containing a majority of amphiphilic monomers for membrane protein capture and manipulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236395A (en) * 1990-08-17 1991-10-22 Meito Sangyo Kk N-glycoside vinyl compound and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236395A (en) * 1990-08-17 1991-10-22 Meito Sangyo Kk N-glycoside vinyl compound and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012460A (en) * 2006-07-07 2008-01-24 Kohjin Co Ltd Lectin adsorbent using sugar-side-chain-type polymer
JP4683653B2 (en) * 2006-07-07 2011-05-18 株式会社興人 Lectin adsorbent using sugar side chain polymer
JP2013510588A (en) * 2009-11-16 2013-03-28 サントル ナシオナル ドゥ ラ ルシェルシュ シアンティフィーク(セーエヌエールエス) Polymers containing a majority of amphiphilic monomers for membrane protein capture and manipulation

Also Published As

Publication number Publication date
JP4552174B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP3050596B2 (en) α-cyanoacrylate adhesive composition
US11021617B2 (en) Polymers including one or more 1,1-disubstituted alkene compounds and polymer compositions thereof
US5905115A (en) Sugar amines and sugar amides and use as glues
Ortega-Munoz et al. Click multivalent neoglycoconjugates as synthetic activators in cell adhesion and stimulation of monocyte/machrophage cell lines
CN111440310B (en) Polyethylene glycol derivative, preparation method thereof and polyethylene glycol hydrogel capable of rapidly generating crosslinking reaction
US20220153934A1 (en) Polymer material and method for producing same
JP4552174B2 (en) Urea derivative, process for producing the same, and polymer thereof
JPH1171391A (en) Diol containing residue of saccharides, polyurethane, its production and use thereof
CN111286005A (en) Functional thermoplastic polyurethane and preparation method thereof
EP2930190A1 (en) Method for preparing acetylated cellulose ethers having improved anti-fouling properties, and acetylated cellulose ethers prepared by same
Yamamoto et al. Synthesis and PSA performance study for novel acrylic and butyl acrylate block copolymers
JP2014084354A (en) Gas barrier type coating agent
JP5024585B2 (en) Novel itaconic sugar derivative and process for producing the same
US9644076B2 (en) Cross-linkers for hydrogels, hydrogels including these cross-linkers and applications thereof
TW200422306A (en) Drivatization of high-molecular-weight polymethacrylimides
JPH03754A (en) Styrene polymer and carrier for adhesive cell culture
JPH08253495A (en) Mannose structure-containing styrene derivative and polystyrene derivative and their production
US5206318A (en) Styrene derivatives having N-acetylchito-oligosaccharide chains and method for the same
CN112661610B (en) Preparation method of 1, 3-dihydroxy adamantane
JP2986173B2 (en) Styrene derivative having N-acetylchitooligosaccharide chain and method for producing the same
WO2023248911A1 (en) PRESSURE-SENSITIVE ADHESIVE COMPOSITION, PRESSURE-SENSITIVE ADHESIVE SHEET, LAMINATE, AND METHOD FOR PRODUCING β-1,3-GLUCAN DERIVATIVE
JPH07304788A (en) Styrene derivative having oligo saccharide chain and method for production the same
WO2022024908A1 (en) Cyclodextrin derivative having polymerizable unsaturated group
JP3418693B2 (en) D-galactopyranosyl-gluconic acid derivatives of poly-ε-substituted-L-lysine
EP0394068B1 (en) Styrene derivatives having n-acetylchito-oligosaccharide chains and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees