JP2004197156A - High strength thin steel plate of excellent secondary working brittleness resistance, and its manufacturing method - Google Patents

High strength thin steel plate of excellent secondary working brittleness resistance, and its manufacturing method Download PDF

Info

Publication number
JP2004197156A
JP2004197156A JP2002366751A JP2002366751A JP2004197156A JP 2004197156 A JP2004197156 A JP 2004197156A JP 2002366751 A JP2002366751 A JP 2002366751A JP 2002366751 A JP2002366751 A JP 2002366751A JP 2004197156 A JP2004197156 A JP 2004197156A
Authority
JP
Japan
Prior art keywords
less
low
transformation phase
temperature
temperature transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002366751A
Other languages
Japanese (ja)
Other versions
JP4178940B2 (en
Inventor
Takayuki Futatsuka
貴之 二塚
Katsumi Nakajima
勝己 中島
Yasunobu Nagataki
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002366751A priority Critical patent/JP4178940B2/en
Publication of JP2004197156A publication Critical patent/JP2004197156A/en
Application granted granted Critical
Publication of JP4178940B2 publication Critical patent/JP4178940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin steel plate having the tensile strength of ≥340 MPa and <590 MPa, with press-workability applicable to inner and outer plates for automobile, and excellent secondary working brittleness resistance, and a manufacturing method therefor. <P>SOLUTION: The steel has a composition consisting of, by mass, ≤0.05% C, ≤2.0% Si, ≤3.0% Mn, ≤0.1% P, ≤0.03% S, ≤0.1% Al, and ≤0.01% N, and the balance substantially iron. A microstructure is formed of ferrite and a low-temperature transformation phase of <10% volume fraction, and an inequality d <-0.5×Vm+16 (Vm<10%) is satisfied, where d (μm) denotes the grain size of ferrites, and Vm(%) is the low-temperature transformation phase fraction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は自動車、家電等の分野に適用される高強度冷延鋼板、特に自動車内外板に適した340MPa以上590MPa未満の強度を有した耐二次加工脆性に優れた高強度薄鋼板に関する。
【0002】
【従来の技術】
近年、自動車用鋼板においては、車体重量軽減による燃費向上を目的として、高強度化が進んでいる。また、単体デザインの複雑化にともない、優れた成形性が要求されている。このような成形性と高強度の両立の要望を満足させるために、極低炭素鋼にTiやNbのような炭窒化物形成元素を添加したIF鋼を、P、Si、Mn等で固溶強化した、高強度IF鋼が開発されてきた。
【0003】
しかしながら、IF鋼はCをTiやNbで析出固定するために、結晶粒界が非常に清浄になり、成形後に粒界破壊による二次加工割れが発生しやすくなる。また固溶強化元素としてPを添加した場合はPの粒界偏析により二次加工脆性が一層発生しやすくなるという問題点がある。さらに、高強度IF鋼の場合、固溶強化元素で粒内が強化され、相対的な粒界強度の低下が顕著なため、耐二次加工脆性の評価パラメータである、カップ成形品の縦割れ遷移温度が、著しく劣化するという報告がなされている。
【0004】
これらを解決する手段として、いくつかの方法が提案されている。例えば特許文献1では、Ti添加IF鋼をベースに、粒界偏析による耐二次加工脆性の劣化を回避する目的で、P添加量を出来るだけ低減させ、その分Si、Mnを多量添加することで、耐二次加工脆性に優れた高張力鋼板を得る技術が提案されている。
【0005】
また、特許文献2では、極低炭素鋼を用いて、Ti、Nbに加えてBを複合添加させることで、粒界の強度を上昇させ、耐二次加工脆性を高める技術が提案されている。
【0006】
【特許文献1】
特開平5−59491号公報
【特許文献2】
特開平6−57373号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1では、Si、MnはPと比較して固溶強化能が低く、多量に添加しなければ所望の強度が得られないため、加工性の劣化や高コスト化などの問題点がある。さらにSiの多量添加はめっき鋼板を製造する場合に不めっき、合金化不良などを引き起こし、冷延鋼板を製造する場合にも化成処理不良などの表面性状劣化を引き起こす。
【0008】
また、上記特許文献2では、B添加により再結晶温度が上昇するため、製造コストが高くなるとともに成形性を低下させるという問題点がある。
【0009】
さらに上述した2つの従来技術は、IF鋼をベースにするため、強化機構としては主として固溶強化に依存する。したがって、Pの粒界偏析による耐二次加工脆性の劣化を回避するために、自ずとP添加量は制限されることから、実質的な強度レベルとして390MPa以上の鋼板を安定製造することは極めて困難である。
【0010】
本発明はかかる事情に鑑みてなされたものであって、340MPa以上590MPa未満の引張強度で、自動車内外板用途へ適用可能なプレス成形性を有し、かつ耐二次加工脆性に優れた薄鋼板およびその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、従来技術では極めて困難であった、優れたプレス成形性を有し、かつ優れた耐二次加工脆性を併せ持つ、高強度薄鋼板を得るために鋭意検討を重ねた。その結果、強化機構として変態強化を積極的に利用して強度を確保することで、従来の耐二次加工脆性に悪影響を及ぼすP等の固溶強化元素をできる限り低減させ、さらにフェライト粒径と低温変態相分率を制御することにより、耐二次加工脆性を一段と改善できることを知見した。
【0012】
具体的には、従来の複合組織鋼と異なり、低温変態相分率を低減するとともに、低温変態相を均一にかつ微細に分散化させた組織とすることで、低温変態相による割れ助長を抑制できること、その上、低温変態相によるピンニング効果で結晶粒径を微細化させることが耐二次加工脆性を改善する鍵であることを見出した。
【0013】
本発明は、本発明者らのこのような知見に基づいて完成されたものであり、mass%で、C:0.05%以下、Si:2.0%以下、Mn:3.0%以下、P:0.1%以下、S:0.03%以下、Al:0.1%以下、N:0.01%以下で、残部が実質的に鉄からなり、ミクロ組織がフェライトと体積率10%未満の低温変態相からなり、かつフェライト粒径d(μm)と低温変態相分率Vm(%)がd<−0.5×Vm+16(Vm<10%)の関係を満たすことを特徴とする耐二次加工脆性に優れた高強度薄鋼板を提供する。
【0014】
上記に加え、さらに、mass%で、Cr:1%以下、Mo:1%以下、V:1%以下、B:0.01%以下、Ti:0.1%以下、Nb:0.1%以下のうち1種以上を含有することもできる。
【0015】
また、本発明は、上記成分組成を有する鋼を溶製した後、熱間圧延し、得られた熱延鋼板を冷間圧延後、Ac点以上Ac点以下の温度範囲で焼鈍し、引き続き3℃/s超の速度で450〜700℃の温度範囲に一次冷却し、その後10℃/s以上の速度でMs点以下の温度まで2次冷却することを特徴とする耐二次加工脆性に優れた高強度薄鋼板の製造方法を提供する。
【0016】
【発明の実施の形態】
以下、本発明について詳細に説明する。
まず、成分組成について説明する。
本発明に係る高強度薄鋼板は、mass%で、C:0.05%以下、Si:2.0%以下、Mn:3.0%以下、P:0.1%以下、S:0.03%以下、Al:0.1%以下、N:0.01%以下で、残部が実質的に鉄からなる。さらに、Cr:1%以下、Mo:1%以下、V:1%以下、B:0.01%以下、Ti:0.1%以下、Nb:0.1%以下のうち1種以上を含有してもよい。
【0017】
C:0.05%以下
Cは、本発明において極めて重要な元素の一つである。低温変態相を生成させ、高強度化を達成するには非常に有効な元素であるが、0.05%を超えて添加した場合、加工性の著しい低下を招き、かつ溶接性も劣化させるので、C量は0.05%以下とする。特に、本発明は自動車内外板を主な対象とするため、極めて高い成形性(深絞り性、張出し性等)が必須となる。これらの成形性は、一般にC量の増加とともに低下することが知られており、C量が、0.05%を超えた場合、フェライト中の固溶C量が多くなり、上記の成形性を満足できなくなる。さらに、C量が0.05%を超えると、熱延段階でスケール性表面欠陥が発生しやすくなり、最終的な亜鉛めっき後の表面性状を劣化させ、自動車内外板レベルの表面品質を得ることができないので、C量は0.05%以下に規制する。なお、極めて高い成形性が要求される場合には0.04%以下に低減することが望ましい。しかし、一定体積率の低温変態相を形成させるためには、一定量含有することが必須である。そのため、他の元素の含有量にもよるが、C量を0.01%以上とすることが望ましい。
【0018】
Si:2.0%以下
Siは、低温変態相を安定して得るために有効な元素であるが、含有量が高くなると、表面性状および化成処理性が著しく劣化するため、Si量を2.0%以下とする。
【0019】
Mn:3.0%以下
Mnは、低温変態相の生成に非常に重要な元素であり、本発明では焼入れ性を向上させるため、一定量、好ましくは0.5%以上添加することが必要である。しかし、過剰に添加すると、スラブコストの著しい増加とともに、加工性の劣化を招くので、Mn量を3.0%以下とする。
【0020】
P:0.1%以下
PはSiと同様に低温変態相を安定させるために有効な元素であるが、多量に添加すると、Pの粒界偏析によって粒界を脆化させる。また亜鉛めっきの合金化速度を遅くし、めっき不良や不めっきの原因となる。したがって、P量は0.1%以下とする。
【0021】
S:0.03%以下
Sは、熱間圧延時に粒界に偏析してスラブ割れを発生させ、表面疵の発生割合が高くなるため、その含有量は少ない方がよい。また、0.03%を超えると、MnSが析出し、加工性が劣化する。したがって、S量は0.03%以下とする。
【0022】
Al:0.1%以下
Alは脱酸元素として鋼中の介在物を減少させる作用を有している。しかしながら、Al含有量が0.1%を超えると、クラスター状のアルミナ系介在物が増加し延性が低下する。したがって、Al量は0.1%以下とする。介在物を減少させる作用を発揮させるためには、0.01%以上とすることが望ましい。
【0023】
N:0.01%以下
Nは加工性、時効性の観点から、その含有量は少ない方がよい。0.01%を超えて添加すると、過剰な窒化物の生成により、延性、靱性が劣化する。したがって、N量は0.01%以下とする。
【0024】
Cr,Mo,V:それぞれ1%以下
Cr,Mo,Vは、焼入れ向上元素であり、低温変態相を安定して生成させるために必要に応じて添加する。ただし、過剰に添加しても、その効果が飽和するばかりか、コスト面でも不利になる。したがって、Cr、Mo、Vを添加する場合はそれぞれ1%以下とする。
【0025】
B:0.01%以下
Bは、粒界強化に有効な元素である。また焼入れ性向上にも寄与し、低温変態相を安定して得るために必要に応じて添加する。ただし、0.01%を超えて添加しても、コストに見合う効果が得られないので、添加する場合には0.01%以下とする。
【0026】
Ti,Nb:0.1%以下
Ti,Nbは、炭窒化物を形成し、固溶C、N量を低下させ、深絞り性を向上させるために有効な元素であるから必要に応じて添加する。しかしながら、いずれも0.1%を超えて含有させても効果が飽和し、冷延後の焼鈍時の再結晶温度が高くなるため、製造性が劣化する。したがって、添加する場合はそれぞれ0.1%以下とする。
【0027】
本発明は上記成分の他、残部は実質的に鉄であればよく、不可避的不純物や、発明の作用・効果を損なわない範囲内の他の微量元素は許容される。
【0028】
次に、ミクロ組織について説明する。
本発明に係る高強度薄鋼板は、上記成分組成を有する他、ミクロ組織がフェライトと体積率10%未満の低温変態相からなり、かつフェライト粒径d(μm)と低温変態相分率Vm(%)がd<−0.5×Vm+16(Vm<10%)の関係を満たす。
【0029】
低温変態相分率:10%未満
低温変態相はクラック発生起点となるので、低温変態相の分率を低減する必要がある。さらに本発明は、高い成形性が要求される自動車外板等を主対象としているため、可能な限り低温変態相分率を下げ、加工性を確保することが非常に重要である。従って、低温変態相分率を10%未満と規定する。さらに耐二次加工脆性、成形性を改善するには、低温変態相分率を7%未満とすることが望ましい。一方、所望の強度を確保するためには、低温変態相分率を2%以上とすることが望ましい。ここで、低温変態相とは、マルテンサイト相を主体とするが、これ以外に、残留γ相、ベイナイト相、炭化物が含まれていても良い。
【0030】
フェライト粒径d(μm)、低温変態相分率Vm(%):d<−0.5×Vm+16(Vm<10%)
優れた耐二次加工脆性を得るためには、フェライト粒径dと低温変態相分率Vmが最適な範囲にあることが極めて重要である。すなわち、低温変態相分率が大きい場合、よりフェライト粒径を微細化させる必要がある。上述のようにVm<10%の範囲内において、フェライト粒径が−0.5×Vm+16より大きい場合、低温変態相に対して、フェライト粒径が十分に小さくないので、優れた耐二次加工脆性が得られない。したがって、フェライト粒径dは、Vm<10%において、d<−0.5×Vm+16の関係式を満足する範囲に規定する。耐二次加工脆性をさらに改善するには、フェライト粒径をd<−0.5×Vm+11とすることがより望ましい。
【0031】
次に、本発明の製造方法について説明する。
本発明では、上述の耐二次加工脆性に優れた高強度薄鋼板を得ることが可能な製造方法として、上述の成分組成を有する鋼を溶製した後、熱間圧延し、得られた熱延鋼板を冷間圧延後、Ac点以上Ac点以下の温度範囲で焼鈍し、引き続き3℃/s超の速度で450〜700℃の温度範囲に一次冷却し、その後10℃/s以上の速度でMs点以下の温度まで2次冷却する。
【0032】
本発明では、低温変態相の果たす役割が非常に重要であるため、上記製造条件により、微細で硬質なマルテンサイト主体の低温変態相を生成させる。すなわち、最終ミクロ組織をフェライト+低温変態相にするために、Ac点以上Ac点以下の範囲で焼鈍する。上述したように、耐二次加工脆性、成形性をさらに改善するためには、低温変態相分率を下げることが有効である。よって、焼鈍温度は、Ac点以上、Ac+50℃以下の範囲が望ましい。
【0033】
その後の1次冷却の冷却速度、停止温度については、パーライト析出による成形性劣化を避けるため、450〜700℃の温度範囲まで3℃/s超の速度で1次冷却する必要がある。ただし、本発明では低温変態相を利用するため、1次冷却速度を30℃/s以上にした場合、十分に2相分離が進まないため、硬質な低温変態相が生成されずに所望の特性が得られない可能性がある。よって、1次冷却速度を30℃/s未満とすることが望ましい。マルテンサイト相をより安定して得るためには、500〜650℃の温度範囲まで1次冷却することが望ましい。
【0034】
その後の2次冷却については、低温変態相を安定して生成するために、Ms点以下の温度まで、10℃/s以上の速度で冷却することが必要である。所定の強度を確保した上で、さらに良好な特性を得るためには、2次冷却の速度を20℃/s超とすることが望ましい。また、2次冷却後に過時効処理を施してもよい。
【0035】
以上の説明により得られる高強度薄鋼板は、電気亜鉛系めっき鋼板あるいは溶融亜鉛系めっき鋼板としても、目的の効果が得られることはいうまでもない。溶融亜鉛系めっき鋼板の場合、合金化処理を施してもよい。また、これらのめっき鋼板には、めっき後にさらに有機皮膜処理を施してもよい。
【0036】
なお、本発明においては、スラブを熱間圧延するにあたって、加熱炉で再加熱後に圧延してもよいし、または加熱することなく直接圧延することもできる。また、熱延仕上圧延温度は、Ar変態点以上で実施するのがよい。冷圧率については、通常の操業範囲内の60〜85%とすればよい。
【0037】
【実施例】
表1に示す鋼番No.1〜No.15の鋼を溶製後、連続鋳造によりスラブを製造した。表1に示すように、鋼番No.1〜11はいずれも本発明で規定した成分組成の範囲内にある本発明鋼であるのに対し、No.12〜15はそれぞれC量、Si量、Mn量、P量が上限値を上回る本発明の成分範囲外の比較鋼である。
【0038】
これらスラブを1200℃に加熱後、Ar点以上の仕上温度で仕上げ圧延を行い、通常操業の巻取温度の範囲内で熱延鋼板を製造した。この熱延鋼板を酸洗し、冷間圧延を行った。続いて表2に示す均熱温度、冷却速度にて焼鈍を行い、焼鈍板を得た。得られた焼鈍板についてミクロ組織を観察し、フェライト粒径、低温変態相分率を測定するとともに、その性能を評価した。
【0039】
引張強さはJIS5号引張試験片を引張試験して測定した。縦割れ遷移温度は、以下の方法で評価した。まず、それぞれ得られた焼鈍板から、直径100mmの円形板を採取し、絞り比2.0の深絞り成形を施して、直径50mmの円筒状カップを成形した。次いで、これら円筒状カップの耳部を除去し、高さ30mmの試料を作成した。その後、先端60°の円錐台状の金型に上記作成した試料を底面を上にしてかぶせ、試験機全体を所定の温度に冷却し、一定時間保持した後、試料上方より荷重を加えて、円筒状カップの側壁部分に脆性割れが発生する臨界温度を求め、それを縦割れ遷移温度とした。試験結果をフェライト粒径、低温変態相分率測定結果と併せて表2に示す。
【0040】
表2中、No.1〜4,7,8,10,11,13〜16は、化学成分組成範囲、低温変態相分率、およびフェライト粒径の全てが本発明を満足する本発明例であり、焼鈍時の均熱温度、1次冷却速度、2次冷却速度の製造条件も満たしている。一方、No.5,6,9,12,17〜24は化学成分組成範囲、低温変態相分率、およびフェライト粒径のいずれかが本発明の範囲を外れる比較例である。
【0041】
図1は表2に示した低温変態相分率とフェライト粒径の関係を整理した図であり、併せて各鋼板の縦割れ遷移温度調査結果を示している。ただし、化学成分範囲が本発明範囲外であるNo.21〜24(鋼番No,12〜15)については図示していない。この図に示すように、本発明で規定された条件で製造された本発明例の鋼板はいずれも縦割れ遷移温度が−80℃以上と優れていた。さらにフェライト粒径が−0.5×Vm+11より小さい場合は、縦割れ遷移温度が−100℃以下を示しており、より望ましいことが分かる。これに対し、フェライト粒径が−0.5×Vm+16より大きい場合には、縦割れ遷移温度が−50℃以下であり、耐二次加工脆性が低下していることが分かる。
【0042】
【表1】

Figure 2004197156
【0043】
【表2】
Figure 2004197156
【0044】
【発明の効果】
以上説明したように、本発明によれば、化学成分組成を特定の範囲に制御するとともに、フェライト+低温変態相からなる組織とし、さらに粒径と低温変態相分率の関係を最適化することで、高い成形性を有し、かつ耐二次加工脆性に優れた高強度薄鋼板が得られる。このため、本発明の鋼板は、自動車用鋼板を始め、家電等広い分野で適用することが可能である。
【図面の簡単な説明】
【図1】実施例の鋼板の低温変態相分率とフェライト粒径の関係に対する耐二次加工脆性の優劣を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength cold-rolled steel sheet applied to fields such as automobiles and home appliances, and particularly to a high-strength thin steel sheet having a strength of 340 MPa or more and less than 590 MPa and excellent in secondary working brittleness resistance, which is suitable for inner and outer panels of automobiles.
[0002]
[Prior art]
2. Description of the Related Art In recent years, steel sheets for automobiles have been increasing in strength for the purpose of improving fuel efficiency by reducing the weight of a vehicle body. In addition, with the complexity of the single unit design, excellent moldability is required. In order to satisfy such demands for compatibility between formability and high strength, IF steel obtained by adding a carbonitride forming element such as Ti or Nb to ultra-low carbon steel is dissolved in P, Si, Mn or the like. Strengthened, high-strength IF steels have been developed.
[0003]
However, in the IF steel, since C is precipitated and fixed by Ti or Nb, crystal grain boundaries are very clean, and secondary working cracks due to grain boundary fracture after forming are likely to occur. Further, when P is added as a solid solution strengthening element, there is a problem that secondary working embrittlement is more likely to occur due to segregation of P at the grain boundary. Further, in the case of a high-strength IF steel, the inside of the grains is strengthened by a solid solution strengthening element, and the relative grain boundary strength is significantly reduced. It has been reported that the transition temperature significantly deteriorates.
[0004]
Several methods have been proposed to solve these problems. For example, in Patent Document 1, based on a Ti-added IF steel, the amount of P added is reduced as much as possible, and a large amount of Si and Mn is added for the purpose of avoiding the deterioration of secondary work brittleness due to grain boundary segregation. Thus, a technique for obtaining a high-tensile steel sheet having excellent secondary work brittleness resistance has been proposed.
[0005]
Further, Patent Literature 2 proposes a technique in which B is added in addition to Ti and Nb by using ultra-low carbon steel to increase the strength of grain boundaries and increase the resistance to secondary working brittleness. .
[0006]
[Patent Document 1]
JP-A-5-59491 [Patent Document 2]
JP-A-6-57373
[Problems to be solved by the invention]
However, in Patent Document 1, Si and Mn have a lower solid solution strengthening ability than P, and a desired strength cannot be obtained unless they are added in a large amount. There are points. Further, the addition of a large amount of Si causes non-plating and poor alloying when producing a plated steel sheet, and also causes deterioration in surface properties such as poor chemical conversion treatment when producing a cold-rolled steel sheet.
[0008]
Further, in Patent Document 2, since the recrystallization temperature is increased by the addition of B, there is a problem that the manufacturing cost is increased and the moldability is reduced.
[0009]
Furthermore, the two prior arts described above mainly rely on solid solution strengthening as the strengthening mechanism because they are based on IF steel. Therefore, the amount of P added is naturally limited in order to avoid the deterioration of the secondary working brittleness due to the segregation of P at the grain boundary, and it is extremely difficult to stably produce a steel sheet having a substantial strength level of 390 MPa or more. It is.
[0010]
The present invention has been made in view of the above circumstances, and has a tensile strength of 340 MPa or more and less than 590 MPa, has press formability applicable to automotive inner and outer panels, and has excellent secondary work brittleness resistance. And a method for producing the same.
[0011]
[Means for Solving the Problems]
The present inventors have intensively studied to obtain a high-strength thin steel sheet having excellent press formability and excellent secondary work brittleness resistance, which was extremely difficult with the conventional technology. As a result, by actively utilizing transformation strengthening as a strengthening mechanism to secure strength, the solid solution strengthening elements such as P, which adversely affect conventional secondary work brittleness resistance, are reduced as much as possible, and the ferrite grain size is further reduced. By controlling the low temperature transformation phase fraction, it was found that the resistance to secondary working embrittlement can be further improved.
[0012]
Specifically, unlike the conventional composite structure steel, the low-temperature transformation phase fraction is reduced, and the low-temperature transformation phase is uniformly and finely dispersed to suppress the promotion of cracking due to the low-temperature transformation phase. It has been found that refining the crystal grain size by the pinning effect of the low-temperature transformation phase is a key to improving the resistance to secondary working embrittlement.
[0013]
The present invention has been completed on the basis of these findings of the present inventors. In mass%, C: 0.05% or less, Si: 2.0% or less, Mn: 3.0% or less. , P: 0.1% or less, S: 0.03% or less, Al: 0.1% or less, N: 0.01% or less, the balance is substantially composed of iron, and the microstructure is ferrite and volume fraction. It consists of a low-temperature transformation phase of less than 10%, and the ferrite grain size d (μm) and the low-temperature transformation phase fraction Vm (%) satisfy the relationship of d <−0.5 × Vm + 16 (Vm <10%). To provide a high-strength thin steel sheet having excellent secondary work brittleness resistance.
[0014]
In addition to the above, in mass%, Cr: 1% or less, Mo: 1% or less, V: 1% or less, B: 0.01% or less, Ti: 0.1% or less, Nb: 0.1% One or more of the following may be contained.
[0015]
Further, the present invention, after melting the steel having the above component composition, hot rolling, after cold rolling the resulting hot-rolled steel sheet, and then annealed in a temperature range of Ac 1 point or more Ac 3 points or less, A secondary working brittle resistance characterized by successively cooling at a rate of more than 3 ° C / s to a temperature range of 450 to 700 ° C and then at a rate of 10 ° C / s or more to a temperature below the Ms point. Provided is a method for manufacturing a high-strength thin steel sheet excellent in quality.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the component composition will be described.
The high-strength thin steel sheet according to the present invention has a mass% of C: 0.05% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.1% or less, S: 0. 03% or less, Al: 0.1% or less, N: 0.01% or less, and the balance substantially consists of iron. Further, Cr: 1% or less, Mo: 1% or less, V: 1% or less, B: 0.01% or less, Ti: 0.1% or less, Nb: 0.1% or less May be.
[0017]
C: 0.05% or less C is one of the extremely important elements in the present invention. Although it is a very effective element for generating a low-temperature transformation phase and achieving high strength, if it is added in excess of 0.05%, the workability is significantly reduced and the weldability is also deteriorated. , C amount is 0.05% or less. Particularly, since the present invention is mainly applied to the inner and outer panels of an automobile, extremely high formability (deep drawability, overhangability, etc.) is essential. It is known that their formability generally decreases with an increase in the amount of C. When the amount of C exceeds 0.05%, the amount of solid solution C in ferrite increases, and the above-mentioned formability decreases. I am not satisfied. Further, if the C content exceeds 0.05%, scale surface defects are likely to occur during the hot rolling step, deteriorating the final surface properties after galvanizing, and obtaining a surface quality at the level of the inner and outer panels of an automobile. Therefore, the C content is restricted to 0.05% or less. When extremely high formability is required, it is desirable to reduce the content to 0.04% or less. However, in order to form a low-temperature transformation phase with a constant volume ratio, it is essential to contain a certain amount. Therefore, although depending on the content of other elements, the C content is desirably 0.01% or more.
[0018]
Si: 2.0% or less Si is an effective element for stably obtaining a low-temperature transformation phase. However, when the content is high, the surface properties and the chemical conversion property are significantly deteriorated. 0% or less.
[0019]
Mn: 3.0% or less Mn is a very important element for the formation of a low-temperature transformation phase, and in the present invention, it is necessary to add a certain amount, preferably 0.5% or more, in order to improve hardenability. is there. However, if added excessively, the slab cost is significantly increased and workability is deteriorated. Therefore, the Mn content is set to 3.0% or less.
[0020]
P: 0.1% or less P is an element effective for stabilizing the low-temperature transformation phase like Si, but when added in a large amount, the grain boundary is embrittled by the grain boundary segregation of P. In addition, the alloying speed of zinc plating is slowed down, resulting in poor plating and non-plating. Therefore, the P content is set to 0.1% or less.
[0021]
S: 0.03% or less S is segregated at the grain boundary during hot rolling to generate slab cracks and increases the rate of occurrence of surface flaws. Therefore, the content of S is preferably small. On the other hand, if the content exceeds 0.03%, MnS precipitates and workability deteriorates. Therefore, the amount of S is set to 0.03% or less.
[0022]
Al: 0.1% or less Al has a function of reducing inclusions in steel as a deoxidizing element. However, when the Al content exceeds 0.1%, cluster-like alumina-based inclusions increase and ductility decreases. Therefore, the amount of Al is set to 0.1% or less. In order to exhibit the effect of reducing inclusions, the content is desirably 0.01% or more.
[0023]
N: 0.01% or less N should be small in content from the viewpoint of processability and aging. If added in an amount exceeding 0.01%, ductility and toughness deteriorate due to excessive nitride formation. Therefore, the N content is set to 0.01% or less.
[0024]
Cr, Mo, V: 1% or less respectively Cr, Mo, V are quenching improving elements, and are added as necessary to stably generate a low-temperature transformation phase. However, even if it is added excessively, the effect is not only saturated, but also disadvantageous in cost. Therefore, when Cr, Mo, and V are added, each content is set to 1% or less.
[0025]
B: 0.01% or less B is an element effective for strengthening the grain boundary. In addition, it contributes to the improvement of hardenability, and is added as needed to stably obtain a low-temperature transformation phase. However, even if added in an amount exceeding 0.01%, an effect commensurate with cost cannot be obtained. Therefore, if added, the content is set to 0.01% or less.
[0026]
Ti, Nb: 0.1% or less Ti, Nb is an element effective for forming carbonitride, reducing the amount of solute C and N, and improving the deep drawability, and is added as necessary. I do. However, the effect is saturated even if the content of any of them exceeds 0.1%, and the recrystallization temperature during annealing after cold rolling becomes high, so that the productivity is deteriorated. Therefore, when they are added, each is set to 0.1% or less.
[0027]
In the present invention, in addition to the above components, the balance may be substantially iron, and unavoidable impurities and other trace elements within a range that does not impair the function and effect of the present invention are acceptable.
[0028]
Next, the microstructure will be described.
The high-strength thin steel sheet according to the present invention has the above component composition, a microstructure comprising ferrite and a low-temperature transformation phase having a volume fraction of less than 10%, and a ferrite grain size d (μm) and a low-temperature transformation phase fraction Vm ( %) Satisfies the relationship d <−0.5 × Vm + 16 (Vm <10%).
[0029]
Low-temperature transformation phase fraction: less than 10% Since the low-temperature transformation phase is the starting point of crack generation, it is necessary to reduce the low-temperature transformation phase fraction. Furthermore, since the present invention is mainly intended for automobile outer panels and the like that require high formability, it is very important to reduce the low-temperature transformation phase fraction as much as possible and to secure workability. Therefore, the low-temperature transformation phase fraction is specified as less than 10%. In order to further improve the resistance to secondary working brittleness and formability, the low-temperature transformation phase fraction is desirably less than 7%. On the other hand, in order to secure a desired strength, it is desirable that the low-temperature transformation phase fraction be 2% or more. Here, the low-temperature transformation phase mainly includes a martensite phase, but may further include a residual γ phase, a bainite phase, and a carbide.
[0030]
Ferrite grain size d (μm), low-temperature transformation phase fraction Vm (%): d <−0.5 × Vm + 16 (Vm <10%)
In order to obtain excellent secondary work brittleness resistance, it is extremely important that the ferrite grain size d and the low-temperature transformation phase fraction Vm be in the optimum ranges. That is, when the low-temperature transformation phase fraction is large, it is necessary to further reduce the ferrite grain size. As described above, when the ferrite grain size is larger than −0.5 × Vm + 16 in the range of Vm <10%, the ferrite grain size is not sufficiently small with respect to the low-temperature transformation phase. Brittleness cannot be obtained. Therefore, the ferrite grain size d is defined as a range satisfying the relational expression of d <−0.5 × Vm + 16 when Vm <10%. In order to further improve the resistance to secondary working brittleness, it is more preferable that the ferrite grain size be d <−0.5 × Vm + 11.
[0031]
Next, the manufacturing method of the present invention will be described.
In the present invention, as a manufacturing method capable of obtaining a high-strength thin steel sheet excellent in the above-mentioned secondary working brittleness resistance, a steel having the above-described component composition is melted, and then hot-rolled. After cold-rolling the rolled steel sheet, it is annealed in a temperature range of at least Ac 1 point and not more than Ac 3 points, and is then primarily cooled at a speed of more than 3 ° C./s to a temperature range of 450 to 700 ° C. The secondary cooling is performed at a speed of not more than the Ms point.
[0032]
In the present invention, since the role of the low-temperature transformation phase is very important, a fine and hard low-temperature transformation phase mainly composed of martensite is generated under the above manufacturing conditions. That is, in order to make the final microstructure into a ferrite + low-temperature transformation phase, annealing is performed in a range of one Ac or more and three Ac or less. As described above, it is effective to lower the low-temperature transformation phase fraction in order to further improve the secondary work brittleness resistance and the formability. Therefore, the annealing temperature, Ac 1 point or more, Ac 1 + 50 ° C. The following ranges is desirable.
[0033]
With respect to the cooling rate and the stop temperature of the subsequent primary cooling, it is necessary to perform primary cooling at a rate of more than 3 ° C./s to a temperature range of 450 to 700 ° C. in order to avoid deterioration in formability due to pearlite precipitation. However, in the present invention, since the low-temperature transformation phase is used, if the primary cooling rate is set to 30 ° C./s or more, the two-phase separation does not proceed sufficiently, so that the hard low-temperature transformation phase is not generated and the desired characteristics are obtained. May not be obtained. Therefore, it is desirable that the primary cooling rate be less than 30 ° C./s. In order to obtain a martensite phase more stably, it is desirable to perform primary cooling to a temperature range of 500 to 650 ° C.
[0034]
In the subsequent secondary cooling, it is necessary to cool to a temperature below the Ms point at a rate of 10 ° C./s or more in order to stably generate a low-temperature transformation phase. In order to secure a predetermined strength and obtain better characteristics, it is desirable to set the secondary cooling rate to more than 20 ° C./s. After the secondary cooling, an overaging treatment may be performed.
[0035]
Needless to say, the high-strength thin steel sheet obtained by the above description can achieve the intended effect even when it is used as an electro-galvanized steel sheet or a hot-dip galvanized steel sheet. In the case of a hot-dip galvanized steel sheet, an alloying treatment may be performed. Further, these plated steel sheets may be further subjected to an organic film treatment after plating.
[0036]
In the present invention, when hot rolling the slab, the slab may be rolled after reheating in a heating furnace, or may be directly rolled without heating. Further, the hot rolling finish rolling temperature is preferably performed at an Ar 3 transformation point or higher. The cooling rate may be set to 60 to 85% within the normal operation range.
[0037]
【Example】
Table 1 shows the steel numbers No. 1 to No. After smelting 15 steels, slabs were produced by continuous casting. As shown in Table 1, steel No. Nos. 1 to 11 are steels of the present invention in the range of the component composition specified in the present invention. Reference numerals 12 to 15 are comparative steels in which the C content, the Si content, the Mn content, and the P content exceed the upper limit and are out of the component range of the present invention.
[0038]
After heating these slabs to 1200 ° C., finish rolling was performed at a finishing temperature of at least three points of Ar, and hot-rolled steel sheets were produced within the range of the winding temperature of the normal operation. The hot-rolled steel sheet was pickled and cold-rolled. Subsequently, annealing was performed at a soaking temperature and a cooling rate shown in Table 2 to obtain an annealed plate. The microstructure of the obtained annealed sheet was observed, the ferrite grain size and the low-temperature transformation phase fraction were measured, and the performance was evaluated.
[0039]
The tensile strength was measured by performing a tensile test on a JIS No. 5 tensile test piece. The vertical crack transition temperature was evaluated by the following method. First, a circular plate having a diameter of 100 mm was collected from each of the obtained annealed plates, and subjected to deep drawing at a drawing ratio of 2.0 to form a cylindrical cup having a diameter of 50 mm. Next, the ears of these cylindrical cups were removed to prepare a sample having a height of 30 mm. Thereafter, the sample prepared above was placed on a 60-degree truncated cone-shaped mold with the bottom surface facing upward, the entire tester was cooled to a predetermined temperature, and held for a certain period of time. The critical temperature at which brittle cracking occurred on the side wall of the cylindrical cup was determined and defined as the vertical crack transition temperature. Table 2 shows the test results together with the measurement results of the ferrite grain size and the low-temperature transformation phase fraction.
[0040]
In Table 2, No. Nos. 1 to 4, 7, 8, 10, 11, 13 to 16 are examples of the present invention in which the chemical composition range, low-temperature transformation phase fraction, and ferrite grain size all satisfy the present invention. The production conditions of the heat temperature, the primary cooling rate, and the secondary cooling rate are also satisfied. On the other hand, No. 5, 6, 9, 12, 17 to 24 are comparative examples in which any one of the chemical composition range, low-temperature transformation phase fraction, and ferrite particle size is out of the range of the present invention.
[0041]
FIG. 1 is a diagram showing the relationship between the low-temperature transformation phase fraction and the ferrite grain size shown in Table 2, and also shows the results of a longitudinal crack transition temperature investigation of each steel sheet. However, in the case of No. 3 whose chemical component range is out of the range of the present invention. 21 to 24 (Steel No., 12 to 15) are not shown. As shown in this figure, the steel sheets of the examples of the present invention produced under the conditions specified in the present invention all had an excellent vertical crack transition temperature of -80 ° C or higher. Further, when the ferrite grain size is smaller than -0.5 * Vm + 11, the vertical crack transition temperature is -100 [deg.] C. or lower, which is more preferable. On the other hand, when the ferrite grain size is larger than −0.5 × Vm + 16, the transition temperature of the vertical crack is −50 ° C. or lower, and it is found that the secondary work brittleness resistance is reduced.
[0042]
[Table 1]
Figure 2004197156
[0043]
[Table 2]
Figure 2004197156
[0044]
【The invention's effect】
As described above, according to the present invention, the chemical composition is controlled to a specific range, the structure is composed of ferrite + low-temperature transformation phase, and the relationship between the grain size and the low-temperature transformation phase fraction is optimized. Thus, a high-strength thin steel sheet having high formability and excellent secondary work brittleness resistance can be obtained. Therefore, the steel sheet of the present invention can be applied to a wide range of fields, such as steel sheets for automobiles and home appliances.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the low-temperature transformation phase fraction and the ferrite grain size of a steel sheet according to an example and the resistance to secondary working embrittlement.

Claims (3)

mass%で、C:0.05%以下、Si:2.0%以下、Mn:3.0%以下、P:0.1%以下、S:0.03%以下、Al:0.1%以下、N:0.01%以下で、残部が実質的に鉄からなり、ミクロ組織がフェライトと体積率10%未満の低温変態相からなり、かつフェライト粒径d(μm)と低温変態相分率Vm(%)がd<−0.5×Vm+16(Vm<10%)の関係を満たすことを特徴とする耐二次加工脆性に優れた高強度薄鋼板。mass%, C: 0.05% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.1% or less, S: 0.03% or less, Al: 0.1% Hereinafter, N: 0.01% or less, the balance substantially consisting of iron, microstructure consisting of ferrite and a low-temperature transformation phase having a volume fraction of less than 10%, and ferrite grain size d (μm) and low-temperature transformation phase component A high-strength thin steel sheet excellent in secondary work brittleness resistance, wherein the rate Vm (%) satisfies the relationship of d <−0.5 × Vm + 16 (Vm <10%). さらに、mass%で、Cr:1%以下、Mo:1%以下、V:1%以下、B:0.01%以下、Ti:0.1%以下、Nb:0.1%以下のうち1種以上を含有することを特徴とする請求項1に記載の耐二次加工脆性に優れた高強度薄鋼板。Further, in mass%, Cr: 1% or less, Mo: 1% or less, V: 1% or less, B: 0.01% or less, Ti: 0.1% or less, Nb: 0.1% or less The high-strength thin steel sheet excellent in secondary work brittleness resistance according to claim 1, comprising at least one kind. 請求項1または2記載の成分組成を有する鋼を溶製した後、熱間圧延し、得られた熱延鋼板を冷間圧延後、Ac点以上Ac点以下の温度範囲で焼鈍し、引き続き3℃/s超の速度で450〜700℃の温度範囲に一次冷却し、その後10℃/s以上の速度でMs点以下の温度まで2次冷却することを特徴とする耐二次加工脆性に優れた高強度薄鋼板の製造方法。After smelting the steel having the component composition according to claim 1 or 2, hot rolling is performed, and the obtained hot-rolled steel sheet is cold-rolled, and then annealed in a temperature range of 1 point of Ac or more and 3 points of Ac or less, A secondary working brittle resistance characterized by successively cooling at a rate of more than 3 ° C / s to a temperature range of 450 to 700 ° C and then at a rate of 10 ° C / s or more to a temperature below the Ms point. Method for producing high-strength thin steel sheet with excellent quality.
JP2002366751A 2002-12-18 2002-12-18 High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same Expired - Fee Related JP4178940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366751A JP4178940B2 (en) 2002-12-18 2002-12-18 High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366751A JP4178940B2 (en) 2002-12-18 2002-12-18 High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008144044A Division JP5092908B2 (en) 2008-06-02 2008-06-02 High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004197156A true JP2004197156A (en) 2004-07-15
JP4178940B2 JP4178940B2 (en) 2008-11-12

Family

ID=32763865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366751A Expired - Fee Related JP4178940B2 (en) 2002-12-18 2002-12-18 High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4178940B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031466A (en) * 2010-07-30 2012-02-16 Jfe Steel Corp High strength steel sheet, and method of manufacturing the same
US9816153B2 (en) 2011-09-28 2017-11-14 Jfe Steel Corporation High strength steel sheet and method of manufacturing the same
JP2018528323A (en) * 2015-07-24 2018-09-27 ポスコPosco Hot-dip galvanized steel sheet excellent in aging resistance and bake hardenability, alloyed hot-dip galvanized steel sheet, and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374611B (en) 2006-03-07 2015-04-08 卡伯特公司 Methods of producing deformed metal articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031466A (en) * 2010-07-30 2012-02-16 Jfe Steel Corp High strength steel sheet, and method of manufacturing the same
US9816153B2 (en) 2011-09-28 2017-11-14 Jfe Steel Corporation High strength steel sheet and method of manufacturing the same
JP2018528323A (en) * 2015-07-24 2018-09-27 ポスコPosco Hot-dip galvanized steel sheet excellent in aging resistance and bake hardenability, alloyed hot-dip galvanized steel sheet, and method for producing the same
US10907233B2 (en) 2015-07-24 2021-02-02 Posco Hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet with excellent aging resistance properties and bake hardenability, and method for manufacturing same

Also Published As

Publication number Publication date
JP4178940B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
US20110030854A1 (en) High-strength steel sheet and method for manufacturing the same
WO2021233247A1 (en) Cold-rolled enamel steel for deep drawing inner container and manufacturing method therefor
JP5825481B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP5370620B1 (en) Thin steel plate and manufacturing method thereof
JPWO2014132968A1 (en) High-strength hot-rolled steel sheet with a maximum tensile strength of 980 MPa or more with excellent bake hardenability and low-temperature toughness
WO2007080810A1 (en) Hot-dip zinc-coated steel sheets and process for production thereof
AU2005227556A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP2023100953A (en) Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
JP2011168877A (en) High-strength hot-dip galvanized steel sheet with excellent material stability and processability and method for producing the same
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4525383B2 (en) Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same
JP6037087B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5845837B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP4258215B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP2004323958A (en) High tensile strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance, and its production method
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4517629B2 (en) Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4178940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees