JP2004198168A - Measuring method for semiconductor integrated circuit - Google Patents

Measuring method for semiconductor integrated circuit Download PDF

Info

Publication number
JP2004198168A
JP2004198168A JP2002364858A JP2002364858A JP2004198168A JP 2004198168 A JP2004198168 A JP 2004198168A JP 2002364858 A JP2002364858 A JP 2002364858A JP 2002364858 A JP2002364858 A JP 2002364858A JP 2004198168 A JP2004198168 A JP 2004198168A
Authority
JP
Japan
Prior art keywords
integrated circuit
voltage
semiconductor integrated
measured
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364858A
Other languages
Japanese (ja)
Inventor
Akihiro Kobayashi
昭弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002364858A priority Critical patent/JP2004198168A/en
Publication of JP2004198168A publication Critical patent/JP2004198168A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit measuring method capable of measuring the on-resistance of a semiconductor element integrated in a semiconductor integrated circuit with high precision, without being influenced by the contact resistance between the semiconductor element and a measuring device. <P>SOLUTION: This is a method for measuring semiconductor integrated circuits. By connecting a voltage amplifier circuit of a constant amplification factor in the semiconductor integrated circuit, to both ends of the semiconductor element to be measured in the semiconductor integrated circuit, and measuring the output voltage of the voltage amplifier circuit, the voltage between both ends of the semiconductor element to be measured, the on-resistance is measured with high precision without causing it to comprise a variation in the contact resistance between the measuring device and the semiconductor element to be measured. Consequently, the on-resistance of the semiconductor element to be measured in the semiconductor integrated circuit can be measured with high precision, without causing it to comprise a measuring error resulting from the contact impedance between a lead of a package and the measuring device having a large variation, or contact impedance between a pad of the semiconductor integrated circuit and a probe needle. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路の測定方法に関するものである。
【0002】
【従来の技術】
年々高性能化される半導体集積回路において、半導体集積回路のON抵抗も低インピーダンス化が進み、より高精度にON抵抗を測定するための技術が必要になってきている。従来、半導体集積回路内の半導体素子のON抵抗を高精度に測定したい場合、被測定半導体素子と測定系の接触インピーダンスによる誤差をキャンセルするために4端子法を用いて測定するか(既知の技術)、或いは被測定半導体素子とダミー素子を半導体集積回路内で切り替え、測定系の誤差を補正するといった手法が一般的であった(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平11−211786号公報
【0004】
【発明が解決しようとする課題】
しかしながら半導体集積回路のパッケージのピンピッチは年々縮小傾向にあり、LGA、BGA、CSPといったパッケージでは、端子の面積も小さく、4端子法のような測定子を測定ピンに接触させることは実現が困難である。更にQFPパッケージについても、リード端子の小型化から測定子を接触させることは困難になりつつある。これを解決するために、半導体集積回路の1つの端子にパッケージの2つの端子を接続した構成をとることもあるが、パッケージのピン数やピンレイアウトの制限によって実現が困難な場合も多い。
【0005】
また、ダミー素子による補正を行う場合、測定装置と被測定素子との接触抵抗をキャンセルすることはできるが、ダミー素子自体の抵抗成分や切り替えスイッチの抵抗成分を誤差として含むという欠点を有している。また、切り替えスイッチの抵抗成分は能動素子のバラツキによるものであり、一律に補正することが出来ない。
【0006】
以下、4端子法が使用できない場合の測定課題について、図面を参照しながら説明する。
【0007】
図4は従来の半導体集積回路と測定装置の接続を示す等価回路図である。
【0008】
ここで、10は半導体パッケージ、11は半導体パッケージのダイパッド、12は半導体集積回路、13は半導体集積回路のパッド、14は半導体集積回路とパッケージ間の接続ワイヤ、15は半導体集積回路パッケージのリード、16は電流源、17は電圧計、18は被測定半導体素子であり、この図では、被測定半導体素子18をトランジスタと想定している。
【0009】
そして、被測定半導体素子18のコレクタはパッド13−1、ワイヤ14−1、リード15−1を通して測定装置である電流源16と電圧計17に接続されており、被測定半導体素子18のエミッタはパッド13−2、ワイヤ14−2、リード15−2を通してGNDを接続した構成となっている。
【0010】
この回路における、半導体パッケージ10内の構成素子である被測定半導体素子18のON抵抗の測定について考える。
【0011】
この測定系で被測定半導体素子18がONしている場合の等価式は、被測定半導体素子18のON抵抗をRon、被測定半導体素子18の順方向電圧をVsat、被測定半導体素子18のコレクタエミッタ間電流をICE、ワイヤ14のインピーダンスをr1、ワイヤ14とパッド13の接合インピーダンスをr2、ワイヤ14とリード15の接合インピーダンスをr3、リード15のインピーダンスをr4、リード15と測定装置の接触インピーダンスをr5とした場合、下式(1)、(2)、(3)で表される。
【0012】
Vout=Iin*R+Iout*R+Vsat ...(1)
Ron =Vsat/ICE ...(2)
ICE =Iin=Iout ...(3)
ここで
R=r1+r2+r3+r4+r5
である。
【0013】
ここで、Voutは電圧計17の測定値、Iinは電流源16の設定値でリード15−1に流れる電流値、Ioutはリード15−2からGNDに流れる電流値、Vsatは被測定半導体素子18の飽和電圧であり、インピーダンスとしてはr1、r2、r3、r4は50mΩ、r5は100mΩ〜1Ω程度である。
【0014】
式(3)を式(1)に代入して変形すると、
Vout=ICE*2R+Vsat
Vsat=Vout−Iin*2R ...(4)
(2)に(4)を代入して

Figure 2004198168
r1〜r4のインピーダンスについては、製品間のバラツキも小さく、既知の値として一律に補正が可能であるが、r5のリードと測定系の接触インピーダンスについてはr1〜r4のインピーダンスに比べてバラツキが非常に大きく、測定したいON抵抗の値が接触抵抗と同程度である1Ω以下の場合は測定誤差が大きくなるため、一律に補正することは不可能である。そのため、ON抵抗を正確に測定することは出来ない。
【0015】
本発明は上記の問題を解決するための半導体集積回路の測定方法であり、半導体集積回路内の半導体素子のON抵抗を高精度に測定する半導体集積回路の測定方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
この目的を達成するために本発明の半導体集積回路の測定方法は、半導体集積回路内の被測定半導体素子の両端に、固定倍率の電圧増幅回路を接続し、上記電圧増幅回路の出力電圧を測定できる構成を有しており、被測定半導体素子の出力をOFF状態に設定し、上記半導体集積回路の外部より電圧を加え、上記の電圧増幅回路の入出力電圧特性を校正する第1ステップと、上記被測定半導体素子の出力をON状態に設定し、上記半導体集積回路の外部より上記被測定半導体素子に電流を順方向で供給する第2ステップと、上記の電圧増幅回路の電圧出力を測定する第3ステップと、上記第1ステップの校正結果と上記第3ステップの電圧測定結果をもとに上記被測定半導体素子の順方向電圧を逆算する第4ステップによって高精度に順方向電圧を測定し、得られた順方向電圧と供給した電流値からON抵抗を測定することが出来る。
【0017】
【発明の実施の形態】
本発明の請求項1、請求項2に基づいた一実施形態について、図1を用いて具体例を示す。
【0018】
ここで、10は半導体パッケージ、11は半導体パッケージのダイパッド、12は半導体集積回路、13は半導体集積回路のパッド、14は半導体集積回路とパッケージ間の接続ワイヤ、15は半導体集積回路パッケージのリード、16は電流源、17は電圧計、18は被測定半導体素子、19は電圧源、20は電流源16と電圧源19の切り替えスイッチ(以下SWとする)、21は増幅率Aの固定倍率の高インピーダンス電圧増幅回路(以下増幅回路とする)である。
【0019】
そして、被測定半導体素子18のコレクタはパッド13−1、ワイヤ14−1、リード15−1を通して測定装置である電流源16と電圧源19に切り替えスイッチ20を通して接続されると共に増幅回路21の+入力に接続されており、被測定半導体素子18のエミッタはパッド13−2、ワイヤ14−2、リード15−2を通してGNDを接続されると共に増幅回路21の−入力に接続されており、増幅回路21の出力はパッド13−3、ワイヤ14−3、リード15−3を通して電圧計17に接続された構成となっている。
【0020】
この回路における、半導体パッケージ10内の構成素子である被測定半導体素子18のON抵抗の測定について考える。
【0021】
この測定系で被測定半導体素子18がON、電流源16と電圧源19のSW20が電流源16側の場合の等価式は下式(6)、(7)のようになる。
【0022】
Vout=A*Vsat−Iout*R ...(6)
Figure 2004198168
増幅回路21の入力インピーダンスと、電圧計17の入力インピーダンスが高い場合、
I1=I2=0 ...(8)
Iout=0 ...(9)
であるので、式(8)を式(7)に、式(9)を式(6)に代入変形すると、
Figure 2004198168
実際にIout、I1、I2は、通常数μA以下であり、上記r1〜r5の値が1Ωあったとしてもその電圧降下は数μVであるため無視できる。
【0023】
従って、増幅回路21のゲインAが測定できればバラツキが大きいリードと測定装置との接触抵抗r5が含まれず、正確な測定ができることになる。
【0024】
次に増幅回路21のゲインAの測定手順を以下に示す。
【0025】
まず、被測定半導体素子18をOFF、SW20を電圧源19側に設定し、電圧源19より入力電圧Vinを与える。
【0026】
この場合の等価式は、電圧計17の測定値をVout’とすると
Vout’=A*Vsat−Iout*R ...(11)
Vsat =Vin−Iin*R−I3*R ...(12)
Iin =ICE+I1 ...(13)
I3 =ICE−I2 ...(14)
となる。被測定半導体素子18がOFFしていることから、
ICE=0 ...(15)
式(15)、(8)を式(13)、(14)に代入し、
Iin=0 ...(16)
I3 =0 ...(17)
式(9)より
Vout’=A*Vsat ...(18)
式(16)、(17)より
Vsat = Vin ...(19)
式(9)、(11)、(19)より
Vout’=A*Vin
A =Vout’/Vin ...(20)
このように、入力電圧Vinを設定し、出力電圧Vout’を測定することにより、半導体集積回路12内の増幅回路21のゲインAを測定することが可能である。
【0027】
この増幅回路21のゲインAを式(10)に代入することにより、高精度にON抵抗を測定することが出来る。
【0028】
Ron=Vout/(Vout’/Vin)/Iin ...(21)
続いて、図1を用いて、請求項3の具体例を示す。
【0029】
この測定系で被測定半導体素子18をON、SW20を電流源16側に設定し、入力電流Iinを与えたときの出力電圧Voutを電圧計17で測定する。
【0030】
次に、被測定半導体素子18をOFF、SW20を電圧源19側に設定し、電圧源19より入力電圧Vinを与え、電圧計17によりVout’を測定する。ここで入力電圧Vinを調整し、Vout’=Voutとなる入力電圧をVin’とする。
【0031】
この時、前記式(19)より、
Vsat =Vin’ ...(22)
Vin’は電圧源19の設定値であるため、これによりVsatが求まる。
【0032】
式(10)に式(22)を代入し、
Figure 2004198168
以上の測定では、半導体集積回路内の被測定半導体素子のON抵抗のみの測定値であるが、パッケージを含めたON抵抗を求めるには、r1〜r4の値を補正値として与えることにより可能である。
【0033】
なお、図1はQFPパッケージを想定しているが、図2に示すようなCSPパッケージについても、半導体パッケージのハンダボールと測定装置の接触インピーダンスを含めずに被測定半導体素子のON抵抗を測定することが可能であり、パッケージによらない高精度な測定方法を提供することが出来る。
【0034】
図2において22はパッド13からの再配線、23はポスト、24はハンダボール、25は絶縁層であり、r6は再配線22とポスト23の合成インピーダンス、r7はパッド13と再配線22との接合インピーダンス、r8はポスト23とハンダボール24の接合インピーダンス、r9はハンダボールと測定装置の接触インピーダンスである。
【0035】
この場合、合成抵抗r6+r7+r8は前記図1の合成抵抗r1+r2+r3+r4に相当し、r9はr5に相当する。
【0036】
更に、図3に示す半導体ウエハ検査時の測定においても上記の図1による具体的説明と同様、請求項1、2を用いることにより、被測定半導体素子18のON抵抗を高精度に測定することが可能である。
【0037】
図3において、26は複数の半導体集積回路12で構成される半導体ウエハ、27はプローブ針であり、r11はプローブ針先とパッドの接触インピーダンス、r12はプローブ針元と測定装置の接触インピーダンスである。
【0038】
この場合、r10が合成抵抗r1+r2+r3+r4に相当し、合成抵抗r11+r12がr5に相当する。
【0039】
【発明の効果】
以上のように、本発明を用いることにより、バラツキの大きいパッケージのリードと測定装置の接触インピーダンス、あるいは半導体集積回路のパッドとプローブ針の接触インピーダンスによる測定誤差を含まずに、半導体集積回路内の被測定半導体素子のON抵抗を高精度に測定することが可能となる。
【図面の簡単な説明】
【図1】QFPパッケージにおける、本発明の請求項1の一実施形態の半導体集積回路と測定装置の接続を示す等価回路図
【図2】CSPパッケージにおける、本発明の請求項1の一実施形態の半導体集積回路と測定装置の接続を示す等価回路図
【図3】半導体ウエハ検査における、本発明の請求項1の一実施形態の半導体集積回路と測定装置の接続を示す等価回路図
【図4】従来の半導体集積回路と測定装置の接続を示す等価回路図
【符号の説明】
10 半導体集積回路のパッケージ
11 半導体集積回路のダイパッド
12−1〜12−9 半導体集積回路
13−1〜13−3 半導体集積回路のパッド
14−1〜14−3 半導体集積回路とパッケージ間の接続ワイヤ
15−1〜15−3 半導体集積回路パッケージのリード
16 電流源
17 電圧計
18 被測定半導体素子
19 電圧源
20 測定装置切り替えスイッチ
21 固定倍率の電圧増幅回路
22−1〜22−3 再配線
23−1〜23−3 ポスト
24−1〜24−3 ハンダボール
25 絶縁層
26 半導体ウエハ
27−1〜27−3 プローブ針[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a semiconductor integrated circuit.
[0002]
[Prior art]
In a semiconductor integrated circuit whose performance is improved year by year, the ON resistance of the semiconductor integrated circuit is also reduced in impedance, and a technique for measuring the ON resistance with higher precision is required. 2. Description of the Related Art Conventionally, when it is desired to measure the ON resistance of a semiconductor element in a semiconductor integrated circuit with high accuracy, it is necessary to measure the ON resistance using a four-terminal method in order to cancel an error due to contact impedance between a semiconductor element to be measured and a measurement system (known technology). Or a method of switching between a semiconductor element to be measured and a dummy element in a semiconductor integrated circuit to correct errors in a measurement system (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-21786
[Problems to be solved by the invention]
However, the pin pitch of semiconductor integrated circuit packages has been shrinking year by year, and in packages such as LGA, BGA, and CSP, the area of the terminals is small, and it is difficult to realize the contact between the measuring pins as in the four-terminal method and the measuring pins. is there. Further, for the QFP package, it is becoming difficult to bring the probe into contact with the lead terminals due to the miniaturization of the lead terminals. In order to solve this problem, a configuration in which two terminals of a package are connected to one terminal of a semiconductor integrated circuit may be adopted. However, it is often difficult to realize the configuration due to the limitation of the number of pins and the pin layout of the package.
[0005]
In addition, when performing the correction using the dummy element, the contact resistance between the measuring device and the device under test can be canceled, but it has a disadvantage that the resistance component of the dummy element itself and the resistance component of the changeover switch are included as errors. I have. Further, the resistance component of the changeover switch is due to the variation of the active element, and cannot be uniformly corrected.
[0006]
Hereinafter, a measurement problem when the four-terminal method cannot be used will be described with reference to the drawings.
[0007]
FIG. 4 is an equivalent circuit diagram showing a connection between a conventional semiconductor integrated circuit and a measuring device.
[0008]
Here, 10 is a semiconductor package, 11 is a die pad of the semiconductor package, 12 is a semiconductor integrated circuit, 13 is a pad of the semiconductor integrated circuit, 14 is a connection wire between the semiconductor integrated circuit and the package, 15 is a lead of the semiconductor integrated circuit package, Reference numeral 16 denotes a current source, 17 denotes a voltmeter, and 18 denotes a semiconductor device to be measured. In this drawing, the semiconductor device to be measured 18 is assumed to be a transistor.
[0009]
The collector of the semiconductor device 18 to be measured is connected to the current source 16 and the voltmeter 17 as a measuring device through the pad 13-1, the wire 14-1, and the lead 15-1. The configuration is such that GND is connected through pads 13-2, wires 14-2, and leads 15-2.
[0010]
In this circuit, the measurement of the ON resistance of the semiconductor device under test 18 which is a component in the semiconductor package 10 will be considered.
[0011]
In the measurement system, when the measured semiconductor element 18 is ON, the equivalent equation is as follows: the ON resistance of the measured semiconductor element 18 is Ron, the forward voltage of the measured semiconductor element 18 is Vsat, the collector of the measured semiconductor element 18 is Vsat. The current between the emitters is ICE, the impedance of the wire 14 is r1, the junction impedance of the wire 14 and the pad 13 is r2, the junction impedance of the wire 14 and the lead 15 is r3, the impedance of the lead 15 is r4, and the contact impedance of the lead 15 and the measuring device is Is r5, it is represented by the following equations (1), (2), and (3).
[0012]
Vout = Iin * R + Iout * R + Vsat. . . (1)
Ron = Vsat / ICE. . . (2)
ICE = Iin = Iout. . . (3)
Where R = r1 + r2 + r3 + r4 + r5
It is.
[0013]
Here, Vout is a measured value of the voltmeter 17, Iin is a set value of the current source 16, a current value flowing through the lead 15-1, Iout is a current value flowing from the lead 15-2 to GND, and Vsat is a semiconductor element 18 to be measured. , And r1, r2, r3, and r4 are about 50 mΩ, and r5 is about 100 mΩ to 1Ω.
[0014]
Substituting equation (3) into equation (1) and transforming it,
Vout = ICE * 2R + Vsat
Vsat = Vout-Iin * 2R. . . (4)
Substituting (4) for (2)
Figure 2004198168
Regarding the impedances of r1 to r4, the variation between products is small and can be uniformly corrected as a known value. However, the variation in the contact impedance between the lead of r5 and the measurement system is very small compared to the impedance of r1 to r4. When the value of the ON resistance to be measured is 1Ω or less, which is almost the same as the contact resistance, the measurement error becomes large, so that it is impossible to uniformly correct the ON resistance. Therefore, the ON resistance cannot be measured accurately.
[0015]
An object of the present invention is to provide a method for measuring a semiconductor integrated circuit for solving the above-described problem, and to provide a method for measuring a semiconductor integrated circuit in which the ON resistance of a semiconductor element in the semiconductor integrated circuit is measured with high accuracy. .
[0016]
[Means for Solving the Problems]
In order to achieve this object, a method for measuring a semiconductor integrated circuit according to the present invention comprises connecting a fixed-magnification voltage amplifier circuit to both ends of a semiconductor element to be measured in the semiconductor integrated circuit, and measuring an output voltage of the voltage amplifier circuit. A first step of setting the output of the semiconductor device to be measured to an OFF state, applying a voltage from outside the semiconductor integrated circuit, and calibrating the input / output voltage characteristics of the voltage amplifier circuit; Setting the output of the semiconductor device to be measured to an ON state, supplying a current in a forward direction to the semiconductor device to be measured from outside the semiconductor integrated circuit, and measuring the voltage output of the voltage amplifier circuit A third step and a fourth step of back-calculating the forward voltage of the semiconductor device to be measured based on the calibration result of the first step and the voltage measurement result of the third step, so that the forward direction is accurately performed. Measuring the pressure, resulting forward voltage and it is possible to measure the ON resistance from the supplied current value.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A specific example of an embodiment according to claims 1 and 2 of the present invention will be described with reference to FIG.
[0018]
Here, 10 is a semiconductor package, 11 is a die pad of the semiconductor package, 12 is a semiconductor integrated circuit, 13 is a pad of the semiconductor integrated circuit, 14 is a connection wire between the semiconductor integrated circuit and the package, 15 is a lead of the semiconductor integrated circuit package, Reference numeral 16 denotes a current source, 17 denotes a voltmeter, 18 denotes a semiconductor device to be measured, 19 denotes a voltage source, 20 denotes a switch (hereinafter referred to as SW) for switching between the current source 16 and the voltage source 19, and 21 denotes a fixed magnification of the amplification factor A. It is a high impedance voltage amplifier circuit (hereinafter, referred to as an amplifier circuit).
[0019]
The collector of the semiconductor device 18 to be measured is connected to the current source 16 and the voltage source 19, which are the measuring devices, through the switch 13 through the pad 13-1, the wire 14-1, and the lead 15-1. The emitter of the semiconductor device under test 18 is connected to GND through the pad 13-2, the wire 14-2, and the lead 15-2, and is connected to the negative input of the amplifier circuit 21. The output of 21 is connected to a voltmeter 17 through a pad 13-3, a wire 14-3, and a lead 15-3.
[0020]
In this circuit, the measurement of the ON resistance of the semiconductor device under test 18 which is a component in the semiconductor package 10 will be considered.
[0021]
In this measurement system, when the semiconductor element 18 to be measured is ON and the SW 20 of the current source 16 and the voltage source 19 is on the current source 16 side, the equivalent equations are as shown in the following equations (6) and (7).
[0022]
Vout = A * Vsat-Iout * R. . . (6)
Figure 2004198168
When the input impedance of the amplifier circuit 21 and the input impedance of the voltmeter 17 are high,
I1 = I2 = 0. . . (8)
Iout = 0. . . (9)
Substituting equation (8) into equation (7) and substituting equation (9) into equation (6),
Figure 2004198168
Actually, Iout, I1, and I2 are usually several μA or less, and even if the values of r1 to r5 are 1Ω, the voltage drop is several μV and can be ignored.
[0023]
Therefore, if the gain A of the amplifier circuit 21 can be measured, the contact resistance r5 between the lead having a large variation and the measuring device is not included, and accurate measurement can be performed.
[0024]
Next, the procedure for measuring the gain A of the amplifier circuit 21 will be described below.
[0025]
First, the semiconductor element 18 to be measured is turned off, the SW 20 is set to the voltage source 19 side, and the input voltage Vin is supplied from the voltage source 19.
[0026]
The equivalent equation in this case is as follows: when the measured value of the voltmeter 17 is Vout ′, Vout ′ = A * Vsat−Iout * R. . . (11)
Vsat = Vin-Iin * R-I3 * R. . . (12)
Iin = ICE + I1. . . (13)
I3 = ICE-I2. . . (14)
It becomes. Since the semiconductor element 18 to be measured is OFF,
ICE = 0. . . (15)
Substituting equations (15) and (8) into equations (13) and (14),
Iin = 0. . . (16)
I3 = 0. . . (17)
From equation (9), Vout ′ = A * Vsat. . . (18)
From equations (16) and (17), Vsat = Vin. . . (19)
From the equations (9), (11) and (19), Vout ′ = A * Vin
A = Vout '/ Vin. . . (20)
Thus, by setting the input voltage Vin and measuring the output voltage Vout ′, the gain A of the amplifier circuit 21 in the semiconductor integrated circuit 12 can be measured.
[0027]
By substituting the gain A of the amplifier circuit 21 into the equation (10), the ON resistance can be measured with high accuracy.
[0028]
Ron = Vout / (Vout '/ Vin) / Iin. . . (21)
Next, a specific example of claim 3 will be described with reference to FIG.
[0029]
In this measurement system, the semiconductor device 18 to be measured is turned on, the SW 20 is set to the current source 16 side, and the output voltage Vout when the input current Iin is given is measured by the voltmeter 17.
[0030]
Next, the semiconductor element 18 to be measured is turned off, the SW 20 is set to the voltage source 19 side, the input voltage Vin is supplied from the voltage source 19, and the voltmeter 17 measures Vout ′. Here, the input voltage Vin is adjusted, and the input voltage satisfying Vout ′ = Vout is defined as Vin ′.
[0031]
At this time, from the equation (19),
Vsat = Vin '. . . (22)
Since Vin 'is a set value of the voltage source 19, Vsat is obtained from this.
[0032]
Substituting equation (22) into equation (10),
Figure 2004198168
In the above measurement, only the ON resistance of the semiconductor element to be measured in the semiconductor integrated circuit is measured. However, the ON resistance including the package can be obtained by giving the values of r1 to r4 as correction values. is there.
[0033]
Although FIG. 1 assumes a QFP package, the CSP package as shown in FIG. 2 also measures the ON resistance of the semiconductor device under test without including the contact impedance between the solder ball of the semiconductor package and the measuring device. It is possible to provide a highly accurate measurement method independent of the package.
[0034]
In FIG. 2, reference numeral 22 denotes a rewiring from the pad 13, 23 denotes a post, 24 denotes a solder ball, 25 denotes an insulating layer, r6 denotes a combined impedance of the rewiring 22 and the post 23, and r7 denotes a connection between the pad 13 and the rewiring 22. The junction impedance, r8, is the junction impedance between the post 23 and the solder ball 24, and r9 is the contact impedance between the solder ball and the measuring device.
[0035]
In this case, the combined resistance r6 + r7 + r8 corresponds to the combined resistance r1 + r2 + r3 + r4 in FIG. 1, and r9 corresponds to r5.
[0036]
Further, in the measurement at the time of semiconductor wafer inspection shown in FIG. 3, the ON resistance of the semiconductor element 18 to be measured can be measured with high accuracy by using the claims 1 and 2 in the same manner as in the specific description with reference to FIG. Is possible.
[0037]
In FIG. 3, reference numeral 26 denotes a semiconductor wafer composed of a plurality of semiconductor integrated circuits 12, 27 denotes a probe needle, r11 denotes a contact impedance between the probe needle tip and the pad, and r12 denotes a contact impedance between the probe needle base and the measuring device. .
[0038]
In this case, r10 corresponds to the combined resistance r1 + r2 + r3 + r4, and the combined resistance r11 + r12 corresponds to r5.
[0039]
【The invention's effect】
As described above, by using the present invention, it is possible to eliminate the measurement error caused by the contact impedance between the lead of the package having a large variation and the measuring device or the contact impedance between the pad of the semiconductor integrated circuit and the probe needle, and The ON resistance of the semiconductor device to be measured can be measured with high accuracy.
[Brief description of the drawings]
FIG. 1 is an equivalent circuit diagram showing a connection between a semiconductor integrated circuit and a measuring device according to one embodiment of the present invention in a QFP package. FIG. 2 is an embodiment of a first embodiment of the present invention in a CSP package. FIG. 3 is an equivalent circuit diagram showing the connection between the semiconductor integrated circuit and the measuring device according to the embodiment of the present invention. FIG. 3 is the equivalent circuit diagram showing the connection between the semiconductor integrated circuit and the measuring device according to the first embodiment of the present invention in semiconductor wafer inspection. An equivalent circuit diagram showing a connection between a conventional semiconductor integrated circuit and a measuring device.
DESCRIPTION OF SYMBOLS 10 Package of semiconductor integrated circuit 11 Die pads 12-1 to 12-9 of semiconductor integrated circuit Semiconductor integrated circuits 13-1 to 13-3 Pads 14-1 to 14-3 of semiconductor integrated circuit Connection wires between semiconductor integrated circuit and package 15-1 to 15-3 Leads 16 of Semiconductor Integrated Circuit Package Current Source 17 Voltmeter 18 Semiconductor Device Under Test 19 Voltage Source 20 Measuring Device Changeover Switch 21 Voltage Amplifier Circuits with Fixed Magnification 22-1 to 22-3 Rewiring 23- 1-23-3 Posts 24-1-24-3 Solder balls 25 Insulating layer 26 Semiconductor wafer 27-1 to 27-3 Probe needle

Claims (3)

半導体集積回路内の被測定半導体素子の両端に、前記半導体集積回路内に設けた固定倍率の電圧増幅回路を接続し、前記電圧増幅回路の出力電圧を測定することにより上記被測定半導体素子の両端の電圧を測定することを特徴とした半導体集積回路の測定方法。A fixed-magnification voltage amplifying circuit provided in the semiconductor integrated circuit is connected to both ends of the semiconductor device to be measured in the semiconductor integrated circuit, and both ends of the semiconductor device to be measured are measured by measuring an output voltage of the voltage amplifying circuit. A method for measuring a semiconductor integrated circuit, comprising measuring a voltage of a semiconductor integrated circuit. 被測定半導体素子の出力をOFF状態に設定し、上記半導体集積回路の外部より電圧を加え、上記の電圧増幅回路の入出力電圧特性を校正する第1ステップと、上記被測定半導体素子の出力をON状態に設定する第2ステップと、上記半導体集積回路の外部より上記被測定半導体素子に電流を順方向で供給する第3ステップと、上記の電圧増幅回路の電圧出力を測定する第4ステップと、上記第1ステップの校正結果と上記第4ステップの電圧測定結果をもとに上記被測定半導体素子の順方向電圧を求める第5ステップとからなることを特徴とする請求項1記載の半導体集積回路の測定方法。A first step of setting the output of the semiconductor device under test to an OFF state, applying a voltage from outside the semiconductor integrated circuit, and calibrating the input / output voltage characteristics of the voltage amplifying circuit; A second step of setting an ON state, a third step of supplying a current in a forward direction to the semiconductor device under test from outside the semiconductor integrated circuit, and a fourth step of measuring a voltage output of the voltage amplifier circuit. 5. The semiconductor integrated circuit according to claim 1, further comprising a fifth step of obtaining a forward voltage of the semiconductor device under test based on the calibration result of the first step and the voltage measurement result of the fourth step. Circuit measurement method. 被測定半導体素子の出力をON状態に設定し、上記半導体集積回路の外部より上記被測定半導体素子に電流を順方向で供給する第1ステップと、上記電圧増幅回路の電圧出力を測定する第2ステップと、上記被測定半導体素子の出力をOFF状態に設定する第3ステップと、上記半導体集積回路の外部より電圧を加え、上記の電圧増幅回路の出力電圧が上記第2ステップで得られた測定値と等しくなるように電圧を調整する第4ステップからなり、第4ステップで得られた調整電圧を上記被測定半導体素子の順方向電圧として測定することを特徴とする請求項1記載の半導体集積回路の測定方法。A first step of setting an output of the semiconductor device under test to an ON state and supplying a current in a forward direction to the semiconductor device under test from outside the semiconductor integrated circuit; and a second step of measuring a voltage output of the voltage amplifier circuit. Step, a third step of setting the output of the semiconductor device to be measured to an OFF state, and applying a voltage from outside the semiconductor integrated circuit to measure the output voltage of the voltage amplifier circuit obtained in the second step. 2. The semiconductor integrated circuit according to claim 1, further comprising a fourth step of adjusting a voltage so as to be equal to a value, wherein the adjustment voltage obtained in the fourth step is measured as a forward voltage of the semiconductor device to be measured. Circuit measurement method.
JP2002364858A 2002-12-17 2002-12-17 Measuring method for semiconductor integrated circuit Pending JP2004198168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364858A JP2004198168A (en) 2002-12-17 2002-12-17 Measuring method for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364858A JP2004198168A (en) 2002-12-17 2002-12-17 Measuring method for semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2004198168A true JP2004198168A (en) 2004-07-15

Family

ID=32762565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364858A Pending JP2004198168A (en) 2002-12-17 2002-12-17 Measuring method for semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2004198168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532013B2 (en) 2006-12-08 2009-05-12 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and measuring method of terminator resistor in the semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532013B2 (en) 2006-12-08 2009-05-12 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and measuring method of terminator resistor in the semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US6791344B2 (en) System for and method of testing a microelectronic device using a dual probe technique
US9140734B2 (en) Measuring apparatus and measuring method
TW201229541A (en) Test apparatus
US11054466B2 (en) Semiconductor device test system and semiconductor device test method
TW201915500A (en) Resistance measurement apparatus, substrate inspection apparatus and resistance measurement method capable of easily improving resistance measurement accuracy by a four-terminal measurement method
JP2019060767A (en) Calibration method of resistance measuring device, resistance measuring device, substrate inspection device, and reference resistor
US20170115329A1 (en) Scalable average current sensor system
US20210156902A1 (en) Semiconductor chip and circuit and method for electrically testing semiconductor chip
US7268573B2 (en) Apparatus for generating test stimulus signal having current regardless of internal impedance changes of device under test
JP2004198168A (en) Measuring method for semiconductor integrated circuit
TWI333552B (en) Measurement circuit with improved accuracy
JP7479498B2 (en) Semiconductor testing device and semiconductor testing method
CN112526425B (en) Thermal resistance measuring instrument calibration method and device based on thermal resistance standard component
US9470719B2 (en) Testing semiconductor devices
JP2003270267A (en) Probe unit, probe card, measuring device and production method for probe card
KR100915931B1 (en) Semiconductor device and semiconductor measuring device
EP3650868B1 (en) Amplifier systems for measuring a wide range of current
KR0140949B1 (en) Semiconductor integrated circuit device
WO2024106052A1 (en) Semiconductor testing device, semiconductor testing method, and method for producing semiconductor device
JP2007234816A (en) Semiconductor device
JP2002168914A (en) Stabilized electric power source unit
KR101762383B1 (en) Method of measuring electrical length in semiconductor testing apparatus
US20210208197A1 (en) On-chip current sensor
US20240142497A1 (en) Method of inspecting semiconductor device, semiconductor device, and probe card
JP2006170700A (en) Probe calibration jig, probe card with probe calibration jig and semiconductor wafer measurement device