JP2004198382A - Interference device - Google Patents

Interference device Download PDF

Info

Publication number
JP2004198382A
JP2004198382A JP2002370728A JP2002370728A JP2004198382A JP 2004198382 A JP2004198382 A JP 2004198382A JP 2002370728 A JP2002370728 A JP 2002370728A JP 2002370728 A JP2002370728 A JP 2002370728A JP 2004198382 A JP2004198382 A JP 2004198382A
Authority
JP
Japan
Prior art keywords
interference
correction
sample
wavefront
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002370728A
Other languages
Japanese (ja)
Other versions
JP4208565B2 (en
JP2004198382A5 (en
Inventor
Naoto Hayashi
直人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002370728A priority Critical patent/JP4208565B2/en
Publication of JP2004198382A publication Critical patent/JP2004198382A/en
Publication of JP2004198382A5 publication Critical patent/JP2004198382A5/ja
Application granted granted Critical
Publication of JP4208565B2 publication Critical patent/JP4208565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interference device which measures the surface profile of a surface to be examined and the homogeneity of an object or the like, with high precision. <P>SOLUTION: The interference device comprises an optical means, which forms a light flux to be examined via an object to be examined and a reference light flux via a reference surface from a light flux emitted from a light source means, and combines both, to form an interference wavefront; a means of changing optical path length difference which changes the optical path length difference between the light flux to be examined and the reference light flux; an imaging device which images interference fringes based on the interference wavefront; and a processing unit which calculates the phase difference distribution of the interference wavefront from the interference fringes imaged by the imaging device. The interference device further comprises a correction means which corrects the phase difference distribution with a correction value, obtained by using a value obtained by a profile measuring device which mechanically measures the irregularities profile of the surface to be measured of a sample for correction and a value obtained, by measuring the sample for correction by using the interference device. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被検面の面形状や物体のホモジニティ等を高精度に測定することができる干渉装置に関する。
【0002】
特に2次元の干渉縞強度分布から、被検面での形状誤差、或いは被検物、例えば被検レンズの透過波面収差の測定を行う際に好適な干渉装置に関するものである。
【0003】
【従来の技術】
従来より、面形状の測定や物体のホモジニティ(均質性)の測定に光の干渉を利用した干渉測定装置(干渉装置)が用いられている。
【0004】
図11は従来の干渉測定装置の要部概略図である。図11において光源1を射出した光束はハーフミラー2を通過し、2軸ティルトステージ3に設けたTF基板(透過基準板)5に至る。2軸ティルトステージ3は制御コンピュータ9からの指令により高精度にティルトし、後述する参照光束と被検光束の波面合わせが可能となっている。また2軸ティルトステージ3上に縞走査法用の圧電素子(PZTアクチュエータ)4を介し、TF基板5が設置されている。
【0005】
TF基板5は最終面5a以外には光源1から光束の波長に対する反射防止膜を施す事で最終面5aからのみ光束の一部が反射する、或いはクサビ角を設けCCDカメラ8の解像度を超える密な干渉縞としている。最終面5aを透過した光束はサンプル6の被検面6aで反射する。以下TF基板5の最終面5aで反射される光束を参照光束、最終面5aを透過する光束を被検光束と称す。
【0006】
サンプル6の被検面6aで反射した被検光束はTF基板5で参照光束と合波し、干渉しハーフミラー2で反射され、結像光学系7ピンホールPHを介して拡散板10上で干渉縞を形成する。
【0007】
拡散板10は、駆動手段Mで回転する事でスペックル等の光学ノイズを平均化されるために用いられている。拡散板10で拡散された干渉縞は結像光学系11によりCCD(CCDカメラ)8上に伝達され、撮像された干渉縞画像データは制御コンピュータ9に転送される。
【0008】
制御コンピュータ9ではPZTアクチュエータ4を走査した際の複数の干渉縞画像データを取り込み、所謂、縞走査法により干渉縞の位相を算出してサンプル6の被検面6aの面形状を測定している。
【0009】
【発明が解決しようとする課題】
被検面の面形状を干渉縞の位相波面として求める従来の方法では、結像光学系7及び結像光学系11、或いは撮像素子(CCDカメラ)8に起因する干渉縞の空間周波数に依存したコントラスト特性によって算出される干渉縞の位相波面に振幅低下が発生することがあり、これは特に高空間周波数で顕著であった。
【0010】
以下数式を用いて干渉縞の位相波面の振幅劣化の原因について説明する。
【0011】
簡単のため、被検光束の波面として単一空間周波数の分布を有する波面を考え、参照光束の波面は完全に平面であるとする。このとき被検光束振幅Etest、参照光束振幅Eretは、
Etest(x,t)=E0exp(ia cos(2πifx))
Eref(x,t)=E0exp(iωt)
と表される。ここでaは波面振幅、I0は入射光の強度、xは空間座標、tは時間であり、f波面の空間周波数、ωはフリンジスキャンの周波数を表す。
【0012】
これら2光束による干渉縞強度I(x,t)は、
I(x,t)=|Etest(x,t)+Eref(x,t)|2
=I0(1+cos(a cos(2πifx)-ωt))
I0(1+sin(ωt)+a cos(2πfx)cos(ωt))
となる。ここで波面振幅aは十分小さいとして波面振幅aの1次の項までの近似で表している。周波数fにおけるコントラストをM(f)とすると取得される干渉縞画像の強度Imean(x,t)は、
Imeas(x,t)= I0(1+sin(ωt)+M(f)a cos(2πfx)cos(ωt))
となる。フリンジスキャンは干渉縞変化のcos変調成分、sin変調成分を摘出して位相を産出するため、計算される位相は、
φ(x)=tan-1(M(f)a cos(2πfx))
M(f)a cos(2πfx)
つまり実波面の波面振幅aが周波数fにおけるコントラストM(f)だけ減少して計算されることになる。この為、干渉縞の位相波面を高精度に測定することが困難になってくる。
【0013】
本発明は被検面の面形状や物体のホモジニティ等を高精度に測定することができる干渉装置の提供を目的とする。
【0014】
【課題を解決するための手段】
本発明の干渉測定装置は、
被検物を介した光を用いて干渉縞を形成する干渉装置であって、
補正用サンプルの形状と前記補正用サンプルの形状を前記干渉装置で測定した測定値とを用いて求めた補正値に基づいて、前記干渉縞から得られる位相差分布を補正する補正手段を有することを特徴としている。
【0015】
【発明の実施の形態】
以下本発明の各実施形態について、添付図面を参照しながら説明する。
【0016】
(実施形態1)
本発明の実施形態1について説明する。
【0017】
実施形態1は補正用サンプル(サンプル)を用意して補正用サンプルの被検面の面形状を機械的に測定する形状測定装置として、例えば3次元形状走査型装置(図4参照)と干渉測定装置(図1参照)で求め、双方で得た測定値より干渉測定装置で求めた測定値を補正する為の補正値を算出する。即ち干渉測定装置で得た被測定サンプルの測定値に補正値をかけ、これより被測定サンプルの被検面の面形状情報を求めている。ここで、補正用サンプルの被検面の面形状を機械的に測定する例を示したが、これはこの限りではなく、補正用サンプルの被検面の面形状を正確に測定できる方法であれば、特に機械的な方法である必要は無い。さらに、もし、補正用サンプルの被検面の形状が正確に分かっている場合は、特に測定の必要は無く、そのサンプルの被検面の形状と、本実施形態の干渉測定装置による面形状の測定結果との両者から補正値を算出しても良い。
【0018】
以下に被測定サンプルの被検面が平面の場合の測定と補正値を算出し、測定値の補正方法の流れを具体的に説明する。
【0019】
図1は実施形態1で用いる干渉測定装置の要部概略図である。
【0020】
まず被測定サンプルを図1の干渉測定装置で測定する方法を説明する。光源(光源手段)1を射出した光束はハーフミラー2を透過し、2軸ティルトステージ3上のTF基板5に至る。2軸ティルトステージ3は制御コンピュータ9からの指令により高精度にティルトし、後述する参照光束と被検光束の波面合わせが可能となっている。また2軸ティルトステージ3上には縞走査法用の光路長差変化手段としての圧電素子(PZTアクチュエータ)4を介し、TF基板5が設置されている。
【0021】
TF基板5は最終面5a以外には光源1からの光束の波長に対する反射防止膜を施す或いはクサビ角を設けており、これによって最終面5aからのみ光束の一部が反射する。最終面5aを透過した光束は被測定サンプル(サンプル)6の被検面6aで反射する。以下TF基板5の最終面5aで反射される光束を参照光束、最終面5aを透過する光束を被検光束と称す。
【0022】
サンプル6の被検面6aで反射した被検光束はTF基板5で参照光束と合波され、干渉してハーフミラー2で反射され、結像光学系7とピンホールPHを介して拡散板10上で干渉縞を形成する。
【0023】
拡散板10は、駆動手段MOによって、回転する事でスペックル等の光学ノイズを平均化するために用いている。拡散板10で拡散された干渉縞は結像光学系11によりCCDカメラ(撮像手段)8上に伝達され、撮像された干渉縞画像データは制御コンピュータ(処理系)9に転送される。ここで結像光学系11と拡散板10を省略して拡散板10が位置するところにCCDカメラ8を配置し、直接に干渉縞画像データを検出しても良い。この方法は光学系の影響による振幅低下が少ない。
【0024】
光源1から被検面6aを介して、拡散板10又は撮像手段8に至る系で干渉計を構成している。又、光源1から被検面6aを介し、撮像手段8に至る光路中に設けている光学部材は光学手段の一要素を構成している。
【0025】
制御コンピュータ9ではPZTアクチュエータ4を走査した際の複数の干渉縞画像データを取り込み、所謂、縞走査法により干渉縞の位相を算出しており、これによってサンプル6の被検面6aの面形状を測定している。そして制御コンピュータ9に組み込まれた振幅補正ユニット(補正手段)12でサンプル6の面形状の測定値を補正値によって補正する。ここで振幅補正ユニット12は制御コンピュータ9と分離していても良い。この振幅補正ユニット12で計算される測定値の補正方法について図2を用いて説明する。
【0026】
図2において、M1はサンプル6の面形状の測定値(干渉縞データ)の波面分布(位相波面分布)を表す。この測定値M1に対し、最小二乗法等を用いて多項式フィッティングを行うことにより、多項式成分Z1と多項式残差成分(残差成分)R1に分離する。ここで多項式としてはZERNIKE多項式等を用いている。
【0027】
残差成分R1に対し2次元フーリエ変換を行い周波数分布RF1を得る。ここで残差成分R1を用いるのは、波面瞳端部の極端な変化による不要周波数生成物を抑えるためである。
【0028】
図2において、位相波面の振幅劣化は前記周波数分布RF1と同一スケールの空間周波数上に、干渉測定装置で得られた位相波面の振幅分布を作成したものである。図2中RF2は振幅劣化した位相波面の補正後の残差波面の周波数分布を表し、周波数分布RF1と補正係数分布Rdcにより、
RF2=RF1/Rdc
と表される。
【0029】
この補正係数分布Rdcの求め方は後で詳細を説明する。この補正は位相波面の振幅劣化で補正しようとする領域の波面収差の周波数成分振幅が1radより十分小さい場合に適用される。補正後の周波数分布RF2に対し逆フーリエ変換を行い、実空間上の残差波面R2を得る。これに前記分離した多項式成分Z1を加えることで、波面収差分布M2を求め、これより測定値M1に対する振幅劣化の補正が完了し、高周波域まで、測定誤差の少ない波面計測値M2を得ることを可能としている。
【0030】
次に前記補正係数分布Rdcの求め方について図3の流れ(フローチャート)に沿って説明する。
【0031】
ステップA:「補正用サンプルを用意する」
図5、図6、図7は補正用サンプルの概略図である。図5は補正用サンプルS1の被検面を上から見た図、C1a、C1bは補正用サンプルS1の直線S1a、S1bの断面における振幅分布を表す。図6は補正用サンプルS2被検面を上から見た図、C2a、C2bは補正用サンプルS2の直線S2a、S2bの断面における振幅分布を表す。図7のS3(S3a、S3b・・・S3x)は複数の被測定物に異なる周波数を刻んだサンプルでC3a、C3b・・・C3xはサンプルS3a、S3b・・・S3xそれぞれの断面図を表す。このような補正用サンプルS1,S2,S3を複数用意してそれぞれ干渉測定装置と図4に示す3次元形状走査型計測装置で補正用サンプルS1,S2,S3の被検面の面形状を測定する。
【0032】
ステップB:「補正用サンプルS1,S2,S3を干渉測定装置で測定する」
干渉測定装置による補正用サンプルS1,S2,S3の測定は図1を参照した前記説明と同様の方法、所謂縞走査法により補正用サンプルS1,S2,S3の被検面の面形状を測定する。測定方法の詳細については既に説明したので省略する。ここでは振幅補正ユニット12による位相波面の振幅補正は行わない。つまり補正係数分布Rdc=1として測定する。
【0033】
ステップC:「補正用サンプルS1,S2,S3を3次元形状走査型計測装置で測定する」
接触式の3次元形状走査型測定装置による補正サンプルの面形状の測定について図4を参照しながら説明する。
【0034】
図4は補正用サンプル面形状を測定する接触式の3次元形状走査型測定装置の概略図である。サンプル22はXYステージ23の上に設置されている。ここでXYステージ23は制御コンピュータ25により高精度にXY独立の駆動が可能となっている。
【0035】
プローブ21はXYZステージ24に設置されていて、プローブ21がサンプル22の被検面22a上を−定の圧力を加えながらスキャンするように制御コンピュータ25はXYZステージ24を制御している。このときXYZステージ24の位置座標を制御コンピュータ25で計算して求めることでサンプル22の被検面22aの面形状を算出する。ここで非接触式の3次元形状走査型測定装置で補正サンプルS1,S2,S3を測定しても全く問題ない。
【0036】
ステップD:「ステップB,Cの測定結果より補正係数RdcH、RdcVを求める」
次にステップBとステップCの測定結果よりCCDカメラ8の水平方向と垂直方向の補正係数RdcHとRdcVの求め方について図8を参照しながら説明する。
【0037】
被検面の切断面がCCDカメラ8の水平方向の場合、計測した結果から標本化間隔に対するある空間周波数kxを計算する。以上で被検面上の空間周波数kxにおける振幅Vref(kx)を得る。
【0038】
以下、hが標本化間隔のナイキスト周波数(標本化周期の2倍の逆数)まで計算する。3次元形状走査型測定装置の場合も同様に空間周波数kxの振幅Vref(kx)を求める。
【0039】
これら一連の計算結果を図8に示した。被検面上の空間周波数の振幅を測定することにより離散データV(kxi)が得られる。図8の実線は3次元形状走変型計測装置の振幅Vref(kx)点線は干渉測定装置の振幅V(kx)を表していて点線の振幅は実線の振幅と比べて振幅が劣化している。振幅劣化の原因は先に「解決しようとする課題」で述べたとおりである。
【0040】
このとき補正係数Rdc0は、
Rdc0=V(kx)/Vref(kx)
となり、干渉測定装置の測定値を空間周波数毎に補正係数Rdc0で割ることによって補正が完了する。
【0041】
3次元形状走査型測定装置と干渉測定装置の標本間隔が異なる場合は振幅Vref(kx)と振幅V(kx)に対して最小二乗法等により多項式関数等でフィッティングして補正係数を求めればよい。
【0042】
ここで本実施形態のように干渉縞を形成する瞳結像系にインコヒーレント結像が含まれる干渉測定装置における補正係数は、
FInchOpt(x,k0)=(2 cos-1(k0x)- sin(2 cos-1(k0x)))/π
となり、この式は理想光学系のインコヒーレント光学系の振幅劣化を表している。
【0043】
また本実施形態では被検レンズの瞳結像系としてインコヒーレント結像を用いているが、コヒーレント結像の干渉計における補正係数には次式で表されるMoffat関数を用いればよい。
【0044】
Moffat(x,k0,k1,k2)=k0/(1+(x/k1)2)k2
ここでxは空間周波数、k0,kl,k2はパラメータである。
【0045】
以上でCCDカメラ8の水平方向に対する補正係数RdcHの算出が終了する。次に同様の手続きにより垂直方向に対する補正係数RdcVを計算すれば、干渉測定装置の水平方向と垂直方向の補正係数RdcH、RdcVがそれぞれ求められる。
【0046】
ステップE:「ステップDの結果より補正係数分布Rdcを求める」
前記干渉測定装置の水平方向と垂直方向のぞれぞれの補正係数RdcH,RdcVにフィッティングを行い、関数化すれば補正係数分布Rdcの作成が容易になる。フィッティングした水平方向、垂直方向の補正係数をRdcH(kx),RdcV(ky)とすると、空間周波数(kx,ky)上の補正係数分布Rdc(kx,ky)は、
Rdc(kx,ky)= RdcH(kx)×RdcV(ky)
と表される。
【0047】
以上で図2中の補正係数分布Rdcを求めることができる。図1中の振幅補正ユニット12はこの補正係数分布Rdcを用いて測定値に振幅補正計算を行う。
【0048】
また被検出面の形状として、平面の形状について説明してきたがホモジニティ測定(均質測定)への適用も可能である。ホモジニティ測定のとき図1中のサンプル6はRF基板(反射基準板)として、RF基板6とTF基板5の問に被測定物13を置き透過波面を測定する。測定法としては非研磨面のまま測定するオイルオンプレート法、或いは研磨面状態で測定する研暦法等が適用できる。
【0049】
(実施例2)
次に本発明の実施形態2について説明する。
【0050】
実施形態2は実施形態1の被測定サンプルが並行平板であったのに対して被測定サンプルの形状として球面ミラーを用いている。この球面ミラーの反射面上に図5、図6に示すパターンが設けられている。この場合の干渉測定装置での測定方法について図9を用いて述べる。
【0051】
図9において、光源1を射出した光束はハーフミラー2を透過し、XYZステージ3上に設けた集光レンズ5に至る。XYZステージ3は制御コンピュータ9からの指令により高精度にXYZ方向に独立の駆動が可能となっている。またXYZステージ3上には縞走査法用の圧電素子(PZTアクチュエータ)4を介し、集光レンズ35が設置されている。
【0052】
ここで集光レンズ35は最終面35aの曲率半径と最終面35a−焦点10間の距離が等しい、所謂TSレンズである。TSレンズ35は最終面35a以外には光源1の波長に対する反射防止膜を施す事で、最終面35aからのみ光束の一部が反射するようにしている。最終面35aを透過した光束はサンプル6の被検面6aで反射する。以下TSレンズ35の最終面35aで反射される光東を参照光束、最終面35aを透過する光束を被検光束と称す。
【0053】
ここでサンプル6は制御コンピュータ9により制御可能なXYZステージ11上に設けられ、サンプル6の被検面6aの曲率中心とTSレンズ35による集光点10が一致するようにXYZ方向の調整がなされている。
【0054】
サンプル6の被検面6aで反射した被検光束はTSレンズ35で参照光束と合波し、互いに干渉し、ハーフミラー2で反射され、結像光学系7とピンホールPHを介して、CCDカメラ8上で干渉縞を形成する。CCDカメラ8で撮像された画像データは制御コンピュータ9に転送される。
【0055】
制御コンピュータ9ではCCDカメラ8からPZTアクチュエータ4を走査した際の複数の干渉縞画像データを取り込み、所謂、縞走査法により干渉縞の位相を算出し、位相波面(測定値)を求めている。そして制御コンピュータ9に組み込まれた振幅補正ユニット12で測定値を補正係数で補正する。ここで振幅補正ユニット12は制御コンピュータ9と分離していても全く問題ない。
【0056】
ここで用いるサンプル6はTSレンズ5による集光点10とサンプル6の被検面6aの曲率中心が一致する球面に図5や図6や図7に示すような模様を刻んだものである。
【0057】
3次元形状走査型測定装置によるサンプル6の被検面測定と振幅劣化の補正については実施形態1で述べたので省略する。また、ここでは実施形態1のような拡散板10と結像光学系11のない光学系を示したがこれらの部材があっても構わない。
【0058】
(実施例3)
次に本発明の実施形態3について図10を用いて説明する。実施形態3は被検物として透過物体を用いている。図10において光源1を射出した光束はハーフミラー2を透過し、XYZステージ3上に設けた集光レンズ5に至る。XYZステージ3は制御コンピュータ9からの指令により高精度にXYZ方向に独立の駆動が可能となっている。またXYZステージ3上には縞走査法用の圧電素子(PZTアクチュエータ)4を介し、集光レンズ5が設置されている。
【0059】
ここで集光レンズ35は最終面35aの曲率半径と最終面35a−焦点10間の距離が等しい、所謂TSレンズである。TSレンズ5は最終面35a以外には光源1の波長に対する反射防止膜を施す事で、最終面35aからのみ光束の一部が反射するようにしている。以下TSレンズ35の最終面35aで反射される光束を参照光束、最終面35aを透過する光束を被検光束と称す。
【0060】
集光レンズ35の焦点10は被検レンズ14の物体面と一致するようにZステージの調整がなされており、被検レンズ14を透過した被検光束は、被検レンズ14の像面15上で集光した後、球面のRSミラー6により反射される。
【0061】
ここでRSミラー6はTSレンズ5と同様に制御コンピュータ9により制御可能なXYZステージ11上に設けられ、RSミラー6の曲率中心6aと像側焦点15が一致するようにXYZステージ11方向の調整がなされている。
【0062】
TSレンズ35の最終面35aにて反射された参照光束と、RSミラー6により反射された被検光束は、TSレンズ35を介して、合波し、互いに干渉して同一光路となりハーフミラー2で反射され、結像光学系7とピンホールPHを介してCCDカメラ8上で干渉縞を形成する。CCDカメラ8で撮像された干渉縞画像データは制御コンピュータ9に転送される。制御コンピュータ9ではPZTアクチュエータ4を走査した際の複数の干渉縞画像データを取り込み、所謂、縞走査法により干渉縞の位相を算出して被検レンズの透過波面を求める。
【0063】
そして制御コンピュータ9に組み込まれた振幅補正ユニット12で測定値を補正係数で補正する。ここで振幅補正ユニッ,ト12は制御コンピュータ9と分離していても全く問題ない。
【0064】
次に図10の干渉測定装置における補正用サンプルの測定について説明する。
【0065】
まず図10中の補正用サンプル13を被検レンズ14に取り付ける、或いは被検レンズ14無しの状態で工具等により同様の位置に配置する。ここで用いる補正用サンプル13は実施形態2と同様にTSレンズ5による集光点10と補正用サンプル13の被検面13aの曲率中心が一致する球面に図5や図6や図7に示す模様を刻んだものである。このときXYZステージ11は補正用サンプル13の被検面13a曲率中心とTSレンズ5の集光点10が一致するように制御コンピュータ9により制御されている。
【0066】
補正用サンプル13の被検面13aで反射した被検光束はTSレンズ35で参照光束と合波され、互いに干渉し、ハーフミラー2で反射され、結像光学系7とピンホールPHを介してCCDカメラ8上で干渉縞を形成する。CCDカメラ8で撮像された画像データは制御コンピュータ9に転送される。制御コンピュータ9ではPZTアクチュエータ4を走査した際の複数の干渉縞画像データを取り込み、所謂、縞走査法により干渉縞の位相を算出して干渉測定装置で測定したときの振幅劣化を求める。
【0067】
3次元形状走査型測定装置による補正用サンプル13の被検面測定と振幅劣化の補正については実施形態1で述べたので省略する。またここでは実施形態1のような拡散板10と結像光学系11のない光学系を示したがこれらの部材があっても構わない。
【0068】
(実施形態4)
次に本発明の実施形態4について説明する。
【0069】
本実形態4は振幅補正機能を有する面形状測定装置(実施形態1,2)及び透過波面形状測定装置(実施形態3)を露光装置の投影レンズの製造に適用したものである。単レンズ或いはホモジニティ測定を実施形態1,2の測定装置で行い、組立後のレンズの波面を実施形態3の測定装置で測定し調整を行う。これにより高周波まで精度の良いレンズを製造している。
【0070】
[実施態様1]
被検物を介した光を用いて干渉縞を形成する干渉装置であって、
補正用サンプルの形状と前記補正用サンプルの形状を前記干渉装置で測定した測定値とを用いて求めた補正値に基づいて、前記干渉縞から得られる位相差分布を補正する補正手段を有することを特徴とする干渉装置。
【0071】
[実施態様2]
前記補正手段が、前記位相差分布の第1周波数成分と前記第1周波数成分より空間周波数の高い第2周波数成分のうち、前記第1周波数成分のゲインを略一定に保ち、前記第2周波数成分のゲインを補正することを特徴とする実施態様1記載の干渉装置。
【0072】
[実施態様3]
前記補正手段が、前記第2周波数成分のゲインを増幅することを特徴とする実施態様2記載の干渉装置。
【0073】
[実施態様4]
前記位相差分布に基づいて、前記被検物の形状を導く手段を有することを特徴とする実施態様1乃至3いずれか1項記載の干渉装置。
【0074】
[実施態様5]
前記干渉縞を形成する2つの光束の光路長差を変化させる光路長差変化素子を有することを特徴とする実施態様1乃至4いずれか1項記載の干渉装置。
【0075】
[実施態様6]
光源手段から射出された光束より、被検物を介した被検光束と参照面を介した参照光束とを形成し、双方を合波し干渉波面を形成する光学手段と、該被検光束と該参照光束の光路長差を変化させる光路長差変化素子と、該干渉波面に基づく干渉縞を撮像する撮像素子と、該撮像素子で撮影される干渉縞から該干渉波面の位相差分布を計算する処理系とを有する干渉装置において、該位相差分布を、補正用サンプルの被検面の凹凸形状を機械的に測定する形状測定装置で得た値と該干渉装置で該補正用サンプルを測定した値とを用いて求めた補正値で補正する補正手段を有することを特徴とする干渉装置。
【0076】
[実施態様7]
前記被検物の被検面、又は被検物がレンズ系であるときはその瞳と前記撮像素子は共役関係であることを特徴とする実施態様6に記載の干渉装置。
【0077】
[実施態様8]
前記光学手段は、干渉縞を拡散板上に形成し、更に該拡散板上に形成された干渉縞を撮像素子上に再結像すること特徴とする実施態様6又は7に記載の干渉装置。
【0078】
[実施態様9]
前記補正用サンプルは、被検面に複数の異なる空間周波数の模様を刻んだサンプル、或いは複数の被測定物に異なる空間周波数の模様を刻んだサンプルより成ることを特徴とする実施態様6、7又は8に記載の干渉装置。
【0079】
[実施態様10]
前記補正手段は、周波数空間で補正値を求めていることを特徴とする実施態様6〜9のいずれか1項に記載の干渉装置。
【0080】
[実施態様11]
前記補正値は干渉縞を形成する結像系がインコヒーレント系の場合、波面の空間周波数をf、空間座標をx、2πf=k0とするとき、
FInchOpt(x,k0)=(2 cos-1(k0x)- sin(2 cos-1(k0x)))/π
という補正係数を用いることを特徴とする実施態様6〜10のいずれか1項に記載の干渉装置。
【0081】
[実施態様12]
前記補正値は、干渉縞を形成する結像系がコヒーレント系の場合、k0、k1、k2をパラメータxを空間座標とするとき、
Moffat(x,k0,k1,k2)=k0/(1+(x/k1)2)k2
という補正係数を用いることを特徴とする実施態様6〜10のいずれか1項に記載の干渉装置。
【0082】
[実施態様13]
前記被検物のホモジニティを求めることを特徴とした実施態様6の干渉装置。
【0083】
[実施態様14]
実施態様6から13のいずれか1項に記載の干渉装置を用いて製造されたことを特徴とする露光装置用の投影レンズ。
【0084】
[実施態様15]
光源手段から射出された光束の一部を被検面で反射或いは被検物を透過させた後に反射面で反射させることによって得られる被検光束と、該光源手段から射出された光束の一部を参照面によって反射させて得られる参照光束を形成する光学手段と、前記被検光束と前記参照光束の光路長差を変化させる光路長差変化素子と、前記被検光束と前記参照光束を干渉させて得られる干渉縞を撮像する撮像素子と、前記光学手段は、前記参照光束と前記被検光束により形成される干渉縞を前記撮像素子に導光しており、前記撮像素子で撮影される前記干渉縞から前記被検光束と前記参照光束の位相差分布を計算する処理系とを有する干渉装置において、前記干渉縞の空間位相分布の振幅劣化を補正する補正値を算出する補正手段を有し、前記補正手段は、該補正値を被検面の凹凸を接触或いは非接触で測定する形状測定装置と前記干渉装置で補正用サンプルを測定することにより求めることを特徴とする干渉装置。
【0085】
[実施態様16]
前記被検面或いは前記被検物の瞳と前記撮像素子は共役関係であることを特徴とする実施態様15に記載の干渉装置。
【0086】
[実施態様17]
前記補正用サンプルは、被検面に複数の異なる空間周波数の模様を刻んだサンプル、或いは複数の被測定物に異なる空間周波数の模様を刻んだサンプルより成ることを特徴とする実施態様15又は16に記載の干渉装置。
【0087】
[実施態様18]
前記補正手段は、周波数空間で補正値を求めていることを特徴とする実施態様15〜17のいずれか1項に記載の干渉装置。
【0088】
[実施態様19]
被検物を介した被検波面と、参照波面とを合波し、位相波面に基づく干渉縞データを撮像手段に形成する干渉計と、該干渉計からの干渉縞データより該被検物を介した位相波面を演算し求める処理系とを有する干渉装置において、
該処理系は、補正用サンプルを用いたときの該干渉計で得られる干渉情報の位相波面が空間周波数値(kx)による振幅劣化するときの振幅をV(kx)、該補正用サンプルの凹凸形状を機械的に測定する形状測定装置で得られる振幅をVref(kx)としたとき、
【0089】
【数1】

