JP4523224B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4523224B2
JP4523224B2 JP2002273249A JP2002273249A JP4523224B2 JP 4523224 B2 JP4523224 B2 JP 4523224B2 JP 2002273249 A JP2002273249 A JP 2002273249A JP 2002273249 A JP2002273249 A JP 2002273249A JP 4523224 B2 JP4523224 B2 JP 4523224B2
Authority
JP
Japan
Prior art keywords
battery
plate
current
terminal
sealing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002273249A
Other languages
Japanese (ja)
Other versions
JP2003168419A (en
Inventor
正明 金田
幸司 齋藤
智志 片岡
兼人 増本
始 小西
毅 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002273249A priority Critical patent/JP4523224B2/en
Publication of JP2003168419A publication Critical patent/JP2003168419A/en
Application granted granted Critical
Publication of JP4523224B2 publication Critical patent/JP4523224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Thermally Actuated Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、異なる動作特性を有する複数の電流規制/遮断素子を具備した非水電解質二次電池に関するもので、特に、高温状態に曝された場合に熱暴走の加速を防止する機能を電池自体に設け、信頼性を向上させた非水電解質二次電池に関する。
【0002】
【従来の技術】
非水電解質二次電池の一例であるリチウムイオン二次電池はエネルギー密度が高く、電解液として可燃性の有機溶媒を用いているため、水溶液系の電池に比して安全性の配慮が重要となる。何らかの原因によって異常が生じたときにも人体や機器に損傷を与えないように安全性を確保する必要がある。例えば、電池の正極端子と負極端子との間に金属片等が接触して外部短絡が生じた場合、エネルギー密度の高い電池では過大な短絡電流が流れ、この電流が内部抵抗によってジュール熱を発生させ、電池温度を上昇させてしまう。電池が高温になると正負極活物質と電解液との反応や電解液の気化、分解などが生じて電池内部の圧力が急上昇し、電池の破裂や発火に至る恐れがある。
【0003】
電池が異常な状態に陥る原因は、上記のような外部短絡だけでなく、電気的、機械的、熱的など種々の要因が考えられる。リチウムイオン二次電池をはじめとする非水電解質二次電池では、電池が異常状態に陥ることを防止すると共に異常状態に陥った場合にも危険な状態にならないようにする機能が設けられている。
【0004】
電池内部の機能として、極板の活物質や電解液が過剰な反応を起こしにくいように工夫され、正極板と負極板とを隔てるセパレータには、ポリオレフィン系微多孔膜の場合では、電池が異常な高温になると軟化して細孔が塞がれ、リチウムイオンの流出が防がれるため、異常反応を抑制するシャットダウン機能が備わっている。
【0005】
円筒形のリチウムイオン二次電池では、図15に示すように、電池缶61の開口端を封口する封口部62に、リング状のPTC(Positive Thermal Coefficient)素子67が配設され、短絡電流等の過大電流が流れたときに、PTC素子67が過大電流により自己発熱するに伴う抵抗値の急増によって過大電流を規制して外部短絡から電池を保護する機能が設けられている。また、電池缶61内側に配設された下金属薄板65と、膨出部が形成された上金属薄板66とは、それぞれの中心点Aで溶接されており、温度上昇に伴って電池の内圧が異常上昇した場合の外方への押圧により上金属薄板66の膨出部が反転し、中心点Aの溶接が離れて電流回路が遮断される。更なる内圧上昇があったときには、上金属薄板66は薄肉化された易破断部66aから破断して内圧を外部に排出する。この構成では、電流規制、電流遮断、内圧排出の作用が段階を追って実行されるようになっている。
【0006】
また、リチウムイオン二次電池は、PTC素子や温度ヒューズと共にパックケース内に収容した電池パック(例えば、特許文献1参照)や過充電や過放電等から電池を保護する電池保護回路を構成した回路基板と共にパックケース内に収容した電池パックの形態に構成されるのが一般的である。電池単独で機器に装填される場合でも、接続回路に上記PTC素子や電池保護回路が設けられる。
【0007】
電池が危険な状態に陥るのは、電池の温度が異常上昇することが最大の要因であって、上記電池パックを構成する場合でも、温度ヒューズを電池缶に接触させて配置したり、電池温度をサーミスタ等によって検出することにより、異常な電池温度が検出された場合に入出力回路を遮断する制御がなされる。しかし、電池温度の検知は電池の外部から行っているため、異常温度の検出に遅れが生じたり、検出精度が低い問題がある。電池内部で温度を検出して異常高温に対応するのが最も好ましい処置である。これを実現すべく、電池缶の開口部に温度ヒューズを内蔵した封口体を配した密閉型電池も提案されている(例えば、特許文献2参照)。
【0008】
【特許文献1】
特開平6−349480号公報
【0009】
【特許文献2】
特開平9−153355号公報
【0010】
【発明が解決しようとする課題】
携帯電話機やPDA(携帯情報端末)等の小型軽量化、高機能化の進展は、その電源である電池の小型軽量化、更には高容量化によるところが大きい。このような携帯機器の電池電源としてリチウムイオン二次電池が主流となっており、小型軽量化、高容量化を実現している。携帯機器の小型軽量化に対応するリチウムイオン二次電池は、機器に装填した場合の空間利用効率が高い扁平な角形電池が多く用いられている。
【0011】
しかし、角形電池のように小型化あるいは薄型化された電池には、前述したようなPTC素子や電流遮断機構を設けた排出弁を設けるスペースを確保することが困難であるため、電池パックの形態に構成して、電池の外部に電池保護回路やPTC素子を設け、電池が危険な状態に陥ることを防止している。前述したように電池が危険な状態に陥る温度状態を電池の外部から検出しても、検出の遅れや検出精度に問題があり、小型薄型化された電池内の温度に対応して動作する電池安全機能を設けることが望まれている。
【0012】
この点で、電池の内部に温度ヒューズを設けた構成(特許文献2に記載)は、電池内の温度で動作がなされるため、短絡によって電池が高温になり、破裂や発火に至る以前に短絡電流回路を遮断するのに効果的である。しかし、温度ヒューズの溶断温度を低く設定すると、安全性は高まるものの温度ヒューズが一度溶断すると電池は使用できなくなる。従って、温度ヒューズの溶断温度は危険な状態に至る直前の温度に設定されるが、そこに至るまでの温度で電池は損傷を受けることになる。また、前記溶断温度に達するまで短絡電流が電池に流れ続けるために、有機電解液等の分解に起因する電池の内圧上昇も懸念される。
【0013】
本発明が目的とするところは、電池の安全機能が異なる複数の条件で作動するようにして電池の安全性を確保し、小型薄型化された電池にも適用可能とした非水電解質二次電池を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために本発明に係る非水電解質二次電池は、発電要素を収容した電池缶の開口端を閉塞する封口板を有し、正極端子、負極端子の導体面を外部露出させる絶縁部材を前記封口板の上部に配置してなる非水電解質二次電池であって、前記発電要素を構成する極板群から引き出された正極リード及び負極リードをそれぞれ正極端子及び負極端子に接続する正極接続ライン及び/又は負極接続ラインを備え、前記正極接続ライン、負極接続ラインの少なくとも何れか一方に、所定の動作温度及び/又は動作電流で電流を規制する復帰式電流規制素子と、所定の動作温度で回路を開いて電流を遮断するように、溶断する温度ヒューズ又は記憶形状に戻る形状記憶合金を備えたスイッチ機構である非復帰式電流遮断素子と、が接続され、前記復帰式電流規制素子、非復帰式電流遮断素子の双方が、前記封口板の電池缶内側に向けた凹部と絶縁部材に囲まれる空間部に配設されると共に、前記凹部に充填された樹脂材料により包み込まれてなることを特徴とする。
【0015】
この構成によれば、電池缶の開口端を封口する封口板の電池缶内側に向けた凹部と、正負極接続端子の導体面を露出させる絶縁部材とによって形成される空間部に、温度ヒューズ又は形状記憶合金を備えたスイッチ機構である非復帰式電流遮断素子、及び復帰式電流規制素子を配置すると共に、前記凹部に充填された樹脂材料により包み込んでいる。これにより、デッドスペースとなっていた空間部を有効活用して、電池の体積を増加させることなく安全機能を備え、しかも、その安全機能部が絶縁体で被覆固定され、電池に振動や衝撃が加わったときにも各構成要素が保護され、絶縁性が向上すると同時に熱伝導性がよくなり、安全機能部に対する伝熱性を向上させされる。さらに、安全機能部は複数の異なる温度/電流条件で電流を規制/遮断する素子を設け、これら素子が共に正負極の各端子よりも発電要素側に配置され、且つ電池表面に前記端子のみを露出させる構成とすることで、電池単体としての安全性を大幅に向上させるものである。
【0019】
上記構成において、復帰式電流規制素子の動作温度は80〜100℃に、非復帰式電流遮断素子の動作温度は100〜130℃に設定すると、復帰式電流規制手段による動作がなされなかった場合にも、非復帰式電流遮断手段による動作がなされるので、二重の安全機能を構成することができる。
【0020】
また、復帰式電流規制手段は、所定の動作温度以上に加熱された、或いは所定値以上の電流が加わった際に、抵抗値が急増するPTC素子が好適であり、抵抗値の急増により過大電流を規制することができる。また、所定値を超える動作温度、電流が加わった際に、変形により回路を開くバイメタルを適用することもできる。このバイメタルは、作動時には電流を遮断し、電流/温度が正常値に戻ると、再度、閉状態に復帰するものである。このように、復帰式電流規制素子は、異常状態に有る場合のみに電流を規制、或いは遮断するものである。さらに、PTC素子、バイメタルに代えて、復帰式電流規制素子としては、形状記憶合金を用いたスイッチ機構やサーミスタ素子を用いることができる。後者のサーミスタ素子は、所定の動作温度に到達すると電流を規制する素子である。
【0022】
また、復帰式電流規制素子と非復帰式電流遮断素子とを直列接続すると共に、一体に接合することにより、両素子を1つのパーツとして取り扱うことができ、収容スペースの削減や接続等の工数を減少させることができる。
【0023】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明し、本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
【0024】
(第1の実施形態)
本実施形態は、非水電解質二次電池の一例であるリチウムイオン二次電池について説明する。図1は、本実施形態に係るリチウムイオン二次電池の外観を示すもので、扁平な角形電池として形成されている。この角形電池は、電池缶の開口端を封口する封口板に電池缶内側に向けた凹部(図1には図示せず)を形成している。また、絶縁板11は、封口板11の上部に配置されており、封口板11の凹部と絶縁板11とにより囲まれた空間に、非復帰式電流遮断素子及び復帰式電流規制素子の双方を配置している。
【0025】
図1において、本実施形態に係るリチウムイオン二次電池は、ニッケルメッキ鋼によって断面形状が長円形である有底筒状に形成された電池缶内に発電要素が収容され、電池缶の開口部は後述する封口板3によって封口され、封口板3上に設けられた正極端子(+)及び負極端子(−)を構成する部位が封口板3上を閉じる絶縁板11に形成された開口部から外部に露出するように構成されている。絶縁板11の周縁部を含む電池缶の側周面は外装フィルム28によって被覆され、製造者名、品番、消費者への警告等の表示の用に供される。
【0026】
図2及び図3は、上記リチウムイオン二次電池の内部構成を示す部分断面図で、図3(a)(b)(c)は、それぞれ図2に示すA−A線、B−B線、C−C線位置での矢視断面であり、電池上部の内部構造を示している。電池缶1内には正極板と負極板とをセパレータを介して巻回した極板群14が収容され、枠体2によって収容位置から移動しないように位置固定されている。電池缶1の開口端には缶内側に向けて凹部を形成した封口板3が嵌め合わされ、その周囲が電池缶1にレーザー溶接されることにより電池缶1の開口端が封口されている。封口板3の両側に形成された開口部の一方の開口部には上ガスケット7と下ガスケット5とにより封口板3と絶縁すると共に封口性を保ち、ワッシャ4及び後述するPTC素子9の下極板9aを取り付けてリベット6が固定されている。他方の開口部は封口板3が電池缶1上に取り付けられた後に、電池缶1内に電解液を注液するためのもので、注液後は図示するように封栓10が挿入され、封栓10を封口板3に溶接することにより閉じられる。
【0027】
このように封口板3に形成された開口部にガスケット5を介してリベット6を嵌入し、締結により封口板3に固定することで、リベット3が電池缶1内と封口板3上との間を電気的に接続することを可能にする。さらに、リベット6の電池缶1内側に極板群14から引き出されたリードを接合することで、封口性を保った状態でリードとの接続を封口板3上に導くことができる。さらに、リベット6は電池缶1内側にリード接続用の延出部を形成しておくことで、リードの接続が容易になる効果を奏する。さらにまた、リベット6を締結する際に、後述する復帰式電流規制素子、又は非復帰式電流規制素子の端子を同時に締結すると、前記素子とリベット6との電気的接続が同時になされ、電池缶1内側で接続されたリードとの接続が別途の接続手段を用いることなくなされる。
【0028】
図2、図3においては、前記極板群14を構成する正極板から引き出された正極リード12は、前記リベット6の延出部6aに溶接接続され、負極板から引き出された負極リード13は封口板3の底面に溶接接続される。封口板3の凹部内には、上ガスケット7によって封口板3と絶縁されたPTC素子(復帰式電流規制素子)9と、樹脂モールドされた温度ヒューズ(非復帰式電流遮断素子)8とが配設されている。温度ヒューズ8は所定の動作温度になったとき溶断する低融点合金を樹脂モールドして低融点合金の保護と伝熱性の安定化を図ったもので、低融点合金の一端は樹脂モールドの上面に配置された端子板8aに接続され、低融点合金の他端は樹脂モールド外にリード板8bとして引き出されている。このリード板8bは前記PTC素子9の上電極9bに半田付けにより接合されている。
【0029】
封口板3の上部は、図示するように正極開口部11a及び負極開口部11bを設けた絶縁板11によって閉じられる。前記正極開口部11aからは温度ヒューズ8の端子板8aが外部露出して正極端子(+)の用に供され、負極開口部11bからは前記封栓10の天面が外部露出して負極端子(−)の用に供される。この端子構成により、正極端子(+)及び負極端子(−)を形成するための部材を用いることなく端子の形成がなされる。
【0030】
上記のように、極板群14を構成する正極板は正極リード12、リベット6、PTC素子9、温度ヒューズ8を通じて正極端子(+)に接続され、負極板は負極リード13、封口板3、封栓10を通じて負極端子(−)に接続される。即ち、図4に回路図として示すように、極板群14の正極板と正極端子Aとの間には、温度ヒューズ8とPTC素子9とが直列に接続されたリチウムイオン二次電池に構成される。
【0031】
前記PTC素子9は、有機ポリマー材料に導電性カーボンを分散させたPTC導電性ポリマーを平板状に形成し、その上下面に上極板9b、下極板9aを取り付けて構成され、上極板9b、下極板9a間の抵抗値は平常時に0.1Ω以下の低抵抗値であるが、所定の動作温度(トリップ温度)になると、抵抗値が10の4乗〜6乗Ωにも急増するものである。温度ヒューズ8は、所定の動作温度で溶融する低融点合金の両端をそれぞれ端子板8a、リード板8bに接続したもので、所定の動作温度によって溶融したとき端子板8aとリード板8bとの間の導通が遮断されるものである。
【0032】
上記構成において、温度ヒューズ8はその動作温度が100〜130℃に設定され、PTC素子9の動作温度、即ちトリップ状態となる温度が80〜100℃に設定される。PTC素子9のトリップ状態になる温度を80℃、温度ヒューズ8の動作温度を100℃に設定した場合、このリチウムイオン二次電池が装填された機器の故障や、金属物が正極端子(+)と負極端子(−)との間に接触したような外部短絡が生じたとき、過大な短絡電流によりPTC素子9は温度上昇し、その温度がトリップ状態となる温度80℃に達すると、抵抗値が急増するので短絡電流は一気に制限され、短絡によって電池が危険な状態に至る前に阻止することができる。短絡状態が解除されると、過大な短絡電流がなくなるので、PTC素子9の温度は低下してトリップ状態から外れ、抵抗値も下がるので再び正常な電池使用が可能となる。
【0033】
また、このリチウムイオン二次電池が装填された機器の故障などの原因によって高電圧が印加されたり、逆充電がなされたような場合に、PTC素子9が絶縁破壊され、それによる電流規制の作用が働かなかったときには、電池温度の急激な上昇により100℃の温度状態に達すると、温度ヒューズ8が溶断して、PTC素子9が動作し得ない状態での危険状態への移行が阻止される。このような二重の安全機能によってエネルギー密度の高いリチウムイオン二次電池を安全に使用することができる。
【0034】
また、真夏の炎天下に駐車したクルマの車内に電池又はそれが装填された機器が放置されていたような場合に、電池温度は80℃を超えるまでになることがある。このとき、PTC素子9はトリップ状態となって抵抗値が増大するために電池の使用はできず、電池が異常温度になっている状態で使用されることが防止できる。電池が通常の温度環境に戻されると、PTC素子9はトリップ状態から復帰するので、再度正常な電池使用が可能である。電池が100℃を超えるような高温環境下に曝されたような場合には、電解液や極板活物質が熱により変質し、正常な充放電反応が得られない恐れがある。このような高温状態に陥った場合には、温度ヒューズ8が溶断して電池の使用を不可にすることで危険状態への移行を阻止することができる。
【0035】
上記温度ヒューズ8とPTC素子とは、封口板3上に取り付けられる以前に一体化された1つの複合パーツとして構成され、PTC素子9の下電極9aに形成された穴にリベット6の軸部を差し込み、リベット6を上ガスケット7及び下ガスケット5を介して封口板3に締結することにより、電気的接続と共に封口板3上への取り付けがなされる。
【0036】
上記構成になる電池の製造は、以下に示す手順により実施することができる。
まず、封口板3の凹部内に上ガスケット7を配し、その上に温度ヒューズ8とPTC素子9とを一体化した複合パーツを置き、封口板3の底面側に下ガスケット5を配してリベット6により下ガスケット5、上ガスケット7、PTC素子9の下極板9a、ワッシャ4を締結すると、封口板3に安全機能及び端子を備えた更なる複合パーツが形成される。更に、封口板3の凹部内の温度ヒューズ8やPTC素子9が収容された部位は凹部の側壁及び突出部33によって囲まれているので、そこに配設された構成要素を包み込んでシリコン樹脂やエポキシ樹脂等の樹脂材料が充填される。樹脂充填は側壁及び突出部33で囲まれた中で行なわれるので、樹脂が負極端子(−)となる封栓10に付着しないように充填することができる。この樹脂充填により封口板3の凹部内に配置された各構成要素が絶縁体で被覆固定され、電池に振動や衝撃が加わったときにも各構成要素が保護され、絶縁性が向上すると同時に熱伝導性がよくなり、PTC素子9や温度ヒューズ8に対する伝熱性を向上させることができる。
【0037】
このように複合パーツに構成された封口板3と、極板群14を収容した電池缶1との間で正極リード12及び負極リード13の接続を行なう。正極リード12及び負極リード13は、極版群14から枠体2に設けられた穴から外部に引き出され、電池缶1より外に置かれた封口板3との接続作業が容易にできるように長く引き出されている。このリード接続がなされた後、電池缶1の開口端に封口板3を嵌め込むと、正極リード12及び負極リード13は、図3(a)(b)に示すように、枠体2上に折り畳まれる。電池缶1の開口端に嵌め込まれた封口板3の周縁と電池缶1の内周縁との間はレーザー溶接され、封口板3は電池缶1に固定される。
【0038】
次いで、封口板3の開口部から電池缶1内に電解液が注入された後、開口部には封栓10を嵌入させて開口部を閉じると共に、レーザー溶接によって封口板3に固定される。この後、封口板3上を閉じるように絶縁板11が封口板3及び電池缶1に接合されると、絶縁板11に形成された正極開口部11aから温度ヒューズ8の端子板8aが外部露出し、負極開口部11bから封栓10の天面が外部露出して正極端子(+)及び負極端子(−)が形成される。前記絶縁板11の周囲には、図2、図3に示すように、板厚を薄くした段差が形成されており、破線で示すように、熱収縮性のフィルム又はチューブの外装フィルム28で絶縁板11の周囲を含めて電池缶1を被覆できるように構成され、図1に示すような外観に形成される。この外装フィルム28は、PET等の樹脂フィルムによって形成することができる。また、絶縁板11の段差上に外装フィルム28が被ることにより、絶縁板11の上面は段差に外装フィルム28が載って面一の状態になり、外観の向上と絶縁性の向上を図ることができる。
【0039】
図1、図2に示すように、正極端子(+)及び負極端子(−)が電池の天面の一方に偏った位置に形成されているので、機器の電池収容スペースに対して逆装填されることが防止できる。この電池では機器との接続は、正極端子(+)及び負極端子(−)に機器側に設けられたプローブが圧接することによってなされ、電池の形状は左右対称になっているので、逆装填される恐れは多分にあるが、この偏った位置に端子が形成されていることにより、逆装填は確実に防止できる。
【0040】
本実施形態に示した角形の電池では、従来は発電要素を収容した電池缶の開口部は平らな封口板で封口され、封口板と極板群との間の空間は極板群から引き出されたリードの接続空間としての用に供されるだけの空間であったが、上述のように本実施形態の構成のように、凹部を形成した封口板3によって電池缶1の開口部が閉じられることにより、封口板3の凹部に電池の安全機構を設けて空間が有効活用され、安全機能を備えた角形リチウム二次電池が構成される。
【0041】
前記封口板3は、プレス加工により所要の板材を絞り加工して凹部を形成した後、電池缶1の内径寸法に対応する形状に外形抜き加工することによって形成される。この外形抜き加工を行なうプレス金型を変更、即ち、抜き形状寸法を変更することにより、電池容量により電池の短側面の幅が異なる電池にも容易に対応させることができる。角形のリチウムイオン二次電池の場合、電池の短側面の幅を大きくすると、巻回する正負極板の長さを増加させることができ、極板群14の反応面積を増加させることができるので、同一形状でありながら電池の短側面の幅が異なり、電池容量が異なる複数品種の電池が構成される。このとき、各品種毎の電池を製造するのに用意される封口板3を製作するために、各品種毎の封口板3を製作する金型を複数に準備することなく、外形抜きの金型を変更するだけで複数の品種に対応させることができる。
【0042】
図5は、電池の短側面の幅が異なる2種類の電池を製造するための封口板3の外形寸法変更の例を示すもので、図5(a)に示すように、共通の絞り加工金型により板材26を絞り加工して凹部29を形成すると、凹部29の周囲にフランジ部分が形成される。この後、本実施形態に示した電池のように短側面の幅W1が小さい場合には、凹部29の立ち上がり部外側の至近位置でフランジ部分を打ち抜く外形抜き加工がなされて形成された封口板3は、図5(b)に示すように、短側面の幅W1が小さい電池缶1の開口部に嵌り合う状態となる。一方、短側面の幅をW2に増加させた電池の場合には、外形抜き金型の加工位置を大きくすると、図5(c)に示すように、短側面の幅をW2に増加させた電池缶1aに対応する封口板3aに形成することができる。
【0043】
以上説明した各実施形態において、PTC素子9が適用された復帰式電流規制素子は、所定の動作温度以上になったとき変形して接点を開き、温度が低下すると元の状態に復帰して接点を閉じるバイメタルによって構成することもできる。また、温度ヒューズ8が適用された非復帰式電流段素子は、所定の動作温度以上になったとき記憶された形状に戻って接点を開き、電流回路を遮断する形状記憶合金を備えたスイッチ構造によって構成することもできる。
【0044】
また、本実施形態の構成では、正極接続ラインに温度ヒューズ8及びPTC素子9を配設しているが、負極接続ラインに配設することもできる。また、温度ヒューズ8とPTC素子9とを正極接続ラインと負極接続ラインとに振り分けて配設することもできる。要は電池の入出力ライン上に配設されていれば、その効果は同様に発揮される。
【0045】
また、各実施形態に説明したPTC素子9と温度ヒューズ8とによる二重の安全機能に加えて、電池缶1内の圧力が異常上昇したとき、異常内圧を外部に排出する異常内圧排出構造を設け、三重の安全機能を構成することができる。前記異常内圧排出構造は、内圧によって動作する弁体を用いた構成、クラッド板の薄板部分を内圧で破断する構成、電池缶1の一部をスクライブ又は刻印によって薄肉化して内圧で薄肉部分を破断させる構成を適用することができる。
【0046】
図1に示したように、小型薄型化された本実施形態のリチウムイオン二次電池では、異常内圧排出構造はスペース占有率が少ない構成が望ましく、図6及び図7に例を示す構成が好適である。
【0047】
図6は、電池缶1の胴部分にスクライブ24を形成し、電池缶1の材厚をスクライブ24によって部分的に薄肉化した異常内圧排出構造の例を示すものである。スクライブ24は電池缶1の材厚を5〜90%まで減少させるように溝状に形成する。温度上昇に伴うガスの発生により内圧が異常上昇し、内圧がスクライブ24による電池缶1の破断強度を越えたとき、電池缶1はスクライブ24から破断するので、異常内圧は外部に排出されて破裂等の危険な状態に陥ることが防止できる。
【0048】
図7は、封口板3をステンレススチール板21にアルミニウム板22を接合したクラッド板で形成し、所要位置のステンレススチール板21に排気穴20を設け、この排気穴20を薄いアルミニウム板22で塞いだ異常内圧排出構造の例を示すものである。温度上昇に伴うガスの発生により内圧が異常上昇し、内圧がアルミニウム板22の破断強度を越えたとき、排出穴20を塞ぐアルミニウム板22は破断するので、異常内圧は外部に排出されて破裂等の危険な状態に陥ることが防止できる。排気穴20内のアルミニウム板22は、図示するように穴内に膨出する球面に形成しておくことにより、圧力が球面に集中するため安定した破断動作が得られる。この異常内圧排出構造は、封口板3上に配置される構成要素により閉塞されない位置に形成される。
【0049】
上記例に示すような異常内圧排出構造は、温度ヒューズ8が溶断し、それでも電池温度が100℃以上である場合に、ガス発生による内圧の上昇によって排出動作が起動するように構成される。従って、復帰式電流規制素子及び非復帰電流遮断素子の動作が正常に働かない状態にあっても、最終の安全機能として動作する。この異常内圧排出構造を設けることによって、PTC素子9、温度ヒューズ8に加えて三重の安全機能を備えたリチウムイオン二次電池を構成することができ、更にはセパレータのシャットダウンによる安全機能が約150℃で働くことから、高エネルギー密度の電池を安全使用することができる。
【0050】
また、以上説明した実施形態は、ニッケルメッキ鋼を用いた電池缶1を扁平な角形に形成した例について説明したが、アルミニウム合金やステンレス鋼を用いることもでき、それらを円筒形に形成した電池に品構成を適用することもできる。
【0051】
以上のように、第1の実施形態に係る非水電解質二次電池は、封口板に形成した凹部内に電池の安全機能となる復帰式電流規制素子や非復帰電流遮断素子などの電池の構成要素を配設することで、電池缶内の極板群と封口板との間にできるデッドスペースとなっていた空間を有効に活用し、電池の体積を増加させることなく安全機能を備えた電池に構成することができる。また、封口板上に配設された構成要素の導体面を正極端子又は負極端子として外部露出させることができ、端子を形成するための部材を設けることなく、部品点数を減らしてコストダウンを図ることができる。
【0052】
(第2の実施形態)
本実施形態は、第1の実施形態と同様に非水電解質二次電池の一例であるリチウムイオン二次電池について説明する。図8は、本実施形態に係るリチウムイオン二次電池100a,100bの外観を示すもので、扁平な角形電池として形成されている。
【0053】
本実施形態では、正極端子、負極端子を含む接続端子が端子板102上に形成している。この端子板は絶縁性の樹脂材料からなり、電池の表面に露出する外面側には、前記接続端子のみが露出している。一方、端子板の内面側には、非復帰式の電流規制素子が形成されている。また、端子板102と電池本体101との間には、復帰式の電流規制素子が配置されている。従って、各電流規制素子が前記端子板と電池本体101の封口板により形成される空間に配置されることになる。
【0054】
以下、本実施形態に係るリチウムイオン二次電池の構成について詳述する。図8において、電池本体101はその正極及び負極に接続された端子板(基板)102と樹脂モールド体103により一体化され、端子板102の外面上に正極端子104及び負極端子105が形成されている。電池100aは、端子板102を電池本体101の封口面と平行に配置し、正極端子104及び負極端子105を上面に設けた構成である。電池100bは、端子板102を電池本体101の側面と平行に配置し、正極端子104及び負極端子105を側面端に設けた構成である。
【0055】
前記電池本体101は、図9に示すように、横断面形状が長円形の有底筒状に形成されたアルミニウム製の電池缶122内に発電要素を収容し、その開口端は封口板123がレーザー溶接されることによって封口されている。電池缶122に接合して電池正極となる封口板123には、その中央に上ガスケット124a及び下ガスケット124bにより絶縁して電池負極となるリベット125が締結されている。また、封口板123の一部は箔状板を貼り合わせたクラッド板に形成されており、クラッド板部分に放出口120aを形成した安全弁120が構成されている。また、封口板123の両側には樹脂モールド体103を電池本体101に係合する一対の係合部材126が形成されている。この係合部材126の形成方法は、封口板123にプレス加工により形成する方法、係合部材126を封口板123に溶接接合する方法のいずれかを採用することができる。尚、封栓127は電解液注入口を閉じる用途に供され、電池缶122内に電解液を注入した後、電解液注入口は封栓127によって閉じられ、封栓127は封口板123に溶接される。
【0056】
上記構成になる電池本体101には、図10に示すように、リベット125に一方の電極板を接合してバイメタル素子110が配設され、バイメタル素子110の他方電極板は封口板123上に貼着された絶縁シート121上に配置され、後述する正極接続リード板(正極接続ライン)108と接合される。このバイメタル素子110は、可動接点構造を有している。この接点に過電流が流れることで発生する過度の温度上昇や高温環境により、接点が反転し、完全に電流を遮断する復帰式電流規制素子である。このバイメタル素子の動作温度は、上述した第1の実施形態と同様に80〜100℃に設定される。この設定は、可動接点を構成する熱膨張係数の異なる2種類の金属の貼り合わせ状態、形状等を制御することで、任意に設定可能である。また、このバイメタル素子は、通電時で10mΩ程度の接触抵抗値を示し、PTC素子に比べて3分の1となることから、電池の負荷を低減する効果を有する。このようなバイメタル素子110は、後述する樹脂の充填成形時に溶融状態にある成形樹脂に接することになる。バイメタル素子110は、成形時の熱負荷に耐えうる特性を有しているが、バイメタル素子110が熱破壊されないように断熱シート116を配設するのが好ましい。また、安全弁120の放出口120aを覆って樹脂シート140が貼着される。
【0057】
端子板102は、図11に示すように、外面側となる一方面に正極端子104及び負極端子105が形成され、電池本体101に対向する内面側となる他方面に電池本体101と接続する正極接続ランド106及び負極接続ランド107が形成されている。前記正極端子104及び負極端子105は板面上に貼り付けられた銅箔をエッチングして形成することができるが、板面に端子部材を取り付けて構成することもできる。
【0058】
また、電池100bのように側面に正極端子104及び負極端子105を設けた構成は、機器側の接続端子と摺動接触させるのに好適な構造なので、板状の端子部材を端子板102に取り付けることが望ましい。更に好ましくは、略コ字状に形成された端子部材を用い、端子板102の内面側と外面側とを接続する構成とすることで、端子板102の両面に接続端子を容易に形成できる。
【0059】
端子板102は、その一方面と他方面との間を図示しないスルーホールにて接続している。また、回路パターンにより要所が接続されている。この回路パターンは、端子板102の内面側、外面側の何れの面に形成することができるが、外面側に形成した場合には接続パターンを絶縁被覆する構成が必要となる。
【0060】
さらに端子板102の内面側には、前記回路パターン、正極及び負極の接続ランドに加えて、パターンヒューズも形成されている。このパターンヒューズは、前記の回路パターンに比べて極細のパターンを端子板102上に形成することで得られる。高温状態になると、パターンヒューズは端子板102上で溶断し、電気的接続が断ち切られる。同様に、過大な電流が付加された場合にも、パターンヒューズに発生する過度の温度上昇により、ヒューズ部分が溶断し、完全に電流を遮断する非復帰式電流遮断素子の特性を示す。本実施形態のように、端子板状にパターンヒューズを形成する構成では、上述したバイメタル素子110と合わせて、電池本体101と端子板102との間に別途配置する必要が無く、構成の簡素化、及びコストの削減を可能にする。また、前記の回路パターンと同時に端子板102上に形成可能なため、製造工程の簡略化にもつながる。
【0061】
前記正極接続ランド106及び負極接続ランド107には、図11(c)に示すように、それぞれ正極接続ラインである正極接続リード板108、負極接続ラインである負極接続リード板109の一端が半田付けにより接合される。この端子板102は、図12に示すように、正極接続リード板108の他端を封口板123に接合し、負極接続リード板109の他端を前記バイメタル素子110の他方電極板に接合して電池本体101に接続される。図8(a)に示した電池100aに構成する場合には、端子板102は図12(a)に示すように封口板123と平行になるように正極接続リード板108及び負極接続リード板109を折り曲げる。図8(b)に示した電池100bに構成する場合には、図12(a)に示すように封口板123に対して直交した状態のままでよい。
【0062】
上記のように電池本体101と端子板102とを接続した後、図13に示すように、電池本体101と端子板102との間に樹脂を充填成形して電池本体101と端子板102とを一体化する。電池本体101はその表面の大部分が金属体であり、充填成形された樹脂モールド体103と接合し難いが、封口板123上に取り付けられた係合部材126が樹脂モールド体103に包み込まれ、そのアンダーカット部分で樹脂モールド体103に係合するので、樹脂モールド体103に対する投錨効果が得られ、樹脂モールド体103は電池本体101に接合した状態となる。端子板102は正極接続リード板108や負極接続リード板109が樹脂モールド体103内に包み込まれて樹脂モールド体103と係合するが、更に係合性を向上させるには、リベット状の突起を設けると、係合部材126と同様の効果が得られる。充填成形される樹脂としては、熱可塑性ポリアミド樹脂が用いられる。この樹脂は、接着性、電気絶縁性、耐薬品性に優れており、さらに190℃〜230度の範囲で成型可能なことから電池本体101、バイメタル素子110等への熱影響を抑制することができる。
【0063】
さらに、端子板102及び電池本体101の樹脂モールド体103と接する面に樹脂及び金属と接着性のよい接着剤を塗布することによって、樹脂モールド体103と電池本体101及び端子板102との接合性を向上させることもできる。この接着剤としては、ポリアミド樹脂のホットメルト接着剤や、エポキシ樹脂系、シリコン変成樹脂系の接着剤が用いられる。
【0064】
このように本実施形態では、樹脂モールド体103により端子板102と電池本体101とを一体化する構成を採用している。この樹脂モールド103による一体化に代えて、予め復帰式電流規制素子や正負極の接続リードを電池本体、及び端子板に接続しておき、電池本体と端子板との間に樹脂枠体を配置し、これらを一体化することで本実施形態と同様の効果を得ることができる。
【0065】
次に、本実施形態に係るリチウムイオン二次電池における非復帰式電流遮断素子、及び復帰式電流規制素子の動作を説明する。
【0066】
上記構成になる電池100a,100bは、正極端子104と負極端子105との間が何らかの原因によって外部短絡された場合に、短絡による過大な短絡電流によってバイメタル素子110の可動接点が温度上昇し、その温度が設定された可動接点の反転温度を越えたとき、通常温度状態では極少な抵抗値であるバイメタル素子110は可動接点の形状変化により電流が遮断される。このため、短絡電流はバイメタル素子110により遮断され、電池が外部短絡により温度上昇して破裂等の事態に陥ることを防止する。
【0067】
また、電池100a,100bが高温環境に曝された際にも、バイメタル素子が温度上昇によって可動接点を反転させるので、高温環境で電池が使用状態となることを防止する。即ち、電池100a,100bはバイメタル素子110の内蔵した安全機能を備えたものとなる。そして、短絡電流や高温環境というバイメタル素子110を作動させる要因が除去され、電池が正常な条件下で使用可能な状態になると、バイメタル素子110の可動接点は導通を再開し、電池は使用可能な状態になる。
【0068】
一方、電池が外部短絡されているにも拘わらず、バイメタル素子110による電流遮断機構が動作しない場合、あるいはバイメタル素子110を破壊するような過大な電流が付加された場合には、これら電流によりパターンヒューズが溶断し、電流が遮断される。また、バイメタル素子110の作動温度よりも高温環境に曝された場合にも、パターンヒューズが溶断し、電池を使用不能な状態とする。
【0069】
さらに電池100a,100bが、前記の各電流規制素子の作動温度を超える異常温度にまで上昇して電池本体101内にガスが発生すると、電池本体101が破裂に至る恐れがあるが、発生したガスの圧力が安全弁120を作動圧力に達すると、安全弁120はその箔状板部分が破断して異常上昇した内圧を外部に放出する。安全弁120の放出口120a上は樹脂シート140により塞がれ、更に樹脂モールド体103で覆われているので、放出口120aから噴出したガスは樹脂シート140及び樹脂モールド体103と電池本体101との界面から外部に放出される。従って、電池本体101が温度上昇によって破裂に至ることは防止され、前記バイメタル素子110、パターンヒューズと共に三重の安全機能が設けられた電池100a,100bに構成することができる。
【0070】
上記のように構成された電池100a、100bは、更に外装被覆を設けることによって外観及び強度の向上を図ることができる。外装被覆は、図13(b)に示すように、正極端子104及び負極端子105上に開口部を形成して端子板102上を被覆し、樹脂モールド体103の側周面を被覆する二次モールド体150と、電池本体101の側周面に巻着した巻着シート151とによるもので、図14に示すような外観の電池100c,100dに仕上げることができる。巻着シート151は、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、及びこれらを含む樹脂等が用いられ、この樹脂に粘着層を付与することで、電池100a、100bに貼付されるものであり、電池の意匠性を向上させる効果が得られる。尚、外装被覆を採用した構成では、端子板102は、正極端子104、負極端子105を露出するように二次モールド体150によって被覆されており、本発明における絶縁部材の機能を奏するものである。
【0071】
【発明の効果】
以上の説明の通り本発明によれば、携帯電子機器等の電源として好適な小型の二次電池内にその安全機能を設けることができ、それを低コストに信頼性を確保して実現することができる。即ち、PTC素子等の復帰式電流規制素子による安全機能により外部短絡等による電池温度の上昇を防止し、これを上回る温度上昇には温度ヒューズ又は形状記憶合金を備えたスイッチ機構である非復帰電流遮断素子による安全機能により電池を二重に保護することができ、しかも、それら安全機能部をデッドスペースとなっていた封口板の電池缶内側に向けた凹部と絶縁部材とによって形成される空間部を有効活用して、電池の体積を増加させることなく配置し、かつ前記凹部に充填した樹脂材料で被覆固定することができ、電池に振動や衝撃が加わったときにも各構成要素が保護され、絶縁性が向上すると同時に熱伝導性がよくなり、安全機能部に対する伝熱性を向上させされる。更に、異常内圧排出手段を併せて設けることにより、三重の安全機能が構成できる。
【図面の簡単な説明】
【図1】第1の実施形態に係る角形のリチウムイオン二次電池の構成を示す外観斜視図。
【図2】第1の実施形態に係る電池の内部構成を示す部分断面図。
【図3】同上構成の(a)はA−A線、(b)はB−B線、(c)はC−C線での矢視断面図。
【図4】同上構成の回路図。
【図5】封口板のプレス加工による形成を示す断面図。
【図6】スクライブによる異常内圧排出手段を設けた電池の斜視図。
【図7】クラッド板を用いた異常内圧排出手段の構成を示す部分断面図。
【図8】第2の実施形態に係る電池の外観を示す斜視図。
【図9】同電池の本体の構成を示す(a)は平面図、(b)は断面図。
【図10】同電池の本体にバイメタル素子を取り付けた状態での(a)は平面図、(b)は断面図。
【図11】端子板の構成を(a)は外面側、(b)は内面側、(c)はリード板取付け状態をそれぞれ示す斜視図。
【図12】端子板の電池本体への取付け状態を示す斜視図。
【図13】端子板と電池本体とを樹脂モールド体で一体化した状態を示す断面図。
【図14】電池の外装被覆を施した状態の電池の斜視図
【図15】従来技術に係る安全構造の例を示す部分断面図。
【符号の説明】
1 電池缶
3 封口板
6 リベット
6a 延出部
8 温度ヒューズ(非復帰式電流遮断素子)
9 PTC素子(復帰式電流規制素子)
9a 下電極
11 絶縁板
11a 正極開口部
11b 負極開口部
12 正極リード
13 負極リード
14 極板群
16 樹脂
100a、100b、100c、100d 電池
101 電池本体
102 端子板(基板)
103 樹脂モールド体
104 正極端子
105 負極端子
116 バイメタル素子
123 封口板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery having a plurality of current regulating / breaking elements having different operating characteristics, and in particular, the battery itself has a function of preventing acceleration of thermal runaway when exposed to a high temperature state. And a non-aqueous electrolyte secondary battery with improved reliability.
[0002]
[Prior art]
A lithium ion secondary battery, which is an example of a non-aqueous electrolyte secondary battery, has a high energy density and uses a flammable organic solvent as an electrolyte. Therefore, safety considerations are more important than aqueous batteries. Become. It is necessary to ensure safety so as not to damage the human body and equipment even when an abnormality occurs for some reason. For example, when a metal piece contacts between the positive and negative terminals of a battery and an external short circuit occurs, an excessive short circuit current flows in a battery with high energy density, and this current generates Joule heat due to the internal resistance. Cause the battery temperature to rise. When the battery reaches a high temperature, the reaction between the positive and negative electrode active materials and the electrolytic solution, the evaporation and decomposition of the electrolytic solution, and the like, the internal pressure of the battery rises rapidly, which may lead to battery explosion or ignition.
[0003]
The cause of the battery being in an abnormal state may be not only the external short circuit as described above but also various factors such as electrical, mechanical, and thermal. Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are provided with a function to prevent the battery from falling into an abnormal state and not to be in a dangerous state even when it goes into an abnormal state. .
[0004]
As an internal function of the battery, the active material of the electrode plate and the electrolytic solution are devised so as not to cause an excessive reaction, and the separator that separates the positive electrode plate and the negative electrode plate has an abnormal battery in the case of a polyolefin microporous film. When the temperature is too high, it softens and closes the pores and prevents the outflow of lithium ions, so it has a shutdown function that suppresses abnormal reactions.
[0005]
In a cylindrical lithium ion secondary battery, as shown in FIG. 15, a ring-shaped PTC (Positive Thermal Coefficient) element 67 is disposed in a sealing portion 62 that seals the opening end of a battery can 61, and a short circuit current or the like. When the excessive current flows, the PTC element 67 has a function of protecting the battery from an external short circuit by restricting the excessive current due to a sudden increase in resistance value due to the self-heating caused by the excessive current. Further, the lower metal thin plate 65 disposed inside the battery can 61 and the upper metal thin plate 66 formed with the bulging portion are welded at the respective center points A, and the internal pressure of the battery is increased as the temperature rises. When the pressure rises abnormally, the bulging part of the upper metal thin plate 66 is reversed by the outward pressing, and the welding at the center point A is released to interrupt the current circuit. When there is a further increase in internal pressure, the upper metal thin plate 66 breaks from the thin easily breakable portion 66a and discharges the internal pressure to the outside. In this configuration, the effects of current regulation, current interruption, and internal pressure discharge are executed step by step.
[0006]
In addition, the lithium ion secondary battery includes a battery pack (see, for example, Patent Document 1) housed in a pack case together with a PTC element and a thermal fuse, and a circuit that forms a battery protection circuit that protects the battery from overcharge and overdischarge. Generally, the battery pack is housed in a pack case together with the substrate. Even when the battery alone is loaded into the device, the PTC element and the battery protection circuit are provided in the connection circuit.
[0007]
The biggest factor that causes the battery to fall into a dangerous state is that the temperature of the battery rises abnormally, and even when the battery pack is configured, the thermal fuse is placed in contact with the battery can, the battery temperature Is detected by a thermistor or the like to control the input / output circuit to be shut off when an abnormal battery temperature is detected. However, since the battery temperature is detected from the outside of the battery, there is a problem that the detection of the abnormal temperature is delayed or the detection accuracy is low. The most preferable treatment is to detect the temperature inside the battery and cope with an abnormally high temperature. In order to achieve this, a sealed battery in which a sealing body with a built-in thermal fuse is arranged in the opening of a battery can has also been proposed (see, for example, Patent Document 2).
[0008]
[Patent Document 1]
JP-A-6-349480
[0009]
[Patent Document 2]
Japanese Patent Laid-Open No. 9-153355
[0010]
[Problems to be solved by the invention]
The progress of downsizing and weight enhancement and higher functionality of mobile phones, PDAs (personal digital assistants) and the like is largely due to the reduction in size and weight of the battery that is the power source and further the increase in capacity. Lithium ion secondary batteries have become mainstream as battery power sources for such portable devices, and have achieved a reduction in size and weight and an increase in capacity. As a lithium ion secondary battery corresponding to a reduction in size and weight of a portable device, a flat rectangular battery having a high space utilization efficiency when loaded in the device is often used.
[0011]
However, since it is difficult to secure a space for providing a discharge valve provided with a PTC element and a current interrupting mechanism as described above in a battery that has been reduced in size or thickness such as a square battery, a battery pack configuration The battery protection circuit and the PTC element are provided outside the battery to prevent the battery from falling into a dangerous state. As described above, even if the temperature state where the battery falls into a dangerous state is detected from the outside of the battery, there is a problem in detection delay and detection accuracy, and the battery operates in accordance with the temperature in the small and thin battery. It is desirable to provide a safety function.
[0012]
In this respect, the configuration in which a thermal fuse is provided inside the battery (described in Patent Document 2) is operated at the temperature in the battery, so that the battery becomes hot due to a short circuit and short-circuits before it bursts or ignites. It is effective for interrupting the current circuit. However, if the fusing temperature of the thermal fuse is set low, the safety is improved, but the battery cannot be used once the thermal fuse is blown. Therefore, the fusing temperature of the thermal fuse is set to a temperature just before reaching a dangerous state, but the battery is damaged at the temperature up to that temperature. Further, since the short-circuit current continues to flow through the battery until the fusing temperature is reached, there is a concern that the internal pressure of the battery will increase due to decomposition of the organic electrolyte or the like.
[0013]
The object of the present invention is to ensure the safety of the battery by operating under a plurality of conditions with different safety functions of the battery, and to apply it to a small and thin battery. Is to provide.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a nonaqueous electrolyte secondary battery according to the present invention has a sealing plate that closes an open end of a battery can containing a power generation element, and exposes the conductive surfaces of a positive electrode terminal and a negative electrode terminal to the outside. A nonaqueous electrolyte secondary battery in which an insulating member is disposed on the sealing plate, and the positive electrode lead and the negative electrode lead drawn from the electrode plate group constituting the power generation element are connected to the positive electrode terminal and the negative electrode terminal, respectively. A positive current connection line and / or a negative connection line, and at least one of the positive connection line and the negative connection line, a resettable current regulating element that regulates a current at a predetermined operating temperature and / or operating current, and a predetermined Operating temperature It is a switch mechanism equipped with a thermal fuse that melts or a shape memory alloy that reverts to a memory shape so as to open the circuit and cut off the current at Non-returnable current interrupt device When, Both of the return-type current regulating element and the non-return-type current interrupting element are connected to the sealing plate. Recessed inside the battery can And insulation When Arranged in the space surrounded by And encased in a resin material filled in the recess. It is characterized by that.
[0015]
According to this configuration, the sealing plate that seals the open end of the battery can Recessed inside the battery can And a space formed by the insulating member exposing the conductor surface of the positive and negative electrode connection terminals, Switch mechanism with thermal fuse or shape memory alloy Non-returnable current interrupting element and resettable current regulating element are arranged And enveloping with the resin material filled in the recess Yes. This effectively utilizes the space that was a dead space do it Equipped with safety function without increasing battery volume In addition, the safety function part is covered and fixed with an insulator, so that each component is protected even when vibration or impact is applied to the battery, improving insulation and improving thermal conductivity. Heat transfer is improved. further, Safety function section A plurality of elements that regulate / shut off current under different temperature / current conditions are provided, both of which are arranged closer to the power generation element than the positive and negative terminals, and only the terminals are exposed on the battery surface. Thus, the safety of the battery alone is greatly improved.
[0019]
In the above configuration, when the operating temperature of the resettable current regulating element is set to 80 to 100 ° C. and the operating temperature of the non-restorable current interrupting element is set to 100 to 130 ° C., the operation by the resettable current regulating means is not performed. However, since the operation by the non-returnable current interrupting means is performed, a double safety function can be configured.
[0020]
In addition, the PTC element in which the resistance value rapidly increases when the return current regulating means is heated to a predetermined operating temperature or a current exceeding a predetermined value is applied is preferable. Can be regulated. Further, it is possible to apply a bimetal that opens a circuit by deformation when an operating temperature or current exceeding a predetermined value is applied. This bimetal cuts off the current during operation and returns to the closed state again when the current / temperature returns to a normal value. Thus, the resettable current regulating element regulates or cuts off the current only when it is in an abnormal state. Furthermore, instead of the PTC element and the bimetal, a switch mechanism using a shape memory alloy or a thermistor element can be used as the resettable current regulating element. The latter thermistor element is an element that regulates current when a predetermined operating temperature is reached.
[0022]
Moreover, by connecting the resettable current regulating element and the non-resettable current interrupting element in series and joining them together, both elements can be handled as a single part, reducing the amount of storage space and connecting man-hours. Can be reduced.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
[0024]
(First embodiment)
This embodiment demonstrates the lithium ion secondary battery which is an example of a nonaqueous electrolyte secondary battery. FIG. 1 shows an external appearance of a lithium ion secondary battery according to this embodiment, which is formed as a flat prismatic battery. In this rectangular battery, a recess (not shown in FIG. 1) is formed on the sealing plate that seals the open end of the battery can toward the inside of the battery can. Further, the insulating plate 11 is disposed on the upper portion of the sealing plate 11, and both the non-returnable current blocking element and the returnable current regulating element are provided in a space surrounded by the concave portion of the sealing plate 11 and the insulating plate 11. It is arranged.
[0025]
In FIG. 1, the lithium ion secondary battery according to the present embodiment has a power generation element housed in a bottomed cylindrical shape made of nickel-plated steel and having an oval cross-sectional shape, and an opening of the battery can Is sealed by a sealing plate 3 to be described later, and a portion constituting the positive electrode terminal (+) and the negative electrode terminal (−) provided on the sealing plate 3 is formed from an opening formed in the insulating plate 11 that closes the sealing plate 3. It is configured to be exposed to the outside. The side peripheral surface of the battery can including the peripheral edge of the insulating plate 11 is covered with an exterior film 28 and used for displaying the manufacturer name, product number, warning to the consumer, and the like.
[0026]
2 and 3 are partial cross-sectional views showing the internal configuration of the lithium ion secondary battery, and FIGS. 3A, 3B, and 3C are respectively the AA line and the BB line shown in FIG. FIG. 4 is a cross-sectional view taken along the line CC, showing the internal structure of the upper part of the battery. In the battery can 1, an electrode plate group 14 in which a positive electrode plate and a negative electrode plate are wound via a separator is accommodated, and the position is fixed by the frame body 2 so as not to move from the accommodation position. The opening end of the battery can 1 is fitted into the opening end of the battery can 1 by fitting a sealing plate 3 having a recess toward the inside of the can, and the periphery of the sealing plate 3 is laser welded to the battery can 1. One opening of the openings formed on both sides of the sealing plate 3 is insulated from the sealing plate 3 by the upper gasket 7 and the lower gasket 5 and has a sealing property. The washer 4 and the lower pole of the PTC element 9 to be described later The plate 9a is attached and the rivet 6 is fixed. The other opening is for injecting the electrolyte into the battery can 1 after the sealing plate 3 is mounted on the battery can 1, and after injection, the plug 10 is inserted as shown in the figure. It is closed by welding the sealing plug 10 to the sealing plate 3.
[0027]
Thus, the rivet 6 is inserted into the opening formed in the sealing plate 3 through the gasket 5 and fixed to the sealing plate 3 by fastening, so that the rivet 3 is placed between the battery can 1 and the sealing plate 3. Can be electrically connected. Furthermore, by connecting the lead drawn from the electrode plate group 14 to the inside of the battery can 1 of the rivet 6, the connection with the lead can be guided onto the sealing plate 3 while maintaining the sealing property. Further, the rivet 6 has an effect of facilitating the connection of leads by forming an extension part for lead connection inside the battery can 1. Furthermore, when the rivet 6 is fastened, if a terminal of a return type current regulating element or a non-returnable type current regulating element, which will be described later, is fastened at the same time, the electrical connection between the element and the rivet 6 is made at the same time. The connection with the lead connected inside is made without using a separate connection means.
[0028]
2 and 3, the positive electrode lead 12 drawn out from the positive electrode plate constituting the electrode plate group 14 is welded to the extending portion 6a of the rivet 6, and the negative electrode lead 13 drawn out from the negative electrode plate is The bottom surface of the sealing plate 3 is welded. In the recess of the sealing plate 3, a PTC element (resettable current regulating element) 9 insulated from the sealing plate 3 by the upper gasket 7 and a resin-molded thermal fuse (non-resettable current interrupting element) 8 are arranged. It is installed. The thermal fuse 8 is formed by resin molding a low melting point alloy that is blown when a predetermined operating temperature is reached, to protect the low melting point alloy and stabilize heat transfer. One end of the low melting point alloy is placed on the upper surface of the resin mold. The other end of the low melting point alloy is connected to the arranged terminal plate 8a and is drawn out as a lead plate 8b outside the resin mold. The lead plate 8b is joined to the upper electrode 9b of the PTC element 9 by soldering.
[0029]
The upper part of the sealing plate 3 is closed by an insulating plate 11 provided with a positive electrode opening 11a and a negative electrode opening 11b as shown in the figure. The terminal plate 8a of the thermal fuse 8 is externally exposed from the positive opening 11a and used for the positive terminal (+), and the top surface of the plug 10 is externally exposed from the negative opening 11b. Used for (-). With this terminal configuration, the terminals are formed without using the members for forming the positive terminal (+) and the negative terminal (−).
[0030]
As described above, the positive electrode plate constituting the electrode plate group 14 is connected to the positive electrode terminal (+) through the positive electrode lead 12, the rivet 6, the PTC element 9, and the thermal fuse 8, and the negative electrode plate is connected to the negative electrode lead 13, the sealing plate 3, The negative electrode terminal (−) is connected through the sealing plug 10. That is, as shown in FIG. 4 as a circuit diagram, a lithium ion secondary battery in which a thermal fuse 8 and a PTC element 9 are connected in series between the positive electrode plate of the electrode plate group 14 and the positive electrode terminal A is configured. Is done.
[0031]
The PTC element 9 is formed by forming a PTC conductive polymer in which conductive carbon is dispersed in an organic polymer material into a flat plate shape, and attaching an upper electrode plate 9b and a lower electrode plate 9a to the upper and lower surfaces thereof. The resistance value between 9b and the lower electrode plate 9a is a low resistance value of 0.1Ω or less in normal times, but when the specified operating temperature (trip temperature) is reached, the resistance value rapidly increases to the fourth power to the sixth power Ω. To do. The thermal fuse 8 is formed by connecting both ends of a low melting point alloy that melts at a predetermined operating temperature to the terminal plate 8a and the lead plate 8b, respectively, and when melted at a predetermined operating temperature, between the terminal plate 8a and the lead plate 8b. Is interrupted.
[0032]
In the above configuration, the operating temperature of the thermal fuse 8 is set to 100 to 130 ° C., and the operating temperature of the PTC element 9, that is, the temperature at which the trip state is set is set to 80 to 100 ° C. When the temperature at which the PTC element 9 is tripped is set to 80 ° C. and the operating temperature of the thermal fuse 8 is set to 100 ° C., a failure of a device in which the lithium ion secondary battery is loaded or a metal object is a positive terminal (+) When an external short circuit such as contact between the negative electrode terminal (−) occurs and the PTC element 9 rises in temperature due to an excessive short circuit current, and the temperature reaches a temperature of 80 ° C. at which the trip state is reached, the resistance value As the current increases rapidly, the short circuit current is limited at once, and can be prevented before the battery reaches a dangerous state due to the short circuit. When the short-circuit state is released, an excessive short-circuit current disappears, so that the temperature of the PTC element 9 is reduced to be out of the trip state, and the resistance value is also lowered, so that the normal battery can be used again.
[0033]
In addition, when a high voltage is applied due to a failure of a device loaded with the lithium ion secondary battery or when reverse charging is performed, the PTC element 9 is dielectrically broken, thereby causing current regulation. When the temperature does not work, when the battery temperature reaches a temperature state of 100 ° C. due to a rapid rise in the battery temperature, the thermal fuse 8 is blown and the transition to the dangerous state in the state where the PTC element 9 cannot operate is prevented. . With such a double safety function, a lithium ion secondary battery with high energy density can be used safely.
[0034]
In addition, when a battery or a device loaded with the battery is left in a car parked under a hot summer sun, the battery temperature may exceed 80 ° C. At this time, since the PTC element 9 is in a trip state and the resistance value increases, the battery cannot be used, and it can be prevented that the battery is used in an abnormal temperature state. When the battery is returned to the normal temperature environment, the PTC element 9 returns from the trip state, so that the normal battery can be used again. When the battery is exposed to a high temperature environment exceeding 100 ° C., the electrolyte solution and the electrode plate active material may be altered by heat, and a normal charge / discharge reaction may not be obtained. When falling into such a high temperature state, the transition to the dangerous state can be prevented by melting the thermal fuse 8 and making the battery unusable.
[0035]
The thermal fuse 8 and the PTC element are configured as one composite part integrated before being mounted on the sealing plate 3, and the shaft portion of the rivet 6 is attached to the hole formed in the lower electrode 9 a of the PTC element 9. By inserting and fastening the rivet 6 to the sealing plate 3 via the upper gasket 7 and the lower gasket 5, the electrical connection and the attachment onto the sealing plate 3 are made.
[0036]
Manufacture of the battery having the above-described configuration can be performed by the following procedure.
First, the upper gasket 7 is disposed in the recess of the sealing plate 3, a composite part in which the thermal fuse 8 and the PTC element 9 are integrated is placed thereon, and the lower gasket 5 is disposed on the bottom surface side of the sealing plate 3. When the lower gasket 5, the upper gasket 7, the lower electrode plate 9 a of the PTC element 9, and the washer 4 are fastened by the rivets 6, further composite parts having safety functions and terminals are formed on the sealing plate 3. Further, the portion of the sealing plate 3 in which the thermal fuse 8 and the PTC element 9 are accommodated is surrounded by the side wall of the concave portion and the protruding portion 33, so that the components arranged there are wrapped in silicon resin or A resin material such as an epoxy resin is filled. Since the resin filling is performed while being surrounded by the side wall and the protruding portion 33, the resin can be filled so as not to adhere to the sealing plug 10 serving as the negative electrode terminal (−). By this resin filling, each constituent element disposed in the recess of the sealing plate 3 is covered and fixed with an insulator, so that each constituent element is protected even when vibration or impact is applied to the battery, improving insulation and heat. The conductivity is improved and the heat transfer to the PTC element 9 and the thermal fuse 8 can be improved.
[0037]
Thus, the positive electrode lead 12 and the negative electrode lead 13 are connected between the sealing plate 3 configured in the composite part and the battery can 1 containing the electrode plate group 14. The positive electrode lead 12 and the negative electrode lead 13 are drawn out from the hole provided in the frame body 2 from the electrode plate group 14 so that the connection work with the sealing plate 3 placed outside the battery can 1 can be easily performed. Has been pulled out for a long time. After the lead connection is made, when the sealing plate 3 is fitted into the opening end of the battery can 1, the positive lead 12 and the negative lead 13 are placed on the frame 2 as shown in FIGS. Folded. Laser welding is performed between the periphery of the sealing plate 3 fitted into the opening end of the battery can 1 and the inner periphery of the battery can 1, and the sealing plate 3 is fixed to the battery can 1.
[0038]
Next, after the electrolyte is injected into the battery can 1 from the opening of the sealing plate 3, the opening 10 is closed by inserting the sealing plug 10 into the opening, and is fixed to the sealing plate 3 by laser welding. Thereafter, when the insulating plate 11 is joined to the sealing plate 3 and the battery can 1 so as to close the top of the sealing plate 3, the terminal plate 8 a of the thermal fuse 8 is exposed to the outside from the positive opening 11 a formed in the insulating plate 11. And the top | upper surface of the sealing plug 10 is exposed outside from the negative electrode opening part 11b, and a positive electrode terminal (+) and a negative electrode terminal (-) are formed. As shown in FIGS. 2 and 3, a step having a reduced thickness is formed around the insulating plate 11, and is insulated by a heat-shrinkable film or a tube outer film 28 as shown by a broken line. It is comprised so that the battery can 1 can be coat | covered including the circumference | surroundings of the board 11, and it forms in the external appearance as shown in FIG. The exterior film 28 can be formed of a resin film such as PET. Further, since the exterior film 28 covers the step of the insulating plate 11, the upper surface of the insulating plate 11 is flush with the exterior film 28 on the step, so that the appearance and the insulation can be improved. it can.
[0039]
As shown in FIGS. 1 and 2, since the positive terminal (+) and the negative terminal (−) are formed at a position biased to one of the top surfaces of the battery, they are reversely loaded into the battery housing space of the device. Can be prevented. In this battery, the connection with the device is made by pressing the probe provided on the device side to the positive electrode terminal (+) and the negative electrode terminal (−), and the shape of the battery is symmetrical, so it is reverse-loaded. However, since the terminal is formed at this biased position, reverse loading can be reliably prevented.
[0040]
In the rectangular battery shown in the present embodiment, conventionally, the opening of the battery can accommodating the power generation element is sealed with a flat sealing plate, and the space between the sealing plate and the electrode plate group is drawn out from the electrode plate group. However, as described above, the opening of the battery can 1 is closed by the sealing plate 3 having the recesses as in the configuration of the present embodiment. Thus, a battery safety mechanism is provided in the concave portion of the sealing plate 3 to effectively utilize the space, and a prismatic lithium secondary battery having a safety function is configured.
[0041]
The sealing plate 3 is formed by drawing a required plate material by press working to form a recess, and then performing outer shape punching into a shape corresponding to the inner diameter of the battery can 1. By changing the press die for performing the outer shape punching process, that is, by changing the shape of the punched shape, it is possible to easily cope with a battery having a short side width different depending on the battery capacity. In the case of a square lithium ion secondary battery, if the width of the short side surface of the battery is increased, the length of the positive and negative electrode plates to be wound can be increased, and the reaction area of the electrode plate group 14 can be increased. A plurality of types of batteries having the same shape but different short side widths and different battery capacities are formed. At this time, in order to manufacture the sealing plate 3 that is prepared for manufacturing the battery for each product type, the mold without the outer shape is prepared without preparing a plurality of molds for manufacturing the sealing plate 3 for each product type. It is possible to correspond to multiple varieties simply by changing.
[0042]
FIG. 5 shows an example of changing the external dimensions of the sealing plate 3 for manufacturing two types of batteries having different short side widths. As shown in FIG. When the concave portion 29 is formed by drawing the plate material 26 with a mold, a flange portion is formed around the concave portion 29. After that, when the width W1 of the short side surface is small as in the battery shown in the present embodiment, the sealing plate 3 formed by punching the flange portion at the closest position outside the rising portion of the recess 29 is formed. As shown in FIG. 5 (b), the battery can 1 fits into the opening of the battery can 1 having a short side surface W1. On the other hand, in the case of a battery in which the width of the short side surface is increased to W2, as shown in FIG. 5C, when the processing position of the outer die is increased, the battery in which the width of the short side surface is increased to W2. It can form in the sealing board 3a corresponding to the can 1a.
[0043]
In each of the embodiments described above, the resettable current regulating element to which the PTC element 9 is applied is deformed to open the contact when the temperature exceeds a predetermined operating temperature, and returns to the original state when the temperature is lowered. It can also be configured by bimetal closing. In addition, the non-returnable current stage element to which the thermal fuse 8 is applied has a switch structure including a shape memory alloy that returns to a memorized shape when the temperature exceeds a predetermined operating temperature, opens a contact, and interrupts the current circuit. Can also be configured.
[0044]
In the configuration of the present embodiment, the thermal fuse 8 and the PTC element 9 are disposed in the positive electrode connection line, but may be disposed in the negative electrode connection line. Further, the thermal fuse 8 and the PTC element 9 can be arranged separately on the positive electrode connection line and the negative electrode connection line. In short, if it is arranged on the input / output line of the battery, the effect is exhibited in the same manner.
[0045]
Further, in addition to the double safety function by the PTC element 9 and the thermal fuse 8 described in each embodiment, an abnormal internal pressure discharge structure that discharges an abnormal internal pressure to the outside when the pressure in the battery can 1 abnormally rises is provided. A triple safety function can be configured. The abnormal internal pressure discharge structure has a configuration using a valve element that operates by internal pressure, a configuration in which the thin plate portion of the clad plate is broken by internal pressure, a portion of the battery can 1 is thinned by scribe or engraving, and the thin portion is broken by internal pressure A configuration can be applied.
[0046]
As shown in FIG. 1, in the lithium ion secondary battery of the present embodiment that is small and thin, it is desirable that the abnormal internal pressure discharge structure has a small space occupancy, and the configuration shown in FIGS. 6 and 7 is preferable. It is.
[0047]
FIG. 6 shows an example of an abnormal internal pressure discharge structure in which a scribe 24 is formed in the body portion of the battery can 1 and the thickness of the battery can 1 is partially thinned by the scribe 24. The scribe 24 is formed in a groove shape so as to reduce the material thickness of the battery can 1 to 5 to 90%. When the internal pressure rises abnormally due to the generation of gas accompanying the temperature rise and the internal pressure exceeds the breaking strength of the battery can 1 by the scribe 24, the battery can 1 breaks from the scribe 24, so the abnormal internal pressure is discharged to the outside and bursts. It is possible to prevent the user from falling into a dangerous state.
[0048]
In FIG. 7, the sealing plate 3 is formed of a clad plate in which an aluminum plate 22 is bonded to a stainless steel plate 21. An exhaust hole 20 is provided in the stainless steel plate 21 at a required position, and the exhaust hole 20 is closed with a thin aluminum plate 22. An example of an abnormal internal pressure discharge structure is shown. When the internal pressure rises abnormally due to the generation of gas due to the temperature rise and the internal pressure exceeds the breaking strength of the aluminum plate 22, the aluminum plate 22 that closes the discharge hole 20 breaks, so the abnormal internal pressure is discharged to the outside and bursts, etc. Can be prevented from falling into a dangerous state. By forming the aluminum plate 22 in the exhaust hole 20 into a spherical surface that swells into the hole as shown in the drawing, the pressure concentrates on the spherical surface, so that a stable breaking operation can be obtained. This abnormal internal pressure discharge structure is formed at a position that is not blocked by the components arranged on the sealing plate 3.
[0049]
The abnormal internal pressure discharge structure as shown in the above example is configured such that when the temperature fuse 8 is blown and the battery temperature is still 100 ° C. or higher, the discharge operation is started by an increase in internal pressure due to gas generation. Therefore, even if the operations of the resettable current regulating element and the non-resettable current interrupting element do not work normally, the resettable current regulating element operates as a final safety function. By providing this abnormal internal pressure discharge structure, a lithium ion secondary battery having a triple safety function in addition to the PTC element 9 and the temperature fuse 8 can be configured, and further, the safety function by the shutdown of the separator is about 150. Since it works at 0 ° C., a battery having a high energy density can be used safely.
[0050]
Moreover, although embodiment described above demonstrated the example which formed the battery can 1 using nickel plating steel in the flat square shape, aluminum alloy and stainless steel can also be used, and the battery which formed them cylindrically The product composition can also be applied to
[0051]
As described above, the non-aqueous electrolyte secondary battery according to the first embodiment has a battery configuration such as a resettable current regulating element and a non-returnable current interrupting element that serve as a battery safety function in a recess formed in a sealing plate. Batteries equipped with safety functions without increasing the volume of the battery by effectively using the space that was a dead space between the electrode plate group and the sealing plate in the battery can by arranging the elements Can be configured. Moreover, the conductor surface of the component arrange | positioned on the sealing board can be exposed outside as a positive electrode terminal or a negative electrode terminal, and it aims at cost reduction by reducing the number of parts, without providing the member for forming a terminal. be able to.
[0052]
(Second Embodiment)
In the present embodiment, a lithium ion secondary battery that is an example of a non-aqueous electrolyte secondary battery will be described in the same manner as in the first embodiment. FIG. 8 shows the external appearance of the lithium ion secondary batteries 100a and 100b according to this embodiment, and is formed as a flat prismatic battery.
[0053]
In the present embodiment, connection terminals including a positive electrode terminal and a negative electrode terminal are formed on the terminal plate 102. This terminal plate is made of an insulating resin material, and only the connection terminal is exposed on the outer surface exposed on the surface of the battery. On the other hand, a non-returnable current regulating element is formed on the inner surface side of the terminal board. Further, a resettable current regulating element is disposed between the terminal plate 102 and the battery body 101. Accordingly, each current regulating element is disposed in a space formed by the terminal plate and the sealing plate of the battery body 101.
[0054]
Hereinafter, the configuration of the lithium ion secondary battery according to the present embodiment will be described in detail. In FIG. 8, the battery body 101 is integrated with a terminal plate (substrate) 102 connected to the positive electrode and the negative electrode by a resin mold body 103, and a positive electrode terminal 104 and a negative electrode terminal 105 are formed on the outer surface of the terminal plate 102. Yes. The battery 100a has a configuration in which the terminal plate 102 is disposed in parallel with the sealing surface of the battery body 101, and the positive terminal 104 and the negative terminal 105 are provided on the upper surface. The battery 100b has a configuration in which the terminal plate 102 is disposed in parallel with the side surface of the battery main body 101, and the positive electrode terminal 104 and the negative electrode terminal 105 are provided at the side surface ends.
[0055]
As shown in FIG. 9, the battery main body 101 houses a power generating element in an aluminum battery can 122 formed in a bottomed cylindrical shape having a cross-sectional shape of an oval shape, and a sealing plate 123 is formed at the open end. Sealed by laser welding. A sealing plate 123 that is joined to the battery can 122 and serves as a battery positive electrode is fastened with a rivet 125 that is insulated by an upper gasket 124a and a lower gasket 124b and serves as a battery negative electrode at the center. A part of the sealing plate 123 is formed on a clad plate to which a foil-like plate is bonded, and a safety valve 120 is formed in which a discharge port 120a is formed in the clad plate portion. A pair of engaging members 126 that engage the resin mold 103 with the battery body 101 are formed on both sides of the sealing plate 123. As a method of forming the engaging member 126, either a method of forming the sealing plate 123 by press working or a method of welding the engaging member 126 to the sealing plate 123 can be employed. The plug 127 is used for closing the electrolyte injection port. After the electrolyte is injected into the battery can 122, the electrolyte injection port is closed by the seal 127, and the plug 127 is welded to the sealing plate 123. Is done.
[0056]
As shown in FIG. 10, the battery main body 101 having the above configuration is provided with a bimetal element 110 by bonding one electrode plate to a rivet 125, and the other electrode plate of the bimetal element 110 is pasted on a sealing plate 123. It arrange | positions on the apply | coated insulating sheet 121, and is joined with the positive electrode connection lead board (positive electrode connection line) 108 mentioned later. This bimetal element 110 has a movable contact structure. This is a return-type current regulating element that completely cuts off the current by reversing the contact due to an excessive temperature rise or high temperature environment caused by an overcurrent flowing through the contact. The operating temperature of this bimetal element is set to 80 to 100 ° C. as in the first embodiment described above. This setting can be arbitrarily set by controlling the bonding state, shape and the like of two types of metals having different thermal expansion coefficients constituting the movable contact. In addition, this bimetal element has a contact resistance value of about 10 mΩ when energized, and is one-third that of the PTC element, and thus has an effect of reducing the load on the battery. Such a bimetal element 110 comes into contact with a molding resin that is in a molten state at the time of filling and molding the resin, which will be described later. The bimetal element 110 has a characteristic capable of withstanding the heat load during molding, but it is preferable to dispose the heat insulating sheet 116 so that the bimetal element 110 is not thermally destroyed. In addition, the resin sheet 140 is attached so as to cover the discharge port 120a of the safety valve 120.
[0057]
As shown in FIG. 11, the terminal plate 102 has a positive electrode terminal 104 and a negative electrode terminal 105 formed on one surface on the outer surface side, and is connected to the battery main body 101 on the other surface on the inner surface facing the battery main body 101. A connection land 106 and a negative electrode connection land 107 are formed. The positive terminal 104 and the negative terminal 105 can be formed by etching a copper foil attached on a plate surface, but can also be configured by attaching a terminal member to the plate surface.
[0058]
Further, since the configuration in which the positive electrode terminal 104 and the negative electrode terminal 105 are provided on the side surfaces as in the battery 100b is a structure suitable for sliding contact with the connection terminal on the device side, a plate-like terminal member is attached to the terminal plate 102. It is desirable. More preferably, by using a terminal member formed in a substantially U shape and connecting the inner surface side and the outer surface side of the terminal plate 102, the connection terminals can be easily formed on both surfaces of the terminal plate 102.
[0059]
The terminal board 102 is connected between its one surface and the other surface through a through hole (not shown). Also, important points are connected by circuit patterns. This circuit pattern can be formed on either the inner surface side or the outer surface side of the terminal board 102. However, when the circuit pattern is formed on the outer surface side, the connection pattern needs to be insulated.
[0060]
Further, in addition to the circuit pattern, positive and negative connection lands, a pattern fuse is also formed on the inner surface side of the terminal board 102. This pattern fuse can be obtained by forming an extremely fine pattern on the terminal board 102 as compared with the circuit pattern. When the temperature becomes high, the pattern fuse is melted on the terminal board 102 and the electrical connection is cut off. Similarly, even when an excessive current is applied, the characteristics of the non-returnable current interrupting element that completely interrupts the current due to the fuse portion being blown by an excessive temperature rise generated in the pattern fuse is shown. In the configuration in which the pattern fuse is formed in a terminal plate shape as in this embodiment, it is not necessary to separately arrange the battery body 101 and the terminal plate 102 together with the bimetal element 110 described above, and the configuration is simplified. And enable cost reduction. Further, since it can be formed on the terminal board 102 simultaneously with the circuit pattern, the manufacturing process is simplified.
[0061]
As shown in FIG. 11C, one end of a positive electrode connection lead plate 108 as a positive electrode connection line and one end of a negative electrode connection lead plate 109 as a negative electrode connection line are soldered to the positive electrode connection land 106 and the negative electrode connection land 107, respectively. Are joined together. As shown in FIG. 12, the terminal plate 102 has the other end of the positive connection lead plate 108 joined to the sealing plate 123 and the other end of the negative connection lead plate 109 joined to the other electrode plate of the bimetal element 110. Connected to the battery body 101. In the case of the battery 100a shown in FIG. 8A, the terminal plate 102 is connected to the sealing plate 123 as shown in FIG. Bend. When the battery 100b shown in FIG. 8B is configured, the battery 100b may remain in a state orthogonal to the sealing plate 123 as shown in FIG.
[0062]
After connecting the battery body 101 and the terminal plate 102 as described above, as shown in FIG. 13, a resin is filled between the battery body 101 and the terminal plate 102 to form the battery body 101 and the terminal plate 102. Integrate. Most of the surface of the battery main body 101 is a metal body, and it is difficult to join the resin molded body 103 that is filled and molded, but the engaging member 126 attached on the sealing plate 123 is wrapped in the resin molded body 103, Since the undercut portion engages with the resin mold body 103, the anchoring effect on the resin mold body 103 is obtained, and the resin mold body 103 is joined to the battery body 101. In the terminal plate 102, the positive electrode connection lead plate 108 and the negative electrode connection lead plate 109 are encased in the resin mold body 103 and engaged with the resin mold body 103. In order to further improve the engagement, a rivet-shaped protrusion is used. When provided, the same effect as the engaging member 126 is obtained. As the resin to be filled and molded, a thermoplastic polyamide resin is used. This resin has excellent adhesion, electrical insulation, and chemical resistance, and can be molded in a range of 190 ° C. to 230 ° C., thereby suppressing the thermal effect on the battery body 101, the bimetal element 110, and the like. it can.
[0063]
Furthermore, the bonding property between the resin mold body 103 and the battery body 101 and the terminal plate 102 is applied to the surface of the terminal plate 102 and the battery body 101 that is in contact with the resin mold body 103 by applying an adhesive having good adhesion to the resin and metal. Can also be improved. As the adhesive, a polyamide resin hot melt adhesive, an epoxy resin-based, or a silicone modified resin-based adhesive is used.
[0064]
Thus, in this embodiment, the structure which integrates the terminal board 102 and the battery main body 101 by the resin mold body 103 is employ | adopted. Instead of integration with the resin mold 103, the return current regulating element and the positive and negative connection leads are connected in advance to the battery main body and the terminal plate, and the resin frame is disposed between the battery main body and the terminal plate. Then, by integrating these, the same effect as in the present embodiment can be obtained.
[0065]
Next, operations of the non-returnable current interrupting element and the returnable current regulating element in the lithium ion secondary battery according to the present embodiment will be described.
[0066]
In the batteries 100a and 100b configured as described above, when the positive electrode terminal 104 and the negative electrode terminal 105 are externally short-circuited for some reason, the temperature of the movable contact of the bimetal element 110 rises due to an excessive short-circuit current due to the short-circuit, When the temperature exceeds the set reversal temperature of the movable contact, the current is interrupted by the change in the shape of the movable contact in the bimetal element 110 which has a minimal resistance value in the normal temperature state. For this reason, the short-circuit current is interrupted by the bimetal element 110, preventing the battery from rising due to an external short-circuit and falling into a situation such as a rupture.
[0067]
In addition, even when the batteries 100a and 100b are exposed to a high temperature environment, the bimetal element inverts the movable contact due to the temperature rise, thereby preventing the battery from being used in a high temperature environment. That is, the batteries 100a and 100b have the safety function built in the bimetal element 110. Then, when the factors for operating the bimetal element 110 such as a short-circuit current and a high temperature environment are removed and the battery becomes usable under normal conditions, the movable contact of the bimetal element 110 resumes conduction, and the battery can be used. It becomes a state.
[0068]
On the other hand, when the current interruption mechanism by the bimetal element 110 does not operate even when the battery is externally short-circuited, or when an excessive current that destroys the bimetal element 110 is added, the pattern is generated by these currents. The fuse blows and the current is cut off. Also, when exposed to a temperature environment higher than the operating temperature of the bimetal element 110, the pattern fuse is blown, making the battery unusable.
[0069]
Further, when the batteries 100a and 100b rise to an abnormal temperature exceeding the operating temperature of each of the current regulating elements and gas is generated in the battery body 101, the battery body 101 may be ruptured. When the pressure reaches the operating pressure of the safety valve 120, the safety valve 120 breaks off the foil-like plate portion and discharges the internal pressure that is abnormally increased to the outside. Since the discharge port 120a of the safety valve 120 is covered with the resin sheet 140 and further covered with the resin mold body 103, the gas ejected from the discharge port 120a is generated between the resin sheet 140, the resin mold body 103, and the battery body 101. Released from the interface to the outside. Therefore, the battery main body 101 is prevented from bursting due to a temperature rise, and the batteries 100a and 100b provided with a triple safety function together with the bimetal element 110 and the pattern fuse can be configured.
[0070]
The batteries 100a and 100b configured as described above can be improved in appearance and strength by further providing an exterior coating. As shown in FIG. 13B, the exterior covering is a secondary covering that covers the terminal plate 102 by forming openings on the positive terminal 104 and the negative terminal 105 and covers the side peripheral surface of the resin mold body 103. By the molded body 150 and the wound sheet 151 wound around the side peripheral surface of the battery body 101, it is possible to finish the batteries 100c and 100d having an appearance as shown in FIG. The winding sheet 151 is made of a polypropylene resin, a polyethylene terephthalate resin, a polycarbonate resin, or a resin containing these, and is attached to the batteries 100a and 100b by applying an adhesive layer to the resin. The effect which improves the designability of is acquired. In the configuration employing the exterior coating, the terminal plate 102 is covered with the secondary mold body 150 so as to expose the positive electrode terminal 104 and the negative electrode terminal 105, and exhibits the function of the insulating member in the present invention. .
[0071]
【The invention's effect】
As described above, according to the present invention, the safety function can be provided in a small-sized secondary battery suitable as a power source for portable electronic devices and the like, and the reliability can be realized at low cost. Can do. That is, the safety function by the resettable current regulating element such as a PTC element prevents the battery temperature from rising due to an external short circuit, etc. Or a switch mechanism with a shape memory alloy The battery can be protected twice by the safety function of the non-return current interrupting element. In addition, these safety function parts are arranged without increasing the volume of the battery by effectively utilizing the space formed by the recess and the insulating member facing the inside of the battery can of the sealing plate that was a dead space. In addition, it can be covered and fixed with a resin material filled in the recesses, and each component is protected even when vibration or impact is applied to the battery, improving insulation and improving thermal conductivity, safety function Heat transfer to the part is improved. Furthermore, a triple safety function can be configured by providing the abnormal internal pressure discharging means together.
[Brief description of the drawings]
FIG. 1 is an external perspective view showing a configuration of a prismatic lithium ion secondary battery according to a first embodiment.
FIG. 2 is a partial cross-sectional view showing the internal configuration of the battery according to the first embodiment.
3A is a cross-sectional view taken along line AA, FIG. 3B is line B-B, and FIG. 3C is line C-C.
FIG. 4 is a circuit diagram of the same configuration.
FIG. 5 is a cross-sectional view showing formation of a sealing plate by press working.
FIG. 6 is a perspective view of a battery provided with an abnormal internal pressure discharging means by scribing.
FIG. 7 is a partial cross-sectional view showing a configuration of an abnormal internal pressure discharging means using a clad plate.
FIG. 8 is a perspective view showing an appearance of a battery according to a second embodiment.
9A is a plan view and FIG. 9B is a cross-sectional view showing the configuration of the main body of the battery.
FIGS. 10A and 10B are a plan view and a cross-sectional view, respectively, illustrating a state in which a bimetal element is attached to the battery body.
11A is a perspective view showing the configuration of a terminal plate, where FIG. 11A is an outer surface side, FIG. 11B is an inner surface side, and FIG.
FIG. 12 is a perspective view showing a state in which the terminal plate is attached to the battery body.
FIG. 13 is a cross-sectional view showing a state in which a terminal plate and a battery body are integrated with a resin mold body.
FIG. 14 is a perspective view of the battery in a state where the battery is covered with an outer sheath.
FIG. 15 is a partial cross-sectional view showing an example of a safety structure according to the prior art.
[Explanation of symbols]
1 Battery can
3 Sealing plate
6 Rivet
6a Extension part
8 Thermal fuse (Non-recoverable current interrupting device)
9 PTC element (Reset type current regulating element)
9a Lower electrode
11 Insulation plate
11a Positive electrode opening
11b Negative electrode opening
12 Positive lead
13 Negative lead
14 plate group
16 resin
100a, 100b, 100c, 100d battery
101 Battery body
102 Terminal board (substrate)
103 Resin molded body
104 Positive terminal
105 Negative terminal
116 Bimetal element
123 Sealing plate

Claims (5)

発電要素を収容した電池缶の開口端を閉塞する封口板を有し、正極端子、負極端子の導体面を外部露出させる絶縁部材を前記封口板の上部に配置してなる非水電解質二次電池であって、前記発電要素を構成する極板群から引き出された正極リード及び負極リードをそれぞれ正極端子及び負極端子に接続する正極接続ライン及び/又は負極接続ラインを備え、前記正極接続ライン、負極接続ラインの少なくとも何れか一方に、所定の動作温度及び/又は動作電流で電流を規制する復帰式電流規制素子と、所定の動作温度で回路を開いて電流を遮断するように、溶断する温度ヒューズ又は記憶形状に戻る形状記憶合金を備えたスイッチ機構である非復帰式電流遮断素子と、が接続され、前記復帰式電流規制素子、非復帰式電流遮断素子の双方が、前記封口板の電池缶内側に向けた凹部と絶縁部材に囲まれる空間部に配設されると共に、前記凹部に充填された樹脂材料により包み込まれてなることを特徴とする非水電解質二次電池。A non-aqueous electrolyte secondary battery having a sealing plate that closes an open end of a battery can containing a power generation element, and an insulating member that exposes a conductor surface of a positive electrode terminal and a negative electrode terminal to the outside is disposed above the sealing plate The positive electrode connection line and / or the negative electrode connection line for connecting the positive electrode lead and the negative electrode lead drawn from the electrode plate group constituting the power generation element to the positive electrode terminal and the negative electrode terminal, respectively, At least one of the connection lines, a resettable current regulating element that regulates the current at a predetermined operating temperature and / or operating current, and a thermal fuse that blows so as to open the circuit and cut off the current at the predetermined operating temperature or a non-return type current blocking device is a switch mechanism provided with a return to the memory shape shape memory alloy, is connected, the return type current regulating element, both non-return type current blocking element, Is disposed in a space portion surrounded by the concave portion and the insulating member toward the battery can inside of Kifu port plate Rutotomoni, non-aqueous electrolyte secondary characterized by comprising encased by the resin material filled in the recess battery. 復帰式電流規制素子の動作温度は80〜100℃であり、非復帰式電流遮断素子の動作温度は100〜130℃である請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the operating temperature of the resettable current regulating element is 80 to 100 ° C., and the operating temperature of the nonresettable current interrupting element is 100 to 130 ° C. 復帰式電流規制素子は、所定の動作温度以上に温度上昇したとき、抵抗値が急増するPTC素子である請求項1又は2に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the resettable current regulating element is a PTC element whose resistance value increases rapidly when the temperature rises to a predetermined operating temperature or higher. 復帰式電流規制素子は、所定の動作温度以上に温度上昇したとき、変形により回路を開くバイメタルである請求項1又は2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the resettable current regulating element is a bimetal that opens a circuit by deformation when the temperature rises to a predetermined operating temperature or higher. 復帰式電流規制素子と非復帰式電流遮断素子とが直列接続されると共に、一体に接合されてなる請求項1〜4のいずれか一項に記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the resettable current regulating element and the nonresettable current interrupting element are connected in series and are integrally joined.
JP2002273249A 2001-09-19 2002-09-19 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4523224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273249A JP4523224B2 (en) 2001-09-19 2002-09-19 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001284860 2001-09-19
JP2001-284860 2001-09-19
JP2002273249A JP4523224B2 (en) 2001-09-19 2002-09-19 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003168419A JP2003168419A (en) 2003-06-13
JP4523224B2 true JP4523224B2 (en) 2010-08-11

Family

ID=26622488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273249A Expired - Fee Related JP4523224B2 (en) 2001-09-19 2002-09-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4523224B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785759B2 (en) * 2006-02-27 2011-10-05 三星エスディアイ株式会社 Secondary battery
US8808883B2 (en) 2007-11-29 2014-08-19 Lg Chem, Ltd. Secondary battery pack of compact structure
KR101087046B1 (en) * 2007-11-29 2011-11-25 주식회사 엘지화학 Battery Pack Employed with Top Cap Mounting PTC Device thereon
KR20150009877A (en) * 2013-07-17 2015-01-27 삼성에스디아이 주식회사 Rechargeable battery
KR101726755B1 (en) * 2014-05-08 2017-04-13 주식회사 엘지화학 Top Plate For Plasmatic Battery And Battery Pack Comprising the Same
CN113270272B (en) * 2021-04-02 2023-03-28 益阳市天成源电子有限公司 Solid-state aluminum electrolytic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328279A (en) * 1991-04-25 1992-11-17 Sanyo Electric Co Ltd Battery device having protecting element
JPH05299206A (en) * 1992-04-23 1993-11-12 Murata Mfg Co Ltd Overvoltage protecting part
JPH07201308A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Sealing plate for sealed battery
JPH08293301A (en) * 1995-04-21 1996-11-05 Wako Denshi Kk Safety device of secondary battery
JPH09251904A (en) * 1996-03-14 1997-09-22 Murata Mfg Co Ltd Electronic component
JPH10144353A (en) * 1996-11-15 1998-05-29 Ngk Insulators Ltd Lithium secondary battery
JPH10214613A (en) * 1997-01-30 1998-08-11 Hitachi Ltd Nonaqueous electrolyte secondary battery and assembled battery using the same
JPH10334883A (en) * 1997-06-04 1998-12-18 Mitsubishi Cable Ind Ltd Safety structure for sealed battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328279A (en) * 1991-04-25 1992-11-17 Sanyo Electric Co Ltd Battery device having protecting element
JPH05299206A (en) * 1992-04-23 1993-11-12 Murata Mfg Co Ltd Overvoltage protecting part
JPH07201308A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Sealing plate for sealed battery
JPH08293301A (en) * 1995-04-21 1996-11-05 Wako Denshi Kk Safety device of secondary battery
JPH09251904A (en) * 1996-03-14 1997-09-22 Murata Mfg Co Ltd Electronic component
JPH10144353A (en) * 1996-11-15 1998-05-29 Ngk Insulators Ltd Lithium secondary battery
JPH10214613A (en) * 1997-01-30 1998-08-11 Hitachi Ltd Nonaqueous electrolyte secondary battery and assembled battery using the same
JPH10334883A (en) * 1997-06-04 1998-12-18 Mitsubishi Cable Ind Ltd Safety structure for sealed battery

Also Published As

Publication number Publication date
JP2003168419A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
KR100867068B1 (en) Non-aqueous electrolytic secondary battery
JP4589596B2 (en) Battery pack
US6861821B2 (en) Battery with resin integrated resin substrate
KR100561308B1 (en) Secondary Battery
CN100474658C (en) Battery pack and manufacturing method thereof
JP4603906B2 (en) Secondary battery
KR100922474B1 (en) Rechageable battery
JP4230747B2 (en) Secondary battery equipped with a thermo protector
EP2180538B1 (en) Protective circuit module and rechargeable battery including the same
JP5504193B2 (en) Secondary battery pack and protection circuit module for secondary battery pack
EP1487033A1 (en) Battery and method of manufacturing the battery
CN109285974B (en) Secondary cell top cap subassembly and secondary cell
JP2011077023A (en) Current breaking element, and secondary battery equipped with the same
JP4298986B2 (en) Nonaqueous electrolyte secondary battery
JP2003051304A (en) Nonaqueous electrolyte secondary battery
US20180219247A1 (en) Short Circuiting Structure For Lithium Secondary Battery Having Excellent Stability Against Overcharge And Pouch Type Lithium Secondary Battery Comprising The Same
JP4523224B2 (en) Nonaqueous electrolyte secondary battery
JP4191469B2 (en) Square battery
JP2003282039A (en) Battery pack
JP4841119B2 (en) Pack battery and manufacturing method thereof
KR100561311B1 (en) Secondary Battery
EP2372827A1 (en) Sencodary battery pack
JP2001283828A (en) Polymer lithium secondary battery
KR100760753B1 (en) Can type rechargeable battery
JP2003282038A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees