JP2004199332A - Hierarchical information management system - Google Patents

Hierarchical information management system Download PDF

Info

Publication number
JP2004199332A
JP2004199332A JP2002366358A JP2002366358A JP2004199332A JP 2004199332 A JP2004199332 A JP 2004199332A JP 2002366358 A JP2002366358 A JP 2002366358A JP 2002366358 A JP2002366358 A JP 2002366358A JP 2004199332 A JP2004199332 A JP 2004199332A
Authority
JP
Japan
Prior art keywords
information
field
inter
producer
hierarchical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002366358A
Other languages
Japanese (ja)
Inventor
Sakae Shibusawa
栄 澁澤
Sunao Kondo
直 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHII SANGYO
Ishii Corp
Original Assignee
ISHII SANGYO
Ishii Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHII SANGYO, Ishii Corp filed Critical ISHII SANGYO
Priority to JP2002366358A priority Critical patent/JP2004199332A/en
Publication of JP2004199332A publication Critical patent/JP2004199332A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hierarchical information management system capable of completing traceability to consumption from information management and production in a small-scale farm. <P>SOLUTION: In this hierarchical information management system 10, in-field unevenness information inside one field A acquired by an in-field information acquisition device 20, inter-field unevenness information between the fields A acquired by an inter-field information acquisition device 30, and inter-producer unevenness information between producers B acquired by an inter-producer information acquisition device 40 are hierarchically related, and are managed in a lump in a hierarchical information management device 50. In the system, based on each piece of information, an in-field map inside one field A is produced in each field A present in a specific area C, and an inter-field map between the fields A and an inter-producer map between the producers B are produced, or necessary information is hierarchically related and is outputted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、例えば小規模農場における情報管理及び生産から消費に到るトレーサビリティに用いられる階層的情報管理システムに関する。
【0002】
【従来の技術】
従来、上述の農産物に関する情報を管理する方法としては、例えば作物収穫機の作物品質計測手段で計測した作物の品質計測情報を、情報出力手段から計測情報収集手段に出力して、計測情報収集手段で収集した各収穫場所に対応する作物の品質計測情報と、その品質計測情報に基づいて、品質マップ作成手段で作成した各収穫場所に対応する作物の地域毎の品質マップと、生産管理情報作成手段で求めた生産者毎の作物の生産管理情報とを出力する特許文献1の作物情報管理システムがある。
【0003】
【特許文献1】
特開平11−53674号公報。
【0004】
【発明が解決しようとする課題】
しかし、上述の作物情報管理システムは、一つの収穫場所における品質のバラツキ及び収穫場所の違いによる品質のバラツキを管理するが、その他の情報、例えば圃場が存在する地域や生産地及び農家間の営農形態や規模、動機等の情報を管理することができない。且つ、大規模農場の場合、図8のイに示すように、栽培作物が単一作物であるケースが多く、圃場内のバラツキのみが管理すべき情報であるので、上述のような作物情報管理システムにより品質のバラツキを管理することができるが、小規模農場の場合、図8のロに示すように、例えば水田や野菜畑、果樹園或いは住居等が一つの農場に含まれるだけでなく、多数の農家が一つの農地を所有及び耕作利用しており、農家間の経営形態や規模、動機、意思が様々である。つまり、圃場内の用途的バラツキのみならず、圃場間の地域的バラツキ及び農家間の営農形態バラツキが同時に存在するため、管理すべき情報が多く、複雑に絡み合っているため、情報管理が難しく、大規模農場における精密農法を、小規模農場に導入することができないという問題点を有している。
【0005】
この発明は上記問題に鑑み、圃場内及び圃場間、生産者間におけるバラツキ情報を階層的に関連付けて階層的情報管理手段で一括管理することにより、小規模農場における情報管理及び生産・流通・消費に到るトレーサビリティを行うことができる階層的情報管理システムの提供を目的とする。
【0006】
【課題を解決するための手段】
この発明は、一つの圃場内における複数の圃場内バラツキ情報を、特定の地域に存在する圃場毎に取得する圃場内情報取得手段と、上記圃場内情報取得手段が取得する圃場内バラツキ情報と対応して、該圃場間における複数の圃場間バラツキ情報を取得する圃場間情報取得手段及び該圃場を管理する生産者間における複数の生産者間バラツキ情報を取得する生産者間情報取得手段と、上記圃場内情報取得手段及び圃場間情報取得手段、生産者間情報取得手段から出力される複数のバラツキ情報を階層的に関連付けて一括管理する階層的情報管理手段とを備えた階層的情報管理システムであることを特徴とする。
【0007】
上述の圃場内バラツキ情報及び生産者間バラツキ情報、圃場間バラツキ情報は、図7及び図8のロに示す階層的構造をなしており、下位階層の多様性により、上位階層のバラツキが必然となる。また、圃場で生産される農産物は、例えば穀類や野菜、果物、お茶、畜産物等で構成することができる。
【0008】
また、圃場内情報取得手段は、例えば土壌を測定する自走式の土壌測定装置(国際公開第01/04627号パンフレットに開示)や農産物の品質を評価及び判定する品質評価装置、農産物と略対応して移動する記録媒体(バーコード)の識別情報を読取る情報読取り装置、農産物の収量及び収穫量を収量測定装置、農産物の生育状態を作物生育測定装置、病害虫の分布及び有無を病害虫測定装置、圃場内の情報を入力する情報端末装置等で構成することができる。
【0009】
また、圃場内情報取得手段及び圃場間情報取得手段、生産者間情報取得手段は、例えば手動操作で入力するパーソナルコンピューターやモバイルPC、携帯電話、インターネット機能を備えたゲーム機器等の情報端末装置で構成することができる。且つ、各種情報を入力する入力手段は、例えばキーボードやマウス、スキャナー、入力ペン、マイク等で構成することができる。
【0010】
且つ、圃場内情報取得手段で取得する複数の圃場内バラツキ情報は、例えば水田や畑地、耕作地、野菜畑、果樹園、牧場、畜産場或いは居住地帯、村落、利用面積等の一つの圃場に含まれる用途別のバラツキ情報で構成することができる。加えて、土壌の性質や形状、面積、土壌肥沃量、土壌水分量、含有成分量、農薬散布量、特定農薬、収穫量、収益、雑草及び病害虫の分布、分散状態、労働力、労働時間、圃場履歴等の情報及び品種名や生産者の名前や生産日(収穫日を含む)、出荷日、生産地環境、気象条件、栽培履歴、植物及び樹木、畜産物の識別情報等の情報で構成することもできる。
【0011】
且つ、圃場間情報取得手段で取得する圃場間バラツキ情報は、例えば圃場が存在する場所や地域、生産地、生育地等のバラツキ情報(分布情報)で構成することができる。また、生産者間情報取得手段で取得する複数の生産者間バラツキ情報は、例えば農家間の経営形態や営農形態、経営内容、規模、動機、意思、経験、規模等のバラツキ情報で構成することができる。加えて、生産者は、例えば一般農家や篤農家、営農集団、農協・生産組合、団体、組織等のバラツキ情報で構成することもできる。
【0012】
また、階層的情報管理手段は、例えばパーソナルコンピューターやホストコンピューター、サーバー或いはCPU及びROM、RAMを備えた制御装置、コンピューター及び制御装置に格納された情報管理ソフト等で構成することができる。且つ、階層的情報管理手段に記憶された圃場内バラツキ情報及び圃場間バラツキ情報、生産者間バラツキ情報を、例えばMOやCD−ROM、メモリーカード、フレキシブルディスク等の記録媒体に記録するか、例えば生産部や流通部、消費部等の取扱い部に設置された情報端末装置に出力するか、情報端末装置から出力される様々なバラツキ情報を階層的情報管理装置に記憶することもできる。
【0013】
つまり、圃場内情報取得手段が取得する一つの圃場内における複数の圃場内バラツキ情報(例えば水田や野菜畑、果樹園或いは住居等の用途別バラツキ情報)と対応して、圃場間情報取得手段が取得する特定の地域に存在する圃場間における複数の圃場間バラツキ情報(例えば地域や生産地、生育地等の農場間バラツキ情報)と、生産者間情報取得手段が取得する生産者間における複数の生産者間バラツキ情報(例えば経営形態や規模、動機、意思等の農家間バラツキ情報)とを、生産・流通・消費において階層的に関連付けて階層的情報管理手段で一括管理すると共に、生産・流通・消費に到るトレーサビリティを行い、必要とする情報を階層的に関連付けて出力する。
【0014】
実施の形態として、上記圃場内情報取得手段が取得する圃場内バラツキ情報の取得位置を検出する取得位置検出手段(例えばGPS、GIS等の位置検出装置)を備えることができる。また、上記圃場内バラツキ情報と対応する圃場内マップを圃場毎に作成し、上記圃場間バラツキ情報と対応する圃場間マップ及び生産者間バラツキ情報と対応する生産者間マップを上記圃場内マップと関連付けて作成するマップ作成機能を、上記階層的情報管理手段に備えることができる。
【0015】
【作用及び効果】
この発明によれば、階層的情報管理システムを構成する圃場内情報取得手段の圃場内バラツキ情報及び圃場間情報取得手段の圃場間バラツキ情報、生産者間情報取得手段の生産者間バラツキ情報を、生産及び流通、消費において階層的に関連付けて階層的情報管理手段により一括管理するので、農産物の種類や収量、分布、生育状況、圃場間及び生産者間の関係を正確に把握することができる。且つ、不良品や特定農薬が一部の農産物に発見された場合、情報経路をさかのぼって原因を究明することができ、栽培方法及び場所、産地、生産者等の特定及び原因の改善が容易であり、生産及び流通、消費の間の信頼が確固としたものとなり、生産・流通・消費に到るトレーサビリティを完成させることができる。
【0016】
【実施例】
この発明の一実施例を以下図面に基づいて詳述する。
図面は、農産物を栽培する圃場内及び圃場間、生産者間における様々なバラツキ情報を一括管理する階層的情報管理システムを示し、図1及び図2に於いて、この階層的情報管理システム10は、圃場A内における圃場内バラツキ情報と、圃場A…間における圃場間バラツキ情報と、生産者B…間における生産者間バラツキ情報とを、生産部及び流通部、消費部において階層的に関連付けて一括管理するものである。
【0017】
上述の圃場A内における圃場内バラツキ情報を取得する圃場内情報取得装置20は、圃場A内の土壌を測定する土壌測定装置21と、農産物Dの品質を評価及び判定する品質評価装置22と、農産物D毎及びその農産物Dを載置する載置体E毎に付設されたバーコードFの識別情報を読取る情報読取り装置23と、農産物Dの収量及び収穫量を測定する収量測定装置24と、農産物Dの生育状態を測定する作物生育測定装置25と、病害虫の分布及び有無を測定する病害虫測定装置26とを備えている。また、上述のバーコードFを、例えば農産物Dを収容する箱体及び袋体、コンテナ等に付設してもよい。
【0018】
且つ、上述の土壌測定装置21で測定した土壌情報及び品質評価装置22で評価した評価情報、情報読取り装置23で読取った識別情報、収量測定装置24で測定した収量情報、作物生育測定装置25で測定した生育情報、病害虫測定装置26で測定した病害虫情報、一つの圃場A内における圃場内バラツキ情報をGPSが検出する位置情報と対応させて、後述する階層的情報管理装置50に送受信する情報通信装置27と、上述の土壌情報及び位置情報、評価情報、識別情報、圃場内バラツキ情報を入力及び出力することができる情報端末装置28とを備えている。
【0019】
前述の土壌測定装置21は、自走式の走行車21cに搭載され、図3に示す圃場A内の土壌面に沿って走行移動するとき、GPSが検出する位置情報と対応して、例えば土壌の性質や形状、面積、土壌肥沃量、土壌水分量、含有成分量、農薬散布量、雑草の分布等を土壌センサー21aで検出及び測定する。
【0020】
且つ、一つの圃場A内に、例えば水田や野菜畑、果樹園或いは住居等が含まれる場合、その圃場A内における例えば位置や面積、用途等の圃場内バラツキ情報を、走行車21cの位置情報と略対応させてGPSで検出するか、後述する情報端末装置28で入力する。
【0021】
且つ、土壌測定装置21に接続された情報通信装置21bは、上述の土壌情報及び位置情報、生産場所及び栽培場所の場所情報、圃場内バラツキ情報を、土壌測定支援装置(図示省略)を介して、階層的情報管理装置50に送信及び記憶する。なお、上述の土壌測定装置21で測定した測定情報を、例えばMOやCD−ROM等の記録媒体に一旦記録し、その記録媒体から階層的情報管理装置50に記憶することもできる。また、土壌測定装置21を、例えば作業者の手で移動させて土壌測定することもできる。
【0022】
前述の品質評価装置22は、撮像カメラ22a及び判定装置22bを備え、人為的又は機械的に収穫される農産物Dの外部項目及び内部項目を撮像カメラ22aで撮像し、その撮像カメラ22aから出力される画像情報と、予め記憶された基準情報とを判定装置22bで比較及び演算して、農産物D全体の品質(例えば色相、損傷、成熟度、大きさ、形状、高さ、幅、体積、偏平度、腐り具合、浮き皮具合、糖酸度、等階級、規格外等の所定項目)を個々に評価及び判定する。
【0023】
前述の情報読取り装置23は、上述の品質評価装置22による評価及び判定と対応して、農産物D自体及び載置体E自体に付設したバーコードFの識別情報を読取るか、その識別情報と対応して、農産物Dの生産場所及び栽培場所等の場所情報を読取ることもできる。且つ、判定装置22bに備えられた収量測定装置24は、上述の品質評価装置22による判定と対応して、一つの圃場A内で収穫される農産物Dの収穫量を計測する。また、品質評価装置22及び情報読取り装置23、収量測定装置24を、上述の走行車21c又はトラクターやヘリコプター等に搭載することもできる。
【0024】
前述の作物生育測定装置25及び病害虫測定装置26は、走行車21cに搭載して移動又は他の移動手段で移動され、GPSが検出する位置情報と対応して、作業者の手及び収穫機で収穫する農産物Dの生育状態を作物生育測定装置25で測定し、病害虫の分布及び有無を病害虫測定装置26で測定する。
【0025】
前述の情報通信装置27は、上述の品質評価装置22に接続され、上述の評価情報及び識別情報を、通信回線(図示省略)を介して、後述する階層的情報管理装置50に送信及びその階層的情報管理装置50に記憶された情報を受信する。
【0026】
前述の情報端末装置28は、無線式及び有線式の通信回線或いはネットワーク60を介して、階層的情報管理装置50に接続され、例えば生産者の名前や生産地、品種名、生産日(収穫日を含む)、出荷日、生産地環境、気象条件、栽培履歴、労働力、労働時間、圃場履歴等の農産物に関連する情報と、上述の土壌測定装置21による測定作業及び品質評価装置22による評価作業に必要な情報と、農産物D毎及び載置体E毎に付設されたバーコードFの情報を入力するか、上述の生産情報及び評価情報、識別情報、場所情報を階層的情報管理装置50に送信及び記憶、読み出すときに操作される。
【0027】
且つ、圃場A内における圃場内バラツキ情報、生産者B…間における生産者間バラツキ情報、圃場A…間における圃場間バラツキ情報を入力及び送信、記憶するときにも操作することができる。
【0028】
前述の圃場A…間における圃場間バラツキ情報を取得する圃場間情報取得装置30は、通信回線(図示省略)を介して、階層的情報管理装置50に接続され、例えば地域や生産地、生育地等の圃場A…間における圃場間バラツキ情報を、前述の圃場内情報取得装置20が取得する様々な情報と対応して入力及び取得すると共に、その取得した情報を、階層的情報管理装置50に送信及び記憶する。
【0029】
前述の生産者B…間における生産者間バラツキ情報を取得する生産者間情報取得装置40は、通信回線(図示省略)を介して、階層的情報管理装置50に接続され、例えば経営形態や規模、動機、意思等の生産者B…間における生産者間バラツキ情報を、前述の圃場内情報取得装置20が取得する様々な情報と対応して入力及び取得すると共に、その取得した情報を、階層的情報管理装置50に送信及び記憶する。また、圃場間バラツキ情報及び生産者間バラツキ情報を、圃場内バラツキ情報が入力及び取得されるまえに記憶してもよい。
【0030】
前述の階層的情報管理装置50は、前述の圃場内情報取得装置20から出力される圃場内バラツキ情報と、圃場間情報取得装置30から出力される圃場A…間の圃場間バラツキ情報と、生産者間情報取得装置40から出力される生産者B…間の生産者間バラツキ情報とを階層的に関連付けて一括管理する。且つ、圃場内情報取得装置20の圃場内バラツキ情報に基づいて、一つの圃場A内における圃場内マップを作成する。且つ、圃場内マップに関連付けて、圃場間情報取得装置30の圃場間バラツキ情報に基づいて、圃場A…間における圃場間マップを作成し、生産者間情報取得装置40の生産者間バラツキ情報に基づいて、生産者B…間における生産者間マップを作成する。且つ、必要とする情報(例えばマップ情報)を階層的に関連付けて出力可能及び読出し可能に記憶する。
【0031】
図示実施例は上記の如く構成するものにして、以下、階層的情報管理システム10により圃場A内及び圃場A…間、生産者B…間における様々なバラツキ情報を一括管理する方法を説明する。
【0032】
先ず、一つの圃場A内において、図1、図2、図3に示すように、圃場内情報取得装置20の土壌測定装置21が搭載された走行車21cを圃場A内の土壌面に沿って矢印方向に走行移動させながら、走行車21cの位置をGPSで検出する。且つ、圃場A内の土壌成分(例えば農薬及び肥料の散布量、濃度等)を土壌センサー21aで検出し、農産物Dの収量及び収穫量を収量測定装置24で測定し、農産物Dの生育状態を作物生育測定装置25で測定し、病害虫の分布及び有無を病害虫測定装置26で測定すると共に、土壌及び生育、収量、病害虫等の測定位置を、走行車21cの位置情報と略対応させてGPSで検出する。
【0033】
且つ、圃場A内の農産物Dを、作業者の手で収穫及び自走式の収穫機(図示省略)で収穫するとき、農産物Dの収穫位置及び収穫場所、その他の収穫に関する情報を、走行車21cの位置情報と対応させてGPSで検出すると共に、農産物Dの品質を品質評価装置22で評価及び判定し、その判定結果と対応して農産物D自体及び載置体E自体に付設されたバーコードFの識別情報を情報読取り装置23で読取る。
【0034】
一つの圃場A内に、例えば水田や野菜畑、果樹園或いは住居等が含まれる場合、圃場A内の土壌を測定及び農産物Dを収穫するとき、その圃場A内における圃場内バラツキ情報を、走行車21cの位置情報と略対応させてGPSで検出する。且つ、情報通信装置21b,27から出力される測定情報に基づいて、一つの圃場A内における土壌及び生育、収量、病害虫、農薬、肥料等の分布及び散布マップを階層的情報管理装置50で作成する。上述と同様にして、図4に示すように、一つの地域Cに存在する圃場A…毎に圃場内マップを作成及び記憶する。
【0035】
且つ、圃場内情報取得装置20が取得する一つの圃場A内における圃場内バラツキ情報と対応して、圃場間情報取得装置30が取得する圃場A…間における圃場間バラツキ情報と、生産者間情報取得装置40が取得する生産者B…間における生産者間バラツキ情報とを階層的に関連付けて階層的情報管理装置50に送信及び記憶する。
【0036】
一方、圃場内情報取得装置20の圃場内バラツキ情報及び圃場間情報取得装置30の圃場間バラツキ情報、生産者間情報取得装置40の生産者B…間の生産者間バラツキ情報を階層的に関連付けて階層的情報管理装置50で一括管理すると共に、その階層的関連情報に基づいて、一つの圃場A内における圃場内マップを、特定の地域Cに存在する圃場A…毎に作成すると共に、その圃場内マップと関連付けて、圃場A…間における圃場間マップ及び生産者B…間における生産者間マップを作成し、読出し可能に記憶するので、各情報に対応したマップを確認するだけで、農産物Dの種類や収量、分布、生育状況、圃場A…間及び生産者B…間の関係を一目で把握することができる。
【0037】
図5、図6は、農薬・肥料の階層的情報を管理する方法の一例を示し、産地(圃場Aを含む)で栽培する主要農産物Dが決まれば、おのずと利用可能な特定の農薬及び肥料が決まるので、産地で特定の農薬及び肥料等のリストを作成する。且つ、農協やディーラが扱う農薬及び肥料の仕入れリストや販売リスト(顧客リスト)を作成すれば、その地域において利用可能な潜在的な農薬散布量及び肥料散布量を推定することができる。
【0038】
且つ、農薬及び肥料の購入リストを農営集団レベルで管理すれば、潜在的に使用可能量が把握できる。個々の農家レベルの在庫管理データから、実際に使用された農薬及び肥料の量を確定することができる。
【0039】
上述の検出情報及び測定情報に基づいて、階層的情報管理装置50が作成する圃場散布マップには、農薬及び肥料の種類や濃度、作業時刻、地番、所有者、散布濃度、散布量、作物、場所毎等の可変散布データが、農薬及び肥料を散布する散布機61に記録されるので、実際に作物に付着及び吸収された農薬散布量及び肥料散布量が推定できる。且つ、使用された農薬及び肥料がわかっていれば、農薬及び肥料の散布量をチェックする作業が簡単且つ容易であり、作業が迅速且つ確実に行える。
【0040】
且つ、特定農薬・肥料が流通部及び消費部、評価部(選果部)で検出された場合、階層的情報管理システム10の情報経路をさかのぼって原因を究明することができ、一部の農産物Dを収穫及び流通、消費において廃棄又は破棄するので、貯蔵スペースが小さくて済み、生産者Bに与える経済的な損失を最小限に抑えることができる。
【0041】
以上のように、階層的情報管理システム10を構成する圃場内情報取得装置20の圃場内バラツキ情報及び圃場間情報取得装置30の圃場間バラツキ情報、生産者間情報取得装置40の生産者間バラツキ情報を、生産及び流通、消費において階層的に関連付けて階層的情報管理装置50により一括管理するので、農産物Dの生産状況及び分布状況、圃場A…間及び生産者B…間の関係を正確に把握できる。且つ、不良品や特定農薬が一部の農産物Dに発見された場合、情報経路をさかのぼって原因を究明することができ、栽培方法及び場所、産地、生産者等の特定及び原因の改善が容易であり、生産及び流通、消費の間の信頼が確固としたものとなり、安心及び安全な農産物Dを生産することができ、生産から消費に到るトレーサビリティを完成させることができる。
【0042】
且つ、情報の整合性及び信頼性が高く、小規模農場における精密農法に導入して生産性及び収益性の向上を図ることができると共に、農産物Dの品質管理及び情報管理が簡単且つ容易に行え、多品種少量高品質の生産及び消費体系に対応することができる。
【図面の簡単な説明】
【図1】階層的情報管理システムの構成を示す説明図。
【図2】圃場内における農産物の測定方法を示す説明図。
【図3】圃場内における走行車の移動経路を示す平面図。
【図4】一つの地域に存在する圃場の分布状態を示す平面図。
【図5】農薬・肥料の階層的情報管理例を示す説明図。
【図6】システム全体のトレーサビリティ管理を示す説明図。
【図7】圃場内及び圃場間、生産者間の階層構造を示す説明図。
【図8】大規模農場(イ)及び小規模農場(ロ)の階層構造を示す斜視図。
【符号の説明】
A…圃場
B…生産者
C…地域
D…農産物
10…階層的情報管理システム
20…圃場内情報取得装置
21…土壌測定装置
21b,27…情報通信装置
22…品質評価装置
23…情報読取り装置
24…収量測定装置
25…作物生育測定装置
26…病害虫測定装置
28…情報端末装置
30…圃場間情報取得装置
40…生産者間情報取得装置
50…階層的情報管理装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hierarchical information management system used for, for example, information management and traceability from production to consumption on a small farm.
[0002]
[Prior art]
Conventionally, as a method of managing the information on the above-mentioned agricultural products, for example, the quality measurement information of the crop measured by the crop quality measurement means of the crop harvester is output from the information output means to the measurement information collection means, and the measurement information collection means The quality measurement information of the crop corresponding to each harvest location collected in the above, the quality map for each region of the crop corresponding to each harvest location created by the quality map creating means based on the quality measurement information, and the production management information creation There is a crop information management system disclosed in Patent Document 1 which outputs the crop management information of each crop obtained by means of a producer.
[0003]
[Patent Document 1]
JP-A-11-53674.
[0004]
[Problems to be solved by the invention]
However, the above-described crop information management system manages the quality variation at one harvest location and the quality variation due to the difference of the harvest location. However, other information, such as the area where the field exists, the production area, and the farming between farmers. Information such as form, scale, and motive cannot be managed. In addition, in the case of a large-scale farm, as shown in FIG. 8A, the cultivated crop is often a single crop, and only the variation in the field is information to be managed. Although the quality can be controlled by the system, in the case of a small-scale farm, as shown in FIG. 8B, for example, not only a paddy field, a vegetable field, an orchard or a house is included in one farm, Many farmers own and cultivate and use one farmland, and the management form, scale, motivation, and intention among the farmers vary. In other words, not only the application variation in the field, but also the regional variation between the fields and the farming mode variation between the farmers exist at the same time, so there is a lot of information to be managed, and it is intertwined in a complicated manner, so that information management is difficult, The problem is that precision farming on large farms cannot be introduced on small farms.
[0005]
In view of the above problems, the present invention relates to information management and production / distribution / consumption on a small farm by collectively managing the variation information in a field, between fields, and between producers and managing them collectively by a hierarchical information management means. The purpose of the present invention is to provide a hierarchical information management system capable of performing traceability up to.
[0006]
[Means for Solving the Problems]
The present invention relates to in-field information acquiring means for acquiring a plurality of in-field variation information in one field for each field existing in a specific area, and correspondence with in-field variation information acquired by the in-field information acquiring means. And an inter-field information obtaining means for obtaining a plurality of inter-field variance information between the fields, and an inter-producer information obtaining means for obtaining a plurality of inter-producer variability information among producers managing the fields, A hierarchical information management system including a field information acquisition unit, an inter-field information acquisition unit, and a hierarchical information management unit that collectively manages a plurality of variation information output from the inter-producer information acquisition unit in a hierarchical manner. There is a feature.
[0007]
The above-mentioned in-field variation information, inter-producer variation information, and inter-field variation information have a hierarchical structure as shown in FIG. 7 and FIG. 8. Due to the diversity of the lower hierarchy, the variation of the upper hierarchy is inevitable. Become. Agricultural products produced in a field can be composed of, for example, cereals, vegetables, fruits, tea, livestock products, and the like.
[0008]
Further, the in-field information acquisition means includes, for example, a self-propelled soil measurement device for measuring soil (disclosed in WO 01/04627), a quality evaluation device for evaluating and determining the quality of agricultural products, An information reading device for reading identification information of a recording medium (barcode) that moves by moving, a yield measuring device for measuring the yield and yield of agricultural products, a crop growth measuring device for measuring the growing state of agricultural products, a pest measuring device for measuring the distribution and presence of pests, It can be constituted by an information terminal device or the like for inputting information in the field.
[0009]
Further, the in-field information obtaining means, the inter-field information obtaining means, and the inter-producer information obtaining means are, for example, information terminals such as personal computers, mobile PCs, mobile phones, and game machines having an Internet function, which are manually input. Can be configured. The input means for inputting various information can be constituted by, for example, a keyboard, a mouse, a scanner, an input pen, a microphone, and the like.
[0010]
In addition, the plurality of in-field variation information acquired by the in-field information acquisition unit is, for example, a paddy field, an upland field, a cultivated area, a vegetable field, an orchard, a ranch, a livestock farm or a residential area, a village, a utilization area, or the like. It can be configured with the variation information for each use included. In addition, the nature and shape of the soil, area, soil fertility, soil water content, component content, pesticide application rate, specific pesticides, harvest, revenue, distribution of weeds and pests, dispersal state, labor, working hours, Consists of information such as field history, varietal name, producer name, production date (including harvest date), shipping date, production area environment, weather conditions, cultivation history, identification information of plants and trees, livestock products, etc. You can also.
[0011]
In addition, the inter-field variation information acquired by the inter-field information acquiring means can be constituted by, for example, variation information (distribution information) such as a place or an area where the field exists, a production place, a growing place, and the like. In addition, the plurality of inter-producer variation information acquired by the inter-producer information acquiring means may include, for example, variation information such as management form and farming form, management content, scale, motive, intention, experience, scale, etc. among farmers. Can be. In addition, the producer can be composed of variation information of, for example, general farmers, vulnerable farmers, farming groups, agricultural cooperatives / production associations, groups, organizations, and the like.
[0012]
Further, the hierarchical information management means can be constituted by, for example, a personal computer, a host computer, a server or a control device having a CPU, a ROM, and a RAM, and information management software stored in the computer and the control device. In addition, whether the in-field variation information, inter-field variation information, and inter-producer variation information stored in the hierarchical information management means is recorded on a recording medium such as an MO, a CD-ROM, a memory card, a flexible disk, or the like. The information may be output to an information terminal device installed in a handling unit such as a production unit, a distribution unit, or a consumption unit, or various variation information output from the information terminal device may be stored in a hierarchical information management device.
[0013]
In other words, the inter-field information acquisition means corresponds to the plurality of in-field variation information (for example, variation information for each application such as a paddy field, a vegetable field, an orchard, or a house) in one field acquired by the in-field information acquisition means. A plurality of inter-field variability information (for example, inter-farm variability information such as an area, a production area, and a growing area) between fields existing in a specific area to be acquired, and a plurality of inter-producer information acquired by the inter-producer information acquisition means. Information on inter-producer variation (eg, information on inter-farm variation in management form, scale, motivation, intention, etc.) is hierarchically related in production, distribution, and consumption, and is managed collectively by hierarchical information management means.・ Perform traceability to consumption, and hierarchically associate and output necessary information.
[0014]
As an embodiment, an acquisition position detection unit (for example, a position detection device such as GPS or GIS) that detects an acquisition position of the in-field variation information acquired by the in-field information acquisition unit can be provided. Further, an in-field map corresponding to the in-field variation information is created for each field, and an inter-field map corresponding to the inter-field variation information and an inter-producer map corresponding to the inter-producer variation information are referred to as the in-field map. A map creation function for creating the association can be provided in the hierarchical information management means.
[0015]
[Action and effect]
According to the present invention, the in-field variation information of the in-field information acquisition means constituting the hierarchical information management system, the inter-field variation information of the inter-field information acquisition means, the inter-producer variation information of the inter-producer information acquisition means, Since production, distribution, and consumption are hierarchically related and collectively managed by the hierarchical information management means, the type, yield, distribution, growth status, and relationship between fields and producers of agricultural products can be accurately grasped. In addition, when defective products or specified pesticides are found in some agricultural products, it is possible to trace the information route and investigate the cause, and it is easy to identify the cultivation method and place, production area, producer, etc., and to improve the cause. Yes, the trust between production, distribution and consumption is firm, and traceability to production, distribution and consumption can be completed.
[0016]
【Example】
An embodiment of the present invention will be described below in detail with reference to the drawings.
The drawings show a hierarchical information management system that collectively manages various types of variation information in a field where farm products are cultivated, between fields, and between producers. In FIGS. 1 and 2, the hierarchical information management system 10 , The intra-field variation information in the field A, the inter-field variation information in the fields A,..., And the inter-producer variation information in the producers B,... They are managed collectively.
[0017]
The in-field information acquisition device 20 that acquires the in-field variation information in the above-described field A includes a soil measurement device 21 that measures soil in the field A, a quality evaluation device 22 that evaluates and determines the quality of the agricultural product D, An information reading device 23 that reads identification information of a barcode F attached to each agricultural product D and each mounting body E on which the agricultural product D is mounted, a yield measuring device 24 that measures the yield and the yield of the agricultural product D, A crop growth measuring device 25 for measuring the growth state of the agricultural product D and a pest measuring device 26 for measuring the distribution and presence or absence of the pest are provided. Further, the above-described barcode F may be attached to a box, a bag, a container, or the like that stores the agricultural product D, for example.
[0018]
In addition, the soil information measured by the above-mentioned soil measuring device 21 and the evaluation information evaluated by the quality evaluating device 22, the identification information read by the information reading device 23, the yield information measured by the yield measuring device 24, and the crop growth measuring device 25 Information communication for transmitting and receiving the measured growth information, the pest information measured by the pest measuring device 26, and the in-field variation information in one field A to the hierarchical information management device 50 described below, in association with the position information detected by the GPS. An information terminal device 28 capable of inputting and outputting the above-mentioned soil information and position information, evaluation information, identification information, and in-field variation information is provided.
[0019]
The above-described soil measurement device 21 is mounted on a self-propelled traveling vehicle 21c, and travels along a soil surface in a field A shown in FIG. The properties, shape, area, soil fertility, soil moisture, content of component, amount of pesticide applied, weed distribution, etc. are detected and measured by the soil sensor 21a.
[0020]
Further, when one field A includes, for example, a paddy field, a vegetable field, an orchard, a house, or the like, the in-field variation information such as the position, the area, and the use in the field A is determined by the position information of the traveling vehicle 21c. Is detected by GPS in approximately correspondence with the above, or is input by the information terminal device 28 described later.
[0021]
The information communication device 21b connected to the soil measurement device 21 transmits the above-described soil information and position information, production site and cultivation site location information, and field variation information via a soil measurement support device (not shown). , Transmitted to the hierarchical information management device 50 and stored. The measurement information measured by the above-described soil measurement device 21 may be temporarily recorded on a recording medium such as an MO or a CD-ROM, and stored in the hierarchical information management device 50 from the recording medium. Further, the soil measurement device 21 can be moved by, for example, an operator's hand to measure the soil.
[0022]
The above-described quality evaluation device 22 includes an imaging camera 22a and a determination device 22b, and captures an external item and an internal item of the agricultural product D that is artificially or mechanically harvested with the imaging camera 22a, and is output from the imaging camera 22a. The image information and the reference information stored in advance are compared and calculated by the determination device 22b, and the quality (e.g., hue, damage, maturity, size, shape, height, width, volume, flatness, etc.) Degree, rotting degree, floating skin degree, sugar acidity, grade, non-standard, etc.) are individually evaluated and judged.
[0023]
The information reading device 23 reads the identification information of the barcode F attached to the agricultural product D itself and the mounting body E itself in response to the evaluation and determination by the quality evaluation device 22 described above, or corresponds to the identification information. Then, the location information such as the production place and the cultivation place of the agricultural product D can be read. In addition, the yield measuring device 24 provided in the determining device 22b measures the yield of the agricultural product D that is harvested in one field A in response to the determination by the quality evaluating device 22 described above. Further, the quality evaluation device 22, the information reading device 23, and the yield measuring device 24 can be mounted on the traveling vehicle 21c, the tractor, the helicopter, or the like.
[0024]
The above-mentioned crop growth measuring device 25 and pest measuring device 26 are mounted on the traveling vehicle 21c and are moved or moved by other moving means, and correspond to the position information detected by the GPS, and are moved by the worker's hand and the harvester. The growing state of the harvested agricultural product D is measured by the crop growth measuring device 25, and the distribution and presence or absence of the pests are measured by the pest measuring device 26.
[0025]
The above-described information communication device 27 is connected to the above-described quality evaluation device 22, transmits the above-described evaluation information and identification information to a hierarchical information management device 50 described below via a communication line (not shown), The information stored in the strategic information management device 50 is received.
[0026]
The information terminal device 28 is connected to the hierarchical information management device 50 via a wireless or wired communication line or a network 60. For example, the name of the producer, the place of production, the type of product, the date of production (the date of harvest) ), Information related to agricultural products such as shipping date, production location environment, weather conditions, cultivation history, labor force, working hours, field history, etc., and measurement work by the above-described soil measurement device 21 and evaluation by the quality evaluation device 22 Information necessary for the operation and information of the barcode F attached to each agricultural product D and each mounting body E are input, or the above-mentioned production information, evaluation information, identification information, and location information are stored in the hierarchical information management device 50. It is operated when sending, storing, and reading.
[0027]
In addition, the operation can be performed when inputting, transmitting, and storing the in-field variation information in the field A, the inter-producer variation information between the producers B, and the inter-field variation information in the fields A,.
[0028]
The inter-field information acquisition device 30 for acquiring inter-field variation information between the above-described fields A is connected to the hierarchical information management device 50 via a communication line (not shown). And the like, and inputs and obtains the inter-field variation information between the fields A ... in correspondence with the various information obtained by the above-mentioned in-field information obtaining apparatus 20, and transmits the obtained information to the hierarchical information management apparatus 50. Send and store.
[0029]
The inter-producer information acquisition device 40 that acquires the inter-producer variation information among the producers B is connected to a hierarchical information management device 50 via a communication line (not shown). , Motives, intentions, etc., between the producers B... Are input and obtained in correspondence with the various information obtained by the above-mentioned in-field information obtaining apparatus 20, and the obtained information is stored in a hierarchy. The information is transmitted and stored in the information management device 50. Further, the inter-field variation information and the inter-producer variation information may be stored before the intra-field variation information is input and acquired.
[0030]
The above-described hierarchical information management device 50 includes the in-field variation information output from the in-field information acquisition device 20, the inter-field variation information between fields A... Output from the inter-field information acquisition device 30, .. Output from the inter-company information acquiring device 40 and collectively manages the inter-producer variation information in a hierarchical manner. In addition, an in-field map in one field A is created based on the in-field variation information of the in-field information acquisition device 20. In addition, an inter-field map between the fields A is created based on the inter-field variation information of the inter-field information acquisition device 30 in association with the in-field map, and is used as the inter-producer variation information of the inter-producer information acquisition device 40. , A producer-to-producer map among producers B. In addition, necessary information (for example, map information) is hierarchically related and stored so as to be outputable and readable.
[0031]
The illustrated embodiment is configured as described above, and a method of collectively managing various variation information within the field A, between the fields A, and between the producers B by the hierarchical information management system 10 will be described below.
[0032]
First, in one field A, as shown in FIGS. 1, 2, and 3, the traveling vehicle 21 c on which the soil measurement device 21 of the in-field information acquisition device 20 is mounted is moved along the soil surface in the field A. While moving in the direction of the arrow, the position of the traveling vehicle 21c is detected by GPS. In addition, soil components in the field A (for example, the application amount and concentration of the pesticide and fertilizer) are detected by the soil sensor 21a, the yield and the yield of the agricultural product D are measured by the yield measuring device 24, and the growing state of the agricultural product D is measured. The crop growth measurement device 25 measures the distribution and presence or absence of the pests and the pest measurement device 26, and the measurement positions of the soil, the growth, the yield, the pests, and the like substantially correspond to the position information of the traveling vehicle 21c by GPS. To detect.
[0033]
In addition, when the agricultural product D in the field A is harvested by the operator's hand and harvested by a self-propelled harvester (not shown), the harvesting position and the harvesting location of the agricultural product D, and other information related to harvesting are transmitted to the traveling vehicle. In addition to detecting by GPS in association with the position information of 21c, the quality of the agricultural product D is evaluated and determined by the quality evaluation device 22, and the bar attached to the agricultural product D itself and the mounting body E itself in accordance with the determination result. The identification information of the code F is read by the information reading device 23.
[0034]
When one field A includes, for example, a paddy field, a vegetable field, an orchard, a house, or the like, when measuring the soil in the field A and harvesting the agricultural product D, the information on the field variation in the field A is run. It is detected by the GPS substantially in correspondence with the position information of the vehicle 21c. Further, based on the measurement information output from the information communication devices 21b and 27, the hierarchical information management device 50 creates a distribution map and a distribution map of soil, growth, yield, pests, pesticides, fertilizers, and the like in one field A. I do. In the same manner as described above, as shown in FIG. 4, an in-field map is created and stored for each of the fields A in one area C.
[0035]
In addition, in correspondence with the in-field variation information in one field A acquired by the in-field information acquiring device 20, the inter-field variation information between the fields A ... acquired by the inter-field information acquiring device 30 and the inter-producer information The information is obtained and transmitted to the hierarchical information management device 50 in a hierarchically related manner.
[0036]
On the other hand, the in-field variation information of the in-field information acquiring device 20, the inter-field variation information of the inter-field information acquiring device 30, and the inter-producer variation information among the producers B ... of the inter-producer information acquiring device 40 are hierarchically related. The hierarchical information management device 50 collectively manages the fields, and creates an in-field map in one field A for each field A in a specific area C based on the hierarchical related information. A field-to-field map between fields A ... and a producer-to-producer map between producers B ... are created and stored in a readable manner in association with the in-field map. It is possible to grasp at a glance the type, yield, distribution, growth status, and the relationship between the fields A ... and the producers B ... of the D.
[0037]
5 and 6 show an example of a method for managing hierarchical information of pesticides and fertilizers. When a main agricultural product D to be cultivated in a production area (including a field A) is determined, a specific pesticide and fertilizer that can be naturally used is naturally determined. As it is decided, make a list of specific pesticides and fertilizers in the production area. In addition, if a stock list and a sales list (customer list) of pesticides and fertilizers handled by agricultural cooperatives and dealers are created, a potential pesticide spray amount and fertilizer spray amount that can be used in the area can be estimated.
[0038]
In addition, if the purchase list of pesticides and fertilizers is managed at the level of the farming group, the potential use amount can be grasped. From the stock management data at the individual farm level, the amounts of pesticides and fertilizers actually used can be determined.
[0039]
Based on the above-described detection information and measurement information, the field application map created by the hierarchical information management device 50 includes the types and concentrations of pesticides and fertilizers, work time, lot number, owner, application concentration, application amount, crops, Since the variable spray data for each place is recorded in the sprayer 61 for spraying the pesticide and the fertilizer, it is possible to estimate the spray amount of the pesticide and the fertilizer that are actually attached to and absorbed by the crop. In addition, if the used pesticides and fertilizers are known, the operation of checking the applied amount of the pesticides and fertilizers is simple and easy, and the operation can be performed quickly and reliably.
[0040]
In addition, when a specific pesticide / fertilizer is detected in the distribution department, the consumption department, and the evaluation department (fruit sorting department), the cause can be traced back to the information route of the hierarchical information management system 10 and a part of the agricultural products can be investigated. Since D is discarded or discarded during harvesting, distribution, and consumption, the storage space can be reduced, and the economic loss to producer B can be minimized.
[0041]
As described above, the in-field variation information of the in-field information acquisition device 20 constituting the hierarchical information management system 10, the inter-field variation information of the inter-field information acquisition device 30, and the inter-producer variation of the inter-producer information acquisition device 40. Since information is hierarchically related to production, distribution, and consumption and managed collectively by the hierarchical information management device 50, the production status and distribution status of the agricultural products D, the relationships between the fields A ... and the relationships between the producers B ... can be accurately determined. I can understand. In addition, when a defective product or a specific pesticide is found in some agricultural products D, the cause can be determined by tracing the information route, and it is easy to identify the cultivation method and place, the production area, the producer, etc., and to improve the cause. Thus, the reliability between production, distribution, and consumption is firm, and a safe and secure agricultural product D can be produced, and traceability from production to consumption can be completed.
[0042]
In addition, the consistency and reliability of information is high, and it is possible to improve productivity and profitability by introducing the method to precision farming on small-scale farms, and quality and information management of agricultural products D can be easily and easily performed. It can respond to high-mix, small-quantity, high-quality production and consumption systems.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a hierarchical information management system.
FIG. 2 is an explanatory diagram showing a method for measuring agricultural products in a field.
FIG. 3 is a plan view showing a traveling route of a traveling vehicle in a field.
FIG. 4 is a plan view showing a distribution state of a field existing in one area.
FIG. 5 is an explanatory diagram showing an example of hierarchical information management of pesticides and fertilizers.
FIG. 6 is an explanatory diagram showing traceability management of the entire system.
FIG. 7 is an explanatory diagram showing a hierarchical structure in a field, between fields, and between producers.
FIG. 8 is a perspective view showing a hierarchical structure of a large-scale farm (a) and a small-scale farm (b).
[Explanation of symbols]
A ... Field B ... Producer C ... Region D ... Agricultural product 10 ... Hierarchical information management system 20 ... In-field information acquisition device 21 ... Soil measurement device 21b, 27 ... Information communication device 22 ... Quality evaluation device 23 ... Information reading device 24 ... Yield measurement device 25 ... Crop growth measurement device 26 ... Pest and pest measurement device 28 ... Information terminal device 30 ... Inter-field information acquisition device 40 ... Producer information acquisition device 50 ... Hierarchical information management device

Claims (3)

一つの圃場内における複数の圃場内バラツキ情報を、特定の地域に存在する圃場毎に取得する圃場内情報取得手段と、
上記圃場内情報取得手段が取得する圃場内バラツキ情報と対応して、該圃場間における複数の圃場間バラツキ情報を取得する圃場間情報取得手段及び該圃場を管理する生産者間における複数の生産者間バラツキ情報を取得する生産者間情報取得手段と、
上記圃場内情報取得手段及び圃場間情報取得手段、生産者間情報取得手段から出力される複数のバラツキ情報を階層的に関連付けて一括管理する階層的情報管理手段とを備えた
階層的情報管理システム。
In-field information acquisition means for acquiring a plurality of in-field variation information in one field, for each field existing in a specific area,
Corresponding to the in-field variation information acquired by the in-field information acquiring means, a plurality of inter-field information acquiring means for acquiring a plurality of inter-field variation information between the fields, and a plurality of producers among producers managing the field Inter-producer information obtaining means for obtaining inter-variation information,
A hierarchical information management system comprising: a hierarchical information management means for collectively managing a plurality of variation information output from the in-field information obtaining means, the inter-field information obtaining means, and the inter-producer information obtaining means in a hierarchical manner. .
上記圃場内情報取得手段が取得する圃場内バラツキ情報の取得位置を検出する取得位置検出手段を備えた
請求項1記載の階層的情報管理システム。
2. The hierarchical information management system according to claim 1, further comprising an acquisition position detection unit that detects an acquisition position of the in-field variation information acquired by the in-field information acquisition unit.
上記圃場内バラツキ情報と対応する圃場内マップを圃場毎に作成し、上記圃場間バラツキ情報と対応する圃場間マップ及び生産者間バラツキ情報と対応する生産者間マップを上記圃場内マップと関連付けて作成するマップ作成機能を、上記階層的情報管理手段に備えた
請求項1記載の階層的情報管理システム。
An in-field map corresponding to the in-field variation information is created for each field, and an inter-field map corresponding to the inter-field variation information and an inter-producer map corresponding to the inter-producer variation information are associated with the in-field map. 2. The hierarchical information management system according to claim 1, wherein the hierarchical information management means is provided with a map creation function for creating.
JP2002366358A 2002-12-18 2002-12-18 Hierarchical information management system Pending JP2004199332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366358A JP2004199332A (en) 2002-12-18 2002-12-18 Hierarchical information management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366358A JP2004199332A (en) 2002-12-18 2002-12-18 Hierarchical information management system

Publications (1)

Publication Number Publication Date
JP2004199332A true JP2004199332A (en) 2004-07-15

Family

ID=32763585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366358A Pending JP2004199332A (en) 2002-12-18 2002-12-18 Hierarchical information management system

Country Status (1)

Country Link
JP (1) JP2004199332A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092032A (en) * 2004-09-21 2006-04-06 National Agriculture & Bio-Oriented Research Organization Traceable navigation system
JP2012181633A (en) * 2011-02-28 2012-09-20 Nec System Technologies Ltd Fruit growth diagnosis system, fruit tree information input terminal and fruit growth diagnosis method
WO2015029776A1 (en) * 2013-08-28 2015-03-05 ヤンマー株式会社 Remote server
JP2015049867A (en) * 2013-09-04 2015-03-16 株式会社クボタ Agriculture support system
JP2015049868A (en) * 2013-09-04 2015-03-16 株式会社クボタ Agriculture support system
JP2018041502A (en) * 2012-07-04 2018-03-15 ソニー株式会社 Farm work support method, farm work support system, and program
JP2018527956A (en) * 2015-09-11 2018-09-27 インダストリー・ロッリ・アリメンタリ・ソシエタ・ペル・アチオニIndustrie Rolli Alimentari S.P.A. Agronomic methods for the production of vegetables and mushrooms
WO2019098510A1 (en) * 2017-11-16 2019-05-23 서울대학교산학협력단 Online oral health state diagnosis method, and server for providing online oral health state diagnosis service
WO2019130679A1 (en) * 2017-12-28 2019-07-04 Necソリューションイノベータ株式会社 Real-time management system for paddy field, water-borne air-cushion vehicle for spraying chemicals, maneuvering terminal, real-time management method, program, and recording medium
JP2019153109A (en) * 2018-03-05 2019-09-12 ドローン・ジャパン株式会社 Agricultural management prediction system, agricultural management prediction method, and server device
CN110800017A (en) * 2017-05-18 2020-02-14 艾姆华科有限公司 Tracking of marked containers
US11229155B2 (en) 2013-10-25 2022-01-25 Amvac Chemical Corporation Tagged container tracking
US11330756B2 (en) 2013-08-27 2022-05-17 Amvac Chemical Corporation Tagged container tracking
US11864485B2 (en) 2013-10-25 2024-01-09 Amvac Chemical Corporation Tagged container tracking

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092032A (en) * 2004-09-21 2006-04-06 National Agriculture & Bio-Oriented Research Organization Traceable navigation system
JP4723839B2 (en) * 2004-09-21 2011-07-13 独立行政法人農業・食品産業技術総合研究機構 Traceable navigation system
JP2012181633A (en) * 2011-02-28 2012-09-20 Nec System Technologies Ltd Fruit growth diagnosis system, fruit tree information input terminal and fruit growth diagnosis method
US11086922B2 (en) 2012-07-04 2021-08-10 Sony Corporation Farm work support device and method, program, recording medium, and farm work support system
JP2018041502A (en) * 2012-07-04 2018-03-15 ソニー株式会社 Farm work support method, farm work support system, and program
US11330756B2 (en) 2013-08-27 2022-05-17 Amvac Chemical Corporation Tagged container tracking
WO2015029776A1 (en) * 2013-08-28 2015-03-05 ヤンマー株式会社 Remote server
JP2015046007A (en) * 2013-08-28 2015-03-12 ヤンマー株式会社 Remote server
JP2015049868A (en) * 2013-09-04 2015-03-16 株式会社クボタ Agriculture support system
JP2015049867A (en) * 2013-09-04 2015-03-16 株式会社クボタ Agriculture support system
US11825763B2 (en) 2013-10-25 2023-11-28 Amvac Chemical Corporation Tagged container tracking
US11793102B2 (en) 2013-10-25 2023-10-24 Amvac Chemical Corporation Tagged container tracking
US11864485B2 (en) 2013-10-25 2024-01-09 Amvac Chemical Corporation Tagged container tracking
US11229155B2 (en) 2013-10-25 2022-01-25 Amvac Chemical Corporation Tagged container tracking
JP7316043B2 (en) 2015-09-11 2023-07-27 インダストリー・ロッリ・アリメンタリ・ソシエタ・ペル・アチオニ Agronomic method for the production of vegetables and mushrooms
JP2018527956A (en) * 2015-09-11 2018-09-27 インダストリー・ロッリ・アリメンタリ・ソシエタ・ペル・アチオニIndustrie Rolli Alimentari S.P.A. Agronomic methods for the production of vegetables and mushrooms
US11985922B2 (en) 2015-09-11 2024-05-21 Industrie Rolli Alimentari S.P.A. Agronomic method for the production of vegetables and mushrooms
JP2020520003A (en) * 2017-05-18 2020-07-02 アムヴァック シー.ブイ. Tagged container tracking
CN110800017A (en) * 2017-05-18 2020-02-14 艾姆华科有限公司 Tracking of marked containers
CN110800017B (en) * 2017-05-18 2023-08-08 艾姆华科香港有限公司 Tracking of labeled containers
WO2019098510A1 (en) * 2017-11-16 2019-05-23 서울대학교산학협력단 Online oral health state diagnosis method, and server for providing online oral health state diagnosis service
JPWO2019130679A1 (en) * 2017-12-28 2020-11-19 Necソリューションイノベータ株式会社 Paddy field real-time management system, floating air cushion boat for chemical spraying, control terminal, real-time management method, program, and recording medium
WO2019130679A1 (en) * 2017-12-28 2019-07-04 Necソリューションイノベータ株式会社 Real-time management system for paddy field, water-borne air-cushion vehicle for spraying chemicals, maneuvering terminal, real-time management method, program, and recording medium
JP2019153109A (en) * 2018-03-05 2019-09-12 ドローン・ジャパン株式会社 Agricultural management prediction system, agricultural management prediction method, and server device

Similar Documents

Publication Publication Date Title
Hedley The role of precision agriculture for improved nutrient management on farms
KR102318141B1 (en) Agricultural management system and crop harvester
CN109146130A (en) Agricultural product customization is planted and whole process is traced to the source platform and method
McFadden et al. The digitalisation of agriculture: A literature review and emerging policy issues
UA124801C2 (en) Computer-generated accurate yield map data using expert filters and spatial outlier detection
CN105469270A (en) Agricultural product whole process traceability method and system
Fastellini et al. Precision farming and IoT case studies across the world
JP2004199332A (en) Hierarchical information management system
JP2002149744A (en) Managing device, managing method, and machine for farmwork
Pitla et al. Ground and aerial robots for agricultural production: Opportunities and challenges
Ampatzidis et al. Development and evaluation of a novel system for monitoring harvest labor efficiency
JP2004133498A (en) Precise agricultural method information management system
Bayano-Tejero et al. Machine to machine connections for integral management of the olive production
Ampatzidis et al. Portable weighing system for monitoring picker efficiency during manual harvest of sweet cherry
KR101517894B1 (en) Management apparatus and system for agrigulture information
Singh Smart Farming: Applications of IoT in Agriculture
Dixit et al. Importance, concept and approaches for precision farming in India
Fuhrer Mapping of in-field cotton fiber quality utilizing John Deere’s Harvest Identification System (HID)
Usama Application of Digital Technologies & Remote Sensing in Precision Agriculture for Sustainable Crop Production
Green et al. Farming System Perspective
Zhang et al. Sensing technologies and automation for precision agriculture
Atasoy An evaluation of the examples of mobile smart agriculture applications in Turkiye
SRIVASTAVA Disruptive technologies: shaping the future of agriculture: Disruptive technologies for agriculture
Butts et al. Building on our Past to Engineer the Future
Suebsombut et al. Classification and trends in knowledge research relevance and context for smart farm technology development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701