Figure 2004198382
【0090】
より求めた補正係数分布Rdcを用いて該干渉縞データを補正していることを特徴とする干渉装置。
【0091】
[実施態様20]
被検物を介した被検波面と、参照波面とを合波し、位相波面に基づく干渉縞データを撮像手段に形成する干渉計と、該干渉計からの干渉縞データより該被検物を介した位相波面を演算し求める処理系とを有する干渉装置において、
該処理系は、該干渉計で得られる干渉縞データ(M1)に基づく周波数分布(RF1)を補正係数分布(Rdc)で補正した周波数分布(RF2)を用いて、波面収差分布(M2)を求めており、このとき補正係数分布(Rdc0)を該干渉計で得られる干渉情報の位相波面が空間周波数値(kx)による振幅劣化するときの振幅をV(kx)、該補正用サンプルの凹凸形状を機械的に測定する形状測定装置で得られる振幅をVref(kx)としたとき、
【0092】
【数2】
Figure 2004198382
【0093】
より求めていることを特徴とする干渉装置。
【0094】
【発明の効果】
本発明によれば干渉装置で測定された干渉縞の振幅劣化によって困難であった高周波成分の被検面の透過波面或いは被検面形状誤差を補正し、高精度な測定を行うことができる干渉装置を達成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1の概略構成図である。
【図2】本発明に係る振幅劣化の補正手続きを示すフローチャートである。
【図3】本発明に係る補正係数分布を求める計算を示すフローチャートである。
【図4】本発明に係る接触式3次元形状走査型計測装置の概略構成図である。
【図5】本発明に係る被後面測定用のサンプル例である。
【図6】本発明に係る被検面測定用のサンプル例である。
【図7】本発明に係る複数枚の被検面測定用のサンプル例である。
【図8】本発明に係る本発明に係る被検面の断面をフーリエ変換した振幅のグラフである。
【図9】本発明の実施形態2の概略構成図である。
【図10】本発明の実施形態3のを示す概略構成図である。
【図11】従来の干渉測定装置の概略構成図である。
【符号の説明】
test(x,t):被検光束複素振幅
ref(x,t):参照光束模索振幅
E0:電場振幅
a:波面振幅
f:波面空間周波数
ω:フリンジスキヤン周波数
M(t):空間周波数fにおけるコントラスト
k:干渉縞空間周波数
V:被検面振幅
kx:水平方向空間周波数
ky:垂直方向空間周波数
inch0pt:インコヒーレント光学系のフィッテイング関数,
Rde0:1次元の補正係数関数
M1:測定結果干渉縞位相
Z1:測定結果干渉縞位相の多項式成分
R1:測定結果干渉縞の位相残差成分
RF1:測定結果干渉の縞位相残差成分の空間周波数分布
Rdc:干渉計振幅劣化の空間周波数の補正係数分布
RF2:補正結果透過波面の収差残差成分の空間周波数分布
R2:補正結果透過波面の収差残差成分
M2:補正結果透過波面の収差分布
NA:測定光束のNA
r:測定光束半径[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an interferometer capable of measuring the surface shape of a test surface, the homogeneity of an object, and the like with high accuracy.
[0002]
In particular, the present invention relates to an interference apparatus suitable for measuring a shape error on a surface to be measured or a transmitted wavefront aberration of a test object, for example, a test lens, from a two-dimensional interference fringe intensity distribution.
[0003]
[Prior art]
2. Description of the Related Art Conventionally, an interference measurement device (interference device) using light interference has been used for measurement of a surface shape and measurement of homogeneity (homogeneity) of an object.
[0004]
FIG. 11 is a schematic view of a main part of a conventional interference measuring apparatus. In FIG. 11, a light beam emitted from the light source 1 passes through the half mirror 2 and reaches a TF substrate (transmission reference plate) 5 provided on the biaxial tilt stage 3. The two-axis tilt stage 3 is tilted with high accuracy in accordance with a command from the control computer 9, and the wavefront of a reference light beam and a test light beam, which will be described later, can be aligned. A TF substrate 5 is mounted on a biaxial tilt stage 3 via a piezoelectric element (PZT actuator) 4 for a fringe scanning method.
[0005]
The TF substrate 5 is provided with an antireflection film for the wavelength of the light beam from the light source 1 on the surface other than the final surface 5a, so that a part of the light beam is reflected only from the final surface 5a, or a wedge angle is provided and the density exceeds the resolution of the CCD camera 8. Interference fringes. The light beam transmitted through the final surface 5a is reflected by the surface 6a to be measured of the sample 6. Hereinafter, the light beam reflected by the final surface 5a of the TF substrate 5 is referred to as a reference light beam, and the light beam transmitted through the final surface 5a is referred to as a test light beam.
[0006]
The test light beam reflected by the test surface 6a of the sample 6 is combined with the reference light beam by the TF substrate 5, interferes and is reflected by the half mirror 2, and is reflected on the diffusion plate 10 via the imaging optical system 7 pinhole PH. Form interference fringes.
[0007]
The diffusion plate 10 is used for rotating the driving means M to average out optical noise such as speckle. The interference fringes diffused by the diffusion plate 10 are transmitted to a CCD (CCD camera) 8 by an imaging optical system 11, and the captured interference fringe image data is transferred to a control computer 9.
[0008]
The control computer 9 fetches a plurality of interference fringe image data obtained when the PZT actuator 4 is scanned, calculates the phase of the interference fringes by a so-called fringe scanning method, and measures the surface shape of the test surface 6a of the sample 6. .
[0009]
[Problems to be solved by the invention]
In the conventional method for obtaining the surface shape of the test surface as the phase wavefront of the interference fringes, the method depends on the spatial frequency of the interference fringes caused by the imaging optical system 7 and the imaging optical system 11 or the imaging device (CCD camera) 8. An amplitude drop may occur in the phase wavefront of the interference fringe calculated by the contrast characteristic, and this is particularly remarkable at a high spatial frequency.
[0010]
Hereinafter, the cause of the amplitude deterioration of the phase wavefront of the interference fringe will be described using the following mathematical formula.
[0011]
For simplicity, a wavefront having a single spatial frequency distribution is considered as the wavefront of the test light beam, and the wavefront of the reference light beam is assumed to be completely flat. At this time, the test light beam amplitude Etest, Reference beam amplitude EretIs
Etest(x, t) = E0exp (ia cos (2πifx))
Eref(x, t) = E0exp (iωt)
It is expressed as Where a is the wavefront amplitude, I0Is the intensity of the incident light, x is the spatial coordinate, t is the time, the spatial frequency of the f wavefront, and ω represents the frequency of the fringe scan.
[0012]
The interference fringe intensity I (x, t) due to these two light beams is
I (x, t) = | Etest(x, t) + Eref (x, t) |Two
= I0(1 + cos (a cos (2πifx) -ωt))
I0(1 + sin (ωt) + a cos (2πfx) cos (ωt))
Becomes Here, assuming that the wavefront amplitude a is sufficiently small, the wavefront amplitude a is represented by approximation up to the first order term. The intensity I of the interference fringe image obtained when the contrast at the frequency f is M (f)mean(X, t) is
Imeas(x, t) = I0(1 + sin (ωt) + M (f) a cos (2πfx) cos (ωt))
Becomes Since the fringe scan produces a phase by extracting the cos modulation component and the sin modulation component of the interference fringe change, the calculated phase is
φ (x) = tan-1(M (f) a cos (2πfx))
M (f) a cos (2πfx)
That is, the calculation is performed with the wavefront amplitude a of the actual wavefront reduced by the contrast M (f) at the frequency f. For this reason, it becomes difficult to measure the phase wavefront of the interference fringes with high accuracy.
[0013]
An object of the present invention is to provide an interferometer capable of measuring the surface shape of a surface to be inspected, the homogeneity of an object, and the like with high accuracy.
[0014]
[Means for Solving the Problems]
The interference measurement apparatus of the present invention
An interference device that forms interference fringes using light passing through the test object,
Correction means for correcting a phase difference distribution obtained from the interference fringes based on a correction value obtained using a shape of the correction sample and a measurement value of the shape of the correction sample measured by the interference device. It is characterized by.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
(Embodiment 1)
Embodiment 1 of the present invention will be described.
[0017]
In the first embodiment, for example, a three-dimensional shape scanning type device (see FIG. 4) is used as a shape measuring device that prepares a correction sample (sample) and mechanically measures the surface shape of the test surface of the correction sample. A correction value for correcting the measurement value obtained by the interference measurement device is calculated from the measurement values obtained by the device (see FIG. 1). That is, the correction value is multiplied by the measured value of the sample to be measured obtained by the interferometer, and the surface shape information of the surface to be measured of the sample to be measured is obtained from this. Here, an example in which the surface shape of the test surface of the correction sample is mechanically measured has been described. However, this is not limited thereto, and any method that can accurately measure the surface shape of the test surface of the correction sample is used. If it is, it need not be a mechanical method. Furthermore, if the shape of the test surface of the correction sample is accurately known, there is no particular need for measurement, and the shape of the test surface of the sample and the shape of the surface by the interferometer of the present embodiment are not necessary. The correction value may be calculated from both the measurement result.
[0018]
Hereinafter, the flow of a method of measuring and correcting a measured value when the surface to be measured of the sample to be measured is a plane and correcting the measured value will be specifically described.
[0019]
FIG. 1 is a schematic diagram of a main part of an interference measurement device used in the first embodiment.
[0020]
First, a method of measuring a sample to be measured by the interference measurement device of FIG. 1 will be described. The light beam emitted from the light source (light source means) 1 passes through the half mirror 2 and reaches the TF substrate 5 on the biaxial tilt stage 3. The two-axis tilt stage 3 is tilted with high accuracy in accordance with a command from the control computer 9, and the wavefront of a reference light beam and a test light beam, which will be described later, can be aligned. A TF substrate 5 is mounted on the biaxial tilt stage 3 via a piezoelectric element (PZT actuator) 4 as an optical path length difference changing means for the fringe scanning method.
[0021]
The TF substrate 5 is provided with an antireflection film or a wedge angle for the wavelength of the light beam from the light source 1 other than the final surface 5a, whereby a part of the light beam is reflected only from the final surface 5a. The light beam transmitted through the final surface 5a is reflected by the surface 6a of the sample 6 to be measured. Hereinafter, the light beam reflected by the final surface 5a of the TF substrate 5 is referred to as a reference light beam, and the light beam transmitted through the final surface 5a is referred to as a test light beam.
[0022]
The test light beam reflected by the test surface 6a of the sample 6 is combined with the reference light beam by the TF substrate 5, interferes and is reflected by the half mirror 2, and is diffused through the imaging optical system 7 and the pinhole PH into the diffusion plate 10 The interference fringes are formed above.
[0023]
The diffusing plate 10 is used to average optical noise such as speckle by rotating by the driving means MO. The interference fringes diffused by the diffusion plate 10 are transmitted to a CCD camera (imaging means) 8 by an imaging optical system 11, and the captured interference fringe image data is transferred to a control computer (processing system) 9. Here, the imaging optical system 11 and the diffusion plate 10 may be omitted, and the CCD camera 8 may be arranged at a position where the diffusion plate 10 is located, and the interference fringe image data may be directly detected. According to this method, a decrease in amplitude due to the influence of the optical system is small.
[0024]
An interferometer is constituted by a system from the light source 1 to the diffusion plate 10 or the imaging means 8 via the surface 6a to be detected. An optical member provided in the optical path from the light source 1 to the imaging means 8 via the surface 6a to be inspected constitutes one element of the optical means.
[0025]
The control computer 9 captures a plurality of interference fringe image data obtained when the PZT actuator 4 is scanned, and calculates the phase of the interference fringes by a so-called fringe scanning method. Measuring. Then, the measured value of the surface shape of the sample 6 is corrected by the correction value by the amplitude correction unit (correction means) 12 incorporated in the control computer 9. Here, the amplitude correction unit 12 may be separated from the control computer 9. A method of correcting the measurement value calculated by the amplitude correction unit 12 will be described with reference to FIG.
[0026]
In FIG. 2, M1 represents the wavefront distribution (phase wavefront distribution) of the measured value (interference fringe data) of the surface shape of the sample 6. The measurement value M1 is subjected to polynomial fitting using the least squares method or the like, thereby separating the measurement value M1 into a polynomial component Z1 and a polynomial residual component (residual component) R1. Here, a ZERNIKE polynomial or the like is used as the polynomial.
[0027]
A two-dimensional Fourier transform is performed on the residual component R1 to obtain a frequency distribution RF1. The reason why the residual component R1 is used here is to suppress an unnecessary frequency product due to an extreme change of the wavefront pupil edge.
[0028]
In FIG. 2, the amplitude deterioration of the phase wavefront is obtained by creating the amplitude distribution of the phase wavefront obtained by the interferometer on the spatial frequency on the same scale as the frequency distribution RF1. In FIG. 2, RF2 represents the frequency distribution of the residual wavefront after the correction of the amplitude-deteriorated phase wavefront, and is represented by the frequency distribution RF1 and the correction coefficient distribution Rdc.
RF2 = RF1 / Rdc
It is expressed as
[0029]
How to determine the correction coefficient distribution Rdc will be described later in detail. This correction is applied when the frequency component amplitude of the wavefront aberration in the region to be corrected due to the amplitude deterioration of the phase wavefront is sufficiently smaller than 1 rad. An inverse Fourier transform is performed on the corrected frequency distribution RF2 to obtain a residual wavefront R2 in real space. By adding the separated polynomial component Z1 to this, the wavefront aberration distribution M2 is obtained, from which the correction of the amplitude deterioration with respect to the measurement value M1 is completed, and the wavefront measurement value M2 with a small measurement error is obtained up to the high frequency range. It is possible.
[0030]
Next, a method of obtaining the correction coefficient distribution Rdc will be described with reference to the flow (flow chart) of FIG.
[0031]
Step A: “Preparing a sample for correction”
5, 6, and 7 are schematic diagrams of correction samples. FIG. 5 is a diagram of the test surface of the correction sample S1 as viewed from above, and C1a and C1b represent amplitude distributions in cross sections of the straight lines S1a and S1b of the correction sample S1. FIG. 6 is a diagram of the correction sample S2 as viewed from above, and C2a and C2b represent amplitude distributions in cross sections of straight lines S2a and S2b of the correction sample S2. S3 (S3a, S3b... S3x) in FIG. 7 are samples obtained by engraving different frequencies on a plurality of DUTs, and C3a, C3b. A plurality of such correction samples S1, S2, and S3 are prepared, and the surface shapes of the test surfaces of the correction samples S1, S2, and S3 are measured by the interference measurement device and the three-dimensional shape scanning measurement device shown in FIG. I do.
[0032]
Step B: “Measure the correction samples S1, S2, and S3 with the interference measurement device”
The measurement of the correction samples S1, S2, and S3 by the interference measurement device measures the surface shape of the test surface of the correction samples S1, S2, and S3 by the same method as described above with reference to FIG. . The details of the measurement method have already been described, and thus will not be described. Here, the amplitude correction of the phase wavefront by the amplitude correction unit 12 is not performed. That is, the measurement is performed with the correction coefficient distribution Rdc = 1.
[0033]
Step C: "Measure the correction samples S1, S2, and S3 with the three-dimensional shape scanning measurement device"
The measurement of the surface shape of the correction sample by the contact type three-dimensional shape scanning measuring device will be described with reference to FIG.
[0034]
FIG. 4 is a schematic view of a contact-type three-dimensional shape scanning measuring device for measuring the shape of a correction sample surface. The sample 22 is set on an XY stage 23. Here, the XY stage 23 can be driven independently by the control computer 25 with high accuracy.
[0035]
The probe 21 is installed on the XYZ stage 24, and the control computer 25 controls the XYZ stage 24 so that the probe 21 scans the surface 22a of the sample 22 while applying a constant pressure. At this time, the surface coordinates of the test surface 22a of the sample 22 are calculated by calculating the position coordinates of the XYZ stage 24 by the control computer 25. Here, there is no problem even if the correction samples S1, S2, and S3 are measured by the non-contact type three-dimensional shape scanning measuring device.
[0036]
Step D: “Determine correction coefficients RdcH and RdcV from measurement results of steps B and C”
Next, a method of obtaining the correction coefficients RdcH and RdcV in the horizontal and vertical directions of the CCD camera 8 from the measurement results in Steps B and C will be described with reference to FIG.
[0037]
When the cut surface of the test surface is in the horizontal direction of the CCD camera 8, a certain spatial frequency kx with respect to the sampling interval is calculated from the measurement result. As described above, the amplitude V at the spatial frequency kx on the test surface is obtained.ref(Kx).
[0038]
Hereinafter, h is calculated up to the Nyquist frequency of the sampling interval (the reciprocal of twice the sampling period). Similarly, in the case of the three-dimensional shape scanning measuring apparatus, the amplitude V of the spatial frequency kx is also used.ref(Kx) is obtained.
[0039]
FIG. 8 shows a series of calculation results. By measuring the amplitude of the spatial frequency on the test surface, discrete data V (kxi) can be obtained. The solid line in FIG. 8 indicates the amplitude V of the three-dimensional shape deformation measuring device.refThe (kx) dotted line represents the amplitude V (kx) of the interference measurement device, and the amplitude of the dotted line is lower than that of the solid line. The cause of the amplitude deterioration is as described above in "Problems to be solved".
[0040]
At this time, the correction coefficient Rdc0 is
Rdc0 = V (kx) / Vref(Kx)
The correction is completed by dividing the measurement value of the interference measurement device by the correction coefficient Rdc0 for each spatial frequency.
[0041]
When the sample interval between the three-dimensional shape scanning measuring device and the interference measuring device is different, the amplitude VrefThe correction coefficient may be obtained by fitting the (kx) and the amplitude V (kx) with a polynomial function or the like by the least square method or the like.
[0042]
Here, as in the present embodiment, the correction coefficient in the interferometer that includes incoherent imaging in the pupil imaging system that forms interference fringes is:
FInchOpt(x, k0) = (2 cos-1(k0x)-sin (2 cos-1(k0x))) / π
This expression represents the amplitude degradation of the incoherent optical system of the ideal optical system.
[0043]
In this embodiment, incoherent imaging is used as the pupil imaging system of the lens to be inspected. However, a Moffat function represented by the following equation may be used as a correction coefficient in the coherent imaging interferometer.
[0044]
Moffat (x, k0, k1, kTwo) = k0/ (1+ (x / k1)Two)k2
Where x is the spatial frequency, k0, Kl, KTwoIs a parameter.
[0045]
Thus, the calculation of the correction coefficient RdcH in the horizontal direction of the CCD camera 8 is completed. Next, if the correction coefficient RdcV in the vertical direction is calculated by the same procedure, the correction coefficients RdcH and RdcV in the horizontal and vertical directions of the interferometer are obtained.
[0046]
Step E: “Determine the correction coefficient distribution Rdc from the result of Step D”
The fitting of the correction coefficients RdcH and RdcV in the horizontal direction and the vertical direction of the interferometer and conversion into a function facilitates creation of the correction coefficient distribution Rdc. Assuming that the fitted correction coefficients in the horizontal and vertical directions are RdcH (kx) and RdcV (ky), the correction coefficient distribution Rdc (kx, ky) on the spatial frequency (kx, ky) is
Rdc (kx, ky) = RdcH (kx) × RdcV (ky)
It is expressed as
[0047]
Thus, the correction coefficient distribution Rdc in FIG. 2 can be obtained. The amplitude correction unit 12 in FIG. 1 performs an amplitude correction calculation on the measured value using the correction coefficient distribution Rdc.
[0048]
In addition, although the planar shape has been described as the shape of the detection surface, application to homogeneity measurement (homogeneous measurement) is also possible. In the case of the homogeneity measurement, the sample 6 in FIG. 1 is used as an RF substrate (reflection reference plate), and the object to be measured 13 is placed between the RF substrate 6 and the TF substrate 5 to measure the transmitted wavefront. As a measuring method, an oil-on-plate method in which measurement is performed on a non-polished surface, a calendar method in which measurement is performed on a polished surface, or the like can be applied.
[0049]
(Example 2)
Next, a second embodiment of the present invention will be described.
[0050]
The second embodiment uses a spherical mirror as the shape of the sample to be measured, whereas the sample to be measured in the first embodiment is a parallel plate. The patterns shown in FIGS. 5 and 6 are provided on the reflection surface of the spherical mirror. A measurement method using the interference measurement apparatus in this case will be described with reference to FIG.
[0051]
In FIG. 9, the light beam emitted from the light source 1 passes through the half mirror 2 and reaches the condenser lens 5 provided on the XYZ stage 3. The XYZ stage 3 can be independently driven in the XYZ directions with high accuracy by a command from the control computer 9. A condensing lens 35 is provided on the XYZ stage 3 via a piezoelectric element (PZT actuator) 4 for fringe scanning.
[0052]
Here, the condenser lens 35 is a so-called TS lens in which the radius of curvature of the final surface 35a is equal to the distance between the final surface 35a and the focal point 10. The TS lens 35 is provided with an antireflection film for the wavelength of the light source 1 other than the final surface 35a so that a part of the light beam is reflected only from the final surface 35a. The light beam transmitted through the final surface 35a is reflected by the surface 6a to be measured of the sample 6. Hereinafter, the light beam reflected by the final surface 35a of the TS lens 35 is referred to as a reference light beam, and the light beam transmitted through the final surface 35a is referred to as a test light beam.
[0053]
Here, the sample 6 is provided on an XYZ stage 11 that can be controlled by the control computer 9, and is adjusted in the XYZ directions so that the center of curvature of the test surface 6 a of the sample 6 coincides with the focal point 10 by the TS lens 35. ing.
[0054]
The test light beam reflected by the test surface 6a of the sample 6 is multiplexed with the reference light beam by the TS lens 35, interferes with each other, is reflected by the half mirror 2, and is transmitted through the imaging optical system 7 and the pinhole PH to the CCD. An interference fringe is formed on the camera 8. Image data captured by the CCD camera 8 is transferred to the control computer 9.
[0055]
The control computer 9 fetches a plurality of interference fringe image data obtained when the PZT actuator 4 is scanned from the CCD camera 8, calculates the phase of the interference fringes by a so-called fringe scanning method, and obtains a phase wavefront (measured value). Then, the measured value is corrected by the correction coefficient by the amplitude correction unit 12 incorporated in the control computer 9. Here, there is no problem even if the amplitude correction unit 12 is separated from the control computer 9.
[0056]
The sample 6 used here is obtained by engraving a pattern as shown in FIGS. 5, 6 and 7 on a spherical surface where the focal point 10 of the TS lens 5 and the center of curvature of the surface 6a to be inspected of the sample 6 coincide.
[0057]
The measurement of the surface to be inspected of the sample 6 and the correction of the amplitude degradation by the three-dimensional shape scanning type measuring apparatus have been described in the first embodiment, and thus the description thereof will be omitted. Although the optical system without the diffusion plate 10 and the imaging optical system 11 as in the first embodiment is shown here, these members may be provided.
[0058]
(Example 3)
Next, a third embodiment of the present invention will be described with reference to FIG. Embodiment 3 uses a transmissive object as a test object. In FIG. 10, the light beam emitted from the light source 1 passes through the half mirror 2 and reaches the condenser lens 5 provided on the XYZ stage 3. The XYZ stage 3 can be independently driven in the XYZ directions with high accuracy by a command from the control computer 9. A condensing lens 5 is provided on the XYZ stage 3 via a piezoelectric element (PZT actuator) 4 for fringe scanning.
[0059]
Here, the condenser lens 35 is a so-called TS lens in which the radius of curvature of the final surface 35a is equal to the distance between the final surface 35a and the focal point 10. The TS lens 5 is provided with an antireflection film for the wavelength of the light source 1 except for the final surface 35a, so that a part of the light beam is reflected only from the final surface 35a. Hereinafter, the light beam reflected by the final surface 35a of the TS lens 35 is referred to as a reference light beam, and the light beam transmitted through the final surface 35a is referred to as a test light beam.
[0060]
The Z stage is adjusted so that the focal point 10 of the condenser lens 35 coincides with the object plane of the test lens 14, and the test light flux transmitted through the test lens 14 is placed on the image plane 15 of the test lens 14. After being condensed, the light is reflected by the spherical RS mirror 6.
[0061]
Here, the RS mirror 6 is provided on the XYZ stage 11 which can be controlled by the control computer 9 like the TS lens 5, and the direction of the XYZ stage 11 is adjusted so that the curvature center 6a of the RS mirror 6 and the image-side focal point 15 coincide. Has been made.
[0062]
The reference light beam reflected by the final surface 35a of the TS lens 35 and the test light beam reflected by the RS mirror 6 are multiplexed via the TS lens 35, interfere with each other, become the same optical path, and become the same optical path. The light is reflected and forms interference fringes on the CCD camera 8 via the imaging optical system 7 and the pinhole PH. The interference fringe image data captured by the CCD camera 8 is transferred to the control computer 9. The control computer 9 takes in a plurality of interference fringe image data obtained when the PZT actuator 4 is scanned, calculates the phase of the interference fringes by a so-called fringe scanning method, and obtains the transmitted wavefront of the lens to be measured.
[0063]
Then, the measured value is corrected by the correction coefficient by the amplitude correction unit 12 incorporated in the control computer 9. Here, there is no problem even if the amplitude correction unit 12 is separated from the control computer 9.
[0064]
Next, measurement of the correction sample in the interference measurement apparatus of FIG. 10 will be described.
[0065]
First, the correction sample 13 shown in FIG. 10 is attached to the lens 14 to be inspected, or is arranged at a similar position using a tool or the like without the lens 14 to be inspected. The correction sample 13 used here is shown in FIG. 5, FIG. 6, and FIG. 7 as a spherical surface where the focal point 10 of the TS lens 5 and the center of curvature of the test surface 13a of the correction sample 13 coincide with each other, as in the second embodiment. It is a carved pattern. At this time, the XYZ stage 11 is controlled by the control computer 9 so that the center of curvature of the test surface 13a of the correction sample 13 coincides with the focal point 10 of the TS lens 5.
[0066]
The test light beam reflected by the test surface 13a of the correction sample 13 is multiplexed with the reference light beam by the TS lens 35, interferes with each other, is reflected by the half mirror 2, and passes through the imaging optical system 7 and the pinhole PH. An interference fringe is formed on the CCD camera 8. Image data captured by the CCD camera 8 is transferred to the control computer 9. The control computer 9 fetches a plurality of interference fringe image data obtained when the PZT actuator 4 is scanned, calculates the phase of the interference fringe by a so-called fringe scanning method, and obtains the amplitude deterioration when measured by an interference measurement device.
[0067]
The measurement of the surface to be measured of the correction sample 13 and the correction of the amplitude deterioration by the three-dimensional shape scanning type measuring apparatus have been described in the first embodiment, and thus the description thereof will be omitted. Although the optical system without the diffusion plate 10 and the imaging optical system 11 as in the first embodiment is shown here, these members may be provided.
[0068]
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described.
[0069]
In the fourth embodiment, the surface shape measuring device (the first and second embodiments) and the transmitted wavefront shape measuring device (the third embodiment) having the amplitude correction function are applied to the manufacture of the projection lens of the exposure apparatus. The measurement of the single lens or the homogeneity is performed by the measuring apparatus of the first and second embodiments, and the wavefront of the assembled lens is measured and adjusted by the measuring apparatus of the third embodiment. As a result, lenses with high accuracy up to high frequencies are manufactured.
[0070]
[Embodiment 1]
An interference device that forms interference fringes using light passing through the test object,
Correction means for correcting a phase difference distribution obtained from the interference fringes based on a correction value obtained using a shape of the correction sample and a measurement value of the shape of the correction sample measured by the interference device. An interference device characterized by the above.
[0071]
[Embodiment 2]
The correction means keeps the gain of the first frequency component substantially constant among the first frequency component of the phase difference distribution and the second frequency component having a higher spatial frequency than the first frequency component, and 2. The interference device according to claim 1, wherein the gain is corrected.
[0072]
[Embodiment 3]
The interference device according to claim 2, wherein the correction unit amplifies the gain of the second frequency component.
[0073]
[Embodiment 4]
The interference device according to any one of embodiments 1 to 3, further comprising a unit configured to guide a shape of the test object based on the phase difference distribution.
[0074]
[Embodiment 5]
The interference device according to any one of embodiments 1 to 4, further comprising an optical path length difference changing element that changes an optical path length difference between two light beams forming the interference fringes.
[0075]
[Embodiment 6]
From the light beam emitted from the light source means, an optical means for forming a test light beam through the test object and a reference light beam through the reference surface, and combining them to form an interference wave front; and An optical path length difference changing element for changing the optical path length difference of the reference light beam, an image sensor for imaging an interference fringe based on the interference wavefront, and calculating a phase difference distribution of the interference wavefront from the interference fringe captured by the imager. In the interferometer having a processing system, the phase difference distribution is measured by a value obtained by a shape measuring device for mechanically measuring the uneven shape of the surface to be measured of the correction sample, and the correction sample is measured by the interferometer. An interfering device comprising: a correction unit that corrects a correction value obtained by using the corrected value.
[0076]
[Embodiment 7]
7. The interference apparatus according to claim 6, wherein, when the test surface of the test object or the test object is a lens system, the pupil of the test object and the image sensor have a conjugate relationship.
[0077]
[Embodiment 8]
8. The interference apparatus according to claim 6, wherein the optical unit forms interference fringes on a diffusion plate, and re-images the interference fringes formed on the diffusion plate on an image sensor.
[0078]
[Embodiment 9]
The sixth and seventh embodiments are characterized in that the correction sample includes a sample in which a plurality of patterns with different spatial frequencies are engraved on the surface to be inspected, or a sample in which patterns with different spatial frequencies are engraved on a plurality of objects to be measured. Or the interference device according to 8.
[0079]
[Embodiment 10]
The interference device according to any one of Embodiments 6 to 9, wherein the correction unit obtains a correction value in a frequency space.
[0080]
[Embodiment 11]
When the imaging system that forms interference fringes is an incoherent system, the correction value is f, the spatial frequency of the wavefront is x, and the spatial coordinates are x, 2πf = k.0When
FInchOpt(x, k0) = (2 cos-1(k0x)-sin (2 cos-1(k0x))) / π
The interference device according to any one of Embodiments 6 to 10, wherein a correction coefficient is used.
[0081]
[Embodiment 12]
The correction value is k when the imaging system forming the interference fringes is a coherent system.0, K1, KTwoIs a parameter x with spatial coordinates,
Moffat (x, k0, k1, kTwo) = k0/ (1+ (x / k1)Two)k2
The interference device according to any one of Embodiments 6 to 10, wherein a correction coefficient is used.
[0082]
[Embodiment 13]
The interferometer according to embodiment 6, wherein the homogeneity of the test object is obtained.
[0083]
[Embodiment 14]
A projection lens for an exposure apparatus, manufactured using the interference device according to any one of Embodiments 6 to 13.
[0084]
[Embodiment 15]
A test light beam obtained by reflecting a part of the light beam emitted from the light source means on the surface to be measured or transmitting the test object and then reflecting the light on the reflecting surface, and a part of the light beam emitted from the light source means Optical means for forming a reference light beam obtained by reflecting the target light beam by a reference surface, an optical path length difference changing element for changing an optical path length difference between the test light beam and the reference light beam, and an interference between the test light beam and the reference light beam. An imaging element that captures an interference fringe obtained by the imaging, and the optical unit guides an interference fringe formed by the reference light flux and the test light flux to the imaging element, and is captured by the imaging element. An interference apparatus having a processing system for calculating a phase difference distribution between the test light flux and the reference light flux from the interference fringes, further comprising a correction unit configured to calculate a correction value for correcting amplitude deterioration of a spatial phase distribution of the interference fringes. And the correction means , Interference and wherein the determined by measuring the correction sample the correction value in the interference device and shape measuring apparatus for measuring a contact or non-contact irregularities of the test surface.
[0085]
[Embodiment 16]
The interferometer according to embodiment 15, wherein the test surface or the pupil of the test object and the image sensor have a conjugate relationship.
[0086]
[Embodiment 17]
Embodiment 15 or 16 wherein the correction sample comprises a sample in which a plurality of patterns of different spatial frequencies are engraved on the surface to be inspected, or a sample in which a plurality of objects are engraved with patterns of different spatial frequencies. An interference device according to claim 1.
[0087]
[Embodiment 18]
The interference device according to any one of embodiments 15 to 17, wherein the correction unit obtains a correction value in a frequency space.
[0088]
[Embodiment 19]
An interferometer that combines the test wavefront through the test object and the reference wavefront and forms interference fringe data based on the phase wavefront in the imaging unit, and extracts the test object from the interference fringe data from the interferometer. An interferometer having a processing system that calculates and obtains a phase wavefront through
The processing system calculates the amplitude when the phase wavefront of the interference information obtained by the interferometer when the correction sample is used is deteriorated in amplitude due to the spatial frequency value (kx) as V (kx). The amplitude obtained by a shape measuring device that mechanically measures the shape is Vref(Kx),
[0089]
(Equation 1)
Figure 2004198382
[0090]
An interference device, wherein the interference fringe data is corrected using the correction coefficient distribution Rdc obtained from the calculation.
[0091]
[Embodiment 20]
An interferometer that combines the test wavefront through the test object and the reference wavefront and forms interference fringe data based on the phase wavefront in the imaging unit, and extracts the test object from the interference fringe data from the interferometer. An interferometer having a processing system that calculates and obtains a phase wavefront through
The processing system calculates a wavefront aberration distribution (M2) using a frequency distribution (RF2) obtained by correcting a frequency distribution (RF1) based on interference fringe data (M1) obtained by the interferometer with a correction coefficient distribution (Rdc). At this time, the correction coefficient distribution (Rdc0) Is V (kx), the amplitude when the phase wavefront of the interference information obtained by the interferometer is degraded by the spatial frequency value (kx), and the shape measuring device for mechanically measuring the uneven shape of the correction sample. The resulting amplitude is Vref(Kx),
[0092]
(Equation 2)
Figure 2004198382
[0093]
An interference device characterized by what is required.
[0094]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the transmitted wavefront of the test surface of a test surface of the high frequency component or the shape error of a test surface which was difficult by the deterioration of the amplitude of the interference fringe measured by the interference apparatus can be corrected, and the interference which can perform a highly accurate measurement can be performed. The device can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of Embodiment 1 of the present invention.
FIG. 2 is a flowchart showing a procedure for correcting amplitude deterioration according to the present invention.
FIG. 3 is a flowchart illustrating a calculation for obtaining a correction coefficient distribution according to the present invention.
FIG. 4 is a schematic configuration diagram of a contact type three-dimensional shape scanning type measuring apparatus according to the present invention.
FIG. 5 is an example of a sample for measuring a rear surface according to the present invention.
FIG. 6 is an example of a sample for measuring a test surface according to the present invention.
FIG. 7 is an example of a sample for measuring a plurality of test surfaces according to the present invention.
FIG. 8 is a graph of an amplitude obtained by performing Fourier transform on a cross section of a test surface according to the present invention according to the present invention.
FIG. 9 is a schematic configuration diagram of Embodiment 2 of the present invention.
FIG. 10 is a schematic configuration diagram showing a third embodiment of the present invention.
FIG. 11 is a schematic configuration diagram of a conventional interference measurement device.
[Explanation of symbols]
Etest(X, t): complex amplitude of the test light beam
Eref(X, t): reference beam flux search amplitude
E0: Electric field amplitude
a: Wavefront amplitude
f: wavefront spatial frequency
ω: Fringe scan frequency
M (t): contrast at spatial frequency f
k: interference fringe spatial frequency
V: Amplitude of the test surface
kx: horizontal spatial frequency
ky: vertical spatial frequency
Finch0pt: Fitting function of incoherent optical system,
Rde0: One-dimensional correction coefficient function
M1: Measurement result interference fringe phase
Z1: polynomial component of the measurement result interference fringe phase
R1: Phase residual component of measurement fringe
RF1: Spatial frequency distribution of fringe phase residual component of measurement result interference
Rdc: Correction coefficient distribution of spatial frequency of interferometer amplitude deterioration
RF2: Spatial frequency distribution of aberration residual component of transmitted wavefront for correction result
R2: residual aberration component of the correction result transmitted wavefront
M2: Aberration distribution of transmitted wavefront after correction
NA: NA of measurement light beam
r: measurement light beam radius

Claims (1)

被検物を介した光を用いて干渉縞を形成する干渉装置であって、
補正用サンプルの形状と前記補正用サンプルの形状を前記干渉装置で測定した測定値とを用いて求めた補正値に基づいて、前記干渉縞から得られる位相差分布を補正する補正手段を有することを特徴とする干渉装置。
An interference device that forms interference fringes using light passing through the test object,
Correction means for correcting a phase difference distribution obtained from the interference fringes based on a correction value obtained using a shape of the correction sample and a measurement value of the shape of the correction sample measured by the interference device. An interference device characterized by the above-mentioned.
JP2002370728A 2002-12-20 2002-12-20 Interferometer and measurement method having the same Expired - Fee Related JP4208565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370728A JP4208565B2 (en) 2002-12-20 2002-12-20 Interferometer and measurement method having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370728A JP4208565B2 (en) 2002-12-20 2002-12-20 Interferometer and measurement method having the same

Publications (3)

Publication Number Publication Date
JP2004198382A true JP2004198382A (en) 2004-07-15
JP2004198382A5 JP2004198382A5 (en) 2007-03-08
JP4208565B2 JP4208565B2 (en) 2009-01-14

Family

ID=32766565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370728A Expired - Fee Related JP4208565B2 (en) 2002-12-20 2002-12-20 Interferometer and measurement method having the same

Country Status (1)

Country Link
JP (1) JP4208565B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064966A (en) * 2005-07-19 2007-03-15 Pentax Corp Method of optically adjusting optical element
JP2007294051A (en) * 2006-04-27 2007-11-08 Nippon Hoso Kyokai <Nhk> Hologram reproduction wavefront correcting method and device
CN101927395A (en) * 2010-07-26 2010-12-29 清华大学 Weld joint tracking detection equipment and method
JP2011059007A (en) * 2009-09-11 2011-03-24 Nikon Corp Waveform analysis device, waveform measuring device, waveform analysis program, interferometer device, pattern projection shape measuring device, and waveform analysis method
CN103398655A (en) * 2013-08-09 2013-11-20 中国科学院长春光学精密机械与物理研究所 Wavelength turning phase-shift point-diffraction interference measuring device and method thereof
KR102057606B1 (en) * 2018-08-28 2019-12-19 강원대학교산학협력단 Method for suppressing laser speckle noise and optical system using the same
KR20200024514A (en) * 2018-08-28 2020-03-09 강원대학교산학협력단 Laser speckle noise suppression system and 3d reconstruction method of object age using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064966A (en) * 2005-07-19 2007-03-15 Pentax Corp Method of optically adjusting optical element
JP2007294051A (en) * 2006-04-27 2007-11-08 Nippon Hoso Kyokai <Nhk> Hologram reproduction wavefront correcting method and device
JP4558673B2 (en) * 2006-04-27 2010-10-06 日本放送協会 Hologram reproduction wavefront correction method and apparatus
JP2011059007A (en) * 2009-09-11 2011-03-24 Nikon Corp Waveform analysis device, waveform measuring device, waveform analysis program, interferometer device, pattern projection shape measuring device, and waveform analysis method
CN101927395A (en) * 2010-07-26 2010-12-29 清华大学 Weld joint tracking detection equipment and method
CN101927395B (en) * 2010-07-26 2013-01-16 清华大学 Weld joint tracking detection equipment and method
CN103398655A (en) * 2013-08-09 2013-11-20 中国科学院长春光学精密机械与物理研究所 Wavelength turning phase-shift point-diffraction interference measuring device and method thereof
KR102057606B1 (en) * 2018-08-28 2019-12-19 강원대학교산학협력단 Method for suppressing laser speckle noise and optical system using the same
KR20200024514A (en) * 2018-08-28 2020-03-09 강원대학교산학협력단 Laser speckle noise suppression system and 3d reconstruction method of object age using the same
KR102141833B1 (en) * 2018-08-28 2020-08-06 강원대학교산학협력단 Laser speckle noise suppression system and 3d reconstruction method of object age using the same

Also Published As

Publication number Publication date
JP4208565B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP3946499B2 (en) Method for detecting posture of object to be observed and apparatus using the same
EP1869401B1 (en) Method for accurate high-resolution measurements of aspheric surfaces
JP6561110B2 (en) How to identify the location of defects on a substrate
WO2013134966A1 (en) Wavelength scanning interferometer for aspheric measurements and application method therefor
JPH0666537A (en) System error measuring method and shape measuring device using it
JP2011095241A (en) Surface shape measuring device
JP2010133860A (en) Shape calculation method
CN107850555B (en) Interferometric roll-off measurement using static fringe patterns
JP3728187B2 (en) Imaging optical system performance measuring method and apparatus
JP4208565B2 (en) Interferometer and measurement method having the same
JP2016148569A (en) Image measuring method and image measuring device
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP2008513750A (en) Interferometer with mirror device for measuring objects
US20160003614A1 (en) Method and apparatus for quantitative measurement of surface accuracy of an area
JP4125113B2 (en) Interfering device
KR20090094768A (en) Evaluation method, evaluation apparatus, and exposure apparatus
JP2009244227A (en) Light wave interference measuring method
JP4156133B2 (en) Specimen inspection apparatus provided with conveying fringe generating means
CN116222802B (en) Measuring method and measuring device for central wavelength of light source
JP2013024737A (en) Method and device for measuring three-dimensional shape, and microscope device for three-dimensional shape measurement
TW201835556A (en) Measurement system, apparatus and method for determining and measuring in-plane distortions of a workpiece, and method for measuring a spatial distortion of a target surface of a workpiece
JP4390957B2 (en) Method for determining fringe phase in fringe analysis
JP5217327B2 (en) Angle measuring method and angle measuring device
JP5894464B2 (en) Measuring device
JP2000275021A (en) Apparatus for measuring shape of face

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees