JP2004199991A - Square battery - Google Patents

Square battery Download PDF

Info

Publication number
JP2004199991A
JP2004199991A JP2002366776A JP2002366776A JP2004199991A JP 2004199991 A JP2004199991 A JP 2004199991A JP 2002366776 A JP2002366776 A JP 2002366776A JP 2002366776 A JP2002366776 A JP 2002366776A JP 2004199991 A JP2004199991 A JP 2004199991A
Authority
JP
Japan
Prior art keywords
battery
type current
return
prismatic battery
current interrupting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002366776A
Other languages
Japanese (ja)
Other versions
JP4191469B2 (en
Inventor
Koji Saito
幸司 齋藤
Shinsuke Fukuda
真介 福田
Toshiharu Kitagawa
俊治 北川
Kanehito Masumoto
兼人 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002366776A priority Critical patent/JP4191469B2/en
Publication of JP2004199991A publication Critical patent/JP2004199991A/en
Application granted granted Critical
Publication of JP4191469B2 publication Critical patent/JP4191469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a square battery equipped with a battery protecting means housing an electrode plate group in the main body case formed in a square half-shell body. <P>SOLUTION: The battery protecting means 100 is structured on the outer face of a stepped part 116 formed at the end part of the main body case 11 formed in the a square half-shell body. The battery protecting means 100 may include a PTC element 133 and a temperature fuse independently or in combination. When a protecting circuit board 150 constituting a battery protecting circuit for protecting the battery from overcharge or over-discharge is further combined, a more effective battery protecting function can be constituted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半殻体に形成された本体ケースの開口部が蓋板によって封口された電池ケース内に発電要素を収容した扁平形状の角形電池に関し、特に、電池を電気的及び熱的な阻害要因から保護する電池保護手段を設けた角形電池に関するものである。
【0002】
【従来の技術】
携帯電子機器の小型化あるいは薄型化、更には高機能化の進展は著しく、それに伴ってその電源となる電池に小型、薄型で高容量化が要求されている。小型で高容量化を可能にする電池としてリチウム系電池が有効であり、中でも扁平な角形のリチウムイオン二次電池は機器の薄型化に好適であり、繰り返し使用ができる二次電池として携帯電話機などの携帯電子機器への適用が増加している。
【0003】
前記リチウム系電池はエネルギー密度が高く、電解液として可燃性の有機溶媒を用いているため、安全性への配慮が重要となる。何らかの原因によって異常が生じたときにも人体や機器に損傷を与えないように安全性を確保する必要がある。例えば、電池の正極、負極間が何らかの原因によって短絡した場合、エネルギー密度の高い電池では過大な短絡電流が流れ、内部抵抗によってジュール熱が発生して電池は温度上昇する。電池が高温になると正極板活物質と電解液との反応や電解液の気化、分解などが生じて電池内部のガス圧が急上昇し、電池は破裂や発火に至る恐れがある。電池が高温状態に陥る原因は上記外部短絡だけでなく、二次電池を過充電した場合や、電池やそれを装填した携帯電子機器を暖房機の傍らに置いたり、炎天下に駐車した車内に放置した場合なども該当する。
【0004】
リチウム系電池では、電池が異常状態に陥ることを防止すると共に、異常状態に陥った場合にも危険な状態にならないようにする機能が設けられる。電池自体の機能として、極板の活物質や電解液が過剰な反応を起こしにくいように工夫され、セパレータとして用いられるポリオレフィン系微多孔膜は異常な高温になると軟化して細孔が塞がれることによるシャットダウン機能が備わっている。また、異常に温度上昇したときに入出力回路を遮断する温度ヒューズや異常内圧を外部に放出する安全弁が設けられ、円筒形のリチウム電池では、封口部に入出力回路と直列に接続したPTC(Positive Temperature Coeffcient)素子を配設して、外部短絡による過大電流を規制する保護機能が設けられている。
【0005】
電池内に前記温度ヒューズやPTC素子を設けることができない小型の電池や角形の電池では、外付けの回路部品としてPTC素子や温度ヒューズが配線接続され、更に二次電池では過充電や過放電から二次電池を保護する電池保護回路を構成した回路基板が設けられ、これらの構成要素は二次電池と共にパックケース内に収容して電池パックの形態に構成される。例えば、二次電池の封口板上に電池保護回路を構成した回路基板を配して電池及び回路基板をケースに収容した構成(特許文献1参照)や、電池の側面に温度ヒューズ等の保護素子を収容したケースを密着配置し、この電池及びケースを外装ケースに収容した構成(特許文献2参照)などが知られている。
【0006】
また、従来の角形電池の電池ケースは、深絞り加工によって有底角筒形状に形成された電池缶と、その開口端を閉じる封口板とによって構成されるが、更なる電池の薄型化を達成するためには、前記電池缶をより狭い幅の角筒に深絞りする必要がある。しかし、加工方向の深さに対して開口面積が小さくなるほどに加工が困難となり、深絞り加工による電池缶の薄型化には限度がある。また、幅が狭く深い筒状に形成された電池缶に極板群を挿入することも、薄型化して開口面積が小さくなるほどに困難になる。
【0007】
従って、薄型化に限度がある角形電池の更なる薄型化を図るためには、電池ケースの構造を変える必要があり、半殻体に形成された本体ケースと、この本体ケースの開口部を閉じる平板もしくは半殻体に形成された蓋板とによって電池ケースを形成した電池が開発されている。
【0008】
例えば、図13に示すように、上カップ1内に極板群3を収容し、その開口部を下カップ2によって封口した角形電池が知られている(特許文献3参照)。この電池ケース構造では、浅い絞り加工によって発電要素を収容する凹部を形成することができるので、電池ケースの製造は容易である。
【0009】
【特許文献1】
特開2002−231201号公報(第3〜5頁、図4)
【0010】
【特許文献2】
特開2000−251945号公報(第3〜5頁、図5)
【0011】
【特許文献3】
特開2001−250517号公報(第2〜4頁、図1)
【0012】
【発明が解決しようとする課題】
上述した半殻体の本体ケースの開口部を蓋板によって封止する構造の電池ケースを用いた電池、特にリチウムイオン二次電池のようにエネルギー密度の高い二次電池に構成した場合においても、従来の二次電池と同様にPTC素子や電池保護回路等の電池保護手段を設けることが要求されている。
【0013】
しかし、半殻体の本体ケースの開口部を蓋板によって封止する構造の電池ケースでは、厚さが3.0mm以下になるまでに薄型化されることがあるため、電池保護手段を設けるスペースを確保することが困難であり、従来技術と同様に電池と電池保護手段とを外装ケースに収容した電池パックの形態に構成することになり、電池が小型化、薄型化された効果が損なわれることになる。
【0014】
本発明は上記課題に鑑みて創案されたもので、その目的とするところは、半殻体ケースを蓋板で閉じる構造の電池ケースに電池を電気的及び熱的な阻害要因から保護する電池保護手段を配設し、電池パックに構成することなく電池自体に電池保護手段を設けることを可能にした角形電池を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するための本発明は、四角形半殻体に形成された本体ケース内に、正極板と負極板とがセパレータを介して扁平に巻回され、巻き終わり端に正極リードおよび負極リードが巻回方向に群体から突出するように形成された極板群が収容された角形電池であって、前記本体ケースに凹部の深さを一辺側で部分的に浅くした段差部が形成され、この段差部の外面上に、前記極板群の正極リード及び/又は負極リードに接続して電池保護手段が配設されてなることを特徴とする。
【0016】
上記構成によれば、電池保護手段は本体ケースに形成された段差部の外面上に配設されるので、薄型化を指向する角形電池の厚さを増加させることなく電池自体に電池保護手段を設けることができる。また、段差部に形成した接続用の穴から本体ケース内に電池保護手段と極板群とを電気的接続するための接続部材を貫通させることが容易であり、本体ケース内に収容された極板群は群体から突出する正極リード及び負極リードが段差部の内面上に位置するので、正極リード及び/又は負極リードを前記接続部材を通じて電池保護手段に容易に接続することができる。
【0017】
上記構成において、電池保護手段は、復帰式電流規制素子又は復帰式電流遮断素子又は非復帰式電流遮断素子により構成すると、短絡や過熱に曝されたとき入出力回路の電流を規制又は遮断するので、電池を短絡や過熱から保護することができる。復帰式電流規制素子及び復帰式電流遮断素子では、短絡や過熱の状態が解消されたとき電流規制又は電流遮断の状態から元の状態に復帰させることができるので、電池の再使用が可能である。
【0018】
また、電池保護手段は、過充電、過放電及び過電流それぞれの状態検出により充放電回路を遮断する電池保護回路を構成した保護回路基板により構成することにより、角形電池を二次電池に構成した場合に有効な手段となる。
【0019】
また、電池保護手段は、復帰式電流規制素子又は復帰式電流遮断素子又は非復帰式電流遮断素子と保護回路基板とを組み合わせたセーフティユニットとして構成すると、電池に加わることが予想される種々の電気的及び熱的な阻害要因を複数段階で阻止することができ、特に二次電池の電池保護の機能を充実させることができる。
【0020】
また、電池保護手段は、復帰式電流規制素子又は復帰式電流遮断素子と非復帰式電流遮断素子と保護回路基板とを組み合わせたセーフティユニットとして構成すると、互いに機能が補われて電池に加わることが予想される種々の電気的及び熱的な阻害要因を複数段階で阻止することができ、特に二次電池の電池保護の機能をより充実させることができる。
【0021】
また、復帰式電流規制素子又は復帰式電流遮断素子又は非復帰式電流遮断素子を収容した金属ケースが段差部の外面上に絶縁物を介して配設され、前記金属ケースを正極又は負極の外部接続端子に形成することにより、段差部の外面上に電池保護手段を設けると同時に外部接続端子を構成することができる。
【0022】
また、保護回路基板を配設した場合には、基板に正極及び/又は負極の外部接続端子とする導体ランドを形成することにより、段差部の外面上に電池保護手段を設けると同時に外部接続端子を構成することができる。
【0023】
また、電池保護手段は、段差部の外面と内面との間に貫通する接続部材を段差部に締結することにより固定されるように構成することによって、電池保護手段の固定に別途の固定手段を用いることなく簡易な構造に構成することができる。
【0024】
また、上記復帰式電流規制素子は、所定の動作温度以上に温度上昇したとき抵抗値が急増するPTC素子が好適であり、これを入出力回路と直列に配することにより、平常状態では微小な抵抗値により入出力電流に対する損失は僅少であり、外部短絡により過大電流が流れて温度上昇したり外部加熱されたときには、所定温度を越えると抵抗値を急増させて電流を急減させて電池が破壊されることを防止することができる。
【0025】
また、上記復帰式電流遮断素子は、所定の動作温度以上に温度上昇したとき変形により回路を開くバイメタルとして構成すると、外部短絡により過大電流が流れて温度上昇したり外部加熱されたときには、変形に伴う接点開放により電流遮断するので、電池が破壊されることを防止することができ、短絡や過熱の阻害要因が排除されたときには電流遮断状態から復帰して電池を再使用できる状態に戻すことができる。
【0026】
また、上記非復帰式電流遮断素子は、所定の動作温度以上に温度上昇したとき溶断して回路を開く温度ヒューズとして構成すると、外部短絡により過大電流が流れて温度上昇したり外部加熱されたときには溶断して電流遮断するので、電池が破裂するような状態までに陥ることが防止できる。
【0027】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明し、本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
【0028】
図1は、第1の実施形態に係る角形電池の外観形状を示すもので、リチウムイオン二次電池として構成されたものである。この角形電池は、図2に示す電池本体20と、それを被覆する外装体30とによって構成されている。
【0029】
電池本体20は、図3に各構成要素に分解して示すように、半殻体に形成された本体ケース11と、その開放部を閉じる蓋板12とにより電池ケース10が構成されており、本体ケース11の凹部15内に極板群14を収容し、本体ケース11に形成されたフランジ部13に蓋板12の周囲を溶接して本体ケース11の開口部を蓋体12で封止するように構成されている。
【0030】
前記本体ケース11は、金属板材、ここではステンレス鋼あるいは冷間圧延鋼板等の鉄系板材をプレス加工して一端側に絞り深さを小さくした段差部16を設けて凹部15を形成すると共に、凹部15の周囲にフランジ部13を設けて形成されている。前記段差部16は正極及び負極の外部接続端子を形成すると共に、電池保護手段を配設する部位で、ここでは段差部16に形成された端子孔17に下ガスケット18で本体ケース2と絶縁すると共に気密性を確保してリベット19によりPTCユニット26を段差部16の外面上に固定している。
【0031】
前記PTCユニット26は、図4に示すように、PTC導電性ポリマ33aの両面に上電極33bと下電極33cとを接合したPTC素子(復帰式電流規制素子)33をPTCホルダ34内に収容し、上ガスケット35によって段差部16と絶縁してワッシャ37を介して前記リベット19を締結することにより段差部16上に固定され、前記PTCホルダ34の開口部にホルダプレート36を溶接したものである。ホルダプレート36は、ここでは正極外部接続端子を構成する。尚、PTC素子33は、過電流や過熱により温度上昇して素子温度が所定温度に達すると急激に抵抗値が上昇するデバイスであり、平常時は僅少な抵抗値で通電回路の電力損失は低く抑えられ、所定温度に達したときには抵抗値が10の4乗から6乗にも急上昇するので、外部短絡が生じたときに温度上昇して短絡電流を抑え、電池を外部短絡から保護する。
【0032】
前記本体ケース11の凹部15内には、正極板47と負極板48とをセパレータ49を介して扁平に巻回された極板群14が収容される。極板群14は、図5に示すように、最外周が負極板48となるように巻回され、その巻回方向は、段差部16からその対向辺に向く方向であり、巻き終わり端が段差部16側になるようにして、正極板47及び負極板48それぞれの巻き終わり端から正極リード21、負極リード22が引き出される。正極リード21は、正極板47の巻き終わり端からの延長部を、段差部16上に取り付けられたリベット19の延長線上となる位置にリードとして適切な幅で、極板群14を凹部15内に収納したときに先端部がリベット19上に位置する長さになるように切断加工して形成される。また、負極リード22は、負極板48の巻き終わり端からの延長部を、段差部16上のリベット19等の部材が存在しない任意位置の延長線上となる位置にリードとして適切な幅で、極板群14を凹部15内に収納したときに先端部が段差部16上に位置する長さになるように切断加工して形成される。
【0033】
上記構成になる極板群14は、図6に示すように、本体ケース11の凹部16内に正極リード21及び負極リード22が引き出された側を前記段差部16側にすると共に、巻き終わり端が外方になるようにして収納する。極板群14を凹部15内に収納すると、正極リード21の先端部は前記リベット19上に位置し、負極リード22の先端部分は段差部16上に位置するので、リードを引き回すことなく、正極リード21はリベット19に、負極リード22は段差部16にそれぞれ接合することができる。
【0034】
極板群14が収容された本体ケース11の開口部は、フランジ部13上に蓋板12を載置し、フランジ部13と蓋板12とをそれぞれの外縁端が一致するように位置決めして、蓋板12の周辺部とフランジ部13との間を溶接することにより封口される。
【0035】
蓋板12は本体ケース11に用いる金属板材の厚さより薄い金属板材が適用され、図3に示すように中央部に浅い窪み23を形成して、極板群4の膨張、あるいは内圧の上昇により電池ケース50に膨らみが生じたとき、膨らみを窪み23の形成深さ内で吸収して、角形電池としての全体厚さに変化が生じないようにしている。
【0036】
封止された凹部15内には、段差部16に形成された電解液注入口28から所定量の電解液が注入され、注入完了後に電解液注入口28には封栓29が挿入され、段差部16に封栓29を溶接することにより凹部15内は密封される。
【0037】
上記のように形成された電池本体20には、図7に示すように、樹脂成形によって形成された樹脂カバー25が被せられ、樹脂フィルム38を巻着することにより、図1に示した角形電池に形成される。前記樹脂カバー25には、段差部16の外面上に固定されたPTCユニット26のホルダプレート36上に開口する正極端子窓31と、本体ケース11底面の段差部16が形成されていない部位上に開口する負極端子窓32とが形成され、正極端子窓31及び負極端子窓32の部分には、前記樹脂フィルム38が巻着されないように切り欠きが形成されているので、正極端子窓31から正極外部接続端子となるホルダプレート36が外部露出し、負極端子窓32から負極外部接続端子となる本体ケース11が外部露出するので、外部接続の用に供することができる。
【0038】
上記構成になる角形電池は、図8に回路図として示すように、極板群14を構成する正極板はPTC素子33を介して正極外部接続端子(+)に接続され、負極板は負極外部接続端子(−)に接続された状態となる。正極外部接続端子(+)と負極外部接続端子(−)との間が外部短絡状態になったとき、PTC素子33には過大な短絡電流が流れて温度上昇し、その温度が設定温度以上になると抵抗値が急増するトリップ状態になるので、短絡電流が規制されて当該角形電池が外部短絡によって損傷を受けることが防止される。
【0039】
外部短絡は、正極外部接続端子(+)と負極外部接続端子(−)との間が金属物によって短絡されるような状態だけでなく、正極外部接続端子(+)と負極外部接続端子(−)との間に接続された当該角形電池を電池電源とする機器、あるいは当該角形電池を充電する充電器に故障が生じた場合にも短絡状態となることがあり、そのような場合にも当該角形電池の損傷が及ぶことが防止される。また、PTC素子33は、短絡電流のような過電流による発熱だけでなく、周囲温度の影響を受けて温度上昇すると抵抗値が増加するので、当該角形電池が温度上昇した状態で使用されることが防止できる。例えば、真夏の炎天下に駐車したクルマの車内に当該角形電池又はそれが装着された機器が放置されていたような場合に、電池温度は80℃を超えるまでになることがある。このようなときにPTC素子33はトリップ状態となって抵抗値が増加しているために当該角形電池の使用は不可となり、異常温度状態で使用されることが防止される。PTC素子33は温度が下がると抵抗値は低い状態に戻るので、正常な使用可能状態に復帰する。
【0040】
以上説明した第1の実施形態に係る角形電池は、電池保護手段としてPTC素子33を適用した例を示したが、PTC素子33に代えてバイメタル(復帰式電流遮断素子)や温度ヒューズ(非復帰式電流遮断素子)を適用することもできる。前記バイメタルは、周知のように温度上昇により変形して電流回路の接点を開くように構成されたもので、短絡電流が流れたときには過大な電流により温度上昇するので、自ら電流回路を開いて短絡された回路を開いて短絡により当該角形電池に損傷が及ぶことを防止することができる。また、周囲温度の上昇時にも電流回路を開くので、高温状態で当該角形電池が使用されることがないように使用不可にすることができる。バイメタルは温度が低下すると電流回路を閉じて使用可能状態に復帰させることができる。また、前記温度ヒューズは、所定の設定温度以上に温度上昇したとき溶断して電流回路を遮断するので、短絡や高温状態から当該角形電池を保護することができるが、温度ヒューズが溶断すると電流回路を開いた状態は復帰しないので、温度ヒューズの動作時には当該角形電池の再使用はできない。従って、温度ヒューズは最終的な電池保護手段となるように設定される。
【0041】
また、PTC素子33又はバイメタルと温度ヒューズを組み合わせて二重に保護機能を形成することができる。例えば、図8(b)に示すように、トリップ温度を80℃に設定したPTC素子33と、溶断温度を100℃に設定した温度ヒューズ55とを組み合わせることにより、PTC素子33が正常に機能しないような状態に陥った場合でも、温度ヒューズ55が溶断し、電池が高温状態から破裂状態に陥ることが防止できる。
【0042】
次に、第2の実施形態に係る角形電池について説明する。第2の実施形態に係る角形電池は、図9に示すように、本体ケース111に形成された段差部116の外面上に、PTC素子133と電池保護回路及び温度ヒューズ140が実装された保護回路基板150とを備えた電池保護手段100を設けて構成されている。
【0043】
前記電池保護手段100は、図10に示すように、段差部116に取り付けられる。段差部116に形成された端子穴117に段差部116の内面側から下ガスケット118の筒状部を通し、筒状部にリベット119の軸部を通して段差部116の内面側に下ガスケット118及びリベット119が配され、段差部116の外面側には上ガスケット135、PTCホルダ134、PTC素子133、ワッシャ137の順に積み重ね配置され、リベット119を締結することにより、図11に示すように、段差部116にPTC素子133が取り付けられる。更に、PTCホルダ134に基板ブラケット139が溶接により接合され、基板ブラケット139上に保護回路基板150が取り付けられる。
【0044】
保護回路基板150は、下面に温度ヒューズ140やIC部品等の電子部品が実装され、上面に正極導体ランド147及び負極導体ランド148が形成されている。保護回路基板150はその両面に回路パターンが形成され、両面の回路パターンの要部はスルーホールによって接続される。前記正極導体ランド147及び負極導体ランドは回路パターンの一部として形成され、正極導体ランド147及び負極導体ランド148と接続ランド149を除く表面は絶縁及び防湿のための樹脂モールド処理が施される。また、正極導体ランド147及び負極導体ランド148の表面は、機器との接続性を向上させるために金メッキ処理、あるいは金属薄板を接合することができる。
【0045】
保護回路基板150の前記接続ランド149にはリード板146の一端が半田付けもしくは溶接により接合され、リード板146の他端は本体ケース111に接合され、負極電位となる本体ケース111と保護回路基板150の負極電位部位との電気的接続がなされる。
【0046】
上記電池保護手段100が取り付けられた本体ケース111には、第1の実施形態の場合と同様に形成された極板群114が収容され、極板群114から引き出された正極リード121はリベット119に接合される。また、図示しない負極リードは段差部116の内面に接合される。
【0047】
極板群114が収容された本体ケース111のフランジ部113には蓋板112の周辺部が溶接され、本体ケース111の開口部が封止される。蓋板112で封止された本体ケース111内には電解液注入口128から所定量の電解液が注入され、電解液注入後に電解液注入口128は封栓129で閉じられ、本体ケース111内は密閉され、図9に示した電池本体120に形成される。
【0048】
上記電池本体120には、図示省略するが、第1の実施形態に示した構成と同様に樹脂カバー及び樹脂フィルムにより外装体が取り付けられ、角形電池に形成される。
【0049】
第2の実施形態に係る角形電池は、段差部116上に電池保護手段100が設けられていることにより、図12に回路図として示すように、保護回路基板150上に構成された電池保護回路と、温度ヒューズ140と、PTC素子133とにより、3重に電池保護が設けられた角形電池に構成される。
【0050】
前記電池保護回路は、制御部160によって電池電圧を検出して予め設定された放電終止停止電圧以下となったとき、第1のスイッチング素子161を導通状態から遮断状態に制御し、放電回路を遮断して過放電から電池を保護する。第1のスイッチング素子161は寄生ダイオードを備えたFETで構成することにより、遮断状態にあっても充電方向の電流経路は形成されるので充電は可能で、充電によって電池電圧が前記放電終止電圧より高い所定電圧以上になると、制御部160は第1のスイッチング素子161を遮断状態から導通状態になるように制御するので、通常の充電が行われて過放電からの回復がなされる。また、制御部160は電池電圧が予め設定された充電禁止電圧以上になったとき、第2のスイッチング素子162を導通状態から遮断状態に制御し、充電回路を遮断して過充電から電池を保護する。第2のスイッチング素子162は寄生ダイオードを備えたFETで構成することにより、遮断状態にあっても放電方向の電流経路は形成されるので放電は可能で、放電によって電池電圧が前記充電禁止電圧より低い所定電圧以下になると、制御部160は第2のスイッチング素子162を遮断状態から導通状態に制御するので、通常に放電ができる状態になる。
【0051】
また、制御部160は第1のスイッチング素子161の両端電圧の検出により短絡等による過電流状態を検出し、過電流状態が検出されたときには第1のスイッチング素子161を導通状態から遮断状態に制御し、電池を過電流から保護する。電池保護回路の故障等の原因によって過電流を阻止する回路遮断制御が正常になされなかったとき、PTC素子33は過電流により温度上昇して、その温度が設定されたトリップ温度以上になると抵抗値を急増させるので電流量が規制され、電池は短絡等による過電流から二重に保護される。また、PTC素子133は周囲温度の影響を受けて温度上昇すると抵抗値が増加するので、当該角形電池が温度上昇した状態で使用されることが防止できる。例えば、真夏の炎天下に駐車したクルマの車内や暖房機等の傍らに当該角形電池又はそれが装着された機器が放置されていたような場合に、電池温度は80℃を超えるまでになることがある。このようなときにPTC素子133はトリップ状態となって抵抗値が増加しているために当該角形電池の使用は不可となり、異常温度状態で使用されることが防止される。PTC素子133は温度が下がると抵抗値は低い状態に戻るので、正常な使用可能状態に復帰する。
【0052】
当該角形電池が装着された機器の故障等の原因によって高電圧が印加されたり、逆充電がなされたような場合に、PTC素子133が絶縁破壊され、それによる電流規制の作用が働かなかったときには、電池温度の上昇により破裂等に至る恐れがある。このようにPTC素子133が正常に機能しなかった場合には、温度ヒューズ140が溶断して危険状態への移行が阻止される。
【0053】
例えば、PTC素子133のトリップ温度を80℃に設定し、温度ヒューズ140の溶断温度を100℃に設定しておくと、短絡や周囲温度の上昇により80℃を超える状態になると、PTC素子133はトリップ状態になって短絡電流を規制し、高温状態での当該角形電池の使用を停止させることができる。このPTC素子133が正常に機能しなかったときには温度上昇が進行し、温度が100℃を超えると温度ヒューズ140が溶断して、当該角形電池を使用不可状態にする。温度ヒューズ140が溶断するような高温環境下に曝されたような場合には、電解液や極板活物質が熱により変質し、正常に充放電反応が得られないことが想定されるので、当該角形電池を使用不可状態にしても破裂等の危険な状態に至るのを防止することを優先する。
【0054】
以上第1及び第2の各実施形態として説明した角形電池は、電池保護手段としてPTC素子33、133、温度ヒューズ140、バイメタル、電池保護回路をそれぞれ単独で適用してもよいが、動作温度が異なる複数の電池保護手段を組み合わせると、電池保護の作用がより有効に発揮される。例えば、第1の実施形態の構成におけるPTC素子33に加えて、PTC素子33のトリップ温度より高い溶断温度に設定した温度ヒューズ140を組み合わせると、二重の電池保護機能が形成される。
【0055】
PTC素子33、133、温度ヒューズ140、バイメタルは過充電や過放電に対しては無力なので、電池保護回路と組み合わせると過充電や過放電から電池を保護する機能を備えて二重の電池保護機能が形成される。例えば、PTC素子133と保護回路基板150との組み合わせにより、過充電や過放電からの保護機能に加えて短絡等の過電流に対する二重の保護機能が形成されると共に、高温環境に対応する保護機能が形成される。更に、第2の実施形態に示したように、温度ヒューズ140を組み合わせると、3重の保護機能を備えた角形電池に構成することができる。
【0056】
【発明の効果】
以上の説明の通り本発明によれば、本体ケースに形成された段差部に電池保護手段を構成することができるので、薄型化を指向する角形電池の厚さを増加させることなく電池自体に電池保護手段を設けることができる。また、段差部に形成した接続用の穴から本体ケース内に電池保護手段と極板群とを電気的接続するための接続部材を貫通させることが容易であり、本体ケース内に収容された極板群は群体から突出する正極リード及び負極リードが段差部の内面上に位置するので、正極リード及び/又は負極リードを前記接続部材を通じて電池保護手段に容易に接続することができる。電池保護手段は、過充電、過放電及び過電流それぞれの状態検出により充放電回路を遮断する電池保護回路を構成した保護回路基板により構成することにより、角形電池を二次電池に構成した場合に有効な手段となる。 また、電池保護手段は、復帰式電流規制素子又は復帰式電流遮断素子又は非復帰式電流遮断素子と保護回路基板とを組み合わせたセーフティユニットとして構成すると、電池に加わることが予想される種々の電気的及び熱的な阻害要因を複数段階で阻止することができ、二次電池の電池保護の目的を充実させることができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る角形電池の外観形状を示す斜視図。
【図2】同上角形電池を構成する電池本体の外観形状を示す斜視図。
【図3】同上電池本体の構成を示す分解斜視図。
【図4】PTCユニットの構成を示す断面図。
【図5】リードの引き出し構造を示す斜視図。
【図6】本体ケース内への極板群の収納状態を示す平面図。
【図7】電池本体に対する外装体の形成を示す斜視図。
【図8】第1の実施形態に係る角形電池の構成を示す回路図。
【図9】第2の実施形態に係る角形電池を構成する電池本体の外観を示す斜視図。
【図10】同上電池本体の電池保護手段取り付け構造を示す分解斜視図。
【図11】電池保護手段の取り付け構造を示す断面図。
【図12】第2の実施形態に係る角形電池の電気的構成を示す回路図。
【図13】従来技術に係る角形電池の構成を示す分解斜視図。
【符号の説明】
10 電池ケース
11、111 本体ケース
12、112 蓋板
13、113 フランジ部
14、114 極板群
15 凹部
16、116 段差部
19、119 リベット
21、121 正極リード
22 負極リード
26 PTCユニット
33,133 PTC素子(復帰式電流規制素子)
55,140 温度ヒューズ
100 電池保護手段
147 正極導体ランド
148 負極導体ランド
150 保護回路基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flat rectangular battery in which a power generation element is accommodated in a battery case in which an opening of a main body case formed in a half-shell body is sealed by a lid plate, and particularly, the battery is electrically and thermally inhibited. The present invention relates to a prismatic battery provided with battery protection means for protecting against factors.
[0002]
[Prior art]
The size and thickness of portable electronic devices have been significantly reduced, and the performance of the devices has been remarkably increased. As a result, batteries that serve as power sources have been required to be smaller, thinner, and have higher capacities. Lithium-based batteries are effective as small and high-capacity batteries. Among them, flat rectangular lithium-ion rechargeable batteries are suitable for thinning equipment, and mobile phones and the like can be used repeatedly. Application to portable electronic devices is increasing.
[0003]
Since the lithium-based battery has a high energy density and uses a flammable organic solvent as an electrolyte, consideration for safety is important. It is necessary to ensure safety so as not to damage the human body and equipment even when an abnormality occurs for some reason. For example, when a short circuit occurs between the positive electrode and the negative electrode of a battery for some reason, an excessive short-circuit current flows in a battery having a high energy density, and Joule heat is generated by internal resistance, and the temperature of the battery rises. When the temperature of the battery becomes high, the reaction between the positive electrode plate active material and the electrolyte solution, the vaporization and decomposition of the electrolyte solution, and the like, the gas pressure inside the battery rises rapidly, and the battery may be ruptured or ignited. The cause of the battery falling into a high temperature state is not only the external short circuit described above, but also when the rechargeable battery is overcharged, or when the battery or the portable electronic device loaded with it is placed near a heater or left in a car parked under the scorching sun Such cases are also applicable.
[0004]
The lithium-based battery is provided with a function of preventing the battery from falling into an abnormal state and preventing the battery from becoming in a dangerous state even when the battery enters an abnormal state. As a function of the battery itself, the active material and the electrolyte of the electrode plate are devised so as not to cause an excessive reaction, and the microporous polyolefin-based membrane used as a separator is softened at abnormally high temperatures and the pores are closed. Shutdown function. In addition, a thermal fuse that shuts off the input / output circuit when the temperature rises abnormally, and a safety valve that releases the abnormal internal pressure to the outside are provided. For a cylindrical lithium battery, a PTC ( A protection function for regulating an excessive current due to an external short circuit is provided by disposing a positive temperature coefficient (Positive Temperature Coefficient) element.
[0005]
In a small battery or a rectangular battery in which the thermal fuse or PTC element cannot be provided in the battery, a PTC element or thermal fuse is connected as an external circuit component by wiring, and in a secondary battery, overcharging or overdischarging occurs. A circuit board that constitutes a battery protection circuit for protecting the secondary battery is provided, and these components are housed together with the secondary battery in a pack case and configured in the form of a battery pack. For example, a circuit board that forms a battery protection circuit is disposed on a sealing plate of a secondary battery, and the battery and the circuit board are housed in a case (see Patent Document 1), or a protection element such as a thermal fuse is provided on the side of the battery. There is known a configuration in which a case accommodating the battery and the battery and the case are accommodated in an outer case (see Patent Document 2).
[0006]
In addition, the battery case of a conventional prismatic battery is composed of a battery can formed in a square cylindrical shape with a bottom by deep drawing and a sealing plate that closes an opening end of the battery case. In order to do so, it is necessary to deep-draw the battery can into a rectangular tube having a smaller width. However, as the opening area becomes smaller with respect to the depth in the processing direction, the processing becomes more difficult, and there is a limit to the reduction in thickness of the battery can by deep drawing. Also, it becomes more difficult to insert the electrode plate group into a battery can formed in a narrow, deep cylindrical shape as the thickness becomes smaller and the opening area becomes smaller.
[0007]
Therefore, it is necessary to change the structure of the battery case in order to further reduce the thickness of the rectangular battery whose thickness is limited, and close the main body case formed in the half shell and the opening of the main body case. A battery in which a battery case is formed by a flat plate or a half-shell lid plate has been developed.
[0008]
For example, as shown in FIG. 13, a prismatic battery in which an electrode plate group 3 is accommodated in an upper cup 1 and an opening thereof is sealed by a lower cup 2 is known (see Patent Document 3). In this battery case structure, the recess for accommodating the power generation element can be formed by shallow drawing, so that the battery case can be easily manufactured.
[0009]
[Patent Document 1]
JP-A-2002-231201 (pages 3 to 5, FIG. 4)
[0010]
[Patent Document 2]
JP-A-2000-251945 (pages 3 to 5, FIG. 5)
[0011]
[Patent Document 3]
JP 2001-250517 A (pages 2 to 4, FIG. 1)
[0012]
[Problems to be solved by the invention]
Even in the case of a battery using a battery case having a structure in which the opening of the main body case of the half-shell body is sealed with a lid plate, particularly when the battery is configured as a secondary battery having a high energy density such as a lithium ion secondary battery, It is required to provide battery protection means such as a PTC element and a battery protection circuit as in the conventional secondary battery.
[0013]
However, a battery case having a structure in which an opening of a half-shell body case is sealed with a lid plate may be thinned down to a thickness of 3.0 mm or less, so that a space for providing battery protection means is provided. It is difficult to secure the battery and the battery and the battery protection means are configured in the form of a battery pack that is housed in an outer case, as in the related art, and the effect of reducing the size and thickness of the battery is impaired. Will be.
[0014]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery case having a structure in which a half-shell case is closed with a lid plate to protect the battery from electrical and thermal impediments. It is another object of the present invention to provide a prismatic battery in which the battery protection means is provided on the battery itself without providing a battery pack.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a main body case formed in a square half-shell, in which a positive electrode plate and a negative electrode plate are flatly wound via a separator, and a positive electrode lead and a negative electrode lead are provided at ends of winding. Is a prismatic battery in which an electrode group formed so as to protrude from the group in the winding direction is housed, and a step portion in which the depth of the concave portion is partially reduced on one side side in the main body case is formed, On an outer surface of the step portion, a battery protection means is provided which is connected to a positive electrode lead and / or a negative electrode lead of the electrode plate group.
[0016]
According to the above configuration, since the battery protection means is disposed on the outer surface of the step formed in the main body case, the battery protection means can be provided on the battery itself without increasing the thickness of the prismatic battery which is intended to be thin. Can be provided. Further, it is easy to penetrate the connection member for electrically connecting the battery protection means and the electrode plate group into the main body case from the connection hole formed in the step portion, and the electrode housed in the main body case can be easily penetrated. Since the positive electrode lead and the negative electrode lead protruding from the group are located on the inner surface of the step, the positive electrode lead and / or the negative electrode lead can be easily connected to the battery protection means through the connection member.
[0017]
In the above configuration, if the battery protection means is constituted by a return-type current regulating element, a return-type current interrupting element, or a non-returnable current interrupting element, the current of the input / output circuit is regulated or interrupted when exposed to a short circuit or overheating. In addition, the battery can be protected from short circuit and overheating. With the reset-type current regulating element and the reset-type current interrupting element, the battery can be reused because the current regulating or current interrupting state can be returned to the original state when the short-circuit or overheating state is eliminated. .
[0018]
Further, the battery protection means is configured as a secondary battery by forming the prismatic battery into a secondary battery by configuring the battery protection circuit with a battery protection circuit configured to shut off a charging / discharging circuit by detecting respective states of overcharge, overdischarge, and overcurrent. It is an effective means in cases.
[0019]
Also, when the battery protection means is configured as a safety unit in which a return-type current regulating element, a return-type current interrupting element, or a non-returnable current interrupting element is combined with a protection circuit board, various types of electricity expected to be added to the battery are provided. In this way, it is possible to prevent the thermal and thermal inhibition factors in a plurality of stages, and in particular, it is possible to enhance the function of protecting the secondary battery.
[0020]
Further, when the battery protection means is configured as a safety unit in which a return-type current regulating element or a combination of a return-type current cut-off element, a non-return-type current cut-off element, and a protection circuit board, the functions are supplemented to each other and can be added to the battery. Various electrical and thermal impediments that can be expected can be prevented in a plurality of stages, and in particular, the function of protecting the battery of the secondary battery can be further enhanced.
[0021]
Further, a metal case containing the reset type current regulating element, the reset type current interrupting element, or the non-return type current interrupting element is disposed on the outer surface of the step portion via an insulator, and the metal case is provided outside the positive electrode or the negative electrode. By forming the connection terminal, the battery protection means can be provided on the outer surface of the step portion, and at the same time, the external connection terminal can be configured.
[0022]
When a protection circuit board is provided, a conductor land serving as an external connection terminal of the positive electrode and / or the negative electrode is formed on the substrate, so that the battery protection means is provided on the outer surface of the step portion and at the same time, the external connection terminal is provided. Can be configured.
[0023]
Further, the battery protection means is configured to be fixed by fastening a connecting member penetrating between the outer surface and the inner surface of the step portion to the step portion, so that a separate fixing means is used for fixing the battery protection means. It can be configured in a simple structure without using it.
[0024]
In addition, the return-type current regulating element is preferably a PTC element whose resistance value rapidly increases when the temperature rises to a predetermined operating temperature or higher. The resistance to the input / output current is very small due to the resistance value.If the temperature rises or the external heating occurs due to the excessive current flowing due to the external short circuit, the resistance value will increase suddenly when the temperature exceeds the specified temperature, the current will suddenly decrease and the battery will be destroyed. Can be prevented.
[0025]
In addition, if the return type current interrupting element is configured as a bimetal that opens a circuit by deformation when the temperature rises above a predetermined operating temperature, an excessive current flows due to an external short circuit and the temperature rises or the external heating causes deformation. Since the current is cut off by opening the contacts, the battery can be prevented from being destroyed.When the short-circuiting or overheating hindrance is eliminated, the battery can be returned from the current cut-off state and returned to a state where it can be reused. it can.
[0026]
When the non-return type current cutoff element is configured as a temperature fuse that blows and opens a circuit when the temperature rises to a predetermined operating temperature or higher, an excessive current flows due to an external short circuit and the temperature rises or the external heating is performed. Since the current is cut off by fusing, it is possible to prevent the battery from falling into a state where it bursts.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings to facilitate understanding of the present invention. The embodiment described below is an example embodying the present invention, and does not limit the technical scope of the present invention.
[0028]
FIG. 1 shows the external shape of the prismatic battery according to the first embodiment, which is configured as a lithium ion secondary battery. This prismatic battery includes a battery main body 20 shown in FIG. 2 and an exterior body 30 that covers the battery main body 20.
[0029]
As shown in FIG. 3, the battery body 10 includes a main body case 11 formed in a half-shell body and a lid plate 12 that closes an open portion of the battery case 10. The electrode group 14 is accommodated in the concave portion 15 of the main body case 11, and the periphery of the cover plate 12 is welded to the flange portion 13 formed on the main body case 11 to seal the opening of the main body case 11 with the lid body 12. It is configured as follows.
[0030]
The main body case 11 is formed by pressing a metal plate material, here, an iron-based plate material such as stainless steel or a cold-rolled steel plate, and forming a recessed portion 15 by providing a stepped portion 16 having a reduced drawing depth on one end side. It is formed by providing a flange 13 around the recess 15. The step portion 16 is a portion where external connection terminals for the positive electrode and the negative electrode are formed and a battery protection means is provided. Here, the terminal hole 17 formed in the step portion 16 is insulated from the main body case 2 by a lower gasket 18. At the same time, the PTC unit 26 is fixed on the outer surface of the step 16 by the rivets 19 while ensuring airtightness.
[0031]
As shown in FIG. 4, the PTC unit 26 accommodates, in a PTC holder 34, a PTC element (return-type current regulating element) 33 in which an upper electrode 33b and a lower electrode 33c are joined to both surfaces of a PTC conductive polymer 33a. The rivet 19 is insulated from the step 16 by an upper gasket 35 and is fixed on the step 16 by fastening the rivet 19 via a washer 37. The holder plate 36 is welded to the opening of the PTC holder 34. . Here, the holder plate 36 constitutes a positive electrode external connection terminal. The PTC element 33 is a device in which the temperature rises due to overcurrent or overheating, and the resistance value rises rapidly when the element temperature reaches a predetermined temperature. When the temperature reaches a predetermined temperature, the resistance value rises sharply from the fourth power to the sixth power. Therefore, when an external short circuit occurs, the temperature rises, the short circuit current is suppressed, and the battery is protected from the external short circuit.
[0032]
An electrode group 14 in which a positive electrode plate 47 and a negative electrode plate 48 are flatly wound via a separator 49 is accommodated in the concave portion 15 of the main body case 11. As shown in FIG. 5, the electrode plate group 14 is wound so that the outermost periphery becomes the negative electrode plate 48, the winding direction is from the step portion 16 to the opposite side, and the winding end end is The positive electrode lead 21 and the negative electrode lead 22 are pulled out from the winding end of each of the positive electrode plate 47 and the negative electrode plate 48 so as to be on the step 16 side. The positive electrode lead 21 is formed such that the extended portion from the winding end of the positive electrode plate 47 is positioned at a position on the extended line of the rivet 19 attached on the step 16 with a width appropriate for a lead. Is formed by cutting so that the tip portion has a length positioned on the rivet 19 when stored in the rivet 19. Further, the negative electrode lead 22 has an appropriate width as a lead at an appropriate position as an extension from an end of the winding of the negative electrode plate 48 at an arbitrary position on the stepped portion 16 where a member such as the rivet 19 does not exist. When the plate group 14 is housed in the concave portion 15, it is formed by cutting so that the front end portion has a length positioned on the step portion 16.
[0033]
As shown in FIG. 6, the electrode plate group 14 having the above-described configuration is configured such that the side from which the positive electrode lead 21 and the negative electrode lead 22 are drawn out into the concave portion 16 of the main body case 11 is the stepped portion 16 side and the winding end end. Is stored outside. When the electrode plate group 14 is housed in the recess 15, the tip of the positive electrode lead 21 is located on the rivet 19, and the tip of the negative electrode lead 22 is located on the step 16, so that the positive electrode can be The lead 21 can be joined to the rivet 19, and the negative lead 22 can be joined to the step 16.
[0034]
In the opening of the main body case 11 in which the electrode plate group 14 is accommodated, the cover plate 12 is placed on the flange portion 13, and the flange portion 13 and the cover plate 12 are positioned so that their outer edges coincide. The lid is sealed by welding between the peripheral portion of the cover plate 12 and the flange portion 13.
[0035]
As the cover plate 12, a metal plate material thinner than the thickness of the metal plate material used for the main body case 11 is applied, and a shallow depression 23 is formed in the center as shown in FIG. When swelling occurs in the battery case 50, the swelling is absorbed within the depth of the depression 23 so that the overall thickness of the prismatic battery does not change.
[0036]
A predetermined amount of electrolyte is injected into the sealed recess 15 from an electrolyte injection port 28 formed in the stepped portion 16, and after the injection is completed, a plug 29 is inserted into the electrolyte injection port 28, The inside of the concave portion 15 is sealed by welding the plug 29 to the portion 16.
[0037]
As shown in FIG. 7, the battery body 20 formed as described above is covered with a resin cover 25 formed by resin molding, and a resin film 38 is wound thereon to form the rectangular battery shown in FIG. 1. Formed. The resin cover 25 has a positive terminal window 31 opening on the holder plate 36 of the PTC unit 26 fixed on the outer surface of the step 16, and a portion on the bottom surface of the main body case 11 where the step 16 is not formed. An opening is formed between the positive electrode terminal window 31 and the negative electrode terminal window 32 so that the resin film 38 is not wound around the positive electrode terminal window 31 and the negative electrode terminal window 32. Since the holder plate 36 serving as an external connection terminal is externally exposed, and the main body case 11 serving as a negative electrode external connection terminal is externally exposed from the negative electrode terminal window 32, it can be used for external connection.
[0038]
In the prismatic battery having the above configuration, as shown in a circuit diagram of FIG. 8, a positive electrode plate forming the electrode plate group 14 is connected to a positive electrode external connection terminal (+) via a PTC element 33, and a negative electrode plate is connected to a negative electrode external terminal. It will be in the state of being connected to the connection terminal (-). When an external short circuit occurs between the positive external connection terminal (+) and the negative external connection terminal (-), an excessive short-circuit current flows through the PTC element 33, and the temperature rises. When this happens, a trip state occurs in which the resistance value rapidly increases, so that the short-circuit current is regulated and the rectangular battery is prevented from being damaged by an external short circuit.
[0039]
An external short-circuit is caused not only by a short-circuit between a positive external connection terminal (+) and a negative external connection terminal (-) by a metal object, but also by a positive external connection terminal (+) and a negative external connection terminal (-). ) May also be short-circuited if a device that uses the rectangular battery as a battery power supply or a charger that charges the rectangular battery fails. The damage of the prismatic battery is prevented. In addition, the PTC element 33 not only generates heat due to an overcurrent such as a short-circuit current but also increases in resistance value when the temperature rises under the influence of the ambient temperature. Can be prevented. For example, when the rectangular battery or the device to which the prismatic battery is mounted is left in a car parked under the hot summer sun, the battery temperature may reach up to 80 ° C. In such a case, since the PTC element 33 is in a trip state and the resistance value has increased, the use of the rectangular battery becomes impossible, and the PTC element 33 is prevented from being used in an abnormal temperature state. Since the resistance value of the PTC element 33 returns to a low state when the temperature drops, the PTC element 33 returns to a normal usable state.
[0040]
In the prismatic battery according to the first embodiment described above, the example in which the PTC element 33 is applied as the battery protection means has been described. However, instead of the PTC element 33, a bimetal (return-type current interrupting element) or a thermal fuse (non-return) is used. Type current interrupting element) can also be applied. As is well known, the bimetal is configured to be deformed due to a rise in temperature and open the contacts of the current circuit.When a short-circuit current flows, the temperature rises due to an excessive current. By opening the circuit thus formed, it is possible to prevent the rectangular battery from being damaged by a short circuit. In addition, since the current circuit is opened even when the ambient temperature rises, it is possible to make the rectangular battery unusable so as not to be used in a high temperature state. When the temperature of the bimetal drops, the bimetal can close the current circuit and return to a usable state. Further, since the thermal fuse is blown when the temperature rises to a predetermined temperature or higher and cuts off the current circuit, the rectangular battery can be protected from a short circuit or a high temperature state. Since the open state is not restored, the prismatic battery cannot be reused when the thermal fuse operates. Thus, the thermal fuse is set to be the ultimate battery protection.
[0041]
Further, the protection function can be double formed by combining the PTC element 33 or the bimetal and the thermal fuse. For example, as shown in FIG. 8B, the PTC element 33 does not function normally by combining the PTC element 33 with the trip temperature set at 80 ° C. and the temperature fuse 55 with the fusing temperature set at 100 ° C. Even in such a case, it is possible to prevent the thermal fuse 55 from blowing and the battery from falling from a high temperature state to a rupture state.
[0042]
Next, a prismatic battery according to a second embodiment will be described. As shown in FIG. 9, the prismatic battery according to the second embodiment has a protection circuit in which a PTC element 133, a battery protection circuit, and a thermal fuse 140 are mounted on the outer surface of a step portion 116 formed in a main body case 111. The battery protection means 100 including the substrate 150 is provided.
[0043]
The battery protection means 100 is attached to the step 116 as shown in FIG. The cylindrical portion of the lower gasket 118 is passed through the terminal hole 117 formed in the step portion 116 from the inner surface side of the step portion 116, and the lower gasket 118 and the rivet are inserted through the shaft portion of the rivet 119 through the cylindrical portion. An upper gasket 135, a PTC holder 134, a PTC element 133, and a washer 137 are stacked and arranged on the outer surface side of the step portion 116 in this order, and by fastening the rivet 119, as shown in FIG. The PTC element 133 is attached to 116. Further, the board bracket 139 is joined to the PTC holder 134 by welding, and the protection circuit board 150 is mounted on the board bracket 139.
[0044]
The protection circuit board 150 has electronic components such as thermal fuses 140 and IC components mounted on the lower surface, and has a positive conductor land 147 and a negative conductor land 148 formed on the upper surface. The circuit patterns are formed on both sides of the protection circuit board 150, and the main parts of the circuit patterns on both sides are connected by through holes. The positive conductor land 147 and the negative conductor land are formed as a part of a circuit pattern, and the surface except the positive conductor land 147, the negative conductor land 148, and the connection land 149 is subjected to resin molding for insulation and moisture proof. Further, the surfaces of the positive conductor land 147 and the negative conductor land 148 can be gold-plated or bonded to a thin metal plate in order to improve the connectivity with equipment.
[0045]
One end of a lead plate 146 is joined to the connection land 149 of the protection circuit board 150 by soldering or welding, and the other end of the lead plate 146 is joined to the body case 111, and the body case 111 and the protection circuit board, which are at the negative potential, are connected. Electrical connection with the negative electrode potential portion 150 is made.
[0046]
An electrode group 114 formed in the same manner as in the first embodiment is accommodated in the main body case 111 to which the battery protection means 100 is attached, and the positive electrode lead 121 pulled out from the electrode group 114 is a rivet 119. Joined. Further, a negative electrode lead (not shown) is joined to the inner surface of the step portion 116.
[0047]
The periphery of the cover plate 112 is welded to the flange 113 of the main body case 111 in which the electrode group 114 is accommodated, and the opening of the main body case 111 is sealed. A predetermined amount of electrolyte is injected into the main body case 111 sealed with the cover plate 112 from the electrolyte injection port 128, and after the electrolyte is injected, the electrolyte injection port 128 is closed with a plug 129. Is sealed and formed in the battery main body 120 shown in FIG.
[0048]
Although not shown, an exterior body is attached to the battery body 120 with a resin cover and a resin film in the same manner as in the configuration shown in the first embodiment to form a rectangular battery.
[0049]
In the prismatic battery according to the second embodiment, the battery protection means 100 is provided on the stepped portion 116, so that the battery protection circuit formed on the protection circuit board 150 as shown in the circuit diagram of FIG. , A thermal fuse 140 and a PTC element 133 to form a prismatic battery with triple battery protection.
[0050]
The battery protection circuit controls the first switching element 161 from the conductive state to the cutoff state when the battery voltage is detected by the control unit 160 and becomes equal to or lower than the preset discharge end stop voltage, and cuts off the discharge circuit. To protect the battery from overdischarge. Since the first switching element 161 is constituted by an FET having a parasitic diode, a current path in the charging direction is formed even in the cut-off state, so that charging is possible. When the voltage becomes higher than the predetermined voltage, the control unit 160 controls the first switching element 161 to change from the cut-off state to the conductive state, so that normal charging is performed and recovery from overdischarge is performed. Further, when the battery voltage becomes equal to or higher than the preset charging prohibition voltage, the control unit 160 controls the second switching element 162 from the conductive state to the cutoff state, and shuts off the charging circuit to protect the battery from overcharging. I do. Since the second switching element 162 is constituted by an FET having a parasitic diode, a current path in the discharging direction is formed even in the cutoff state, so that the discharging is possible. When the voltage becomes equal to or lower than the low predetermined voltage, the control unit 160 controls the second switching element 162 from the cut-off state to the conductive state, so that the state can be normally discharged.
[0051]
Further, the control unit 160 detects an overcurrent state due to a short circuit or the like by detecting a voltage between both ends of the first switching element 161, and when the overcurrent state is detected, controls the first switching element 161 from the conductive state to the cutoff state. To protect the battery from overcurrent. When the circuit cutoff control for preventing the overcurrent is not performed normally due to a failure of the battery protection circuit or the like, the temperature of the PTC element 33 rises due to the overcurrent, and when the temperature exceeds the set trip temperature, the resistance value becomes higher. The amount of current is regulated, and the battery is double protected from overcurrent due to a short circuit or the like. Further, since the resistance value of the PTC element 133 increases when the temperature rises under the influence of the ambient temperature, it is possible to prevent the rectangular battery from being used in a state where the temperature rises. For example, if the prismatic battery or the device to which it is attached is left in a car parked under the hot summer sun or by a heater, etc., the battery temperature may exceed 80 ° C. is there. In such a case, since the PTC element 133 is in a trip state and has an increased resistance value, the use of the prismatic battery becomes impossible, thereby preventing the PTC element 133 from being used in an abnormal temperature state. When the temperature of the PTC element 133 decreases, the resistance value returns to a low state, so that the PTC element 133 returns to a normal usable state.
[0052]
When a high voltage is applied due to a failure or the like of a device to which the prismatic battery is attached, or when the battery is reversely charged, the PTC element 133 is broken down, and the current regulating action does not work. If the battery temperature rises, the battery may explode. When the PTC element 133 does not function normally, the thermal fuse 140 is blown and the transition to the dangerous state is prevented.
[0053]
For example, if the trip temperature of the PTC element 133 is set to 80 ° C. and the fusing temperature of the thermal fuse 140 is set to 100 ° C., if the temperature exceeds 80 ° C. due to a short circuit or an increase in the ambient temperature, the PTC element 133 will be turned off. The trip state is set, the short-circuit current is regulated, and the use of the prismatic battery in a high temperature state can be stopped. When the PTC element 133 does not function normally, the temperature rises, and when the temperature exceeds 100 ° C., the thermal fuse 140 is blown to make the rectangular battery unusable. When exposed to a high temperature environment in which the thermal fuse 140 is blown, it is assumed that the electrolytic solution and the electrode plate active material are deteriorated by heat, and a normal charge / discharge reaction cannot be obtained. Priority is given to preventing a dangerous state such as rupture even when the prismatic battery is in an unusable state.
[0054]
In the prismatic batteries described as the first and second embodiments, the PTC elements 33 and 133, the thermal fuse 140, the bimetal, and the battery protection circuit may be independently applied as the battery protection means. By combining a plurality of different battery protection means, the function of battery protection is more effectively exhibited. For example, when the temperature fuse 140 set at a fusing temperature higher than the trip temperature of the PTC element 33 is combined with the PTC element 33 in the configuration of the first embodiment, a dual battery protection function is formed.
[0055]
PTC elements 33, 133, thermal fuse 140, and bimetal are ineffective against overcharge and overdischarge, so when combined with a battery protection circuit, they have a function to protect the battery from overcharge and overdischarge. Is formed. For example, the combination of the PTC element 133 and the protection circuit board 150 forms a double protection function against an overcurrent such as a short circuit in addition to a protection function from an overcharge or an overdischarge, and protects against a high-temperature environment. A function is formed. Furthermore, as shown in the second embodiment, when the thermal fuse 140 is combined, a prismatic battery having a triple protection function can be formed.
[0056]
【The invention's effect】
As described above, according to the present invention, the battery protection means can be configured at the step formed in the main body case, so that the battery itself can be formed without increasing the thickness of the prismatic battery which is intended to be thin. Protection means can be provided. Further, it is easy to penetrate the connection member for electrically connecting the battery protection means and the electrode plate group into the main body case from the connection hole formed in the step portion, and the electrode housed in the main body case can be easily penetrated. Since the positive electrode lead and the negative electrode lead protruding from the group are located on the inner surface of the step, the positive electrode lead and / or the negative electrode lead can be easily connected to the battery protection means through the connection member. The battery protection means is configured by a protection circuit board configured as a battery protection circuit that shuts off a charging / discharging circuit by detecting states of overcharge, overdischarge, and overcurrent, so that a rectangular battery is configured as a secondary battery. It is an effective means. Also, when the battery protection means is configured as a safety unit in which a return-type current regulating element, a return-type current interrupting element, or a non-returnable current interrupting element is combined with a protection circuit board, various types of electricity expected to be added to the battery are provided. And thermal inhibition factors can be prevented in a plurality of stages, and the purpose of protecting the secondary battery can be enhanced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the external shape of a prismatic battery according to a first embodiment.
FIG. 2 is a perspective view showing an external shape of a battery body constituting the prismatic battery.
FIG. 3 is an exploded perspective view showing the configuration of the battery main body.
FIG. 4 is a sectional view showing a configuration of a PTC unit.
FIG. 5 is a perspective view showing a lead lead-out structure.
FIG. 6 is a plan view showing a storage state of a group of electrode plates in a main body case.
FIG. 7 is a perspective view showing formation of an exterior body with respect to a battery main body.
FIG. 8 is a circuit diagram showing a configuration of the prismatic battery according to the first embodiment.
FIG. 9 is a perspective view showing the appearance of a battery main body constituting the prismatic battery according to the second embodiment.
FIG. 10 is an exploded perspective view showing the structure for attaching the battery protection means to the battery main body.
FIG. 11 is a sectional view showing an attachment structure of a battery protection unit.
FIG. 12 is a circuit diagram showing an electrical configuration of a prismatic battery according to a second embodiment.
FIG. 13 is an exploded perspective view showing a configuration of a prismatic battery according to the related art.
[Explanation of symbols]
10 Battery case
11, 111 body case
12, 112 lid plate
13, 113 Flange part
14, 114 electrode plate group
15 recess
16, 116 step
19, 119 rivets
21, 121 Positive electrode lead
22 Negative electrode lead
26 PTC unit
33,133 PTC element (Return type current regulating element)
55,140 Thermal fuse
100 Battery protection means
147 Positive conductor land
148 Negative conductor land
150 Protection circuit board

Claims (11)

四角形半殻体に形成された本体ケース内に、正極板と負極板とがセパレータを介して扁平に巻回され、巻き終わり端に正極リードおよび負極リードが巻回方向に群体から突出するように形成された極板群が収容された角形電池であって、
前記本体ケースに凹部の深さを一辺側で部分的に浅くした段差部が形成され、この段差部の外面上に、前記極板群の正極リード及び/又は負極リードに接続して電池保護手段が配設されてなることを特徴とする角形電池。
A positive electrode plate and a negative electrode plate are wound flat through a separator in a main body case formed in a square half-shell body, and a positive electrode lead and a negative electrode lead are protruded from a group in a winding direction at a winding end. A prismatic battery in which the formed electrode group is housed,
The main body case is formed with a stepped portion in which the depth of the concave portion is partially reduced on one side, and is connected to the positive electrode lead and / or the negative electrode lead of the electrode plate group on the outer surface of the stepped portion. A prismatic battery characterized by being disposed.
電池保護手段は、復帰式電流規制素子又は復帰式電流遮断素子又は非復帰式電流遮断素子である請求項1に記載の角形電池。The prismatic battery according to claim 1, wherein the battery protection means is a reset type current regulating element, a reset type current interrupting element, or a non-return type current interrupting element. 電池保護手段は、過充電、過放電及び過電流それぞれの状態検出により充放電回路を遮断する電池保護回路を構成した保護回路基板である請求項1に記載の角形電池。The prismatic battery according to claim 1, wherein the battery protection means is a protection circuit board including a battery protection circuit configured to cut off a charge / discharge circuit by detecting states of overcharge, overdischarge, and overcurrent. 電池保護手段は、復帰式電流規制素子又は復帰式電流遮断素子又は非復帰式電流遮断素子と保護回路基板とを組み合わせたセーフティユニットである請求項1に記載の角形電池。The prismatic battery according to claim 1, wherein the battery protection means is a safety unit in which a return-type current regulating element, a return-type current interrupting element, or a non-returnable current interrupting element is combined with a protection circuit board. 電池保護手段は、復帰式電流規制素子又は復帰式電流遮断素子と非復帰式電流遮断素子と保護回路基板とを組み合わせたセーフティユニットである請求項1に記載の角形電池。The prismatic battery according to claim 1, wherein the battery protection means is a safety unit that combines a return-type current regulating element or a return-type current interrupting element, a non-returnable current interrupting element, and a protection circuit board. 復帰式電流規制素子又は復帰式電流遮断素子又は非復帰式電流遮断素子を収容した金属ケースが段差部の外面上に絶縁物を介して配設され、前記金属ケースが正極又は負極の外部接続端子に形成されてなる請求項2に記載の角形電池。A metal case accommodating a reset type current regulating element or a reset type current interrupting element or a non-return type current interrupting element is disposed on the outer surface of the step portion via an insulator, and the metal case is an external connection terminal of a positive electrode or a negative electrode. The prismatic battery according to claim 2, wherein the prismatic battery is formed in a rectangular shape. 保護回路基板に正極及び/又は負極の外部接続端子とする導体ランドが形成されてなる請求項3〜5いずれか一項に記載の角形電池。The prismatic battery according to any one of claims 3 to 5, wherein a conductor land serving as an external connection terminal of the positive electrode and / or the negative electrode is formed on the protection circuit board. 電池保護手段は、段差部の外面と内面との間に貫通する接続部材を段差部に締結することにより段差部の外面上に固定されてなる請求項1〜7いずれか一項に記載の角形電池。The rectangular shape according to any one of claims 1 to 7, wherein the battery protection means is fixed on an outer surface of the step portion by fastening a connection member penetrating between an outer surface and an inner surface of the step portion to the step portion. battery. 復帰式電流規制素子は、所定の動作温度以上に温度上昇したとき抵抗値が急増するPTC素子である請求項2,4,5,6いずれか一項に記載の角形電池。The prismatic battery according to any one of claims 2, 4, 5, and 6, wherein the return-type current regulating element is a PTC element whose resistance value rapidly increases when the temperature rises above a predetermined operating temperature. 復帰式電流遮断素子は、所定の動作温度以上に温度上昇したとき変形により回路を開くバイメタルである請求項2,4,5,6いずれか一項に記載の角形電池。The prismatic battery according to any one of claims 2, 4, 5, and 6, wherein the return current interrupting element is a bimetal that opens a circuit when deformed when the temperature rises to a predetermined operating temperature or higher. 非復帰式電流遮断素子は、所定の動作温度以上に温度上昇したとき溶断して回路を開く温度ヒューズである請求項2,4,5,6いずれか一項に記載に角形電池。The prismatic battery according to any one of claims 2, 4, 5, and 6, wherein the non-return-type current interrupting element is a thermal fuse that is blown to open a circuit when the temperature rises to a predetermined operating temperature or higher.
JP2002366776A 2002-12-18 2002-12-18 Square battery Expired - Fee Related JP4191469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366776A JP4191469B2 (en) 2002-12-18 2002-12-18 Square battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366776A JP4191469B2 (en) 2002-12-18 2002-12-18 Square battery

Publications (2)

Publication Number Publication Date
JP2004199991A true JP2004199991A (en) 2004-07-15
JP4191469B2 JP4191469B2 (en) 2008-12-03

Family

ID=32763876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366776A Expired - Fee Related JP4191469B2 (en) 2002-12-18 2002-12-18 Square battery

Country Status (1)

Country Link
JP (1) JP4191469B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245879A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Laminate type battery and battery module equipped therewith
JP2010245042A (en) * 2009-04-03 2010-10-28 Sb Limotive Co Ltd Rechargeable battery
US8080328B2 (en) 2006-11-21 2011-12-20 Hitachi Vehicle Energy, Ltd. Secondary battery module having connection breal off mechanism in case of abnormal battery operation
KR101274227B1 (en) * 2010-11-01 2013-06-14 주식회사 아이티엠반도체 Packaging layout structure of battery protection circuits
US9029011B2 (en) 2011-03-02 2015-05-12 Samsung Sdi Co., Ltd. Secondary battery and battery pack including secondary battery
US9287549B2 (en) 2011-10-05 2016-03-15 Samsung Sdi Co., Ltd. Rechargeable battery
CN106549129A (en) * 2015-09-16 2017-03-29 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
JPWO2021048894A1 (en) * 2019-09-09 2021-03-18

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080328B2 (en) 2006-11-21 2011-12-20 Hitachi Vehicle Energy, Ltd. Secondary battery module having connection breal off mechanism in case of abnormal battery operation
JP2009245879A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Laminate type battery and battery module equipped therewith
JP2010245042A (en) * 2009-04-03 2010-10-28 Sb Limotive Co Ltd Rechargeable battery
US9029007B2 (en) 2009-04-03 2015-05-12 Samsung Sdi Co., Ltd. Rechargeable battery including first and second metallic plates coupled together and a cap assembly including an insulator
KR101274227B1 (en) * 2010-11-01 2013-06-14 주식회사 아이티엠반도체 Packaging layout structure of battery protection circuits
US9029011B2 (en) 2011-03-02 2015-05-12 Samsung Sdi Co., Ltd. Secondary battery and battery pack including secondary battery
US9287549B2 (en) 2011-10-05 2016-03-15 Samsung Sdi Co., Ltd. Rechargeable battery
CN106549129A (en) * 2015-09-16 2017-03-29 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
CN106549129B (en) * 2015-09-16 2022-06-28 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
JPWO2021048894A1 (en) * 2019-09-09 2021-03-18
WO2021048894A1 (en) * 2019-09-09 2021-03-18 株式会社 東芝 Insulating member, battery, battery pack, vehicle, and manufacturing method of battery
JP7135219B2 (en) 2019-09-09 2022-09-12 株式会社東芝 Insulating member, battery, battery pack, vehicle, and battery manufacturing method

Also Published As

Publication number Publication date
JP4191469B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
KR100929036B1 (en) Protection circuit of battery pack, battery pack having same and operation method thereof
KR101223730B1 (en) Secondary battery pack and protection circuit module for the same
KR100922474B1 (en) Rechageable battery
KR100420146B1 (en) Secondary battery mounting thermal protector
KR100357843B1 (en) Secondary cell and assembly sealing plate for secondary cell
JP6153182B2 (en) Circuit board for secondary battery and battery pack including the same
EP2043177B1 (en) Protective circuit board and battery pack using the same
KR20190005403A (en) Battery module, battery pack including the same, and vehicle including the same
JPH1154110A (en) Battery protective device having positive characteristic temperature element
JP3498538B2 (en) Secondary battery and assembled sealing plate for secondary battery
KR20190001409A (en) Battery module, battery pack including the same, and vehicle including the same
JP2003051304A (en) Nonaqueous electrolyte secondary battery
JP5055824B2 (en) battery
JP4191469B2 (en) Square battery
JPH1050281A (en) Battery pack
JP2004022477A (en) Battery
JPH11339766A (en) Battery pack
KR20080099469A (en) Battery pack and electronic device
JP4523224B2 (en) Nonaqueous electrolyte secondary battery
EP2372827A1 (en) Sencodary battery pack
KR20040037547A (en) Secondary battery pack
KR101539690B1 (en) Circuit board for secondary battery and battery pack including the same
JP2001283828A (en) Polymer lithium secondary battery
KR100502354B1 (en) Pouched-type lithium secondary battery
KR20100089124A (en) Storage battery having assembly cap of pcm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140926

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees