JP2004197569A - Catalyst apparatus for automobile exhaust gas purification - Google Patents
Catalyst apparatus for automobile exhaust gas purification Download PDFInfo
- Publication number
- JP2004197569A JP2004197569A JP2002363460A JP2002363460A JP2004197569A JP 2004197569 A JP2004197569 A JP 2004197569A JP 2002363460 A JP2002363460 A JP 2002363460A JP 2002363460 A JP2002363460 A JP 2002363460A JP 2004197569 A JP2004197569 A JP 2004197569A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- exhaust
- engine
- movable valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 197
- 238000000746 purification Methods 0.000 title claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004744 fabric Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 24
- 238000012423 maintenance Methods 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 75
- 230000000052 comparative effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は自動車等の内燃機関から排出される燃焼排気ガスの浄化技術に係わり、特に、エンジンの冷始動時の排気ガスを効率よく浄化するための排気ガス浄化用触媒装置に関する。
【0002】
【従来の技術】
自動車等の内燃機関から排出される燃焼排気ガスの浄化には従来から排気系に触媒装置を用いた浄化方法がとられてきた。この触媒装置は化学反応により被浄化物質を接触浄化するため、触媒の良さは反応活性を開始する活性化温度と排気ガスとの接触確率で決まる。一方、触媒を車載するには、エンジン冷始動時を含む全運転状態下の全排気ガスを浄化する必要があり、これには冷始動時の低温度から、高負荷運転時の触媒材破壊に至るほどの高温度まで広範な温度領域で安定した反応と自動車寿命に追従した長時間寿命が求められる。
【0003】
しかしながら、このような過酷で広範な温度下で長時間使用という条件に完全に適する触媒材は実用化されていないため、従来から、技術的には触媒が安全に機能することを最優先して、排気温度的にマイルドで十分な触媒容量を占めることができる後方床下の排気系域に触媒を配設することで対応してきた。このため、排気系後方域にあっても、排気ガス温度が触媒の活性化温度より十分高く維持できる、定常運転時は当然のこととして、過負荷運転時の異常に高い排気ガスも触媒装置より前方の排気系で放熱され、触媒を高温で破壊することなく安全に浄化処理できるようになった。しかし、エンジンの冷始動時には排気ガスは冷え切った排気系と触媒自体がほとんど大気温度まで下がるために、この運転期間中に排出される排気ガスの浄化は不十分となり、全運転期間を通しては満足な浄化を達成しえない。これに対するこれまでの取り組みは、触媒体の熱容量を小さくすることで、エンジン始動時(触媒の活性開始温度に至らない)から定常運転(触媒が十分に活性する温度)に移行する間に排出される排気ガスの温度上昇速度に触媒全体が可能な限り速く追従することで、エンジン始動から反応開始までに排出される未反応ガスを最少にすることが提案されている。
【0004】
また、排気系後方に配設した触媒装置を主触媒装置とし、これとは別に排気ガスがより高温にある排気系の前方に副触媒装置を配設することで、冷始動時の浄化改善を行う提案もなされている。(例えば特許文献1)
【0005】
【特許文献1】
特開平1−249915号公報(全頁)
【0006】
【発明が解決しようとする課題】
しかしながら、上記いずれの提案も冷始動時に即反応を開始するに十分な温度を確保できるエンジン近傍域にあって、大量の排気ガスを処理するために必要な触媒容量を配設するに十分な空間を確保するには困難があった。このように冷始動時の排気ガス浄化には、エンジンの近傍に配設可能な小型で効率のよい触媒体が望まれてきた。さらにこの触媒体と触媒装置がエンジンの高負荷運転時の異常な高温にも耐えられるか、さもなくばシステム的に高温ガスを避けられる適切な構造の触媒装置が配設できるかが課題であった。
【0007】
本発明者等はこのエンジン近傍に配設できる触媒体と触媒装置として最も効率的なクロス触媒を装置に組み込む上でのいくつかの課題について鋭意研究の結果、クロス触媒体の形状と排気ガスとの接触方法ならびに冷始動時のみ触媒と接触可能とした触媒装置構成を見出した。
【0008】
【課題を解決するための手段】
本発明は、自動車の排気ガスを浄化するために複数の触媒装置を配設した自動車排気浄化装置にあって、シリカクロスを支持体とし、その表面に触媒物質を担持して成るクロス触媒体で構成された触媒装置を前段に配設した自動車排気浄化触媒装置に係わり、エキゾーストマニホルド内に配設したクロス触媒体とマニホルド直下の排気系に配設した冷始動時のみ触媒接触可能な構造でなる触媒装置を組み合わせて成る自動車排気浄化触媒装置を提案する。
【0009】
本発明は、まずエキゾーストマニホルド内排気管に筒状に形成したクロス触媒体が密着配設され、排気ガスは排気管と同軸上の触媒体に沿面方向で接触する。次に、その後方のマニホルド直下の排気系に、やはり筒状に形成された触媒体で、その内芯筒の終端に開閉可能な弁を具備した構造の触媒装置が配設され、弁のない先端より流入した排気ガスは、弁が閉じているときには、内芯筒から外筒方向に流れを変えることで、触媒体と対面方向に接触する。一方、弁が開いている時は沿面方向に接触する構成でなる。
【0010】
本発明の作用は、エンジンから排出された排気ガスがまずマニホルド内に配設された筒状触媒体と沿面接触して、排気ガスの一部のみが反応し、浄化低減すると同時に反応熱を排気ガス流に戻し加温することで、マニホルド通過の際の放熱による排気温度の低下を抑える。この結果、続くマニホルド直下の排気系に配設された筒状触媒体に流入する排気ガスはガス温度を高く維持したまま触媒体の内芯筒に流入する。このとき、エンジンが冷始動状態であれば、内芯筒に具備した弁を閉じた状態にすることで、流入した排気ガスは流れ方向を軸方向から径方向に変え、触媒体と対面接触するため、流入した全量の排気ガスが接触反応して浄化する。このときの反応熱は流出する排気ガス全体を加温して、後段に配設した主触媒の反応継続を維持する。一方、エンジンが定常運転に入ると、排気ガス温度、または始動時からの時間等を検出機構で検出し、弁を開放状態にすることで、流入した排気ガスは内芯筒内を軸方向に流れ、触媒体とは沿面で接触し、一部のガスのみが反応して後方排気系に流出する。このときに発生する反応熱は充分に少なく、後段に配設した主触媒が異常に高温加熱するのを防ぐことにもなる。
【0011】
本発明は、前述したように構成されているので、マニホルド内に配設した触媒体では一部のガスとの反応でしかなく、その反応熱はエンジンからの冷始動時排気ガスをわずか加温することで、ガスの放熱低下を防ぎ、次段触媒の反応開始と維持に寄与するとともに、定常運転時の排気ガスの接触も沿面のわずかな量ですぎず、過負荷運転時などの異常に高い排気ガス温度からも触媒を防ぎ、結果として触媒寿命を永くする。またマニホルド直下の弁付触媒装置では前段のマニホルド内配設触媒で加温保持された全排気ガスが、弁の作用で触媒体と対面接触により接触確率を高めて冷始動時の反応開始を早めるとともに、さらに後方に配設された主触媒の反応開始も早めることになり、排気系全体として、エンジンの冷始動時から運転期間中に排出される被反応成分の総排出量を大幅に低減できることになる。同時に定常運転後に弁を開放状態に作動することで、排気ガスの大半が触媒体を沿面で通過するため、触媒体と接触しないので高温ガスにさらされることが少なく、触媒体の熱的破損や熱的寿命短縮を防ぐことにもなる。
【0012】
【発明の実施の形態】
以下図面に基づいて本実施の形態を詳細に説明する。
【0013】
図1〜図5は、本実施の形態の実施例を示すものである。図1は本実施の形態の浄化装置を含む、自動車の排気系全体の構成を示す。図2は4管集結マニホルドの概略図、図3は図2のマニホルドを構成する4本の触媒体配設管の1本あたりの内部構成と触媒体の構成図、図4はマニホルド直下に接続された触媒装置の構成図、そして図5は図4の装置の組立て部品概要図を示す。なお、本実施の形態において図3で示す触媒体の構成図が第1の触媒部に相当し、図4で示す触媒装置が第2の触媒部に相当する。
【0014】
次に図に基づいて本実施の形態の実施例の詳細を説明する。図1はエンジン1からテールパイプ7に至る排気系全体を示し、特に本実施の形態に関わる構成はエンジンの気筒別排気口につながる触媒を配設したマニホルド配管2とこれに接続するマニホルド直下型触媒装置3である。
【0015】
図2は図1で示した4気筒型のマニホルド配管2の概要図であり、エンジン1の4箇所の排気口とそれぞれ個別に4本の排気管2a〜2dが接続されており、これら4本の排気管は1本の集結管2eに集結される。本実施の形態では、図2における個別の排気管2a〜2dの内部に管状の触媒体を配設し、かつ集結管2eにあたるものが図1のマニホルド直下型触媒装置3を構成している。
【0016】
図3はマニホルド内の個別の排気管2a〜2dの内部構成を示す。ここで個別の排気管21は個別の排気管2a〜2dの内の1つであり、排気管21の内部に、パンチングメタルまたはラスメタル等でなる有孔の内筒部22の上に触媒金属を担持したクロス触媒を少なくとも1回以上巻き回した触媒体23を配設した。必要に応じて触媒体23の外側にもラスメタル等の外筒部24を構成し巻き締めする。
【0017】
図4は、図1で示したマニホルド直下型触媒装置3の構成図である。この装置の構成部品図を図5に示しており、ここでは図4と図5の2つの図でマニホルド直下型触媒装置3の説明をする。十字状仕切り31は前方のマニホルド配管の終端部を個別に接続し一つにするものである。図は4気筒エンジンを想定しているので、十字型仕切りにして4箇所の開口を設けてある。この仕切りは当然のこととして、装置外筒32の前端開口部の全面に渉る形で取り付けられる。前段のマニホルド個別配管より流入するガスがスムースに流れ込むに必要な距離をおいて、触媒槽流入口となる触媒槽入り口有孔板33を配し、この開口邪魔板33に筒状の触媒体34が取り付けられる。
【0018】
この筒状の触媒体34は図5の構成部品図で示すように、有孔の内筒部341から開閉可動弁345までの5つの構成要素でなり、後述するとおり、エンジンの冷始動時浄化に係わる。筒状の触媒体34の具体的な構成は、有孔の内筒部341にクロス触媒を少なくとも1回以上巻き回して触媒体342を形成し、その外側に有孔の外筒部343を配して、クロス触媒の巻き締めと共に、ガスの流出孔を形成する。
【0019】
なお、本実施の形態においては、第1の触媒部および第2の触媒部において、クロス触媒の実施例として、シリカクロスを支持体とし、その表面に触媒物質を担持して成るものを用いている。
【0020】
一方、有孔の内筒部341の終端部は筒状の触媒体34の終端全面をカバーする邪魔板344を配するが、この邪魔板344はその中心に有孔内芯筒341の終端面と等しい開口部を有し、かつこの開口部を開閉する開閉可動弁345が取り付けられている。この開閉可動弁345は接触するガスの温度または圧力で自動的に可動する機能を有している。具体的には、可動弁の材料にばね材や記憶合金またバイメタルとばね材の組み合わせ構成などである。またエンジンの運転状態との連携して機械的に開閉する構成も可能である。
次に本実施の形態の作用について詳述する。
【0021】
まず、自動車の排気系全体の構成を示す図1を用いて、本実施の形態の浄化装置を含む自動車全体の排気系の作用について説明する。
【0022】
図1において、エンジン1の気筒別排気口から排出したガスは気筒別に配設されたマニホルド配管2から、その直下に設けたマニホルド直下触媒装置3に流入して、通常の排気管5を通り、従来型の主触媒装置4に入り、その後、排気管5でつながる消音器6を経て、テールパイプ7から大気に放出する。
【0023】
次に、本実施の形態における第1の触媒部の構造を示す図3用いてその作用について説明する。この第1の触媒部は前述したように図1におけるマニホルド配管2の4つの排気管のうちの一つに相当する。
【0024】
図3で、図2で示すエンジン1の排気口から個別の排気管21に流入したガスは、その大半が有孔内芯筒22を通って後方に流出する。このとき、有孔内芯筒22が有孔材で形成されているので、ガスはこの有孔部分を通じて触媒体23と沿面接触し、また触媒体外周に有孔の外筒24が配設されているときには排気管21と外筒24の間に空間を形成しているので、極く一部のガスは、有孔の内筒部22の有孔部分からクロス触媒でなる触媒体23の織布構成空間と外筒部24の有孔部分を経て排気管21との間隙空間を通って後方へ流出する。このときガスはクロス触媒と対面接触をすることになる。この対面接触をより多くするには、有孔の外筒部24にラスメタルなど薄くかつ開口を大きくとれる材料を選ぶことができる。なお、外筒部24を設け、内側から内筒部22、触媒体23、外筒部24の順になる構成としたのは、内筒部22と触媒体23の間、外筒部24と触媒体23の間に排気ガスをため、触媒体23の内面、外面にできるだけ排気ガス接触するようにするためである。
【0025】
また図3では排気管21は直管で図示したが、実際のマニホルド配管は複雑な屈曲管でなっており、実際のガスは屈曲部では触媒体と対面で接触もでき、この構造面からも、この位置に配設する触媒体23としてクロス触媒は最適である。さらに、本実施の形態における第2の触媒部の構造を示す図4および図5を用いてその作用について説明する。この第2の触媒部は前述したように図1におけるマニホルド直下型触媒装置3に相当するものであり、エンジン1から排出されたガスはマニホルド配管2を経て、この直下型触媒装置3に流入する。
【0026】
図4において、この直下型触媒装置3の仕切り31により仕切られた流入口から個別に流入し、触媒槽入り口有孔板33までの空間で流れを整えて、筒状の触媒体34に流入する。
【0027】
この筒状の触媒体34の作用について、図5を用いて詳細に説明する。図5において、筒状の触媒体34の軸中心にある有孔の内筒部341に流入する。このとき、開閉可動弁345が開放状態にあれば、ガスはそのまま有孔の内筒部341の軸方向に流れ、開放された開閉可動弁345を経て、装置終端板35を通過して後方排気管36に排出される。このときガスは排気抵抗が低い軸方向に流れ、終端開口より排出されるため、触媒とはわずかに有孔内芯筒341の開口部でのみ沿面で接触する。
【0028】
一方、開閉可動弁345が閉塞状態にあれば、ガスは内筒部341から径方向に流れを変え、触媒体342を通過して有孔の外筒部343から触媒体342外に出たあと装置終端板35の開口から後方排気管36に排出される。このときガスは筒状触媒層を径方向に流れるため、触媒と対面接触することになる。このマニホルド直下型触媒装置3にあっては、開閉可動弁345を操作することで、触媒との接触方向を変え、弁開放時には基本的にガスが触媒層をバイパスすることになり接触反応はせず、また弁閉塞時には触媒層を貫流して全面的に接触反応をする。このように、弁開閉の如何で触媒反応を停止したり、開始したりできる。このような触媒反応可否そのもの以上に、特に高温大量なガスの接触そのこと自体を可否できるため、触媒の耐熱劣化や寿命低下を防ぐことにもなる。
【0029】
なお、開閉可動弁は、排気ガスの温度もしくは圧力を感知して自動もしくは手動で可動弁を開閉するようにすることでいっそう効率的に浄化し、触媒の耐熱劣化や寿命低下の防止効果が得られる。
【0030】
次に、本実施の形態による実施例による効果を比較例との比較において詳述する。ここで用いた比較例は、図1に示す排気系において、マニホルドには管内に触媒を配設していない従来のものを用い、また直下型触媒装置は装着せずマニホルドに直接排気管を接続し、排気系の前寄り中ほどの位置に従来型のハニカム触媒装置を装着したものを用いた。
【0031】
排気試験は4気筒の1600ccエンジンを用い、エンジンダイナモを負荷とした、冷始動から定負荷運転までの排気ガスを排気系終端パイプより採取してガス成分分析をした。ここで、実施例と比較例の主触媒装置には共に同一の市販自動車に装着された白金系ハニカム触媒装置をそのまま取り付けた。またここでいう冷始動状態には、エンジン運転停止後3時間以上たった状態とし、すくなくともエンジン冷却水温度が室温に下がっていることを確認した。
【0032】
ガス成分分析は主としてCOを測定し、比較例の排気系の排出濃度1.0に対する割合でもって表記した。具体的には、同じ運転モードでエンジン始動0秒から10秒、20秒、1分後の比較例排気系のCO濃度を1としたときの実施例排気系の濃度の割合で示した。本実施の形態の効果として、上記試験測定結果について、上記測定方法に基づき表1にまとめた。
【0033】
【表1】
表1の結果が示すとおり、本実施の形態の構成によらない比較例排気系においては、エンジン運転開始後20秒後までの間にCO成分の排出があるが、本実施の形態の構成による実施例排気系においては、運転開始後10秒後に比較例排気系の排出の2割程度のCO排出でしかない。また運転開始から60秒間の実施例排気系の排出COは比較例排気系に比べて87.5%の低減となった。
【0034】
また表1で示すように、運転開始60秒後には比較例排気系においてもCO排出濃度は0である。これは比較例排気系ならびに実施例排気系において装着された主触媒装置が適切に反応している結果で、逆にいえば、運転開始後60秒以内では、主触媒装置が適切に反応しないため、この間にはCOガスが反応浄化せずに排気系から大気に排出されることになる。
【0035】
この主たる要因は、主触媒装置に流入する排気ガスの温度が、反応を開始するに必要な温度以下であることによる。ちなみにこの測定装置での冷始動時の主触媒装置直前の排気ガス温度は、30〜150℃のレベルで、特に冷始動時には排気系のガス放熱冷却と測定前の排気系内残留露結水分の飛来付着で主装置の触媒の開始温度は概略200℃のレベルにあるため、触媒が反応を開始できないものと考えられる。この排気ガス温度の早期の立ち上げを来たすために、マニホルドの熱容量低減や冷始動時のエンジン回転数の上昇でガス熱容量を増加するなどの改善がエンジン系を含めたシステムでとられてはいるものの効果は不十分で、現実的には、触媒装置の装着位置をマニホルド近辺にまで接近して、ガスの冷却を防ぐ方策しかない。
【0036】
一方、マニホルド近辺に触媒装置を装着するには、エンジンの高負荷時の極高温大量ガスの接触に耐えると共に、エンジン室内の狭小な空間に納まる小型高能率な触媒が必要で、この点からも現実的に実用されるハニカムなどの触媒材では不適切であった。
【0037】
本発明の実施の形態の構成は、この相反する条件に適応すべく、形状的に自由度が極めて高く、かつ触媒層の配置如何(沿面接触また対面接触方向の選択)により、少量で効果的な浄化が可能なクロス状触媒の採用と、触媒装置に触媒層をバイパスするガス流路変更機能を有することで、冷始動時と定常また高負荷運転時の接触方向をかえることを可能とし、浄化と耐久の両面で効果をみた。本実施の形態による排気系は従来なしえなかった冷始動から全運転期間にわたる排気浄化が可能となり、エンジンシステムのみでゼロエミッション化を実現する、自動車排気環境対策に極めて効果の大きいシステムである。
【0038】
本実施の形態の構成では、エンジン直下の触媒の反応開始促進のために、マニホルド内にも筒状の触媒体を配設した構成としているが、エンジンシステムの条件によっては、このマニホルド内触媒の配設をしなくても、本実施の形態の効果を特に損なうものではない。
【0039】
またマニホルド直下触媒装置で触媒層をバイパスする流路形成を触媒槽流入管の終端に開閉可動弁を設ける構成としたが、流入管先端にこの稼動弁を設けて弁閉塞時に排気ガスが筒状触媒体の外周面より内芯筒に流出し、この内筒を経て装置外の排気管に排出されるように、流れを変えることも、さらには、直下触媒装置の入り口直前に弁を介して装置への導入と装置外の後方排気管につながるバイパス路へ導入する構成をとっても、本実施の形態の効果を妨げるものでない。
【0040】
【発明の効果】
以上で説明したように、本発明の効果は、前段に設けた触媒の反応熱を利用することで、次段触媒の反応開始と維持に寄与できる。また排気系全体として、エンジンの冷始動時から運転期間中に排出される被反応成分の総排出量を大幅に低減でき、過負荷運転時などの異常に高い排気ガス温度からも触媒を防ぎ触媒寿命を永くできる。
【図面の簡単な説明】
【図1】本実施の形態の構成による自動車排気系概略を示す図
【図2】エンジンマニホルド概要図
【図3】マニホルド内筒状触媒体の構成を示す図
【図4】直下触媒装置の構成を示す図
【図5】直下触媒装置構成部材概要図
【符号の説明】
1 エンジン
2 マニホルド配管
3 マニホルド直下触媒装置
22、341 内筒部
23、342 触媒体
24、343 外筒部
34 触媒部
345 開閉可動弁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for purifying combustion exhaust gas discharged from an internal combustion engine of an automobile or the like, and more particularly to an exhaust gas purifying catalyst device for efficiently purifying exhaust gas at the time of a cold start of an engine.
[0002]
[Prior art]
2. Description of the Related Art To purify combustion exhaust gas discharged from an internal combustion engine of an automobile or the like, a purification method using a catalyst device in an exhaust system has conventionally been adopted. This catalytic device catalytically purifies the substance to be purified by a chemical reaction. Therefore, the goodness of the catalyst is determined by the activation temperature at which the reaction activity starts and the contact probability with the exhaust gas. On the other hand, in order to install a catalyst, it is necessary to purify all exhaust gas under all operating conditions including at the time of cold start of the engine, from low temperature at cold start to destruction of catalyst material at high load operation. A stable reaction in a wide temperature range up to an extremely high temperature and a long life following the life of an automobile are required.
[0003]
However, since a catalyst material that is completely suitable for such a condition of being used for a long time under a severe and wide temperature range has not been put into practical use, technically, the highest priority has been given to the technically safe functioning of the catalyst. This has been dealt with by arranging the catalyst in the exhaust system area under the rear floor where the exhaust gas temperature can occupy a mild and sufficient catalyst capacity. For this reason, even in the exhaust system rear region, the exhaust gas temperature can be maintained sufficiently higher than the activation temperature of the catalyst. Naturally during normal operation, abnormally high exhaust gas during overload operation is also higher than that of the catalyst device. The heat is dissipated in the exhaust system ahead, and the catalyst can be safely purified without destroying the catalyst at high temperatures. However, when the engine is started cold, the exhaust gas is completely cooled down because the exhaust system and the catalyst itself have almost cooled down to the atmospheric temperature, and the exhaust gas exhausted during this operation period is not sufficiently purified, and it is satisfactory throughout the entire operation period. Can not achieve a good purification. Up to now, the approach to this problem has been to reduce the heat capacity of the catalyst body, so that it is discharged during the transition from engine startup (not reaching the catalyst activation start temperature) to steady operation (temperature at which the catalyst is sufficiently activated). It has been proposed that the entire catalyst follow the temperature rise rate of the exhaust gas as quickly as possible, thereby minimizing the unreacted gas discharged from the start of the engine to the start of the reaction.
[0004]
In addition, the catalyst device located at the rear of the exhaust system is used as the main catalyst device. Separately, the sub-catalyst device is installed in front of the exhaust system where the exhaust gas has a higher temperature to improve purification during cold start. Some suggestions have been made. (For example, Patent Document 1)
[0005]
[Patent Document 1]
JP-A-1-249915 (all pages)
[0006]
[Problems to be solved by the invention]
However, any of the above proposals is located in the vicinity of the engine where sufficient temperature can be secured to start an immediate reaction at the time of cold start, and has sufficient space for arranging a catalyst capacity necessary for treating a large amount of exhaust gas. There were difficulties to secure. As described above, a small and efficient catalyst that can be disposed near the engine has been desired for purifying exhaust gas during cold start. Another issue is whether the catalyst body and the catalyst device can withstand abnormally high temperatures during high-load operation of the engine, or if a catalyst device with an appropriate structure that can avoid high-temperature gas in a system can be provided. Was.
[0007]
The present inventors have conducted intensive studies on some issues in incorporating the most efficient cross catalyst as a catalyst device and a catalyst device that can be disposed near the engine into the device, and as a result, the shape of the cross catalyst body and the exhaust gas And a catalyst device configuration that allows contact with the catalyst only during cold start.
[0008]
[Means for Solving the Problems]
The present invention relates to a vehicle exhaust purification device in which a plurality of catalyst devices are disposed for purifying exhaust gas of a vehicle, wherein a silica catalyst is used as a support and a catalyst material is supported on the surface thereof. The present invention relates to an automotive exhaust purification catalyst device in which the configured catalyst device is disposed at the front stage, and has a structure in which the catalyst can be brought into contact only at cold start with the cross catalyst body disposed in the exhaust manifold and the exhaust system located immediately below the manifold. The present invention proposes a catalyst device for purifying an automobile exhaust which is composed of a combination of catalyst devices.
[0009]
In the present invention, first, a cross catalyst body formed in a tubular shape is closely attached to an exhaust pipe in an exhaust manifold, and exhaust gas comes into contact with a catalyst body coaxial with the exhaust pipe in a creeping direction. Next, in the exhaust system immediately below the rear manifold, a catalyst device having a structure in which a catalyst body also formed in a cylindrical shape and having an openable / closable valve at the end of the inner core tube is provided, and there is no valve. When the valve is closed, the exhaust gas that has flowed in from the tip changes its flow from the inner core cylinder to the outer cylinder, and thus comes into contact with the catalyst body in the facing direction. On the other hand, when the valve is open, it is configured to make contact in the creeping direction.
[0010]
The effect of the present invention is that the exhaust gas discharged from the engine first comes into surface contact with the cylindrical catalyst body provided in the manifold, and only a part of the exhaust gas reacts, thereby purifying and reducing the reaction heat and simultaneously exhausting the reaction heat. By heating back to the gas flow, a decrease in exhaust gas temperature due to heat radiation when passing through the manifold is suppressed. As a result, the exhaust gas flowing into the cylindrical catalyst body disposed in the exhaust system immediately below the manifold flows into the inner core cylinder of the catalyst body while keeping the gas temperature high. At this time, if the engine is in a cold start state, by closing the valve provided in the inner core tube, the flowing exhaust gas changes the flow direction from the axial direction to the radial direction, and comes into face-to-face contact with the catalyst body. Therefore, the entire amount of exhaust gas that has flowed in is contact-reacted and purified. The reaction heat at this time heats the entire exhaust gas flowing out to maintain the continuation of the reaction of the main catalyst disposed at the subsequent stage. On the other hand, when the engine enters a steady operation, the exhaust gas temperature or the time from the start is detected by a detection mechanism, and by opening the valve, the inflowing exhaust gas flows in the inner cylinder in the axial direction. The flow comes into contact with the catalyst on the surface, and only a part of the gas reacts and flows out to the rear exhaust system. The reaction heat generated at this time is sufficiently small, which also prevents the main catalyst disposed in the subsequent stage from being heated to an abnormally high temperature.
[0011]
Since the present invention is configured as described above, the catalyst disposed in the manifold only reacts with some of the gases, and the reaction heat slightly heats the exhaust gas at the time of cold start from the engine. By doing so, it is possible to prevent a decrease in the heat radiation of the gas and contribute to the initiation and maintenance of the reaction of the next-stage catalyst. Prevents catalysts from high exhaust gas temperatures, resulting in longer catalyst life. In the catalytic converter with a valve directly below the manifold, all exhaust gases heated and held by the catalyst installed in the manifold in the previous stage increase the probability of contact with the catalyst body by face-to-face contact by the action of the valve, so that the reaction start at the cold start is accelerated. At the same time, the start of the reaction of the main catalyst arranged further behind will be accelerated, and the total emission of reactants emitted during the operation period from the cold start of the engine to the exhaust system as a whole can be greatly reduced. become. At the same time, by opening the valve after steady-state operation, most of the exhaust gas passes along the catalyst body along the surface, and does not come into contact with the catalyst body, so it is less exposed to high-temperature gas. This also prevents the thermal life from being shortened.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
[0013]
1 to 5 show examples of the present embodiment. FIG. 1 shows the entire configuration of the exhaust system of an automobile including the purification device of the present embodiment. FIG. 2 is a schematic view of a four-pipe consolidating manifold, FIG. 3 is a diagram showing the internal structure of one of the four catalyst-arrangement pipes constituting the manifold of FIG. 2 and the configuration of the catalyst, and FIG. 4 is connected immediately below the manifold. FIG. 5 shows a schematic diagram of the assembled catalyst device, and FIG. In this embodiment, the configuration diagram of the catalyst body shown in FIG. 3 corresponds to the first catalyst unit, and the catalyst device shown in FIG. 4 corresponds to the second catalyst unit.
[0014]
Next, an example of the present embodiment will be described in detail with reference to the drawings. FIG. 1 shows the entire exhaust system from the
[0015]
FIG. 2 is a schematic view of the four-cylinder
[0016]
FIG. 3 shows the internal configuration of the individual exhaust pipes 2a to 2d in the manifold. Here, the individual exhaust pipe 21 is one of the individual exhaust pipes 2a to 2d, and a catalyst metal is provided inside the exhaust pipe 21 on a perforated inner
[0017]
FIG. 4 is a configuration diagram of the manifold direct-
[0018]
As shown in the component parts diagram of FIG. 5, the tubular catalyst body 34 is composed of five components from a perforated
[0019]
In the present embodiment, in the first catalyst section and the second catalyst section, as an example of the cross catalyst, a silica cloth is used as a support, and a catalyst substance is supported on the surface thereof. I have.
[0020]
On the other hand, a
Next, the operation of the present embodiment will be described in detail.
[0021]
First, the operation of the exhaust system of the entire vehicle including the purification device of the present embodiment will be described with reference to FIG. 1 showing the configuration of the entire exhaust system of the vehicle.
[0022]
In FIG. 1, gas discharged from an exhaust port for each cylinder of an
[0023]
Next, the operation of the first catalyst unit according to the present embodiment will be described with reference to FIG. This first catalyst section corresponds to one of the four exhaust pipes of the
[0024]
In FIG. 3, most of the gas flowing into the individual exhaust pipes 21 from the exhaust port of the
[0025]
Although the exhaust pipe 21 is shown as a straight pipe in FIG. 3, the actual manifold pipe is a complicated bent pipe, and the actual gas can also come into contact with the catalyst body at the bent portion in a face-to-face manner. The cross catalyst is most suitable as the catalyst body 23 disposed at this position. Further, the operation of the second embodiment will be described with reference to FIGS. As described above, the second catalyst portion corresponds to the manifold direct-
[0026]
In FIG. 4, the gas flows individually from the inflow port partitioned by the
[0027]
The operation of the cylindrical catalyst body 34 will be described in detail with reference to FIG. In FIG. 5, the fluid flows into a perforated inner
[0028]
On the other hand, if the open / close
[0029]
The open / close movable valve detects the temperature or pressure of the exhaust gas and automatically or manually opens and closes the movable valve to purify the catalyst more efficiently, thereby obtaining the effect of preventing heat deterioration of the catalyst and a reduction in life. Can be
[0030]
Next, the effect of the example according to the present embodiment will be described in detail in comparison with a comparative example. In the comparative example used here, in the exhaust system shown in FIG. 1, a conventional one in which no catalyst is provided in the pipe is used for the manifold, and the exhaust pipe is directly connected to the manifold without mounting a direct-type catalyst device. A conventional honeycomb catalyst device was used at a position near the front of the exhaust system.
[0031]
In the exhaust test, a four-cylinder 1600 cc engine was used. Exhaust gas from a cold start to a constant load operation using an engine dynamo as a load was collected from an exhaust system end pipe and analyzed for gas components. Here, the platinum-based honeycomb catalyst devices mounted on the same commercial vehicle were both attached to the main catalyst devices of the example and the comparative example as they were. In this case, the cold start state was at least three hours after the engine operation was stopped, and it was confirmed that at least the temperature of the engine cooling water had dropped to room temperature.
[0032]
In the gas component analysis, CO was mainly measured and expressed as a ratio with respect to the exhaust concentration 1.0 of the exhaust system of the comparative example. Specifically, in the same operation mode, the values are shown by the ratio of the concentration of the exhaust system of the example when the CO concentration of the exhaust system of the comparative example is set to 1 after 0 to 10 seconds, 20 seconds, and 1 minute after the start of the engine. As an effect of the present embodiment, the test measurement results are summarized in Table 1 based on the measurement methods.
[0033]
[Table 1]
As shown in the results of Table 1, in the comparative example exhaust system that does not depend on the configuration of the present embodiment, the CO component is discharged until 20 seconds after the start of the engine operation. In the example exhaust system, only about 20% of the emission of the comparative example exhaust system was emitted 10 seconds after the start of operation. Also, the CO emissions of the exhaust system of the example for 60 seconds from the start of the operation were reduced by 87.5% as compared with the exhaust system of the comparative example.
[0034]
Further, as shown in Table 1, the CO emission concentration is 0 in the exhaust system of the comparative example 60 seconds after the start of operation. This is a result of the main catalyst device installed in the exhaust system of the comparative example and the exhaust system of the example reacting properly. Conversely, within 60 seconds after the start of operation, the main catalyst device does not react properly. During this time, the CO gas is discharged to the atmosphere from the exhaust system without performing reaction purification.
[0035]
The main factor is that the temperature of the exhaust gas flowing into the main catalyst device is lower than the temperature required to start the reaction. By the way, the temperature of the exhaust gas immediately before the main catalytic converter at the time of the cold start in this measurement device is at a level of 30 to 150 ° C., particularly at the time of the cold start, the heat radiation cooling of the exhaust system and the residual moisture in the exhaust system before the measurement. Since the starting temperature of the catalyst of the main unit is approximately 200 ° C. due to the flying adhesion, it is considered that the catalyst cannot start the reaction. In order to raise the temperature of the exhaust gas early, improvements such as reducing the heat capacity of the manifold and increasing the gas heat capacity by increasing the engine speed during cold start have been taken in systems including the engine system. However, the effect is insufficient, and in reality, there is no other way but to prevent the cooling of the gas by bringing the mounting position of the catalyst device close to the vicinity of the manifold.
[0036]
On the other hand, mounting a catalyst device near the manifold requires a small, highly efficient catalyst that can withstand the contact of extremely high-temperature, large-volume gas when the engine is under heavy load and that fits in a small space inside the engine room. It is not suitable for a practically used catalyst material such as a honeycomb.
[0037]
The configuration of the embodiment of the present invention has a very high degree of freedom in terms of shape to adapt to these contradictory conditions, and is effective in a small amount depending on the arrangement of the catalyst layer (selection of the creepage contact or face-to-face contact direction). The adoption of a cross-shaped catalyst that can purify easily, and the catalyst device has a function to change the gas flow path that bypasses the catalyst layer, makes it possible to change the contact direction during cold start and during steady or high load operation, It was effective in both purification and durability. The exhaust system according to the present embodiment is capable of purifying the exhaust gas from the cold start, which has been impossible in the past, to the entire operation period, and achieves zero emission using only the engine system.
[0038]
In the configuration of the present embodiment, a cylindrical catalyst body is provided also in the manifold in order to promote the reaction start of the catalyst immediately below the engine. However, depending on the conditions of the engine system, the catalyst in the manifold may be provided. Even if it is not provided, the effect of the present embodiment is not particularly impaired.
[0039]
In addition, the opening and closing movable valve is provided at the end of the inflow pipe of the catalyst tank to form a flow path that bypasses the catalyst layer in the catalyst device immediately below the manifold. The flow can be changed so that it flows out of the outer peripheral surface of the catalyst body to the inner core tube, and is discharged to an exhaust pipe outside the device via the inner tube, and further, via a valve immediately before the entrance of the immediately below catalyst device. The effect of the present embodiment is not impeded by adopting a configuration in which the device is introduced into the device and the device is introduced into a bypass path leading to a rear exhaust pipe outside the device.
[0040]
【The invention's effect】
As described above, the effect of the present invention can contribute to the initiation and maintenance of the reaction of the next-stage catalyst by utilizing the reaction heat of the catalyst provided in the previous stage. In addition, the exhaust system as a whole can significantly reduce the total amount of reactants emitted during the operation period from the cold start of the engine to the operating period, and prevents the catalyst from abnormally high exhaust gas temperatures such as during overload operation. Life can be extended.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an automobile exhaust system according to a configuration of the present embodiment; FIG. 2 is a schematic diagram of an engine manifold; FIG. 3 is a diagram showing a configuration of a cylindrical catalyst body in a manifold; FIG. [Fig. 5] Schematic diagram of components directly below the catalyst device [Description of reference numerals]
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002363460A JP2004197569A (en) | 2002-12-16 | 2002-12-16 | Catalyst apparatus for automobile exhaust gas purification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002363460A JP2004197569A (en) | 2002-12-16 | 2002-12-16 | Catalyst apparatus for automobile exhaust gas purification |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004197569A true JP2004197569A (en) | 2004-07-15 |
Family
ID=32761603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002363460A Pending JP2004197569A (en) | 2002-12-16 | 2002-12-16 | Catalyst apparatus for automobile exhaust gas purification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004197569A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307645A (en) * | 2005-04-26 | 2006-11-09 | Nissan Motor Co Ltd | Exhaust system of internal combustion engine |
JP2013524065A (en) * | 2010-03-31 | 2013-06-17 | ハルドール・トプサー・アクチエゼルスカベット | Method and system for operating a compression ignition engine with alcohol-containing fuel |
AT516110A1 (en) * | 2014-07-21 | 2016-02-15 | Ge Jenbacher Gmbh & Co Og | exhaust treatment device |
US9771892B2 (en) | 2014-05-20 | 2017-09-26 | Ge Jenbacher Gmbh & Co Og | Method of starting up a thermoreactor |
US10801381B2 (en) | 2015-09-04 | 2020-10-13 | Innio Jenbacher Gmbh & Co Og | Exhaust gas after treatment device |
-
2002
- 2002-12-16 JP JP2002363460A patent/JP2004197569A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307645A (en) * | 2005-04-26 | 2006-11-09 | Nissan Motor Co Ltd | Exhaust system of internal combustion engine |
JP4581813B2 (en) * | 2005-04-26 | 2010-11-17 | 日産自動車株式会社 | Exhaust device for internal combustion engine |
JP2013524065A (en) * | 2010-03-31 | 2013-06-17 | ハルドール・トプサー・アクチエゼルスカベット | Method and system for operating a compression ignition engine with alcohol-containing fuel |
US8955468B2 (en) | 2010-03-31 | 2015-02-17 | Haldor Topsoe A/S | Method and system for operating a compression ignition engine on alcohol containing fuels |
US9771892B2 (en) | 2014-05-20 | 2017-09-26 | Ge Jenbacher Gmbh & Co Og | Method of starting up a thermoreactor |
AT516110A1 (en) * | 2014-07-21 | 2016-02-15 | Ge Jenbacher Gmbh & Co Og | exhaust treatment device |
AT516110B1 (en) * | 2014-07-21 | 2016-08-15 | Ge Jenbacher Gmbh & Co Og | exhaust treatment device |
US10458299B2 (en) | 2014-07-21 | 2019-10-29 | Innio Jenbacher Gmbh & Co Og | Exhaust gas aftertreatment apparatus |
US10801381B2 (en) | 2015-09-04 | 2020-10-13 | Innio Jenbacher Gmbh & Co Og | Exhaust gas after treatment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2305980B1 (en) | Exhaust gas purification apparatus | |
JP2006274838A (en) | Exhaust gas purifying system of internal combustion engine | |
US20060242947A1 (en) | Emission Control System For An Engine | |
US5499501A (en) | Engine exhaust emission control system | |
JP2007315370A (en) | Exhaust heat recovery exhaust emission control device | |
JPH1182000A (en) | Exhaust gas purifying device in internal combustion engine | |
US6024928A (en) | By-pass flow catalytic converter | |
JP2004197569A (en) | Catalyst apparatus for automobile exhaust gas purification | |
JPH04347320A (en) | Catalyst heating device | |
WO1996037691A1 (en) | Exhaust emission control device for internal combustion engines | |
US11920874B2 (en) | Heat exchange member, heat exchanger and heat conductive member | |
JP2601072B2 (en) | Internal combustion engine, operating method thereof, and automobile | |
JPH0333410A (en) | Exhaust device of internal combustion engine | |
JPH07279653A (en) | Exhaust emission control device of internal combustion engine | |
JP2003232213A (en) | Internal combustion engine | |
JP2003519745A (en) | Thermal insulation type exhaust gas purifier | |
JPH10288030A (en) | Nox purifying device and its method | |
JP2000008841A (en) | Exhaust emission control device | |
JP2016186229A (en) | Exhaust emission control device | |
JP4188675B2 (en) | Exhaust gas sensor mounting structure for catalytic converter | |
JP2001522436A (en) | Internal combustion engine and method of treating exhaust gas from exhaust line combined therewith | |
JPH03121240A (en) | Exhaust emission purifying catalyst failure diagnosing method | |
JP3113065B2 (en) | Exhaust gas purification device | |
JP3402132B2 (en) | Engine exhaust purification device | |
JP2002309931A (en) | Exhaust emission control device and method for controlling exhaust emission using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051214 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090303 |