JP2004202190A - 生体情報測定装置 - Google Patents

生体情報測定装置 Download PDF

Info

Publication number
JP2004202190A
JP2004202190A JP2003099537A JP2003099537A JP2004202190A JP 2004202190 A JP2004202190 A JP 2004202190A JP 2003099537 A JP2003099537 A JP 2003099537A JP 2003099537 A JP2003099537 A JP 2003099537A JP 2004202190 A JP2004202190 A JP 2004202190A
Authority
JP
Japan
Prior art keywords
biological information
extreme value
oxygen saturation
electric signal
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099537A
Other languages
English (en)
Inventor
Kazunari Mizuguchi
一成 水口
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2003099537A priority Critical patent/JP2004202190A/ja
Publication of JP2004202190A publication Critical patent/JP2004202190A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】生体の体動によるノイズの影響を受けることなく高い精度で生体情報を測定することができる生体情報測定装置を提供する。
【解決手段】生体情報測定装置100において、発光部11は相異なる複数の波長の測定光をそれぞれ発光し、受光部12は発光した各測定光が生体LBを経由した後の光強度変化を光電脈波信号として測定し、BPF部151は測定された各光電脈波信号に対して通過周波数帯域でフィルタリングを行い、制御部16はBPF部151における通過周波数帯域を逐次変化させ、酸素飽和度演算部152はフィルタリングが行われた各光電脈波信号に基づいて酸素飽和度を逐次演算し、極値検出部153は逐次演算された酸素飽和度の周波数領域における極値を検出し、表示部17は検出された極値を酸素飽和度の真値として表示する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、動脈血の酸素飽和度や脈拍数等の生体情報を測定する生体情報測定装置に関するものである。
【0002】
【従来の技術】
生体組織の酸素濃度を監視する意義が、臨床において極めて大きいことは周知の通りである。臨床における酸素ダイナミクス評価法は、例えば、生体内での酸素の働きという観点から大別すると、酸素化、酸素供給、酸素消費および酸素需給バランスのように分類される。酸素は、生命活動維持のために最も重要な物質であり、酸素の供給が絶たれると生体組織細胞は、重大な傷害を受けることから、上述の分類の中でも特に酸素化および酸素供給に関するパラメータが重要であると考えられている。そのため、酸素供給が不安定になり得る場合、例えば、麻酔中、術後、呼吸不全および循環不全などの患者を治療する場合には、特に酸素が適切に供給されているか否かをモニタすることが重要である。
【0003】
生体組織への酸素供給は、動脈血によって行われる。そのため、生体組織への酸素供給が適切に行われているか否かを把握するために、脈拍数や血中酸素飽和度がモニタされる。
【0004】
動脈血の酸素飽和度等を測定する装置として光電脈波型オキシメータが知られている。この光電脈波型オキシメータは、光を生体に向けて発光し、生体を経由した光の光量変化を光電脈波信号として測定し、例えば、毎秒ごとの測定値を移動平均することによって酸素飽和度の値を求める。しかしながら、このような方法では、生体の呼吸や体動などによって毎秒ごとの測定値がばらついているような場合には、酸素飽和度の測定値もその影響を受けてばらついてしまうという欠点があった(例えば、特許文献1又は特許文献2参照。)。特に、このような光電脈波型オキシメータを新生児の動脈血酸素飽和度の測定に適用した場合、生体の動きが激しいために酸素飽和度の測定値も大きくばらついてしまう。また、この測定値のばらつきを小さくするために移動平均の測定時間を長くすると応答時間が長くなり、生体の急激な変化に追従できなくなる。
【0005】
このような酸素飽和度の測定値のばらつきを改善するものとして、脈波信号にフィルタリング処理を施すことにより生体の体動によるノイズを除去する方法が提案されている。この方法は、直前の脈拍数に可変バンドパスフィルタを調律する、いわゆる周波数追跡フィルタを施すことにより、脈波信号のみを通過させ、生体の体動によるノイズを除去している(例えば、特許文献1参照。)。
【0006】
【特許文献1】
特開平1−153139号公報
【特許文献2】
米国特許第6157850号明細書
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、周波数カウンタのような周波数検出装置が別途必要となる。また、上記従来の方法における可変バンドパスフィルタは、フィルタリング処理を施す周波数領域の範囲を広くするとノイズが含まれてしまうため、所定の範囲の周波数領域においてフィルタリング処理を施す。しかしながら、測定する脈拍数が直前の脈拍数から大きく変化した場合には、フィルタの通過帯域が周波数の変化に追従できなくなる可能性がある。
【0008】
本発明は、上記の事情に鑑みて為されたものであり、生体の体動によるノイズの影響を受けることなく高い精度で生体情報を測定することができる生体情報測定装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明に係る生体情報測定装置は、相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して通過周波数帯域でフィルタリングを行うフィルタリング処理手段と、前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記フィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて生体内に関する第1の生体情報を逐次演算する生体情報演算手段と、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域における極値を検出する極値検出手段と、前記極値検出手段によって検出された極値を前記第1の生体情報の真値として表示する第1の生体情報表示手段とを備える。
【0010】
この構成によれば、生体情報測定装置は、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて、生体内に関する第1の生体情報が逐次演算され、逐次演算された第1の生体情報の周波数領域における極値が第1の生体情報の真値として採用される。そのため、周波数領域の全範囲にわたってフィルタリング処理を施して第1の生体情報を逐次演算し、逐次演算された第1の生体情報の周波数領域における極値を選択することによって、生体の体動によるノイズの影響を受けることなく高い精度で第1の生体情報を測定することができる。
【0011】
また、上記の生体情報測定装置において、前記電気信号に雑音信号を印加する雑音信号印加手段をさらに備えることが好ましい。この構成によれば、測定部によって測定された電気信号に雑音信号が印加され、雑音信号が印加された電気信号を用いて極値が検出される。通常、生体情報に関係する電気信号成分よりも生体情報と無関係な電気信号成分の方が体動によるノイズの影響の度合いが大きいため、生体情報の極値が検出されない場合でも、測定された電気信号に雑音信号を意図的に印加することにより、極値を強調させることができる。
【0012】
また、上記の生体情報測定装置において、前記極値検出手段は、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域において、前記第1の生体情報の極値となる周波数の整数倍の位置に現れる極値を検出することが好ましい。この構成によれば、極値検出手段によって、生体情報演算手段によって逐次演算された第1の生体情報の周波数領域において、第1の生体情報の極値となる周波数の整数倍の位置に現れる極値が検出され、検出された極値に基づいて第1の生体情報の真値が測定される。
【0013】
また、本発明に係る生体情報測定装置は、相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して通過周波数帯域でフィルタリングを行うフィルタリング処理手段と、前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記フィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて生体内に関する第1の生体情報を逐次演算する生体情報演算手段と、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域における極値を検出する極値検出手段と、前記極値検出手段によって検出された極値に対応する周波数を第2の生体情報として表示する第2の生体情報表示手段とを備える。
【0014】
この構成によれば、生体情報測定装置は、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて、生体内に関する第1の生体情報が逐次演算され、逐次演算された第1の生体情報の周波数領域における極値に対応する周波数が第2の生体情報として採用される。そのため、周波数領域の全範囲にわたってフィルタリング処理を施して第1の生体情報を逐次演算し、逐次演算された第1の生体情報の周波数領域における極値を選択することによって、生体の体動によるノイズの影響を受けることなく高い精度で第2の生体情報を測定することができる。
【0015】
また、本発明に関わる生体情報測定装置は、相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して、雑音信号を印加する雑音信号印加手段と、前記雑音信号印加手段によって雑音信号が印加された電気信号に対して、通過周波数帯域でフィルタリングを行う第1のフィルタリング処理手段と、前記第1のフィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記第1のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記雑音信号が印加された電気信号に基づいて、仮の生体情報を逐次演算する仮の生体情報演算手段と、前記仮の生体情報演算手段によって逐次演算された前記仮の生体情報の周波数領域における極値を検出する極値検出手段と、前記測定手段によって測定された各電気信号に対して、前記極値検出手段によって検出された極値に対応する周波数を中心周波数とする帯域通過フィルタによってフィルタリングを行う第2のフィルタリング処理手段と、前記第2のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記電気信号に基づいて、生体内に関する真の生体情報を演算する真の生体情報演算手段と、前記真の生体情報演算手段によって演算された前記真の生体情報を表示する生体情報表示手段とを備える。
【0016】
この構成によれば、生体情報測定装置は、測定部によって測定された電気信号に雑音信号が印加され、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける雑音信号が印加された電気信号に基づいて、仮の生体情報が逐次演算され、逐次演算された仮の生体情報の周波数領域における極値に対応する周波数を中心周波数とする帯域通過フィルタが選択される。そのため、選択された帯域通過フィルタによって生体情報と無関係な電気信号成分は除去され、生体の体動によるノイズの影響を受けることなく高い精度で生体情報を測定することができる。
【0017】
【発明の実施の形態】
以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の構成については、同一の符号を付し、その説明を省略する。
【0018】
(第1の実施形態)
第1の実施形態に係る生体情報測定装置は、相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、測定手段によって測定された各電気信号に対して通過周波数帯域でフィルタリングを行うフィルタリング処理手段と、フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、フィルタリング処理手段によってフィルタリングが行われた各電気信号に基づいて生体内に関する第1の生体情報を逐次演算する生体情報演算手段と、生体情報演算手段によって逐次演算された第1の生体情報の周波数領域における極値を検出する極値検出手段と、極値検出手段によって検出された極値を第1の生体情報の真値として表示する第1の生体情報表示手段と、前記極値検出手段によって検出された極値に対応する周波数を第2の生体情報として表示する第2の生体情報表示手段とを備えて構成され、第1の生体情報及び第2の生体情報を測定する測定装置である。
【0019】
なお、本実施の形態において、第1の生体情報とは、動脈血中の酸素飽和度であり、第2の生体情報とは脈拍数であるが、本発明は特にこれに限定されず、第1の生体情報及び第2の生体情報は、生体内に関する生体情報、特に、動脈血に由来する生体情報を測定するものであればよい。
【0020】
図1は、第1の実施形態における生体情報測定装置の構成を示すブロック図である。
【0021】
図1において、生体情報測定装置100は、発光部11、受光部12、電流/電圧(以下、「I/V」と略記する。)変換部13、アナログ/ディジタル(以下、「A/D」と略記する。)変換部14、演算部15、制御部16及び表示部17を備えて構成される。そして、発光部11と受光部12とを備えて測定部20が構成される。
【0022】
発光部11は、赤色領域の波長λ1の赤色光R及び赤外線領域の波長λ2の赤外光IRを交互に射出する光源であり、例えば、波長λ1の赤色光Rと波長λ2の赤外光IRとを発光する発光ダイオード(以下、「LED」と略記する。)により構成される光源である。発光部11は、不図示の制御回路により赤色光R及び赤外光IRの発光が制御される。
【0023】
なお、本実施の形態において、発光部11は、LEDを用いて交互に赤色領域の波長λ1の赤色光R及び赤外線領域の波長λ2の赤外光IRを発光させるとしたが、本発明は特にこれに限定されず、波長λ1の赤色光Rを発光するLEDと、波長λ2の赤外光IRを発光するLEDとを同一基板上に近接させて配置してもよい。この場合、赤色光Rを発光するLEDと赤外光IRを発光するLEDとを同一基板上に近接させて配置することで、生体内を同一経路で透過あるいは反射する2波長の光の測定ができる。
【0024】
受光部12は、受光した光強度に応じた電流を生成する光電素子であり、少なくとも波長λ1および波長λ2に対して感度を持つ。例えば、シリコン・ホト・ダイオード(Silicon Photo Diode)が利用される。受光部12は、不図示の制御回路により発光部11の発光に同期して制御される。受光部12は、受光した光を光強度に従い光電変換した電流信号をI/V変換部13に出力する。
【0025】
発光部11と受光部12とは、不図示の保持部材によって保持され、相互の位置は固定されている。発光部11と受光部12とは、受光部12が、測定対象となる生体組織LBを経由した発光部11の両波長λ1、λ2の光を受光するように配置される。本実施形態では、発光部11と受光部12とは、生体組織LBを介して略対向するように配置されているが、本発明は特にこれに限定されず、同じ向きに配置してもよい。ここで、測定部20が装着される測定部位は、装着の容易性やSN比(Signal−to−Noise ratio)の高い測定データが得られるなどの測定の容易性を考慮して、例えば、手指や耳朶などの生体部位や乳幼児の場合には手の甲、手首、足の甲などの生体部位である。
【0026】
I/V変換部13は、受光部12より出力された電流信号を電圧信号に変換する。この電圧信号は、光電脈波信号としてA/D変換部14に出力される。A/D変換部14は、入力された光電脈波信号をアナログ信号からディジタル信号に変換する。ディジタル信号に変換された光電脈波信号は、演算部15に出力される。
【0027】
演算部15は、マイクロプロセッサやDSPなどを備えて構成され、不図示の記憶装置に格納されているデータやプログラムに従い、入力された光電脈波信号から動脈血中の酸素飽和度や脈拍数などを演算する。演算部15は、バンドパスフィルタ(以下、「BPF」と略記する。)部151、酸素飽和度演算部152及び極値検出部153を含む。
【0028】
BPF部151は、可変デジタルフィルタで構成され、デジタルフィルタにおける通過周波数帯域の中心周波数を、後述する制御部16の制御によって逐次変化させ、A/D変換部14でA/D変換された光電脈波信号をフィルタリングする。
【0029】
なお、本実施形態において、BPF部151は、可変デジタルフィルタで構成されているが、本発明は特にこれに限定されず、通過周波数帯域の中心周波数が相互に異なる複数のアナログバンドパスフィルタを並列したアナログバンドパスフィルタ群で構成してもよい。この場合、アナログバンドパスフィルタ群は、I/V変換部13でI/V変換された光電脈波信号を同時に通過させることにより、可変デジタルフィルタにおける中心周波数を逐次変化させることと同様の作用となる。
【0030】
酸素飽和度演算部152は、BPF部151でフィルタリング処理された光電脈波信号に基づいて動脈血の酸素飽和度を逐次演算する。なお、酸素飽和度の演算方法については後述する。
【0031】
極値検出部153は、酸素飽和度演算部152で各中心周波数に対して逐次演算された酸素飽和度の周波数領域における極値を検出する。
【0032】
制御部16は、マイクロプロセッサなどを備えて構成され、不図示の記憶装置に格納されているデータやプログラムに従い、上述のBPF部151を制御信号によって制御する。
【0033】
表示部17は、演算部15で処理されたデータ、例えば、酸素飽和度及び脈拍数などを表示したりする表示装置であり、例えば、液晶表示装置や有機ホトルミネセンス表示装置やCRT(Cathode−Ray Tube)などである。
【0034】
ここで、光によって血中酸素飽和度を求める原理について説明する。周知の通り、酸素は、ヘモグロビンによって生体の各細胞に運ばれるが、ヘモグロビンは、肺で酸素と結合して酸化ヘモグロビン(HbO)となり、生体の細胞で酸素が消費されるとヘモグロビン(Hb)に戻る。酸素飽和度SpOは、血中の酸化ヘモグロビンの割合をいい、ヘモグロビン濃度をCHbで示し、酸化ヘモグロビン濃度をCHbO2で示すと下記の(1)式のように定義される。
【0035】
【数1】
Figure 2004202190
【0036】
一方、ヘモグロビンの吸光度および酸化ヘモグロビンの吸光度は、波長依存性を有しており、各吸光係数α(λ)は、周知の図2に示すような吸光特性を有する。なお、図2の横軸はnm単位で示す光の波長でありその縦軸は×10−9cm/mole単位で示す吸光係数である。ヘモグロビンおよび酸化ヘモグロビンは、図2に示すようにその吸光特性が異なる。ヘモグロビンは、赤色領域の波長λ1の赤色光Rに対し酸化ヘモグロビンよりも光を多く吸収するが、赤外線領域の波長λ2の赤外光IRに対しては酸化ヘモグロビンよりも光の吸収が少ない。すなわち、例えば、赤色光Rの波長を酸化ヘモグロビンとヘモグロビンとの吸光係数差が最も大きい660nmとし、赤外光IRの波長を酸化ヘモグロビンとヘモグロビンとの吸光係数差が等しい815nmにとれば、酸化ヘモグロビンとヘモグロビンとの比率が変わっても赤外光IRの透過光量は変わらないこととなる。一方、赤色光Rの透過光量はヘモグロビンが多いと小さくなり、酸化ヘモグロビンが多いと大きくなる。つまり、透過光量の比をとれば酸素飽和度を求めることができる。生体情報測定装置100は、このようなヘモグロビンと酸化ヘモグロビンとの赤色光Rと赤外光IRとに対する吸光特性の違いを利用して血中酸素飽和度や脈拍数を求める。
【0037】
生体に光を照射すると、光の一部は吸収され、一部は透過する。生体は、動脈血層と、静脈血層と、動脈血層及び静脈血層以外の組織とで構成される。生体における光の吸収は、図3(a)に示すように、動脈血層及び静脈血層以外の組織による吸収、静脈血層による吸収及び動脈血層による吸収より成る。動脈血層及び静脈血層以外の組織と静脈血層とは経時的に変化しないため、この部分での光の吸収は略一定である。一方、動脈血は心拍動によって血管径が変化するため、動脈血層による光の吸収は、図3(b)に示すように、脈拍により経時的に変動する。つまり、透過光強度の変化分は動脈血のみの情報によるもので静脈血や動脈血及び静脈血以外の生体組織による影響はほとんど含まれない。なお、図3(b)の横軸は時間でありその縦軸は透過光強度である。
【0038】
赤色光R及び赤外光IRの光量変化を比較する場合、入射光量の差をキャンセルする必要がある。図4は、生体に入射する入射光と透過光との関係を模式的に表す図である。図4(a)に示すように、生体への入射光量Iを赤色光Rと赤外光IRとで同じにすることは実質的に困難であり、仮に同じにしても組織や静脈血による吸光率は赤色光Rと赤外光IRとで異なるため、変化分のみを比較することはできない。
【0039】
ここで、動脈が一番細い場合(透過光量が最も大きい場合)の透過光量をIとし、動脈が最も太い場合(透過光量が最も小さい場合)の透過光量をI−ΔIとする。図4(b)に示すように、厚さΔDの動脈血にIという光を照射したとき、I−ΔIの透過光が得られると考えられる。
【0040】
つまり、図5に示すように、赤色光Rの透過光量Iと赤外光IRの透過光量IIRとが同じになるように正規化する(IIR’=I)ことにより、動脈血による光量変化の比である(ΔI/I)/(ΔIIR/IIR)を求めて酸素飽和度を算出することができる。
【0041】
入射光と反射光との関係は、ランバート・ビアの法則により、下記の(2)式で表すことができる。
【0042】
【数2】
Figure 2004202190
【0043】
なお、上記(2)式において、Eは吸光物の吸光係数を表し、Cは吸光物の濃度を表す。
【0044】
赤色光R及び赤外光IRの2つの波長をそれぞれ上記(2)式にあてはめ、比を取ることによって下記の(3)式を得ることができる。
【0045】
【数3】
Figure 2004202190
【0046】
なお、上記(3)式において、Iは赤色光Rの透過光量を表し、IIRは赤外光IRの透過光量を表し、Eは赤色光Rの吸光係数を表し、EIRは赤外光IRの吸光係数を表す。
【0047】
ここで、例えば、赤色光R及び赤外光IRの波長をそれぞれ660nm及び815nmとすると、吸光係数の比(E/EIR)と酸素飽和度との関係は図6のようになる。
【0048】
図6は、吸光係数の比と酸素飽和度との関係を示す図である。図6の横軸は酸素飽和度であり、縦軸は吸光係数の比である。図6に示すように、赤色光Rの波長を660nmとし、赤外光IRの波長を815nmとすると、吸光係数の比と酸素飽和度との関係は右肩下がりの直線で表される。
【0049】
なお、血中酸素飽和度の算出方法としては、上記に限らず、種々の方法を用いることができる。
【0050】
つぎに、図1に示す生体情報測定装置100の動作について説明する。図7は、生体情報測定装置100の動作の一例を示すフローチャートである。
【0051】
まず、測定者により、電源スイッチが投入される(ステップS1)。生体情報測定装置100の演算部15は、電源スイッチが投入されると、内部の記憶装置に格納されているプログラムを実行し、測定部20、I/V変換部13、A/D変換部14及び表示部17などの生体情報測定装置100の各部を初期化する(ステップS2)。制御部16は、BPF部151のバンドパスフィルタの中心周波数を逐次変化させながら、光電脈波信号を逐次通過させる(ステップS3)。
【0052】
ここで、本実施の形態では、バンドパスフィルタの可変範囲は、脈拍数が取り得る全ての範囲である、例えば、20〜250拍としているが、本発明は特にこれに限定されず、酸素飽和度の極値を示す直前の周波数を中心周波数とした可変範囲をステップS3以前において設定してもよい。このとき、バンドパスフィルタの中心周波数の初期値としては、体動などのノイズが含まれていない状態で検出された光電脈波信号から得られる脈拍数を用いるか、あらかじめ設定されたデフォルト値を用いる。この場合、脈拍数が取り得る全ての範囲について中心周波数を可変する必要がないため、演算時間を短縮することができる。
【0053】
また、バンドパスフィルタはデジタルフィルタであるため、高次のFIR(Finite Impulse Response)フィルタを用いることにより高性能なフィルタリング処理が可能となる。
【0054】
酸素飽和度演算部152は、BPF部151においてフィルタリング処理された光電脈波信号に基づいて、バンドパスフィルタの中心周波数ごとに公知の方法により、酸素飽和度の演算を行う(ステップS4)。
【0055】
極値検出部153は、酸素飽和度演算部152においてバンドパスフィルタの中心周波数ごとに演算された酸素飽和度を、横軸を中心周波数とし、縦軸を酸素飽和度とする周波数領域で中心周波数の関数として表し、周波数領域における酸素飽和度の極値を検出する(ステップS5)。なお、酸素飽和度の極値の検出方法については後述する。
【0056】
表示部17は、極値検出部153によって検出された極値に対応する酸素飽和度を真値として表示するとともに、表示部17は、極値検出部153によって検出された極値に対応する周波数を脈拍数の真値として表示する(ステップS6)。なお、表示部17に表示される酸素飽和度及び脈拍数は、演算部15において、異常データ除去及び表示値のスムージング処理等が施されている。
【0057】
なお、本実施の形態において、表示部17は酸素飽和度とともに脈拍数を表示するとしたが、本発明は特にこれに限定されず、例えば、酸素飽和度のみを表示してもよく、また脈拍数のみを表示してもよい。
【0058】
ここで、極値検出部153における酸素飽和度の極値の検出方法について説明する。
【0059】
通常、光電脈波信号に体動によるノイズが付加されることでSN比は悪くなる。この状態では、赤外光IR及び赤色光Rには、それぞれ同程度の体動ノイズが付加されるため、図6に示すように、吸光係数の比は1に近づき、その結果として酸素飽和度は84パーセントに近づくこととなる。したがって、脈拍数に無関係な光電脈波信号成分を評価した場合は、体動ノイズの影響により、酸素飽和度は84パーセントに近づき、逆に、脈拍数に関係する光電脈波信号成分を評価した場合は、その信号レベルが大きいため体動ノイズの影響を受けにくくなり、酸素飽和度はほとんど変化しない。よって、バンドパスフィルタの中心周波数を逐次変化させながら光電脈波信号を通過させた場合、脈拍数に関係する酸素飽和度は真値を示し、逆に、脈拍数に無関係な酸素飽和度は84パーセント付近となり、その結果、酸素飽和度の真値を示す周波数位置において極値が現れる。つまり、可変バンドパスフィルタを通過させることによって酸素飽和度の極値が現れ、酸素飽和度の真値が84パーセント以上の場合は、周波数領域における酸素飽和度の特性曲線は凸形状となり、極大値を示すこととなる。また、酸素飽和度の真値が84パーセント以下の場合は、周波数領域における酸素飽和度の特性曲線は凹形状となり、極小値を示すこととなる。
【0060】
図8は、酸素飽和度の真値が84パーセント以上の場合の周波数領域における酸素飽和度の演算結果の一例を示す図である。なお、図8の横軸は脈拍数であり、縦軸は酸素飽和度である。また、図8に示す符号31aは酸素飽和度の周波数領域における極値を表し、符号32aは酸素飽和度の極値となる脈拍数の真値を表し、符号33aは酸素飽和度の真値を表す。図8に示すように、バンドパスフィルタの中心周波数ごとに演算された酸素飽和度は、周波数領域において離散的に分布しており、これらの離散データから酸素飽和度の極値31aを検出する。
【0061】
本実施の形態における酸素飽和度の極値の検出は、バンドパスフィルタの中心周波数ごとに演算された離散データを用いて演算処理を行っている。すなわち、極値検出部153は、隣接するデータの差を求め、その符号が変化する点を極値として検出する。したがって、隣接する離散データの差の符号の変化を見るという簡単な処理で極値を検出することができ、演算処理時間を短縮することができる。なお、極値を検出する際に、回路ノイズ等の影響により極値の検出が困難になる場合があるが、このような場合、周波数空間の移動平均化処理を施すことによってノイズの影響を軽減することができる。
【0062】
本実施の形態では、バンドパスフィルタの中心周波数ごとに演算された離散データの符号の変化を見ることによって酸素飽和度の極値の検出を行っているが、本発明は特にこれに限定されず、バンドパスフィルタの中心周波数ごとに演算された離散データを連続関数で近似させることによって酸素飽和度の極値を検出してもよい。つまり、極値検出部153は、例えば、複数の離散データをスプライン関数等の連続関数f(x)で近似させた後、連続関数f(x)の導関数f’(x1)が0になる点x1を求め、その2階導関数f”(x1)が0でないならば、点x1に極値が存在すると判断する。なお、f”(x1)=0の場合、極値は存在しない。
【0063】
このように、生体情報測定装置100は、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける光電脈波信号に基づいて、生体内の酸素飽和度が逐次演算され、逐次演算された酸素飽和度の周波数領域における極値が酸素飽和度の真値として採用されるため、直前の脈拍数とは無関係に周波数領域の全範囲にわたってフィルタリング処理を施して酸素飽和度を逐次演算し、逐次演算された酸素飽和度の周波数領域における極値を選択することによって、生体の体動によるノイズの影響を受けることなく高い精度で生体情報の一つである酸素飽和度を測定することができる。また、周波数カウンタなどの周波数測定装置が不要であるため、回路構成を簡略化することができる。
【0064】
さらに、生体情報測定装置100は、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける光電脈波信号に基づいて、生体内の酸素飽和度が逐次演算され、逐次演算された酸素飽和度の周波数領域における極値に対応する周波数が脈拍数として採用される。そのため、周波数領域の全範囲にわたってフィルタリング処理を施して酸素飽和度を逐次演算し、逐次演算された酸素飽和度の周波数領域における極値を選択することによって、生体の体動によるノイズの影響を受けることなく高い精度で生体情報の一つである脈拍数を測定することができる。
【0065】
ここで、酸素飽和度が84パーセントから離れた数値の場合は、極値の現れ方が顕著であるが、84パーセントに近い数値の場合は、極値が目立たなくなり、極値の検出が困難になる。特に、酸素飽和度が84パーセントに等しい場合は、極値は検出されない。そこで、あらかじめ極値の有無を判定しておき、極値が存在しない場合は、直前の脈拍数の真値と同じ位置に極値が存在するものと仮定し、直前の脈拍数の真値に対応する酸素飽和度を真値として求める。なお、極値の有無の判定方法としては、例えば、周波数領域における酸素飽和度の最大値と最小値との差が所定の閾値以上(例えば、7パーセント以上)ならば極値が存在すると判断する。
【0066】
また、極値が検出されない場合の他の対応として、赤色光Rとは波長の異なる別の赤色光R’を用いることにより、酸素飽和度の極値を強調する方法がある。すなわち、赤色光R’が赤色光Rとは異なる波長を有しているため、赤色光R’を用いて求めた吸光係数の比p’(p’=ER’/EIR)は、赤色光Rを用いて求めた吸光係数の比p(p=E/EIR)とは異なる値を示す。その結果、酸素飽和度も異なる値(q≠q’)を示すので、赤色光R’の波長を適切に選択することで極値を強調する方向に酸素飽和度の値をシフトさせる。
【0067】
図9は、赤色光Rの吸光係数の比p及び赤色光R’の吸光係数の比p’と、酸素飽和度との関係を示す図である。図9に示す曲線Aは、赤色光Rを用いた場合の吸光係数の比と酸素飽和度との関係を表し、曲線Bは、赤色光R’を用いた場合の吸光係数の比と酸素飽和度との関係を表す。また、図10は、赤色光Rと赤色光R’の周波数領域における酸素飽和度の演算結果の一例を示す図であり、図10(a)は、極値の検出が困難である場合の周波数領域における酸素飽和度の演算結果の一例を示す図であり、図10(b)及び図10(c)は、極値が強調された場合の周波数領域における酸素飽和度の演算結果の一例を示す図である。
【0068】
生体情報測定装置100が、曲線Aの関係のみを認識する場合、図9に示すように、酸素飽和度は84パーセントから離れる方向にシフトするが、脈拍数と無関係な脈波信号成分は体動ノイズの影響を受けやすいため、吸光係数の比は1のままとなり、酸素飽和度は84パーセントとなる。したがって、図10(b)に示すように、極値のみが強調され、極値検出部153は極値を検出することができるようになる。なお、ここで検出された極値に対応する酸素飽和度の値33bは、図8に示す酸素飽和度の値33aとは異なっている。すなわち、酸素飽和度の値33bは、極値の強調のために本来ならば曲線Bで評価すべきところを曲線Aで評価した演算結果であり、実際の酸素飽和度の値とは異なっている。そこで、生体情報測定装置100は、極値を示す脈拍数(脈拍数の真値)における酸素飽和度を、赤色光Rを用いて再度酸素飽和度を演算しなおす必要がある。
【0069】
生体情報測定装置100が、曲線Bの関係も認識することができる場合、図9に示すように、極値qは変化しないが、吸光係数の比が1となる場合の酸素飽和度の値が、例えば75パーセントに変化する。したがって、この場合も、図10(c)に示すように、極値のみが強調され、極値検出部153は極値を検出することができるようになる。なお、ここで検出された極値に対応する酸素飽和度の値33cは、図8に示す酸素飽和度の値33aと同じ値となるため、再度酸素飽和度を演算しなおす必要はない。
【0070】
なお、この赤色光R’を用いて演算結果を評価する方法は、あらかじめ極値の有無を判定しておき、極値が存在しない場合にのみ行ってもよい。極値の有無の判定方法は上述の判定方法と同じである。また、極値の有無にかかわらず、赤色光R’を用いて演算結果を評価してもよい。
【0071】
このように、極値検出部153は、赤色光Rとは波長が異なる別の赤色光R’を用いて極値を検出することで、赤色光Rでは極値を検出することが困難である場合でも極値を強調することができ、極値を検出することができる。
【0072】
また、極値検出部153によって、複数の極値が検出される場合がある。この場合、極値検出部153は、複数の酸素飽和度の極値のなかで、値が84パーセントから最も遠い値を極値として検出する。これは、光電脈波信号に体動ノイズが含まれている場合、酸素飽和度の値は84パーセントに近づくため、84パーセントから最も遠い値を示す極値が体動ノイズの影響の小さい脈波成分、すなわち脈拍数に関係する脈波成分であると考えられるためである。このように、複数の酸素飽和度の極値が検出された場合、複数の酸素飽和度の極値と、光電脈波信号に体動ノイズが含まれている場合の酸素飽和度の値との差が最も大きい極値を酸素飽和度の真値とすることで、最適な極値を検出することができる。
【0073】
なお、例えば、酸素飽和度が同じ値の極値が複数検出された場合等、最遠値が見つからなかった場合、極値検出部153は、直前の脈拍数の真値に最も近い脈拍数に対応する極値を選択してもよい。あるいは、極値検出部153は、直前の酸素飽和度の真値に最も近い酸素飽和度に対応する極値を選択してもよい。また、極値検出部153は、複数の酸素飽和度の極値のうち、分散値が最小となる極値を選択してもよい。さらに、酸素飽和度が適正範囲内である有効データ数の頻度が最大値を示す極値を選択してもよい。ここでの適正範囲内とは、例えば、直前の酸素飽和度の±15パーセント以内である。
【0074】
さらに、検出された極値に対応する脈拍数の整数倍の位置にも酸素飽和度の極値が検出されることが確認されている。そこで、この整数倍の位置に現れる極値を利用して最適な酸素飽和度を測定することができる。図11は、整数倍の位置に極値が現れる場合の周波数領域における酸素飽和度の演算結果の一例を示す図である。図11に示すように、脈拍数32dの2倍の脈拍数32d’の位置に極値31d’が現れ、脈拍数32dの3倍の脈拍数32d”の位置に極値31d”が現れている。したがって、極値検出部153は、これらの極値のうち最適な酸素飽和度を示すものを選択して、極値として検出する。最適な酸素飽和度を示す極値の選択方法として、例えば、酸素飽和度の値が84パーセントから最も遠い値を示す極値を選択する。図11では、脈拍数32d’の位置に現れる極値31d’の酸素飽和度33d’が84パーセントから最も遠い値であるため、極値31d’が選択され、酸素飽和度33d’が真値として採用される。なお、最適な酸素飽和度を示す極値の選択方法として、極値検出部153は、分散値が最小となる極値を検出してもよい。また、極値検出部153は、整数倍の位置に現れる複数の極値に重み付け平均等の統計的処理を施すことによって、最適となる極値を検出してもよい。
【0075】
このように、本実施形態では、酸素飽和度演算部152によって逐次演算された酸素飽和度の周波数領域において、極値検出部153によって、酸素飽和度の極値となる脈拍数の整数倍の位置に現れる極値が検出され、検出された極値に基づいて酸素飽和度の真値が測定される。
【0076】
(第2の実施形態)
第2の実施形態に係る生体情報測定装置は、ダミーランダムノイズ信号を光電脈波信号に印加することによって酸素飽和度の極値を強調させる。すなわち、脈拍数に関係する光電脈波信号成分よりも脈拍数に無関係な光電脈波信号成分の方が体動ノイズによる影響の度合いが大きいため、意図的にノイズを印加することによって脈拍数と無関係な光電脈波信号成分の評価結果を84パーセントに近づけて極値を強調させる。
【0077】
図12は、第2の実施形態における生体情報測定装置の構成を示すブロック図である。
【0078】
図12において、生体情報測定装置200は、発光部11、受光部12、I/V変換部13、A/D変換部14、演算部15’、制御部16’及び表示部17を備えて構成される。そして、発光部11と受光部12とを備えて測定部20が構成される。なお、図12に示す生体情報測定装置200の演算部15’及び制御部16’以外の構成は、図1に示す生体情報測定装置100の構成と同じであるので説明を省略する。
【0079】
演算部15’は、マイクロプロセッサやDSPなどを備えて構成され、第1のBPF部151’、第2のBPF部151”、極値検出部153、ノイズ信号印加部154、第1の酸素飽和度演算部155及び第2の酸素飽和度演算部156を含む。
【0080】
ノイズ信号印加部154は、A/D変換部14でA/D変換された光電脈波信号にダミーランダムノイズ信号を印加する。ノイズ信号印加部154によって印加される信号としては、例えば、乱数等のランダムデータが用いられる。なお、ダミーランダムノイズ信号のレベル設定は、体動などのノイズが含まれていない状態で検出された光電脈波信号において、数拍分の光電脈波信号の振幅を平均し、その平均値に応じたダミーランダムノイズ信号を光電脈波信号に印加する。
【0081】
第1のBPF部151’は、ノイズ信号印加部154によってダミーランダムノイズ信号が印加された電気信号に対して、通過周波数帯域でフィルタリングを行う。すなわち、第1のBPF部151’は、可変デジタルフィルタで構成され、デジタルフィルタにおける通過周波数帯域の中心周波数を、制御部16の制御によって逐次変化させ、A/D変換部14でA/D変換された後、ノイズ信号印加部154によってダミーランダムノイズ信号が印加された光電脈波信号をフィルタリングする。
【0082】
第1の酸素飽和度演算部155は、第1のBPF部151’でフィルタリング処理された測定光の各波長成分ごとにおける光電脈波信号に基づいて、動脈血の仮の酸素飽和度を逐次演算する。
【0083】
極値検出部153は、第1の酸素飽和度演算部155で各中心周波数に対して逐次演算された仮の酸素飽和度の周波数領域における極値を検出する。
【0084】
第2のBPF部151”は、測定部20によって測定された各光電脈波信号に対して、極値検出部153によって検出された極値に対応する周波数を中心周波数とする帯域通過フィルタによってフィルタリングを行う。
【0085】
第2の酸素飽和度演算部156は、第2のBPF部151”によってフィルタリングが行われた測定光の各波長成分ごとにおける光電脈波信号に基づいて、生体内の真の酸素飽和度を演算する。すなわち、第2の酸素飽和度演算部156は、極値検出部153によって検出された極値を示す脈拍数における酸素飽和度をダミーランダムノイズ信号が印加されていない状態において再度演算し、酸素飽和度の真値を演算する。
【0086】
後述するように、第2の酸素飽和度演算部156の目的は、ダミーランダムノイズ信号が印加された光電脈波信号に基づいて、第1の酸素飽和度演算部155で演算された酸素飽和度は実際の値とは異なる(仮の酸素飽和度)ため、生体情報と無関係な電気信号成分を除去した後、ダミーランダムノイズ信号が印加されていない光電脈波信号に基づいて、真の酸素飽和度を演算することである。
【0087】
制御部16’は、マイクロプロセッサなどを備えて構成され、不図示の記憶装置に格納されているデータやプログラムに従い、上述の第1のBPF部151’、第2のBPF部151”及びノイズ信号印加部154を制御信号によって制御する。
【0088】
図13は、ダミーランダムノイズ信号を印加した場合の周波数領域における酸素飽和度の演算結果の一例を示す図である。図13の横軸は脈拍数であり、縦軸は酸素飽和度である。また、図13に示す符号31eはダミーランダムノイズ信号が印加された状態の酸素飽和度の周波数領域における極値を表し、符号32eはダミーランダムノイズ信号が印加された状態の酸素飽和度の極値となる脈拍数の真値を表し、符号33eはダミーランダムノイズ信号が印加された状態の酸素飽和度の真値を表す。
【0089】
ここで、図13に示す酸素飽和度33eは、図8に示す酸素飽和度33aと異なっている。すなわち、酸素飽和度33eは、ダミーランダムノイズ信号が光電脈波信号に印加されているので、このダミーランダムノイズ信号が印加された光電脈波信号に基づいて演算された酸素飽和度は実際の値とは異なる。したがって、第2の酸素飽和度演算部156は、極値検出部153において検出された酸素飽和度33eの極値31eにおける脈拍数32eを中心周波数とするバンドパスフィルタ(第2のBPF部151”)を通過した光電脈波信号に基づいて酸素飽和度および脈拍数を演算し、演算結果を酸素飽和度の真値および脈拍数の真値として表示部17に出力する。
【0090】
なお、本実施の形態では、ノイズ信号印加部154は、ダミーランダムノイズ信号としてランダムデータを用いているが、本発明は特にこれに限定されず、例えば、ノイズ信号印加部154は、I/V変換部13でI/V変換された光電脈波信号にアナログのホワイトノイズを印加してもよい。
【0091】
また、本実施の形態では、赤色光R及び赤外光IRの光電脈波信号に対して同じ振幅のダミーランダムノイズ信号を印加しているが、本発明は特にこれに限定されず、印加するダミーランダムノイズ信号の振幅を各光電脈波信号ごとに変えても良い。これにより、以下に述べるように極値をより強調することができる。
【0092】
図14は、赤色光Rの光電脈波信号に印加するダミーランダムノイズ信号に対して赤外光IRの光電脈波信号に印加するダミーランダムノイズ信号を相対的に小さくした場合の、周波数領域における酸素飽和度の演算結果の一例を示す図である。図14の横軸は脈拍数であり、縦軸は酸素飽和度である。また、図14に示す符号31f、32f、33fは上述の状態における酸素飽和度の周波数領域における極値、その極値に対応する脈拍数、酸素飽和度を表す。
【0093】
赤色光Rの光電脈波信号に印加するダミーランダムノイズ信号に対して赤外光IRの光電脈波信号に印加するダミーランダムノイズ信号を相対的に小さくした場合、各光電脈波信号に同じ振幅のダミーランダムノイズ信号を印加した場合よりも吸光係数の比が大きくなる。そのため、脈拍数と無関係な酸素飽和度は例えば50%まで低下し、極値をより強調することができる。
【0094】
ここで、図14に示す酸素飽和度33fは図13の33eと同様、図8に示す酸素飽和度33aと異なっている。したがって、第2の酸素飽和度演算部156において、極値検出部153において検出された酸素飽和度33fの極値31fにおける脈拍数32fを中心周波数とするバンドパスフィルタ(第2のBPF部151”)を通過した光電脈波信号に基づいて酸素飽和度および脈拍数を演算し、演算結果を酸素飽和度の真値および脈拍数の真値として表示部17に出力する。
【0095】
本実施の形態における生体情報測定装置200は、あらかじめ極値の有無を判定し、ノイズ信号印加部154は、極値が存在しない場合にダミーランダムノイズ信号を光電脈波信号に印加する。なお、極値の有無の判定方法は上述の判定方法と同じである。また、本実施の形態における生体情報測定装置200は、極値の有無にかかわらず、ダミーランダムノイズ信号を印加してもよい。
【0096】
このように、生体情報測定装置200は、酸素飽和度の極値が検出されない場合でも、ノイズ信号印加部154によって、測定された光電脈波信号にダミーランダムノイズ信号が意図的に印加されるため、極値を強調させることができ、極値検出部153は極値を検出することができる。
【0097】
なお、上述した具体的実施形態には以下の構成を有する発明が含まれている。
【0098】
(1)相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して通過周波数帯域で周波数フィルタリング処理を行うフィルタリング処理手段と、前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記フィルタリング処理手段によって周波数フィルタリング処理が行われた各電気信号に基づいて生体内に関する第1の生体情報を逐次演算する生体情報演算手段と、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域における極値を検出する極値検出手段と、前記極値検出手段によって検出された極値を前記第1の生体情報の真値として表示する第1の生体情報表示手段とを備えることを特徴とする生体情報測定装置。
【0099】
(2)前記電気信号に雑音信号を印加する雑音信号印加手段をさらに備えることを特徴とする上記(1)記載の生体情報測定装置。
【0100】
(3)前記極値検出手段は、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域において、前記第1の生体情報の極値となる周波数の整数倍の位置に現れる極値を検出することを特徴とする上記(1)記載の生体情報測定装置。
【0101】
(4)前記フィルタリング処理手段は、通過周波数帯域が異なる複数の帯域通過フィルタを含むことを特徴とする上記(1)記載の生体情報測定装置。この構成によれば、生体情報測定装置は、フィルタリング処理手段として通過周波数帯域が異なる複数の帯域通過フィルタを用いることによって、第1の生体情報を逐次演算することができ、第1の生体情報の極値を検出することができる。
【0102】
(5)前記極値検出手段は、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域において、隣接する第1の生体情報の差を算出し、算出された隣接する第1の生体情報の差の符号が変化する点を極値とすることを特徴とする上記(1)記載の生体情報測定装置。
【0103】
(6)前記極値検出手段は、複数の第1の生体情報の極値が検出された場合、複数の第1の生体情報の極値と、前記電気信号に体動ノイズが含まれている場合の第1の生体情報の値との差が最も大きい極値を第1の生体情報の真値とすることを特徴とする上記(1)記載の生体情報測定装置。
【0104】
(7)相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して通過周波数帯域で周波数フィルタリング処理を行うフィルタリング処理手段と、前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記フィルタリング処理手段によって周波数フィルタリング処理が行われた各電気信号に基づいて生体内に関する第1の生体情報を逐次演算する生体情報演算手段と、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域における極値を検出する極値検出手段と、前記極値検出手段によって検出された極値に対応する周波数を第2の生体情報として表示する第2の生体情報表示手段とを備えることを特徴とする生体情報測定装置。
【0105】
(8)相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して通過周波数帯域で周波数フィルタリング処理を行うフィルタリング処理手段と、前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記フィルタリング処理手段によって周波数フィルタリング処理が行われた各電気信号に基づいて生体内の血中酸素飽和度を逐次演算する生体情報演算手段と、前記生体情報演算手段によって逐次演算された前記血中酸素飽和度の周波数領域における極値を検出する極値検出手段と、前記極値検出手段によって検出された極値を前記血中酸素飽和度の真値として表示する血中酸素飽和度表示手段とを備えることを特徴とする生体情報測定装置。
【0106】
(9)相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して通過周波数帯域で周波数フィルタリング処理を行うフィルタリング処理手段と、前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記フィルタリング処理手段によって周波数フィルタリング処理が行われた各電気信号に基づいて生体内の血中酸素飽和度を逐次演算する生体情報演算手段と、前記生体情報演算手段によって逐次演算された前記血中酸素飽和度の周波数領域における極値を検出する極値検出手段と、前記極値検出手段によって検出された極値に対応する周波数を脈拍数として表示する脈拍数表示手段とを備えることを特徴とする生体情報測定装置。
【0107】
(10)相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して、雑音信号を印加する雑音信号印加手段と、前記雑音信号印加手段によって雑音信号が印加された電気信号に対して、通過周波数帯域でフィルタリングを行う第1のフィルタリング処理手段と、前記第1のフィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記第1のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記雑音信号が印加された電気信号に基づいて、仮の生体情報を逐次演算する仮の生体情報演算手段と、前記仮の生体情報演算手段によって逐次演算された前記仮の生体情報の周波数領域における極値を検出する極値検出手段と、前記測定手段によって測定された各電気信号に対して、前記極値検出手段によって検出された極値に対応する周波数を中心周波数とする帯域通過フィルタによってフィルタリングを行う第2のフィルタリング処理手段と、前記第2のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記電気信号に基づいて、生体内に関する真の生体情報を演算する真の生体情報演算手段と、前記真の生体情報演算手段によって演算された前記真の生体情報を表示する生体情報表示手段とを備えることを特徴とする生体情報測定装置。
【0108】
(11)相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して、雑音信号を印加する雑音信号印加手段と、前記雑音信号印加手段によって雑音信号が印加された電気信号に対して、通過周波数帯域でフィルタリングを行う第1のフィルタリング処理手段と、前記第1のフィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記第1のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記雑音信号が印加された電気信号に基づいて、仮の血中酸素飽和度を逐次演算する仮の生体情報演算手段と、前記仮の生体情報演算手段によって逐次演算された前記仮の血中酸素飽和度の周波数領域における極値を検出する極値検出手段と、前記測定手段によって測定された各電気信号に対して、前記極値検出手段によって検出された極値に対応する周波数を中心周波数とする帯域通過フィルタによってフィルタリングを行う第2のフィルタリング処理手段と、前記第2のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記電気信号に基づいて、生体内の真の血中酸素飽和度を演算する真の生体情報演算手段と、前記真の生体情報演算手段によって演算された前記真の血中酸素飽和度を表示する生体情報表示手段とを備えることを特徴とする生体情報測定装置。
【0109】
(12)相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、前記測定手段によって測定された各電気信号に対して、雑音信号を印加する雑音信号印加手段と、前記雑音信号印加手段によって雑音信号が印加された電気信号に対して、通過周波数帯域でフィルタリングを行う第1のフィルタリング処理手段と、前記第1のフィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、前記第1のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記雑音信号が印加された電気信号に基づいて、仮の血中酸素飽和度を逐次演算する仮の生体情報演算手段と、前記仮の生体情報演算手段によって逐次演算された前記仮の血中酸素飽和度の周波数領域における極値を検出する極値検出手段と、前記測定手段によって測定された各電気信号に対して、前記極値検出手段によって検出された極値に対応する周波数を中心周波数とする帯域通過フィルタによってフィルタリングを行う第2のフィルタリング処理手段と、前記第2のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記電気信号に基づいて、生体内の真の脈拍数を演算する真の生体情報演算手段と、前記真の生体情報演算手段によって演算された前記真の脈拍数を表示する生体情報表示手段とを備えることを特徴とする生体情報測定装置。
【0110】
【発明の効果】
請求項1に記載の発明によれば、生体情報測定装置は、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて、生体内に関する第1の生体情報が逐次演算され、逐次演算された第1の生体情報の周波数領域における極値が第1の生体情報の真値として採用される。そのため、周波数領域の全範囲にわたってフィルタリング処理を施して第1の生体情報を逐次演算し、逐次演算された第1の生体情報の周波数領域における極値を選択することによって、生体の体動によるノイズの影響を受けることなく高い精度で第1の生体情報を測定することができる。
【0111】
請求項2に記載の発明によれば、測定部によって測定された電気信号に雑音信号が印加され、雑音信号が印加された電気信号を用いて極値が検出される。通常、生体情報に関係する電気信号成分よりも生体情報と無関係な電気信号成分の方が体動によるノイズの影響の度合いが大きいため、生体情報の極値が検出されない場合でも、測定された電気信号に雑音信号を意図的に印加することにより、極値を強調させることができる。
【0112】
請求項3に記載の発明によれば、極値検出手段によって、生体情報演算手段によって逐次演算された第1の生体情報の周波数領域において、第1の生体情報の極値となる周波数の整数倍の位置に現れる極値が検出され、検出された極値に基づいて第1の生体情報の真値が測定される。
【0113】
請求項4に記載の発明によれば、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて、生体内に関する第1の生体情報が逐次演算され、逐次演算された第1の生体情報の周波数領域における極値に対応する周波数が第2の生体情報として採用される。そのため、周波数領域の全範囲にわたってフィルタリング処理を施して第1の生体情報を逐次演算し、逐次演算された第1の生体情報の周波数領域における極値を選択することによって、生体の体動によるノイズの影響を受けることなく高い精度で第2の生体情報を測定することができる。
【0114】
請求項5に記載の発明によれば、生体情報測定装置は、測定部によって測定された電気信号に雑音信号が印加され、通過周波数帯域が逐次変化されることによってフィルタリングが行われた測定光の各波長成分ごとにおける雑音信号が印加された電気信号に基づいて、仮の生体情報が逐次演算され、逐次演算された仮の生体情報の周波数領域における極値に対応する周波数を中心周波数とする帯域通過フィルタが選択される。そのため、選択された帯域通過フィルタによって生体情報と無関係な電気信号成分は除去され、生体の体動によるノイズの影響を受けることなく高い精度で生体情報を測定することができる。
【図面の簡単な説明】
【図1】第1の実施形態における生体情報測定装置の構成を示すブロック図である。
【図2】ヘモグロビン及び酸化ヘモグロビンの吸光特性を示す図である。
【図3】生体による光の吸収を示す図である。
【図4】生体に入射する入射光と透過光との関係を模式的に表す図である。
【図5】赤外光による透過光量の正規化を説明するための図である。
【図6】吸光係数の比と酸素飽和度との関係を示す図である。
【図7】生体情報測定装置100の動作の一例を示すフローチャートである。
【図8】酸素飽和度の真値が84パーセント以上の場合の周波数領域における酸素飽和度の演算結果の一例を示す図である。
【図9】赤色光Rの吸光係数の比P及び赤色光R’の吸光係数の比P’と、酸素飽和度との関係を示す図である。
【図10】赤色光Rと赤色光R’の周波数領域における酸素飽和度の演算結果の一例を示す図である。
【図11】整数倍の位置に極値が現れる場合の周波数領域における酸素飽和度の演算結果の一例を示す図である。
【図12】第2の実施形態における生体情報測定装置の構成を示すブロック図である。
【図13】ダミーランダムノイズ信号を印加した場合の周波数領域における酸素飽和度の演算結果の一例を示す図である。
【図14】赤色光Rの光電脈波信号に印加するダミーランダムノイズ信号に対して赤外光IRの光電脈波信号に印加するダミーランダムノイズ信号を相対的に小さくした場合の、周波数領域における酸素飽和度の演算結果の一例を示す図である。
【符号の説明】
11 発光部
12 受光部
13 I/V変換部
14 A/D変換部
15,15’ 演算部
16,16’ 制御部(制御手段)
17 表示部(第1の生体情報表示手段、第2の生体情報表示手段)
20 測定部(測定手段)
100,200 生体情報測定装置
151 BPF部(フィルタリング処理手段)
151’ 第1のBPF部(第1のフィルタリング処理手段)
151” 第2のBPF部(第2のフィルタリング処理手段)
152 酸素飽和度演算部(生体情報演算手段)
153 極値検出部(極値検出手段)
154 ノイズ信号印加部(ノイズ信号印加手段)
155 第1の酸素飽和度演算部(仮の生体情報演算手段)
156 第2の酸素飽和度演算部(真の生体情報演算手段)

Claims (5)

  1. 相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、
    前記測定手段によって測定された各電気信号に対して通過周波数帯域でフィルタリングを行うフィルタリング処理手段と、
    前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、
    前記フィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて生体内に関する第1の生体情報を逐次演算する生体情報演算手段と、
    前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域における極値を検出する極値検出手段と、
    前記極値検出手段によって検出された極値を前記第1の生体情報の真値として表示する第1の生体情報表示手段とを備えることを特徴とする生体情報測定装置。
  2. 前記電気信号に雑音信号を印加する雑音信号印加手段をさらに備えることを特徴とする請求項1記載の生体情報測定装置。
  3. 前記極値検出手段は、前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域において、前記第1の生体情報の極値となる周波数の整数倍の位置に現れる極値を検出することを特徴とする請求項1記載の生体情報測定装置。
  4. 相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、
    前記測定手段によって測定された各電気信号に対して通過周波数帯域でフィルタリングを行うフィルタリング処理手段と、
    前記フィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、
    前記フィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける電気信号に基づいて生体内に関する第1の生体情報を逐次演算する生体情報演算手段と、
    前記生体情報演算手段によって逐次演算された前記第1の生体情報の周波数領域における極値を検出する極値検出手段と、
    前記極値検出手段によって検出された極値に対応する周波数を第2の生体情報として表示する第2の生体情報表示手段とを備えることを特徴とする生体情報測定装置。
  5. 相異なる複数の波長の測定光をそれぞれ発光し、発光した各測定光が測定対象である生体を経由した後の光強度変化を電気信号として測定する測定手段と、
    前記測定手段によって測定された各電気信号に対して、雑音信号を印加する雑音信号印加手段と、
    前記雑音信号印加手段によって雑音信号が印加された電気信号に対して、通過周波数帯域でフィルタリングを行う第1のフィルタリング処理手段と、
    前記第1のフィルタリング処理手段における通過周波数帯域を逐次変化させる制御手段と、
    前記第1のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記雑音信号が印加された電気信号に基づいて、仮の生体情報を逐次演算する仮の生体情報演算手段と、
    前記仮の生体情報演算手段によって逐次演算された前記仮の生体情報の周波数領域における極値を検出する極値検出手段と、
    前記測定手段によって測定された各電気信号に対して、前記極値検出手段によって検出された極値に対応する周波数を中心周波数とする帯域通過フィルタによってフィルタリングを行う第2のフィルタリング処理手段と、
    前記第2のフィルタリング処理手段によってフィルタリングが行われた測定光の各波長成分ごとにおける前記電気信号に基づいて、生体内に関する真の生体情報を演算する真の生体情報演算手段と、
    前記真の生体情報演算手段によって演算された前記真の生体情報を表示する生体情報表示手段とを備えることを特徴とする生体情報測定装置。
JP2003099537A 2002-11-08 2003-04-02 生体情報測定装置 Pending JP2004202190A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099537A JP2004202190A (ja) 2002-11-08 2003-04-02 生体情報測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002324750 2002-11-08
JP2003099537A JP2004202190A (ja) 2002-11-08 2003-04-02 生体情報測定装置

Publications (1)

Publication Number Publication Date
JP2004202190A true JP2004202190A (ja) 2004-07-22

Family

ID=32828374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099537A Pending JP2004202190A (ja) 2002-11-08 2003-04-02 生体情報測定装置

Country Status (1)

Country Link
JP (1) JP2004202190A (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220723A (ja) * 2007-03-14 2008-09-25 Seiko Epson Corp 脈拍計測装置及びその制御方法
US7471970B2 (en) 2005-03-10 2008-12-30 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for measuring blood oxygen content under low perfusion
JP2010000160A (ja) * 2008-06-19 2010-01-07 Nippon Koden Corp パルスオキシメトリおよびパルスオキシメータ
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8029978B2 (en) 2005-02-25 2011-10-04 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Processing method for the long-term stabilization of biological red blood cell volume
US8050730B2 (en) 2005-12-23 2011-11-01 Shenzhen Mindray Bio-Medical Electrics Co., Ltd. Method and apparatus for eliminating interference in pulse oxygen measurement
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
CN102525442A (zh) * 2011-12-21 2012-07-04 Tcl集团股份有限公司 一种测量人体脉搏的方法及装置
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
JP2015192865A (ja) * 2014-03-28 2015-11-05 日本光電工業株式会社 パルスフォトメータ
WO2017111342A1 (en) * 2015-12-24 2017-06-29 Samsung Electronics Co., Ltd. Oxygen saturation measuring apparatus and oxygen saturation measuring method thereof
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8560036B2 (en) 2004-03-08 2013-10-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8029978B2 (en) 2005-02-25 2011-10-04 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Processing method for the long-term stabilization of biological red blood cell volume
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US9351674B2 (en) 2005-03-03 2016-05-31 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8818475B2 (en) 2005-03-03 2014-08-26 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US7471970B2 (en) 2005-03-10 2008-12-30 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for measuring blood oxygen content under low perfusion
US8275434B2 (en) 2005-03-10 2012-09-25 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method for measuring blood oxygen content under low perfusion
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US8744543B2 (en) 2005-09-29 2014-06-03 Covidien Lp System and method for removing artifacts from waveforms
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8050730B2 (en) 2005-12-23 2011-11-01 Shenzhen Mindray Bio-Medical Electrics Co., Ltd. Method and apparatus for eliminating interference in pulse oxygen measurement
JP2008220723A (ja) * 2007-03-14 2008-09-25 Seiko Epson Corp 脈拍計測装置及びその制御方法
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US11298076B2 (en) 2008-02-19 2022-04-12 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8548546B2 (en) 2008-06-19 2013-10-01 Nihon Kohden Corporation Pulse oximetry and pulse oximeter
JP2010000160A (ja) * 2008-06-19 2010-01-07 Nippon Koden Corp パルスオキシメトリおよびパルスオキシメータ
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
CN102525442A (zh) * 2011-12-21 2012-07-04 Tcl集团股份有限公司 一种测量人体脉搏的方法及装置
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
JP2015192865A (ja) * 2014-03-28 2015-11-05 日本光電工業株式会社 パルスフォトメータ
WO2017111342A1 (en) * 2015-12-24 2017-06-29 Samsung Electronics Co., Ltd. Oxygen saturation measuring apparatus and oxygen saturation measuring method thereof
US10750982B2 (en) 2015-12-24 2020-08-25 Samsung Electronics Co., Ltd. Oxygen saturation measuring apparatus and oxygen saturation measuring method thereof

Similar Documents

Publication Publication Date Title
JP2004202190A (ja) 生体情報測定装置
US11363960B2 (en) Patient monitor for monitoring microcirculation
US9351674B2 (en) Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US7001337B2 (en) Monitoring physiological parameters based on variations in a photoplethysmographic signal
US6896661B2 (en) Monitoring physiological parameters based on variations in a photoplethysmographic baseline signal
JP5748160B2 (ja) 携帯診断装置
JP4338242B2 (ja) 生理的信号内のアーチファクト信号のレベルを低減する装置
AU2009298937B2 (en) System and method for photon density wave pulse oximetry and pulse hemometry
JP5096310B2 (ja) 身体の部位における血液の灌流を決定するための方法及び装置
US20140194711A1 (en) Patient monitor for determining microcirculation state
US20030163033A1 (en) Apparatus and method for monitoring respiration with a pulse oximeter
EP3307162B1 (en) Pulse oximetry
JP2005516642A6 (ja) 信号対ノイズ比改善のための信号処理方法及び装置
JP2005516642A (ja) 信号対ノイズ比改善のための信号処理方法及び装置
JP2008188216A (ja) 生体情報測定装置
JPH0549624A (ja) 血液酸素飽和度モニタ方法および装置
US9888871B2 (en) Methods and systems for determining a venous signal using a physiological monitor
KR20060054644A (ko) 맥박산소계측기에서의 동잡음 제거 방법
TW201511735A (zh) 基於ppg之生理感測系統,其具有可從光學訊號辨識及移除移動假影之時空取樣途徑
WO2022115876A1 (en) Selectable energy modes for blood and tissue oxygenation measurement

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020