JP5024585B2 - Novel itaconic sugar derivative and process for producing the same - Google Patents

Novel itaconic sugar derivative and process for producing the same Download PDF

Info

Publication number
JP5024585B2
JP5024585B2 JP2005322461A JP2005322461A JP5024585B2 JP 5024585 B2 JP5024585 B2 JP 5024585B2 JP 2005322461 A JP2005322461 A JP 2005322461A JP 2005322461 A JP2005322461 A JP 2005322461A JP 5024585 B2 JP5024585 B2 JP 5024585B2
Authority
JP
Japan
Prior art keywords
general formula
hydrogen atom
itaconic acid
alkali metal
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005322461A
Other languages
Japanese (ja)
Other versions
JP2007126420A (en
Inventor
真希 堀川
学士 丸山
昭二 永岡
博隆 伊原
誠 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Original Assignee
Kohjin Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd filed Critical Kohjin Holdings Co Ltd
Priority to JP2005322461A priority Critical patent/JP5024585B2/en
Publication of JP2007126420A publication Critical patent/JP2007126420A/en
Application granted granted Critical
Publication of JP5024585B2 publication Critical patent/JP5024585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、側鎖に糖残基を有するポリマーの製造に用いられる新規なイタコン酸糖誘導体、その製造方法、及びそれから得られるポリマーに関する。   The present invention relates to a novel itaconic acid sugar derivative used for the production of a polymer having a sugar residue in the side chain, a production method thereof, and a polymer obtained therefrom.

石油由来の合成高分子は、日常生活においてその利便性から極めて多様な分野において使用されている。しかしながら、近年、環境問題及び自然保護の観点から、天然由来の原料を用いた環境に優しい生分解性プラスチックや生体模倣材料が求められるようになった。天然に存在する糖類は地球上で最も多く生産される有機物であるが、例えばセルロースは大部分が微生物や酵素によって分解され、利用されている部分はごくわずかである。今後の循環型社会の展開においては、糖類は生分解性プラスチックや生体模倣材料の原料として有用であると考えられる。   Synthetic polymers derived from petroleum are used in extremely diverse fields because of their convenience in daily life. However, in recent years, environmentally friendly biodegradable plastics and biomimetic materials using naturally derived raw materials have been demanded from the viewpoint of environmental problems and nature protection. Naturally occurring saccharides are the most produced organic substances on the earth. For example, cellulose is mostly decomposed by microorganisms and enzymes, and only a small part is utilized. In the future development of a recycling society, saccharides are considered to be useful as raw materials for biodegradable plastics and biomimetic materials.

非特許文献1にあるように、還元末端を有するオリゴ糖とアジピン酸ジビニルとの酵素触媒反応によって得られるポリビニルアルコール主骨格の生分解性糖含有ポリマーが文献に報告されているが、酵素反応時、ジメチルスルホキシドやジメチルホルムアミド等の有機溶媒が必要で、かつ長時間の反応となるため、操作が繁雑で、短時間で糖鎖ポリマーを得ることは困難であった。
他に、糖含有ポリマーとしては、アミノ糖と不飽和基を有するカルボン酸からなるアミドをモノマーとして重合したものが報告されており、かかる化合物としては、特許文献1及び2や非特許文献2〜4に開示されているが、不飽和基を有するカルボン酸がイタコン酸である化合物については述べられていない。
特開平3−236395号 特開平8−245681号 高分子論文集2000年57巻629頁 Makromol.Chem.1987年188巻1217頁 J.Carbohydr.Chem.1989年8巻597頁 Macromolecules1997年30巻2016頁
As described in Non-Patent Document 1, a biodegradable sugar-containing polymer having a polyvinyl alcohol main skeleton obtained by an enzyme-catalyzed reaction between an oligosaccharide having a reducing end and divinyl adipate has been reported in the literature. In addition, an organic solvent such as dimethyl sulfoxide or dimethylformamide is required and the reaction takes a long time. Therefore, the operation is complicated and it is difficult to obtain a sugar chain polymer in a short time.
In addition, as sugar-containing polymers, polymers obtained by polymerizing amino sugars and amides composed of carboxylic acids having unsaturated groups as monomers are reported. Examples of such compounds include Patent Documents 1 and 2 and Non-Patent Documents 2 to 2. Although it is disclosed in US Pat. No. 4,697, it does not describe a compound in which the carboxylic acid having an unsaturated group is itaconic acid.
JP-A-3-236395 Japanese Patent Laid-Open No. 8-245568 Polymer Proceedings 2000, 57, 629 Makromol. Chem. 1987, 188, 1217 J. Carbohydr. Chem. 1989, 8: 597 Macromolecules 1997, 30, 2016

本発明は、新規なイタコン酸糖誘導体、その製造方法、及びそれらを重合して得られるポリマーを提供するものである。   The present invention provides a novel itaconic acid sugar derivative, a process for producing the same, and a polymer obtained by polymerizing them.

本発明者らは、かかる課題を解決するため鋭意研究の結果、無水イタコン酸とアミノ糖を反応させることにより、糖にラジカル重合可能な不飽和結合を導入することができることを見い出し、本発明を完成するに至った。
すなわち本発明は、第一には、下記一般式(I)(式中、Rは一般式(II)または一般式(III)(式中、R'は水素原子、グルコース残基またはセロビオース残基を表す。)で示される残基を、Xは水素原子またはアルカリ金属原子を表す。)で表される新規なイタコン酸糖誘導体に係るものである。
第二には、無水イタコン酸と一般式(IV)(式中、Rは一般式(II)または一般式(III)(
式中、R'は水素原子、グルコース残基またはセロビオース残基を表す。)で示される残
基を表す。)で表されるアミノ糖を、アルカリ存在下において含水有機溶媒中で反応させることを特徴とする、一般式(I)で表されるイタコン酸糖誘導体の製造方法に係るものである。
第三には、一般式(V)(式中、Rは一般式(II)または一般式(III)(式中、R'は水素原子、グルコース残基またはセロビオース残基を表す。)で示される残基を、Xは水素原子またはアルカリ金属原子を、nは2以上の整数を表す。)で表されるイタコン酸糖誘導体のポリマーに係るものである。
As a result of earnest research to solve such problems, the present inventors have found that an unsaturated bond capable of radical polymerization can be introduced into a sugar by reacting itaconic anhydride with an amino sugar, and the present invention has been developed. It came to be completed.
That is, the present invention firstly has the following general formula (I) (wherein R is general formula (II) or general formula (III) (wherein R ′ is a hydrogen atom, glucose residue or cellobiose residue). And X represents a hydrogen atom or an alkali metal atom.) It relates to a novel itaconic acid sugar derivative represented by the following formula:
Second, itaconic anhydride and general formula (IV) (wherein R represents general formula (II) or general formula (III) (
In the formula, R ′ represents a hydrogen atom, a glucose residue or a cellobiose residue. ) Represents a residue. The amino sugar represented by formula (I) is reacted in a water-containing organic solvent in the presence of an alkali.
Thirdly, it is represented by the general formula (V) (wherein R represents the general formula (II) or general formula (III) (wherein R ′ represents a hydrogen atom, a glucose residue or a cellobiose residue)). X represents a hydrogen atom or an alkali metal atom, and n represents an integer of 2 or more.) Itaconic acid sugar derivative polymer.

本発明によると、天然由来のグルコサミン及びセロビオシルアミンなどの分子内にアミノ基を有するアミノ糖を無水イタコン酸と反応させることにより、簡便に高収率で、ラジカル重合可能な不飽和結合を有する新規なイタコン酸糖誘導体を得ることができる。これらのイタコン酸糖誘導体は、ラジカル重合によりイタコン糖酸誘導体ポリマーを得ることができるものである。   According to the present invention, an amino sugar having an amino group in a molecule such as naturally occurring glucosamine and cellobiosylamine is reacted with itaconic anhydride, thereby having an unsaturated bond capable of radical polymerization in a simple and high yield. A novel itaconic acid sugar derivative can be obtained. These itaconic acid sugar derivatives are those capable of obtaining an itaconic acid derivative polymer by radical polymerization.

以下、本発明を詳細に説明する。
本発明の提供するイタコン酸糖誘導体としては、イタコニル−グルコサミンまたはそのアルカリ金属塩(一般式(VI)、X:水素原子またはアルカリ金属原子)、イタコニル−グルコシルアミンまたはそのアルカリ金属塩(一般式(VII)、R':水素原子)、イタコニル−セロビオシルアミンまたはそのアルカリ金属塩(一般式(VII)、R':グルコース残基)、イタコニル−セロトリオシルアミンまたはそのアルカリ金属塩(一般式(VII)、R':セロビオース残基)が挙げられる。
アルカリ金属としては、ナトリウム、カリウム等が挙げられる。
Hereinafter, the present invention will be described in detail.
The itaconic acid sugar derivative provided by the present invention includes itaconyl-glucosamine or an alkali metal salt thereof (general formula (VI), X: hydrogen atom or alkali metal atom), itaconyl-glucosylamine or an alkali metal salt thereof (general formula (VI VII), R ′: hydrogen atom), itaconyl-cellobiosylamine or an alkali metal salt thereof (general formula (VII), R ′: glucose residue), itaconyl-cellotriosylamine or an alkali metal salt thereof (general formula (VII) VII), R ′: cellobiose residues).
Examples of the alkali metal include sodium and potassium.

イタコン酸糖誘導体の原料としては、無水イタコン酸とアミノ糖が用いられる。
用いられるアミノ糖としては、2−アミノ糖であるグルコサミン、1−アミノ糖であるグルコシルアミン、セロビオシルアミン、セロトリオシルアミン等が挙げられる。1−アミノ糖は公知の方法(例えば、J. Carbohydr. Chem.1989年8巻597頁)により対応する糖から容易に製造できる。例えば、セルロースの構成単位であるセロビオースのアミノ化によってセロビオシルアミンが得られる。
反応は、アミノ糖の水溶液にアルカリを加えて溶液をアルカリ性に保ち、0℃〜室温下で、無水イタコン酸を適当な溶媒に溶解した溶液を加え、3〜12時間程度室温で撹拌することにより実施される。
アルカリとしては、水酸化ナトリウム、水酸化カリウム等が例示される。使用できる溶媒としては、原料のイタコン酸、糖を溶解でき、反応を阻害しない溶媒であればいずれでもよく、例えば、水、アセトン、メタノール、エタノール等を例示できるが、特に水とアセトンの混合溶媒が好ましい。
反応終了後、イタコン酸糖誘導体反応液を濃縮し、生成物を析出させることにより、または適当な有機溶媒、例えばエタノールなどに注入後、沈殿物として析出させることによ
り、イタコン酸糖誘導体を単離することができる。
Itaconic anhydride and amino sugar are used as raw materials for itaconic acid sugar derivatives.
Examples of the amino sugar used include glucosamine which is a 2-amino sugar, glucosyl amine which is a 1-amino sugar, cellobiosylamine, cellotriosylamine and the like. The 1-amino sugar can be easily produced from the corresponding sugar by a known method (for example, J. Carbohydr. Chem. 1989, 8: 597). For example, cellobiosylamine is obtained by amination of cellobiose which is a structural unit of cellulose.
The reaction is carried out by adding an alkali to an aqueous amino sugar solution to keep the solution alkaline, adding a solution in which itaconic anhydride is dissolved in an appropriate solvent at 0 ° C. to room temperature, and stirring at room temperature for about 3 to 12 hours. To be implemented.
Examples of the alkali include sodium hydroxide and potassium hydroxide. As a solvent that can be used, any solvent can be used as long as it can dissolve the raw materials itaconic acid and sugar, and does not inhibit the reaction. Examples thereof include water, acetone, methanol, ethanol, etc., and in particular, a mixed solvent of water and acetone. Is preferred.
After completion of the reaction, the itaconic acid sugar derivative reaction solution is concentrated to precipitate the product, or injected into a suitable organic solvent such as ethanol and then precipitated as a precipitate to isolate the itaconic acid sugar derivative. can do.

本発明の提供するイタコン酸糖誘導体のポリマーとしては、イタコニル−グルコサミンのポリマー(一般式(VIII)(式中、Xは水素原子またはアルカリ金属原子を、nは2以上の整数を表す。))、イタコニル−グルコシルアミンのポリマー(一般式(IX)(式中、R'は水素原子を、Xは水素原子またはアルカリ金属原子を、nは2以上の整数を表す。)
)、イタコニル−セロビオシルアミンのポリマー(一般式(IX)(式中、R'はグルコース
残基を、Xは水素原子またはアルカリ金属原子を、nは2以上の整数を表す。))、イタコニル−セロトリオシルアミンのポリマー(一般式(IX)(式中、R'はセロビオース残基
を、Xは水素原子またはアルカリ金属原子を、nは2以上の整数を表す。))が挙げられる。
アルカリ金属としては、ナトリウム、カリウム等が挙げられる。
The polymer of the itaconic acid saccharide derivative provided by the present invention is an itaconyl-glucosamine polymer (general formula (VIII) (wherein X represents a hydrogen atom or an alkali metal atom, and n represents an integer of 2 or more)). Itaconyl-glucosylamine polymer (general formula (IX) (wherein R ′ represents a hydrogen atom, X represents a hydrogen atom or an alkali metal atom, and n represents an integer of 2 or more)).
), Itaconyl-cellobiosylamine polymer (general formula (IX) (wherein R ′ represents a glucose residue, X represents a hydrogen atom or an alkali metal atom, and n represents an integer of 2 or more)), itaconyl -Cerotriosylamine polymers (general formula (IX) (wherein R 'represents a cellobiose residue, X represents a hydrogen atom or an alkali metal atom, and n represents an integer of 2 or more)).
Examples of the alkali metal include sodium and potassium.

イタコン酸糖誘導体の重合方法としては溶液重合、バルク重合、乳化重合、懸濁重合、塊状重合が挙げられるが、溶液重合が好ましく、用いられる溶媒としては、式(I)で表されるイタコン酸糖誘導体可溶性の極性溶媒、例えば水、ジメチルホルムアミド、ジメチルスルホキシド等が例示されるが、特に水が好ましい。本発明において、本発明の目的効果を損なわない範囲で、他のモノマーと共重合させることもできる。共重合できる他のモノマーとしては、アクリル酸モノマー、アクリルアミドモノマーが例示できる。
反応は重合開始剤存在下で実施される。用いられる重合開始剤としては、通常用いられるものが使用でき、例えば、2,2−アゾビスイソブチロニトリル、アゾビスバレロニトリル等の脂肪族アゾ化合物、過酸化ベンゾイル、過酸化ラウロイルなどの有機過酸化物、過硫酸アンモニウム、過硫酸カリウムなどの無機過酸化物等を例示することができる。し
かし、イタコン酸誘導体はアリル化合物であるため、他の化合物に比べて通常用いられる開始剤では重合反応が進みにくく、特に次亜リン酸ナトリウムと過硫酸カリウムを開始剤に用いた系が好ましい。
反応終了後、セルロースチューブ等を用いた透析、分子量分画等を行うことにより、イタコン酸糖誘導体のポリマーを単離することができる。
Examples of the polymerization method of the itaconic acid sugar derivative include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, and bulk polymerization. Solution polymerization is preferred, and the solvent used is itaconic acid represented by the formula (I). Examples of the sugar derivative-soluble polar solvent such as water, dimethylformamide, dimethyl sulfoxide and the like are exemplified, and water is particularly preferable. In the present invention, it can be copolymerized with other monomers within a range not impairing the object and effects of the present invention. Examples of other monomers that can be copolymerized include acrylic acid monomers and acrylamide monomers.
The reaction is carried out in the presence of a polymerization initiator. As the polymerization initiator used, those usually used can be used, for example, aliphatic azo compounds such as 2,2-azobisisobutyronitrile and azobisvaleronitrile, organic compounds such as benzoyl peroxide and lauroyl peroxide. Examples thereof include inorganic peroxides such as peroxides, ammonium persulfate, and potassium persulfate. However, since the itaconic acid derivative is an allyl compound, the polymerization reaction is unlikely to proceed with an initiator usually used as compared with other compounds, and a system using sodium hypophosphite and potassium persulfate as an initiator is particularly preferable.
After completion of the reaction, the polymer of itaconic acid sugar derivative can be isolated by dialysis using a cellulose tube or the like, molecular weight fractionation, or the like.

実施例1 イタコン酸のグルコサミン誘導体の調製
グルコサミン塩酸塩 20.0g(92mmol)を水100mlに溶解させた(pH4)。2
M KOH溶液46ml(92mmol)を加えた(pH10)。さらに 2M KOHを6ml(
12mmol)を加えて、反応溶液のpHを11にした。無水イタコン酸 10.76g(96 mmol)をアセトン50mlに溶解して、反応溶液に滴下した。水浴中(5℃)で6時間かき混ぜた。反応終了後、約50mlまで減圧濃縮を行った。析出した白色結晶をろ過し、アセトン50mlで洗浄した。さらにジエチルエーテル50mlで洗浄して、減圧乾燥を行い、白色結晶を得た。
収量10.3g
得られたイタコン酸のグルコサミン誘導体生成物の赤外線吸収スペクトル測定をしたところ(図1)、1650cm-1付近にN−Hの伸縮振動に由来するピークが、1690cm-1付近にC=Oの伸縮振動に由来するピークがそれぞれ確認された。生成物のHPLCにより(図2)、二種類の生成物(a)、(b)が38:62の割合で単離された。
なお、HPLCの条件は以下の通りである。
・使用カラム:Grand120−STC 18−5
・カラムサイズ:4.6mm I.D.×150mm
・溶離液:H2O(TFA 0.1%)
・温度:35℃
・検出器:RI(示差屈折率)、UV(波長210nm)
得られたイタコン酸のグルコサミン誘導体の生分解性試験をISO14851、JIS
K6950に基づき行ったところ、28日で11.1%の生分解度が得られた。
図2の(a)、(b)のピークに相当するフラクションを分取し、溶離液を留去した後、凍結乾燥することにより、両フラクションともに一般式(X)及び一般式(XI)で表される糖骨格のアノマーに由来するβ型、α型のイタコン酸グルコサミン誘導体を38:62の割合で得た。それぞれのフラクションから得られた化合物のプロトン核磁気共鳴スペクトル(D2O)を、図3及び図4に示す。
Example 1 Preparation of Glucosamine Derivative of Itaconic Acid 20.0 g (92 mmol) of glucosamine hydrochloride was dissolved in 100 ml of water (pH 4). 2
46 ml (92 mmol) of M KOH solution was added (pH 10). Add 6 ml of 2M KOH (
12 mmol) was added to bring the pH of the reaction solution to 11. 10.76 g (96 mmol) of itaconic anhydride was dissolved in 50 ml of acetone and added dropwise to the reaction solution. The mixture was stirred for 6 hours in a water bath (5 ° C.). After completion of the reaction, vacuum concentration was performed to about 50 ml. The precipitated white crystals were filtered and washed with 50 ml of acetone. Further, it was washed with 50 ml of diethyl ether and dried under reduced pressure to obtain white crystals.
Yield 10.3g
When the infrared absorption spectrum of the resulting glucosamine derivative product of itaconic acid was measured (FIG. 1), a peak derived from N—H stretching vibration was observed near 1650 cm −1 , and C═O stretching was observed near 1690 cm −1. Each peak derived from vibration was confirmed. Two products (a) and (b) were isolated in a 38:62 ratio by HPLC of the product (FIG. 2).
The HPLC conditions are as follows.
-Column used: Grand120-STC 18-5
Column size: 4.6 mm D. × 150mm
Eluent: H 2 O (TFA 0.1%)
・ Temperature: 35 ℃
Detector: RI (differential refractive index), UV (wavelength 210 nm)
The biodegradability test of the obtained glucosamine derivative of itaconic acid was performed using ISO14851, JIS.
When performed based on K6950, a biodegradability of 11.1% was obtained in 28 days.
Fractions corresponding to the peaks of (a) and (b) of FIG. 2 are collected, and the eluent is distilled off, followed by lyophilization, whereby both fractions are represented by general formula (X) and general formula (XI). Β-type and α-type glucosamine itaconate derivates derived from an anomer of the sugar skeleton represented were obtained in a ratio of 38:62. The proton nuclear magnetic resonance spectrum (D 2 O) of the compound obtained from each fraction is shown in FIG. 3 and FIG.

実施例2 イタコン酸のセロビオシルアミン誘導体の調製
セロビオシルアミン(純度70%)1.0g(2.1mmol)を水20 mlに溶解させた(pH10)。2M KOH溶液0.2ml(0.4mmol)を加えてpH11にした。無水イタコン酸0.26g(2.3mmol)をアセトン8mlに溶解して、反応溶液に滴下した。水浴中(5℃)で6時間かき混ぜた。反応終了後、約10mlまで減圧濃縮を行った。エタノール100mlを用いて、再沈を2回行った。得られた再沈物からエタノールを留去後、凍結乾燥を行った。
収量0.2g
得られたイタコン酸のセロビオシルアミン誘導体生成物の赤外線吸収スペクトル測定をしたところ(図5)、1650cm-1付近にN−Hの伸縮振動及びC=Oの伸縮振動に由来するピークが確認された。生成物のHPLCにより(図6)、生成物のピークが単離された。
なお、HPLCの条件は以下の通りである。
・使用カラム:Grand120−STC 18−5
・カラムサイズ:4.6mm I.D.×150mm
・溶離液:H2O(TFA 0.1%)
・温度:35℃
・検出器:RI(示差屈折率)、UV(波長210nm)
図6の主生成物のピークのフラクションを分取し、溶離液を留去した後、凍結乾燥することにより、一般式(VII)(式中、R'はグルコース残基を、Xは水素原子を表す。)で
表されるイタコン酸のセロビオシルアミン誘導体を得た。
HPLCの分取により得られたイタコン酸のセロビオシルアミン誘導体のプロトン核磁気共鳴スペクトル(D2O)を、図7に示す。
得られたイタコン酸のセロビオシルアミン誘導体の生分解性試験をISO14851、JIS K6950に基づき行ったところ、28日で49.5%の生分解度が得られた。
Example 2 Preparation of Cellobiosylamine Derivative of Itaconic Acid 1.0 g (2.1 mmol) of cellobiosylamine (purity 70%) was dissolved in 20 ml of water (pH 10). The pH was adjusted to 11 by adding 0.2 ml (0.4 mmol) of 2M KOH solution. Itaconic anhydride 0.26 g (2.3 mmol) was dissolved in 8 ml of acetone and added dropwise to the reaction solution. The mixture was stirred for 6 hours in a water bath (5 ° C.). After completion of the reaction, vacuum concentration was performed to about 10 ml. Reprecipitation was performed twice using 100 ml of ethanol. Ethanol was distilled off from the obtained reprecipitate, followed by lyophilization.
Yield 0.2g
When the infrared absorption spectrum of the obtained cellobiosylamine derivative product of itaconic acid was measured (FIG. 5), a peak derived from NH stretching vibration and C = O stretching vibration was observed near 1650 cm −1 . It was. The product peak was isolated by HPLC of the product (FIG. 6).
The HPLC conditions are as follows.
-Column used: Grand120-STC 18-5
Column size: 4.6 mm D. × 150mm
Eluent: H 2 O (TFA 0.1%)
・ Temperature: 35 ℃
Detector: RI (differential refractive index), UV (wavelength 210 nm)
A fraction of the peak of the main product in FIG. 6 is collected, and the eluent is distilled off, followed by lyophilization, whereby general formula (VII) (wherein R ′ is a glucose residue, X is a hydrogen atom) The cellobiosylamine derivative of itaconic acid represented by the following formula was obtained.
FIG. 7 shows the proton nuclear magnetic resonance spectrum (D 2 O) of the cellobiosylamine derivative of itaconic acid obtained by HPLC fractionation.
When the biodegradability test of the obtained cellobiosylamine derivative of itaconic acid was performed based on ISO148851, JIS K6950, a biodegradability of 49.5% was obtained in 28 days.

実施例3 イタコン酸のグルコサミン誘導体の重合
イタコン酸のグルコサミン誘導体(一般式(VI)、X:水素原子)3.0g(10mmol)と次亜リン酸ナトリウム一水和物1.3g(12mmol)を水8mlに加えて、窒素通気下で95℃に昇温し、ペルオキソ二硫酸カリウム0.35g(1.3mmol)を3回に分けて加え、窒素通気、95℃で12時間反応した。反応終了後、分画分子量1000のセルロースチューブに入れ、3日間透析を行い精製したのち、凍結乾燥し、一般式(VIII)で表されるポリマー0.1gを得た。
得られたポリマーのプロトン核磁気共鳴スペクトルを図8に示す。
Example 3 Polymerization of Itaconic Acid Glucosamine Derivative Itaconic acid glucosamine derivative (general formula (VI), X: hydrogen atom) 3.0 g (10 mmol) and sodium hypophosphite monohydrate 1.3 g (12 mmol) In addition to 8 ml of water, the temperature was raised to 95 ° C. under nitrogen flow, 0.35 g (1.3 mmol) of potassium peroxodisulfate was added in three portions, and the mixture was reacted at 95 ° C. for 12 hours under nitrogen flow. After completion of the reaction, it was placed in a cellulose tube having a molecular weight cut off of 1000 and purified by dialysis for 3 days, followed by lyophilization to obtain 0.1 g of a polymer represented by the general formula (VIII).
The proton nuclear magnetic resonance spectrum of the obtained polymer is shown in FIG.

実施例4 イタコン酸のセロビオシルアミン誘導体の重合
イタコン酸のセロビオシルアミン誘導体(一般式(VII)、R':グルコース残基、X:水素原子)1.00g(2.2mmol)と次亜リン酸ナトリウム一水和物0.26g(2.4mmol)を水8mlに加えて、窒素通気下で95℃に昇温し、ペルオキソ二硫酸カリウム0.07mg(0.3mmol)を3回に分けて加え、12時間反応した。反応終了後、分画分子量1000のセルロースチューブに入れ、3日間透析を行い精製したのち、凍結乾燥し、式(IX)で表されるポリマー0.1gを得た。
得られたポリマーのプロトン核磁気共鳴スペクトルを図9に示す。
Example 4 Polymerization of a cellobiosylamine derivative of itaconic acid 1.00 g (2.2 mmol) of itaconic acid cellobiosylamine derivative (general formula (VII), R ′: glucose residue, X: hydrogen atom) and hypophosphorous acid Sodium sulfate monohydrate 0.26 g (2.4 mmol) was added to 8 ml of water, the temperature was raised to 95 ° C. under nitrogen flow, and 0.07 mg (0.3 mmol) of potassium peroxodisulfate was divided into three portions. In addition, it reacted for 12 hours. After completion of the reaction, the mixture was put into a cellulose tube having a molecular weight cut off of 1000 and purified by dialysis for 3 days, and then lyophilized to obtain 0.1 g of a polymer represented by the formula (IX).
The proton nuclear magnetic resonance spectrum of the obtained polymer is shown in FIG.

以上述べてきたように、本発明によると、糖残基を有した不飽和結合をもつ新規なイタコン酸糖誘導体が簡便に製造できる。これらのポリマーは、紙薬品、水処理剤、化粧料、コンクリート混和剤、衛生材料等の原料として、又は金属イオン捕集としての電子材料洗浄剤の原料、あるいは家庭用洗浄剤の原料等として、活用することができる可能性がある。   As described above, according to the present invention, a novel itaconic acid sugar derivative having an unsaturated bond having a sugar residue can be easily produced. These polymers are used as raw materials for paper chemicals, water treatment agents, cosmetics, concrete admixtures, sanitary materials, etc., or as raw materials for electronic material cleaners as metal ion collectors, or as raw materials for household cleaners. There is a possibility that it can be utilized.

イタコン酸のグルコサミン誘導体生成物の赤外線吸収スペクトルである。It is an infrared absorption spectrum of a glucosamine derivative product of itaconic acid. イタコン酸のグルコサミン誘導体生成物のHPLCクロマトグラムで、(ア)はRI(示差屈折率)検出器を用いたもの、(イ)はUV検出器を用いたものである。It is a HPLC chromatogram of the product of the glucosamine derivative of itaconic acid, (a) using a RI (differential refractive index) detector, and (b) using a UV detector. 図2のHPLCクロマトグラムのフラクション(a)から得られた化合物のプロトン核磁気共鳴スペクトル(D2O)である。It is a proton nuclear magnetic resonance spectrum of the compound obtained from fractions of HPLC chromatogram of FIG. 2 (a) (D 2 O ). 図2のHPLCクロマトグラムのフラクション(b)から得られた化合物のプロトン核磁気共鳴スペクトル(D2O)である。It is a proton nuclear magnetic resonance spectrum of the compound obtained from the fraction (b) of the HPLC chromatogram of FIG. 2 (D 2 O). イタコン酸のセロビオシルアミン誘導体生成物の赤外線吸収スペクトルである。It is an infrared absorption spectrum of the cellobiosylamine derivative product of itaconic acid. イタコン酸のセロビオシルアミン誘導体生成物のHPLCクロマトグラムで、(ア)はRI(示差屈折率)検出器を用いたもの、(イ)はUV検出器を用いたものである。It is a HPLC chromatogram of the cellobiosylamine derivative product of itaconic acid, (A) is using a RI (differential refractive index) detector, (A) is using a UV detector. 図6のHPLCクロマトグラムの生成物フラクションから得られた化合物のプロトン核磁気共鳴スペクトル(D2O)である。Is a proton nuclear magnetic resonance spectrum of the compound obtained from the product fractions HPLC chromatogram of FIG. 6 (D 2 O). イタコン酸のグルコサミン誘導体のポリマーのプロトン核磁気共鳴スペクトルである。It is a proton nuclear magnetic resonance spectrum of a polymer of a glucosamine derivative of itaconic acid. イタコン酸のセロビオース誘導体のポリマーのプロトン核磁気共鳴スペクトルである。It is a proton nuclear magnetic resonance spectrum of a polymer of a cellobiose derivative of itaconic acid.

Claims (3)

一般式(VII)(式中、Xは水素原子またはアルカリ金属原子を表し、R'は水素原子を表す。)で表されるイタコニル−グルコシルアミン若しくはそのアルカリ金属塩、または一般式(VII)(式中、Xは水素原子またはアルカリ金属原子を表し、R'はグルコース残基を表す。)で表されるイタコニル−セロビオシルアミン若しくはそのアルカリ金属塩であるイタコン酸糖誘導体。

Itaconyl-glucosylamine represented by the general formula (VII) (wherein X represents a hydrogen atom or an alkali metal atom and R ′ represents a hydrogen atom) or an alkali metal salt thereof, or a compound represented by the general formula (VII) ( In the formula, X represents a hydrogen atom or an alkali metal atom, and R ′ represents a glucose residue.) Itaconic sugar derivative which is an itaconyl-cellobiosylamine or an alkali metal salt thereof .

無水イタコン酸と一般式(IV)(式中、Rは一般式(III)(式中、R'は水素原子、またはグルコース残基を表す。)で示される残基を表す。)で表されるアミノ糖を、アルカリ存在下において含水有機溶媒中で反応させることを特徴とする請求項1に記載のイタコン酸
糖誘導体の製造方法。


Itaconic anhydride and the general formula (IV) (wherein, R has the general formula (III) (wherein, R 'represents. A residue represented by represents.) A hydrogen atom or a glucose residue) represented by The method for producing an itaconic acid sugar derivative according to claim 1, wherein the amino sugar is reacted in a water-containing organic solvent in the presence of an alkali.


一般式(IX)(式中、R'は水素原子を表し、Xは水素原子またはアルカリ金属原子を表し、nは2以上の整数を表す。)、または一般式(IX)(式中、R'はグルコース残基を表し、Xは水素原子またはアルカリ金属原子を表し、nは2以上の整数を表す。)で表されるイタコン酸糖誘導体のポリマー。
General formula (IX) (wherein R ′ represents a hydrogen atom, X represents a hydrogen atom or an alkali metal atom, and n represents an integer of 2 or more), or general formula (IX) (wherein R 'Represents a glucose residue, X represents a hydrogen atom or an alkali metal atom, and n represents an integer of 2 or more.)
JP2005322461A 2005-11-07 2005-11-07 Novel itaconic sugar derivative and process for producing the same Expired - Fee Related JP5024585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322461A JP5024585B2 (en) 2005-11-07 2005-11-07 Novel itaconic sugar derivative and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322461A JP5024585B2 (en) 2005-11-07 2005-11-07 Novel itaconic sugar derivative and process for producing the same

Publications (2)

Publication Number Publication Date
JP2007126420A JP2007126420A (en) 2007-05-24
JP5024585B2 true JP5024585B2 (en) 2012-09-12

Family

ID=38149366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322461A Expired - Fee Related JP5024585B2 (en) 2005-11-07 2005-11-07 Novel itaconic sugar derivative and process for producing the same

Country Status (1)

Country Link
JP (1) JP5024585B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322860C (en) * 2004-08-31 2007-06-27 北京正大绿洲医药科技有限公司 Levo carnitine dropping pill and preparation thereof
JP2012524131A (en) * 2009-04-15 2012-10-11 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing monoethylenically unsaturated glycosylamine

Also Published As

Publication number Publication date
JP2007126420A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
Ma et al. Preparation and characterization of water-soluble N-alkylated chitosan
CN101104665B (en) AM/NaAA/allylcyclodextrin polymer with inclusion function and synthetic method thereof
US20220153934A1 (en) Polymer material and method for producing same
Holme et al. Chitosan derivatives bearing C10-alkyl glycoside branches: a temperature-induced gelling polysaccharide
CN104130336A (en) Preparation method of esterification modified xanthan gum
Vasnev et al. Synthesis and properties of acylated chitin and chitosan derivatives
Furuike et al. Synthetic glycoconjugates. 6. Preparation and biochemical evaluation of novel cluster-type glycopolymers containing Gal. beta.(1. fwdarw. 4) GlcNAc (N-Acetyllactosamine) residue
JP5024585B2 (en) Novel itaconic sugar derivative and process for producing the same
Wielema et al. Zwitterionic polymers—II. Synthesis of a novel series of poly (vinylbetaines) and the effect of the polymeric structure on the solubility behaviour in water
Singh et al. Grafting of methylmethacrylate on to the plant seed galactomannans using potassium persulphate/ascorbic acid redox pair
Sashiwa et al. Chemical modification of chitosan 8: preparation of chitosan–dendrimer hybrids via short spacer
JP2010001397A (en) Cellulose derivative
JP2012524131A (en) Process for producing monoethylenically unsaturated glycosylamine
JPWO2002072860A1 (en) Method for producing hyaluronic acid or hyaluronic acid derivative
KR19990008468A (en) Synthesis of Glycopolymer
Chen et al. Carboxymethyl glycoside lactone (CMGL) synthons: Scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers
Iyer et al. Synthesis of a hyaluronan neoglycopolymer by ring-opening metathesis polymerization
Wada et al. Synthesis and Properties of Hyaluronic Acid Conjugated Nucleic Acid Analogs—1: Synthesis of Deacetylhyaluronan and Introduction of Nucleic Acid Bases
Kadokawa et al. Chemoenzymatic synthesis of amylose-grafted polyacetylenes
Nishimura et al. [22] Preparation of glycoprotein models: Pendant-type oligosaccharide polymers
JP5645919B2 (en) Process for producing unsaturated acylamide alkyl polyhydroxy acid amide
JP5089998B2 (en) 4-sulfated hyaluronic acid
Papacchini et al. Modified α, α′-trehalose and d-glucose: green monomers for the synthesis of vinyl copolymers
JP4552174B2 (en) Urea derivative, process for producing the same, and polymer thereof
Song et al. Synthesis of Amphiphilic Starch Derivatives Using One-pot Synthesis Procedure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees