JP2004196100A - Steering control device for vehicle - Google Patents

Steering control device for vehicle Download PDF

Info

Publication number
JP2004196100A
JP2004196100A JP2002366638A JP2002366638A JP2004196100A JP 2004196100 A JP2004196100 A JP 2004196100A JP 2002366638 A JP2002366638 A JP 2002366638A JP 2002366638 A JP2002366638 A JP 2002366638A JP 2004196100 A JP2004196100 A JP 2004196100A
Authority
JP
Japan
Prior art keywords
steering
lane
vehicle
lane change
driving behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002366638A
Other languages
Japanese (ja)
Other versions
JP4107078B2 (en
Inventor
Nobutomo Hisaie
伸友 久家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002366638A priority Critical patent/JP4107078B2/en
Publication of JP2004196100A publication Critical patent/JP2004196100A/en
Application granted granted Critical
Publication of JP4107078B2 publication Critical patent/JP4107078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize control of steering transmitting characteristics optimum for recognizing driving behavior of a driver, controlling the steering transmitting characteristics corresponding to the driving behavior and carrying out specific driving behavior of the driver in steering control of a vehicle. <P>SOLUTION: In the steering device for a vehicle, a ratio (in the following, referred to a steering angle ratio) of a steering amount θ inputted to a steering wheel by the driver and a steered angle δw of a steered wheel 9 is varied. A traveling environment detection means 22 detect traveling environment of the vehicle based on an information from a front side road state detection means 12 and a car speed sensor 13. Thereby, a driving behavior recognition means 21 recognizes the specific driving behavior of the driver (maintaining of lane or changing of the lane) and a steering angle ratio Nd is determined in a steering angle ratio (steering transmitting characteristic) setting means 25 based on the result of the recognition. When a steering angle ratio (steering transmitting characteristic) correction coefficient determination means 24 recognizes starting of change of the lane Cs, it calculates a steering angle ratio correction coefficient Kp. A steering angle ratio (steering transmitting characteristic) correction means 27 corrects the steering angle ratio Np based on the coefficient Kp. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車両の操舵制御装置に関し、特に車線変更中であるか否か等、運転行動に応じてステアリングホイールの操舵量と転舵輪の転舵角度との比率である操舵伝達特性を好適に変更可能にした操舵制御装置に関するものである。
【0002】
【従来の技術】
車両の走行状況に応じ、運転者がステアリングホイールに入力した操舵量に対する転舵輪の舵角の比率である操舵伝達特性を変更可能な車両の操舵制御装置としては従来、例えば特許文献1および2に記載のごときものがある。
【0003】
【特許文献1】
特開平9−058507号公報
【特許文献2】
特開平11−005550号公報
【0004】
特許文献1に記載の車両の操舵制御装置は、ステアリングホイールに入力した転舵量がステアリングギア比可変機構を介してピニオンに伝達され、該ピニオンの回転によりこれに噛合させたラック軸が移動して操舵輪を転舵させるようにしたし、この際、車速に応じて上記ステアリングギア比を変化させることで走行性能を高めることを狙ったものである。
【0005】
また、特許文献2に記載の車両の操舵制御装置は、ステアリングホイールに入力した転舵量と転舵輪の転舵角との比率を可変とする舵角比可変手段と、ステアリングホイールの操舵反力を変化させる操舵反力可変手段とを有し、運転者の操作状況から運転難易度を検知し、該運転難易度に応じて、上記舵角比および操舵反力を変化させるようにしたものである。
【0006】
【発明が解決しようとする課題】
しかし、上記従来のような車両の操舵制御装置にあっては、以下に説明するような問題を生ずる。
【0007】
つまり、特許文献1に記載の車両の操舵制御装置では、車速のみによってステアリングギア比が設定されるため、低中車速域にあっては、路面状況や運転者の操舵状況等の要因を考慮することなく、常にステアリングギア比が大きい。
また、このようにステアリングギア比が大きいため、直進時のように車両の向きを変えるための操舵入力が不要な場合であっても、微小操舵に車両が反応してしまい、直進時の安定性が損なわれる。
さらに同様な理由から、運転者は車両の直進を維持するために常にステアリングに注意を払わなければならず、運転者への心理的負担が増加する。
【0008】
また、特許文献2に記載の車両の操舵制御装置では、運転者への負担を軽減するために、運転難易度に応じて、上記舵角比および操舵反力を変化させるが、運転者の緊張度によっては操縦操作が異なることから同一の走行環境であっても、異なった運転難易度を検知することがあり、舵角比および操舵反力といった操舵特性が一定しない場合には、運転者にとってはどのような運転操作をすべきかわかりにくい。
また、車両の走行環境を前記舵角比可変手段および操舵反力可変手段に直接的に反映していないため、走行中の車両位置を適切に制御するように操舵特性が設定されるわけではない等の問題が懸念される。
【0009】
本発明は、車線変更などの特定の運転行動ごとにステアリングギア比(舵角比)に代表される操舵伝達特性を個々に設定可能とし、かように設定した操舵伝達特性を、特定の運転行動が発生した時における運転状況に基づき補正して操舵制御に用いれば、
例えば旋回走行中に車線変更をするなどの複雑な運転状況のもとでも、操舵伝達特性が当該運転状況に適合したものとなって、常に運転者の運転操作にとって良好な操舵制御が可能であるとの観点から、
この着想を具体化して上記した問題や懸念をことごとく解消し得る車両用操舵制御装置を提案することを目的とする。
【0010】
【課題を解決するための手段】
この目的のため本発明による車両用操舵制御装置は、請求項1に記載のごとく、
操舵量検出手段が検出した運転者による操舵量と、変更可能な操舵伝達特性とで目標舵角を求め、転舵輪を転舵手段によりこの目標舵角だけ転舵する車両用操舵装置を前提とし、これに、
運転者の特定の運転行動を認識する運転行動認識手段と、
この手段により上記特定の運転行動が認識されるとき、操舵伝達特性を該特定の運転行動に適合した特性となす操舵伝達特性設定手段と、
この手段により設定した操舵伝達特性を、上記特定の運転行動が認識された時における検出操舵量に応じ補正して上記目標舵角の演算に資する操舵伝達特性補正手段とを具備したことを特徴としたものである。
【0011】
【発明の効果】
かかる本発明の構成によれば、操舵伝達特性が特定の運転行動ごとに設定され、かように設定された操舵伝達特性を、特定の運転行動が発生した時における検出操舵量に基づき補正して目標舵角の演算に資することとなり、
例えば旋回走行中に車線変更をするなどの複雑な運転状況のもとでも、操舵伝達特性がこれら旋回走行中および車線変更の全てを考慮されて確実に当該複雑な運転状況に適合したものとなり、常に運転者の運転操作にとって良好な操舵制御を補償することができる。
従って、低中車速域で無条件に操舵伝達特性が大きくなって直進時に直進安定性が損なわれたり、直進を維持するために運転者の心理的負担が増加するといった前記の問題や、
例えば旋回走行中に車線変更をするなどの複雑な運転状況のもとで全ての運転要因が操舵伝達特性の制御に反映されずに操舵伝達特性が当該複雑な運転状況に適合したものにならないという前記の問題を解消することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
図1は、本発明の一実施の形態になる操舵制御装置を具えた車両の制御システム図である。
1は、運転者が車両を操向するために操作するステアリングホイール1で、このステアリングホイール1をステアリングコラムシャフト2の一端に固設し、ステアリングコラムシャフト2の他端に操舵トルク提供手段3および操舵量検出手段4を設ける。
転舵手段6は、例えばラック&ピニオン式ステアリングギアと、ピニオンを駆動する電気モータなどの転舵アクチュエータとにより構成し、ラック7の両端を左右転舵輪9L,9Rのナックル8L,8Rに連節して、左右転舵輪9L,9Rを転舵するものとする。
【0013】
しかし、ステアリングコラムシャフト2と転舵手段6との間を機械的に連結させず、これらの間を電子制御ユニット11を介して電子制御式に相関させる。
電子制御ユニット11は、上記操舵量検出手段4が検出したステアリングホイール1の操舵量θに関する信号と、前方道路状況検出手段12からの信号と、車速センサ13からの信号とに応動して後述のように目標舵角δwを求め、これに関する信号を転舵手段6が受けて左右転舵輪9L,9Rを目標舵角δwだけ転舵するものとする。
【0014】
前方道路状況検出手段12は、例えば、インナーミラー等に設置したカメラで車両前方を撮影した画像を画像処理して白線を検出し、その情報を用いて走行路の曲率を求める方法や、ナビゲーションシステムの情報から走行路の曲率を求める方法などがある。
車速センサ13は車速VSPを検出する。
上記の道路状況データおよび車速VSPは、電子制御ユニット11の走行環境検出手段22へ送信する。
【0015】
電子制御ユニット11は、上記走行環境検出手段22のほかに、運転行動認識手段21と、操舵トルク出力特性制御手段23と、舵角比(操舵伝達特性)補正係数決定手段24と、舵角比(操舵伝達特性)設定手段25と、目標舵角算出手段26と、舵角比(操舵伝達特性)補正手段27とを具え、これらを図示のごとくに相関させて構成する。
操舵トルク出力特性制御手段23は操舵量検出手段4が検出した操舵量θに基づき操舵トルク目標値を決定し、該操舵トルク目標値に関する信号を受けて操舵トルク提供手段3はステアリングホイール1に所定の操舵反力を付与するよう機能する。
【0016】
走行環境検出手段22は、手段13で検出した車速VSPおよび手段12で前記のごとくに求めた道路状況データをもとに車両の走行環境を求めて運転行動認識手段21へ送信する。
この運転行動認識手段21は上記走行環境に基づき、所定時間隔毎に運転者の運転行動を認識し、これが特定の運転行動、例えばここでは車線維持か車線変更のいずれであるかを判断し、判断結果DSdを舵角比補正手段24および舵角比設定手段25へ送信する。
上記判断の手法としては、例えば、文献(Pentland, A. et al., Modeling and Prediction of Human Behavior, Neural Computation, 11 229-242, 1999)に記載されている方法を用いる。
これは、かくれマルコフモデルに基づいて運転者の運転行動方略を確率統計的に推定するもので、当該文献には、走行中の車線維持と車線変更の運転行動方略が検出可能なことが示されている。
【0017】
また、手段21での判断結果DSdはプロファイルとして蓄積され、該プロファイルを用いて車線維持の判断結果が所定時間以上連続した後に車線変更の判断結果が出現した場合を特定の運転行動である車線変更開始Csがあったとし、車線変更の判断結果が所定時間以上連続した後に車線維持の判断結果が出現した場合を特定の運転行動である車線変更終了Ceがあったとすることにより、車線変更開始Csと、車線変更終了Ceの認識が可能である。これらの認識結果を舵角比設定手段25および舵角比補正係数決定手段24へ送信する。
【0018】
なお上記認識のための手法としては、運転者のウインカ(方向指示器)操作によって車線変更開始Csおよび車線変更終了Ceを検出するようにしても勿論よい。
【0019】
舵角比設定手段25は上記判断結果DSdから、あらかじめ記憶しておいた図2に示す特性図上で検索することにより、舵角比Ndを求める。DSd=Ceの車線維持の場合には舵角比Ndは、操舵量θに対する目標舵角δwの変化割合が小さな(操舵ゲインが小さな)N1とし、DSd=Csの車線変更の場合には舵角比Ndは操舵ゲインが小さなN2(N1<N2)とする。
これにより、運転行動の判断結果DSdが車線維持の場合には、舵角比Nd(操舵ゲイン)を小さく(N1)することで車両の直進性が向上され、車線変更の場合には、舵角比Ndを大きく(N2)することで車両の回頭性が向上される。
【0020】
ところで、カーブ走行時などのステアリング操作中に、車線変更開始Csを認識した場合、運転者がその時点での舵角比Ndに基づき、予測的に次のステアリング操作を行うと考えられる。
この場合、車線変更開始Csの認識に呼応して急激に舵角比NdをN1からN2へと大きくすると、運転者の予測以上に車両が旋回してしまい、運転操作に悪影響を及ぼすことが懸念される。
一方、車線変更開始Csを認識した時点でステアリングホイール1位置が中立付近にあって検出操舵量θが小さい場合は、運転者がもともと操舵を行っていないために、舵角比NdをN1からN2へと大きくしても車両が運転者の予測以上に急旋回するという上記の問題は発生しない。
【0021】
そこで舵角比補正係数決定手段24では、運転行動認識手段21が車線変更開始Csを認識した場合に、その時の検出操舵量θlcoが図3に示す所定値±θo1未満である場合は舵角比Ndの補正を行わないよう同図に示すごとく舵角比補正係数Kpを1にセットし、車線変更開始時の検出操舵量θlcoが所定値±θo1より大きい場合は舵角比Ndの補正を後述のごとく行うべく同図に示すように舵角比補正係数Kpを1未満にする。
ここで、車線変更開始時の検出操舵量θlcoが所定値±θo1より大きい場合における舵角比補正係数Kpの特性は図3に示すように、車線変更開始時の検出操舵量θlcoが所定値±θo1から±θo2に向け大きくなるにつれ0へと漸減する、つまり次式で表されるようなものとし、
Kp={−1/(θo2−θo1)}θlco+θo2/(θo2−θo1)・・・(1)
車線変更開始時の検出操舵量θlcoが所定値±θo2よりも大きい領域では0に保たれるものとする。
【0022】
舵角比補正手段27は、手段25で前記のごとくに求めた車線維持(DSe=Ce)用のNd(=N1)および車線変更(DSe=Cs)時用の舵角比Nd(=N2)と、手段24で上記のごとく車線変更開始時の検出操舵量θlcoに応じ決定した舵角比補正係数Kp(図3参照)とを入力され、これらに基づいて 車線変更開始時の検出操舵量θlcoが、図3に示す所定値±θo1以下である場合はKp=1を受けて補正後舵角比Npを車線変更時用の舵角比N2とする。つまり、
0<|θlco|≦|θo1|においては、
Np=N2 ・・・・(2)
とする。
【0023】
車線変更開始時の検出操舵量θlcoが、所定値±θo1よりも大きく±所定値θo2よりも小さい場合は、操舵角θlcoが所定値±θo2に接近するにつれて、補正後舵角比NpがNd=N2からNd=N1に接近するように、例えば以下の式のように補正後舵角比Npを求める。つまり、
|θo1|<|θlco|<|θo2|においては、前記(1)式により求めた舵角比補正係数Kpと、車線維持時用舵角比N1および車線変更時用舵角比N2とを用いて次式により補正後舵角比Npを求める。
Np=(1−Kp)N1+Kp・N2 ・・・・(3)
【0024】
車線変更開始時の検出操舵量θlcoが、所定値±θo2より大きい場合はKp=0を受けて補正後舵角比Npを車線維持時用の舵角比N1とする。つまり、
|θo2|≦|θlco|においては、
Np=N1 ・・・・(4)
とする。
【0025】
上記のようにして求めた補正後舵角比Npは目標舵角算出手段26へ送信する。
この目標舵角算出手段26は、上記補正後舵角比Npのほかにステアリングホイール操舵量θに関する信号を入力され、以下の式に基づき、左右転舵輪9L,9Rの目標舵角δwを算出し、転舵手段6へ送信し、左右転舵輪9L,9Rを目標舵角δwだけ転舵する。
δw=Np×θ ・・・・(5)
【0026】
図1では電子制御ユニット11を機能別ブロック線図により示したが、この電子制御ユニット11は図4のフローチャートに示す処理により同様な操舵制御を行うことができる。
図4は所定時間隔で繰り返し実行されるもので、まずステップS1では、図1の前方道路状況検出手段12において検出した道路曲率および同図の車速センサ13で検出された車速VSPを走行環境データとして入力する。
なお、走行環境データは、運転行動認識手段21を構成するため任意に組み合わせて用いられるもので、ここで述べられた情報に特定されるものではない。
【0027】
次のステップS2では、運転者によるステアリングホイール1の操舵量θを入力し、図1に示す操舵量検出手段4が検出した操舵量θを読み込む。
【0028】
ステップS3では、図1の運転行動認識手段21によると同様な処理を行い、運転者の運転行動DSdから車線維持または車線変更を判断して、車線変更開始Csまたは車線変更終了Ceの認識を行う。
【0029】
ステップS4では車線変更開始DSd=Csであるかどうかをチェックし、車線変更開始Csである場合はステップS5へ進み、舵角比NdにN2を格納する。
一方、車線変更開始Cs以外の場合にはステップS11へ進み、運転行動DSdが車線変更終了Ceであるかどうかをチェックする。
車線変更終了DSe=Ceの場合には、次のステップS12で舵角比NdにN1を格納する。
他方、車線変更終了Ce以外の場合には、車線維持または車線変更を実行中であるから、ステップS13で舵角比Ndを前回の値Ndを保持する。
【0030】
車線変更開始時に、ステップS5で舵角比NdにN2を格納した後に選択されるステップS6では、車線変更開始Csの認識時における車線変更開始時の検出操舵量θlcoを基に舵角比Ndの補正係数Kpを算出する。
まず、車線変更開始時の検出操舵量θlcoが所定値θo2を上回っていると判定した場合は、舵角比Ndを車線維持用舵角比N1にするよう補正係数Kpに0を格納する。
次に、車線変更開始時の検出操舵量θlcoが所定値θo1よりも大きく所定値θo2よりも小さいと判定した場合は、転舵角θlcoから図3に示す特性図上でマップ検索を行い、補正係数Kpに0から1までの範囲で車線変更開始時の検出操舵量θlcoに応じた数値を格納し、舵角比Ndを車線変更開始時の検出操舵量θlcoの増大に応じ車線変更用舵角比N2から車線維持用舵角比N1に漸減させるようにする。
最後に車線変更開始時の検出操舵量θlcoが所定値θo1よりも小さいと判定した場合は、舵角比Ndが車線変更用舵角比N2から補正されることのないよう補正係数Kpに1を格納する。
【0031】
ステップS7では、上記補正係数Kpと、車線維持用舵角比N1および車線変更用舵角比N2とを用いて前記(1)式により、補正後舵角比Npを算出する。
【0032】
前記ステップS4で車線変更開始Cs以外と判断した場合、以上に述べた舵角比Ndの補正を行わないため、当該判断時に選択されるステップS14で補正後舵角比NpにNdを格納する。
【0033】
以上のステップS7またはステップS14で求めた補正後舵角比Npに基づき、ステップS8ではステアリングホイール操舵量θに応じて転舵輪9L,9Rの目標舵角δwを前記(6)式により求め、これを図1の転舵手段6に指令する。
【0034】
ところで本実施の形態によれば、運転者の特定の運転行動を認識する運転行動認識手段21と、該手段21が特定の運転行動である車線変更開始Csが認識したとき、操舵伝達特性を該特定の運転行動(Cs)に適合した特性となす操舵伝達特性設定手段25と、該手段25により設定した操舵伝達特性を、前記特定の運転行動(Cs)が認識された時における前記検出操舵量θlcoに応じ補正して前記目標舵角δwの演算に資する操舵伝達特性補正手段27とを具備したことから、操舵伝達特性が特定の運転行動ごとに設定され、かように設定された操舵伝達特性を、特定の運転行動が発生した時における検出操舵量に基づき補正して目標舵角の演算に資することとなり、例えば旋回走行中に車線変更するなどの複雑な運転状況のもとでも、操舵伝達特性がこれら旋回走行中および車線変更のすべてを考慮して確実に当該複雑な運転状況に適合したものとなり、常に運転者の運転操作にとって良好な操舵制御を補償することができる。
従って、低中車速で無条件に操舵伝達特性が大きくなって直進時に直線安定性が損なわれたり、直進を維持するために運転者の心理的負担が増加するといった前記の問題や、旋回走行中に車線変更をするなどの複雑な運転状況のもとで全ての運転要因が操舵伝達特性の制御に反映されずに操舵伝達特性が当該複雑な運転状況に適合したものにならないという前記の問題を解消することができる。
【0035】
また、前記運転行動認識手段21は車線変更の開始Csおよび車線変更の終了Ceを前記特定の運転行動として認識することから、車線変更の操作を開始および終了する場合のそれぞれにおいて操舵伝達特性を適切に制御することができる。
【0036】
また本実施の形態によれば、操舵伝達特性補正手段27は、運転行動認識手段21が車線変更の開始Csを認識したとき、該車線変更開始時における検出操舵量|θlco|が大きいほど検出操舵量に対する目標舵角δwの変化割合が小さくなるよう前記操舵伝達特性の補正を行うものであるため、カーブ走行時などの旋回走行中に車線変更をする場合であっても運転者が予測していなかった操舵伝達特性に変更することを防止する。つまり舵角比Npが大きくなって運転者の予測以上に車両が旋回することを防止し、運転者は次の操舵伝達特性を予測しながら操向操作を行うことができる。
【0037】
また本実施の形態によれば、前記操舵伝達特性補正手段27は、運転行動認識手段21が車線変更の開始Csを認識したとき、該車線変更開始時における検出操舵量θlcoの絶対値が設定操舵量θo2の絶対値以上であれば、操舵伝達特性Npを前記車線変更の開始が認識される直前の特性N1とするため、特に急なカーブを走行中などで検出操舵量θlcoが特に大きい場合に舵角比Npが変更することで運転者の予期しないような車両の旋回が生じるのを防止することができる。
【0038】
次に、本発明の他の実施の形態を図面に基づき説明する。
図5は、本発明の他の実施の形態になる操舵制御装置を具えた車両の制御システム図である。基本的な構成は図1に示した制御システム図と同様であるため、同じ符号を使用し、ここでは相違する構成部分について説明する。走行環境検出手段22で求めた車両の走行環境を用いて、車線到達指標算出手段28では、後述のごとく車線到達指標lcrを算出し、舵角比補正係数決定手段24に送信する。車線変更開始Csを認識した場合には、舵角比補正手段24は車線端到達指標lcrに応じて、舵角比補正係数Kpを算出し、舵角比設定手段25で決定された舵角比の補正を行う。
【0039】
車線到達指標lcrは、図6に示す走行中の車両から、車両走行方向延長線と車線との交点までの車線到達距離dlc、または該距離dlcを車速VSPで除した車線到達時間tlcの逆数を用いる。車線到達指標lcrは、車両が車線に平行な場合は0、車線に対するヨ−角が大きくなるほどlcrも大きくなるという特性を示す。
【0040】
舵角比補正係数決定手段24では、運転行動認識手段21が車線変更開始Csを認識した場合に、その時の車線到達指標lcrが図7に示す所定値lcro1以下である場合は舵角比Ndの補正を行わないよう同図に示すごとく舵角比補正係数Kpを1にセットし、所定値lcro1より大きい場合は舵角比Ndの補正を後述のごとく行うべく同図に示すように舵角比補正係数Kpを1未満にする。
【0041】
車線変更開始時の車線到達指標lcrが所定値lcro1より大きい場合における舵角比補正係数Kpの特性は図7に示すように、車線変更開始時の車線到達指標lcrが所定値lcro1からlcro2に向け大きくなるにつれ0へと漸減する。つまり次式で表されるようなものとし、
Kp={−1/(lcro2−lcro1)lcr+lcro2/(lcro2−lcro1)・・・(6)
車線変更開始時の車線到達指標lcrが所定値lcro2以上の領域では0に保たれるものとする。
【0042】
図5では電子制御ユニット11を機能別ブロック線図により示したが、この電子制御ユニットは図8のフローチャートに示す処理により同様な操舵制御を行うことができる。本図では図4に説明したステップS6をステップS26およびS27に置き換えたものであり、共通するフローについては図4と同じ符号を使用する。ここでは、図4で示すフローチャートと異なる制御フローについて説明する。
【0043】
ステップS26では、図5の車線到達指標算出手段28によるのと同様な処理を行い、車速VSPおよび道路状況データなどの車両の走行環境に基づき、車線到達指標lcrを算出する。
【0044】
ステップS27では、車線変更開始Csの認識時における車線到達指標lcrを基に舵角比Ndを補正するための係数Kpを算出する。まず、車線変更開始時の車線端到達指標lcrが所定値lcro2を上回っていると判定した場合は、舵角比Ndを車線維持用舵角比N1にするよう補正係数Kpに0を格納する。
次に、車線変更開始時の車線端到達指標lcrが所定値lcro1よりも大きく所定値lcro2よりも小さいと判定した場合は、車線端到達指標lcrから図7に示す特性図上でマップ検索を行い、補正係数Kpに0から1までの範囲で車線変更開始時の車線到達指標lcrに応じた数値を格納し、舵角比Ndを車線変更開始時の車線到達指標lcrの増大に応じ車線変更用舵角比N2から車線維持用舵角比N1に漸減させるようにする。
最後に車線変更開始時の車線端到達指標lcrが所定値lcro1よりも小さいと判定した場合は、舵角比Ndが車線変更用舵角比N2から補正されることのないように補正係数Kpに1を格納する。
【0045】
本実施の形態によれば、走行中の車両から、車両走行方向延長線と車線との交点までの車線到達距離dlcまたは車線到達時間tlcの逆数である車線到達指標lcrを検出する車線到達指標算出手段28を有し、操舵伝達特性補正手段27は、運転行動認識手段21が車線変更の開始Csを認識したとき、該車線変更開始時における前記検出操舵量θlcoに代えて前記車線到達指標lcrに基づき前記操舵伝達特性Npの変更を行うため、車両が車線近傍を走行中の場合においても操舵伝達特性Npが当該運転行動に適合したものとなって、運転者が実行する車線変更行動の遂行に適した舵角比を設定することができる。
【0046】
また、操舵伝達特性補正手段27は、運転行動認識手段21が車線変更の開始Csを認識したとき、該車線変更開始時における車線到達指標lcrが大きいほど検出操舵量θlcoに対する目標舵角δwの変化割合Npが小さくなるよう前記操舵伝達特性Npの変更を行うため、走行中の車両が短時間後に車線に到達する場合において車線変更をする際に、運転者が予測していなかった操舵伝達特性に変更することを防止する。つまり舵角比Npが大きくなって運転者の予測以上に車両が旋回することを防止し、運転者は次の操舵伝達特性を予測しながら操向操作を行うことができる。
【0047】
また本実施の形態によれば、操舵伝達特性補正手段27は、運転行動認識手段21が車線変更の開始Csを認識したとき、該車線変更開始時における車線到達指標lcrが設定指標lcro2以上であれば、前記操舵伝達特性Npを前記車線変更の開始Csが認識される直前の特性N1とするため、走行中の車両がきわめて短時間後に車線に到達する場合において車線変更をする際に、舵角比Npが変更することで運転者の予期しない範囲で車両が旋回するのを防止できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態になる操舵制御装置を具えた車両の制御システム図である。
【図2】運転行動の判断結果DSdと舵角比Ndとの関係を示す特性図である。
【図3】車線変更開始Cs認識時の転舵角θlcoと、舵角比補正係Kpとの関係を示す特性図である。
【図4】図1に示す電子制御ユニット11が実行する制御プログラムを示すフローチャートである。
【図5】本発明の他の実施の形態になる操舵制御装置を具えた車両の制御システム図である。
【図6】走行中の車両から、車両走行方向延長線と車線との交点までの車線到達距離dlcを示した平面図である。
【図7】車線変更開始Cs認識時の車線到達指標lcrと、舵角比補正係Kpとの関係を示す特性図である。
【図8】図5に示す電子制御ユニット11が実行する制御プログラムを示すフローチャートである。
【符号の説明】
1 ステアリングホイール
2 ステアリングコラムシャフト
3 操舵トルク提供手段
4 操舵量検出手段
6 転舵手段
7 ラック
8 ナックル
9 転舵輪
11 電子制御ユニット
12 前方道路状況検出手段
13 車速センサ
21 運転行動認識手段
22 走行環境検出手段
23 操舵トルク出力特性制御手段
24 舵角比(操舵伝達特性)補正係数決定手段
25 舵角比(操舵伝達特性)設定手段
26 目標舵角算出手段
27 舵角比(操舵伝達特性)補正手段
28 車線到達指標算出手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steering control device for a vehicle, and particularly to a steering transmission characteristic that is a ratio between a steering amount of a steering wheel and a steering angle of a steered wheel according to a driving behavior, such as whether or not a lane change is being performed. The present invention relates to a steering control device that can be changed.
[0002]
[Prior art]
Conventionally, as a vehicle steering control device capable of changing a steering transmission characteristic which is a ratio of a steering angle of a steered wheel to a steering amount input to a steering wheel by a driver according to a traveling state of a vehicle, for example, Patent Documents 1 and 2 There is something like the description.
[0003]
[Patent Document 1]
JP-A-9-0558507
[Patent Document 2]
JP-A-11-005550
[0004]
In the vehicle steering control device described in Patent Document 1, a steering amount input to a steering wheel is transmitted to a pinion via a variable steering gear ratio mechanism, and a rack shaft meshed with the pinion moves by rotation of the pinion. In this case, the steering wheel is steered, and at this time, the running performance is improved by changing the steering gear ratio according to the vehicle speed.
[0005]
In addition, a steering control device for a vehicle described in Patent Document 2 includes a steering angle ratio varying unit that varies a ratio between a steering amount input to a steering wheel and a steering angle of a steered wheel, and a steering reaction force of the steering wheel. And a steering reaction force variable means for changing the steering angle, and the steering angle ratio and the steering reaction force are changed according to the driving difficulty level. is there.
[0006]
[Problems to be solved by the invention]
However, the conventional vehicle steering control device has the following problems.
[0007]
That is, in the vehicle steering control device described in Patent Literature 1, since the steering gear ratio is set only by the vehicle speed, factors such as the road surface condition and the driver's steering condition are considered in the low-to-medium vehicle speed range. Without having a large steering gear ratio.
In addition, because the steering gear ratio is large, the vehicle responds to small steering even when steering input for changing the direction of the vehicle is not necessary, such as when the vehicle is going straight ahead, and stability when traveling straight ahead. Is impaired.
Furthermore, for the same reason, the driver must always pay attention to the steering in order to keep the vehicle straight, which increases the psychological burden on the driver.
[0008]
Further, in the vehicle steering control device described in Patent Document 2, in order to reduce the burden on the driver, the steering angle ratio and the steering reaction force are changed according to the driving difficulty level. Depending on the degree of steering operation, different driving difficulty levels may be detected even in the same driving environment.If the steering characteristics such as the steering angle ratio and steering reaction force are not constant, It is difficult to understand what kind of driving operation should be performed.
Further, since the traveling environment of the vehicle is not directly reflected in the steering angle ratio varying means and the steering reaction force varying means, the steering characteristics are not set so as to appropriately control the position of the vehicle during traveling. There are concerns about such issues.
[0009]
The present invention makes it possible to individually set a steering transmission characteristic represented by a steering gear ratio (steering angle ratio) for each specific driving behavior such as a lane change, and converts the set steering transmission characteristic into a specific driving behavior. If it is used for steering control after correcting based on the driving situation when
For example, even under a complicated driving situation such as changing lanes during turning, the steering transmission characteristics are adapted to the driving situation, and good steering control is always possible for the driver's driving operation. From the point of view,
It is an object of the present invention to propose a vehicle steering control device that embodies this idea and can solve all of the problems and concerns described above.
[0010]
[Means for Solving the Problems]
For this purpose, a vehicle steering control device according to the present invention is configured as described in claim 1.
It is assumed that a vehicle steering device that obtains a target steering angle based on a driver's steering amount detected by the steering amount detection means and a changeable steering transmission characteristic, and turns the steered wheels by the target steering angle by the steering means. ,to this,
Driving behavior recognition means for recognizing a specific driving behavior of the driver;
When the specific driving behavior is recognized by this means, a steering transmission characteristic setting means for making a steering transmission characteristic a characteristic suitable for the specific driving behavior;
A steering transmission characteristic correction means for correcting the steering transmission characteristic set by this means in accordance with the detected steering amount when the specific driving action is recognized and contributing to the calculation of the target steering angle. It was done.
[0011]
【The invention's effect】
According to the configuration of the present invention, the steering transfer characteristic is set for each specific driving action, and the set steering transfer characteristic is corrected based on the detected steering amount when the specific driving action occurs. Will contribute to the calculation of the target rudder angle,
For example, even under a complicated driving situation such as changing lanes during turning, the steering transmission characteristics are surely adapted to the complicated driving situation taking into account all of these turning and lane changes. Good steering control for the driver's driving operation can always be compensated.
Therefore, in the low and medium vehicle speed range, the steering transmission characteristics unconditionally become large and the straight running stability is impaired during straight running, or the above-mentioned problem that the psychological burden on the driver increases in order to maintain straight running,
For example, under a complicated driving situation such as changing lanes during turning, all driving factors are not reflected in the control of the steering transmission characteristic and the steering transmission characteristic does not match the complicated driving situation The above problem can be solved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a control system diagram of a vehicle including a steering control device according to an embodiment of the present invention.
Reference numeral 1 denotes a steering wheel 1 operated by a driver to steer the vehicle. The steering wheel 1 is fixed to one end of a steering column shaft 2, and a steering torque providing means 3 is provided at the other end of the steering column shaft 2. A steering amount detecting means 4 is provided.
The turning means 6 is constituted by, for example, a rack and pinion type steering gear and a turning actuator such as an electric motor for driving the pinion, and both ends of the rack 7 are connected to knuckles 8L and 8R of left and right steered wheels 9L and 9R. Then, the left and right steered wheels 9L and 9R are steered.
[0013]
However, the steering column shaft 2 and the turning means 6 are not mechanically connected to each other, but are correlated electronically via the electronic control unit 11.
The electronic control unit 11 responds to a signal relating to the steering amount θ of the steering wheel 1 detected by the steering amount detecting means 4, a signal from the road condition detecting means 12 in front, and a signal from the vehicle speed sensor 13 to respond to a signal to be described later. In this manner, the target steering angle δw is obtained, and a signal relating thereto is received by the steering means 6 to steer the left and right steered wheels 9L and 9R by the target steering angle δw.
[0014]
The forward road condition detecting means 12 detects, for example, a white line by performing image processing on an image obtained by photographing the front of the vehicle with a camera installed on an inner mirror or the like, and using the information to determine a curvature of the traveling road, a navigation system, or the like. And a method of calculating the curvature of the traveling path from the information of the road.
The vehicle speed sensor 13 detects a vehicle speed VSP.
The road condition data and the vehicle speed VSP are transmitted to the traveling environment detecting means 22 of the electronic control unit 11.
[0015]
The electronic control unit 11 includes a driving behavior recognizing unit 21, a steering torque output characteristic control unit 23, a steering angle ratio (steering transmission characteristic) correction coefficient determining unit 24, a steering angle ratio (Steering transmission characteristic) setting means 25, target steering angle calculating means 26, and steering angle ratio (steering transmission characteristic) correcting means 27, which are configured to be correlated as shown in the figure.
The steering torque output characteristic control means 23 determines a steering torque target value based on the steering amount θ detected by the steering amount detection means 4, and upon receiving a signal related to the steering torque target value, the steering torque providing means 3 It functions to give the steering reaction force.
[0016]
The driving environment detecting means 22 obtains the driving environment of the vehicle based on the vehicle speed VSP detected by the means 13 and the road condition data obtained as described above by the means 12, and transmits the obtained driving environment to the driving action recognizing means 21.
The driving behavior recognition means 21 recognizes the driving behavior of the driver at predetermined time intervals based on the driving environment, and determines whether this is a specific driving behavior, for example, lane keeping or lane change, The judgment result DSd is transmitted to the steering angle ratio correcting means 24 and the steering angle ratio setting means 25.
As a method for the above determination, for example, a method described in a literature (Pentland, A. et al., Modeling and Prediction of Human Behavior, Neural Computation, 11 229-242, 1999) is used.
This is a technique for stochastically estimating a driver's driving behavior strategy based on a hidden Markov model, and the document shows that a driving behavior strategy of keeping a lane while driving and changing lanes can be detected. ing.
[0017]
The determination result DSd by the means 21 is stored as a profile, and when the determination result of lane change appears after the determination result of lane keeping continues for a predetermined time or more using the profile, the lane change as a specific driving action is performed. It is assumed that there is a start Cs, the lane change end Ce, which is a specific driving action, is determined when the lane maintenance determination result appears after the lane change determination result has continued for a predetermined time or more. Then, the lane change end Ce can be recognized. These recognition results are transmitted to the steering angle ratio setting means 25 and the steering angle ratio correction coefficient determining means 24.
[0018]
As a method for the recognition, the lane change start Cs and the lane change end Ce may be detected by the driver's operation of the turn signal (direction indicator).
[0019]
The steering angle ratio setting means 25 obtains the steering angle ratio Nd from the above determination result DSd by searching on the previously stored characteristic diagram shown in FIG. In the case of maintaining the lane of DSd = Ce, the steering angle ratio Nd is set to N1 where the change ratio of the target steering angle δw to the steering amount θ is small (the steering gain is small), and in the case of the lane change of DSd = Cs, the steering angle is changed. The ratio Nd is N2 (N1 <N2) where the steering gain is small.
Thereby, when the driving result determination result DSd indicates that the lane is to be maintained, the straightness of the vehicle is improved by decreasing the steering angle ratio Nd (steering gain) (N1). By increasing the ratio Nd (N2), the turning performance of the vehicle is improved.
[0020]
By the way, when the lane change start Cs is recognized during the steering operation such as when traveling on a curve, it is considered that the driver predictively performs the next steering operation based on the steering angle ratio Nd at that time.
In this case, if the steering angle ratio Nd is suddenly increased from N1 to N2 in response to the recognition of the lane change start Cs, the vehicle may turn more than the driver predicts, which may adversely affect the driving operation. Is done.
On the other hand, when the position of the steering wheel 1 is near neutral and the detected steering amount θ is small at the time when the lane change start Cs is recognized, the steering angle ratio Nd is changed from N1 to N2 because the driver has not originally performed steering. The above problem that the vehicle turns sharper than expected by the driver does not occur even if it is increased.
[0021]
Therefore, in the steering angle ratio correction coefficient determining means 24, when the driving action recognizing means 21 recognizes the lane change start Cs, if the detected steering amount θlco at that time is less than a predetermined value ± θo1 shown in FIG. As shown in the figure, the steering angle ratio correction coefficient Kp is set to 1 so as not to perform the correction of Nd, and when the detected steering amount θlco at the start of the lane change is larger than a predetermined value ± θo1, the correction of the steering angle ratio Nd will be described later. The steering angle ratio correction coefficient Kp is set to less than 1 as shown in FIG.
Here, the characteristic of the steering angle ratio correction coefficient Kp when the detected steering amount θlco at the start of the lane change is larger than the predetermined value ± θo1, as shown in FIG. It gradually decreases to 0 as it increases from θo1 toward ± θo2, that is, as represented by the following equation,
Kp = {-1 / (θo2-θo1)} θlco + θo2 / (θo2-θo1) (1)
It is assumed that the detected steering amount θlco at the start of the lane change is kept at 0 in an area larger than the predetermined value ± θo2.
[0022]
The steering angle ratio correction means 27 is a steering angle ratio Nd (= N1) for lane keeping (DSe = Ce) and a steering angle ratio Nd (= N2) for lane change (DSe = Cs) obtained by the means 25 as described above. And the steering angle ratio correction coefficient Kp (see FIG. 3) determined according to the detected steering amount θlco at the start of the lane change as described above by means 24, and based on these, the detected steering amount θlco at the start of the lane change. However, if it is equal to or smaller than the predetermined value ± θo1 shown in FIG. 3, the corrected steering angle ratio Np is set to the steering angle ratio N2 for changing lanes in response to Kp = 1. That is,
0 <| θlco | ≦ | θo1 |
Np = N2 (2)
And
[0023]
When the detected steering amount θlco at the start of the lane change is larger than the predetermined value ± θo1 and smaller than ± predetermined value θo2, as the steering angle θlco approaches the predetermined value ± θo2, the corrected steering angle ratio Np becomes Nd = The corrected steering angle ratio Np is obtained from N2 so as to approach Nd = N1, for example, by the following equation. That is,
In | θo1 | <| θlco | <| θo2 |, the steering angle ratio correction coefficient Kp obtained by the above equation (1), the lane keeping steering angle ratio N1 and the lane changing steering angle ratio N2 are used. Then, the corrected steering angle ratio Np is obtained by the following equation.
Np = (1−Kp) N1 + Kp · N2 (3)
[0024]
When the detected steering amount θlco at the start of the lane change is larger than the predetermined value ± θo2, the corrected steering angle ratio Np is set to the lane keeping steering angle ratio N1 in response to Kp = 0. That is,
In | θo2 | ≦ | θlco |,
Np = N1 (4)
And
[0025]
The corrected steering angle ratio Np obtained as described above is transmitted to the target steering angle calculating means 26.
The target steering angle calculating means 26 receives a signal related to the steering wheel steering amount θ in addition to the corrected steering angle ratio Np, and calculates a target steering angle δw of the left and right steered wheels 9L and 9R based on the following equation. To the turning means 6 to turn the left and right steered wheels 9L and 9R by the target steering angle δw.
δw = Np × θ (5)
[0026]
Although the electronic control unit 11 is shown in FIG. 1 as a functional block diagram, the electronic control unit 11 can perform the same steering control by the processing shown in the flowchart of FIG.
4 is repeatedly executed at predetermined time intervals. First, in step S1, the road curvature detected by the front road condition detecting means 12 in FIG. 1 and the vehicle speed VSP detected by the vehicle speed sensor 13 in FIG. Enter as
The driving environment data is used arbitrarily in combination to constitute the driving action recognition means 21, and is not specified by the information described here.
[0027]
In the next step S2, the steering amount θ of the steering wheel 1 by the driver is input, and the steering amount θ detected by the steering amount detection means 4 shown in FIG. 1 is read.
[0028]
In step S3, the same processing as performed by the driving behavior recognition means 21 of FIG. 1 is performed, and lane keeping or lane change is determined based on the driver's driving behavior DSd, and lane change start Cs or lane change end Ce is recognized. .
[0029]
In step S4, it is checked whether or not the lane change start DSd = Cs. If it is the lane change start Cs, the process proceeds to step S5, and N2 is stored in the steering angle ratio Nd.
On the other hand, in cases other than the lane change start Cs, the process proceeds to step S11, and it is checked whether the driving action DSd is the lane change end Ce.
When lane change end DSe = Ce, N1 is stored in the steering angle ratio Nd in the next step S12.
On the other hand, in cases other than the lane change end Ce, since the lane keeping or the lane change is being executed, the steering angle ratio Nd is held at the previous value Nd in step S13.
[0030]
In step S6, which is selected after storing N2 in the steering angle ratio Nd in step S5 at the start of the lane change, in step S6, the steering angle ratio Nd based on the detected steering amount θlco at the start of the lane change when the lane change start Cs is recognized. A correction coefficient Kp is calculated.
First, when it is determined that the detected steering amount θlco at the start of the lane change exceeds the predetermined value θo2, 0 is stored in the correction coefficient Kp so that the steering angle ratio Nd becomes the lane keeping steering angle ratio N1.
Next, when it is determined that the detected steering amount θlco at the start of the lane change is larger than the predetermined value θo1 and smaller than the predetermined value θo2, a map search is performed on the characteristic diagram shown in FIG. A value corresponding to the detected steering amount θlco at the start of the lane change is stored in the coefficient Kp in the range of 0 to 1, and the steering angle ratio Nd is changed according to the increase in the detected steering amount θlco at the start of the lane change. The lane keeping steering angle ratio N1 is gradually reduced from the ratio N2.
Finally, when it is determined that the detected steering amount θlco at the start of the lane change is smaller than the predetermined value θo1, 1 is set to the correction coefficient Kp so that the steering angle ratio Nd is not corrected from the lane changing steering angle ratio N2. Store.
[0031]
In step S7, the corrected steering angle ratio Np is calculated by the above equation (1) using the correction coefficient Kp, the lane keeping steering angle ratio N1 and the lane changing steering angle ratio N2.
[0032]
If it is determined in step S4 that it is other than the lane change start Cs, the above-described correction of the steering angle ratio Nd is not performed. Therefore, Nd is stored in the corrected steering angle ratio Np in step S14 selected at the time of the determination.
[0033]
Based on the corrected steering angle ratio Np obtained in the above step S7 or step S14, in step S8, the target steering angle δw of the steered wheels 9L, 9R is obtained from the above equation (6) according to the steering wheel steering amount θ. To the turning means 6 of FIG.
[0034]
By the way, according to the present embodiment, when the driving behavior recognizing means 21 for recognizing the specific driving behavior of the driver and the lane change start Cs which is the specific driving behavior are recognized, the steering transmission characteristic is changed. A steering transmission characteristic setting means 25 which is a characteristic suitable for a specific driving action (Cs); and a steering transmission characteristic set by the means 25, the detected steering amount when the specific driving action (Cs) is recognized. Since the steering transmission characteristic correction means 27 which contributes to the calculation of the target steering angle δw by correcting according to θlco is provided, the steering transmission characteristic is set for each specific driving action, and the steering transmission characteristic thus set is set. Is corrected based on the detected steering amount when a specific driving action occurs, which contributes to the calculation of the target steering angle, for example, even under a complicated driving situation such as changing lanes during turning. In addition, the steering transmission characteristics are surely adapted to the complicated driving situation in consideration of all of the turning operation and the lane change, and it is possible to always compensate for the steering control that is good for the driver's driving operation.
Therefore, at low and medium vehicle speeds, the steering transmission characteristics are unconditionally increased, linear stability is impaired when traveling straight ahead, and the psychological burden on the driver increases in order to maintain straight traveling. In a complicated driving situation such as changing lanes, the above-mentioned problem that all the driving factors are not reflected in the control of the steering transmission characteristic and the steering transmission characteristic does not conform to the complicated driving situation is solved. Can be eliminated.
[0035]
In addition, since the driving behavior recognizing means 21 recognizes the start Cs of the lane change and the end Ce of the lane change as the specific driving behavior, it is possible to appropriately adjust the steering transmission characteristic when starting and ending the lane change operation. Can be controlled.
[0036]
Further, according to the present embodiment, when the driving behavior recognizing unit 21 recognizes the start Cs of the lane change, the steering transfer characteristic correcting unit 27 detects the steering as the detected steering amount | θlco | Since the steering transmission characteristic is corrected so that the rate of change of the target steering angle δw with respect to the amount becomes small, the driver predicts even when changing lanes during turning such as when traveling on a curve. It is possible to prevent a change to a steering transmission characteristic that did not exist. That is, the steering angle ratio Np is prevented from increasing and the vehicle is prevented from turning more than predicted by the driver, and the driver can perform the steering operation while predicting the next steering transmission characteristic.
[0037]
Further, according to the present embodiment, when the driving behavior recognizing unit 21 recognizes the start Cs of the lane change, the steering transfer characteristic correcting unit 27 sets the absolute value of the detected steering amount θlco at the start of the lane change to the set steering. If the absolute value of the amount θo2 is equal to or more than the absolute value, the steering transmission characteristic Np is set to the characteristic N1 immediately before the start of the lane change is recognized. By changing the steering angle ratio Np, it is possible to prevent the vehicle from turning unexpectedly by the driver.
[0038]
Next, another embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a control system diagram of a vehicle including a steering control device according to another embodiment of the present invention. Since the basic configuration is the same as that of the control system diagram shown in FIG. 1, the same reference numerals are used, and different components will be described here. Using the traveling environment of the vehicle obtained by the traveling environment detecting means 22, the lane reaching index calculating means 28 calculates the lane reaching index lcr as described later, and transmits it to the steering angle ratio correction coefficient determining means 24. When the lane change start Cs is recognized, the steering angle ratio correction means 24 calculates a steering angle ratio correction coefficient Kp according to the lane end reaching index lcr, and the steering angle ratio determined by the steering angle ratio setting means 25. Is corrected.
[0039]
The lane reach index lcr is a lane reach distance dlc from the running vehicle shown in FIG. 6 to the intersection of the vehicle travel direction extension line and the lane, or a reciprocal of a lane reach time tlc obtained by dividing the distance dlc by the vehicle speed VSP. Used. The lane reaching index lcr has a characteristic that it is 0 when the vehicle is parallel to the lane, and that lcr increases as the yaw angle with respect to the lane increases.
[0040]
In the steering angle ratio correction coefficient determining means 24, when the driving behavior recognizing means 21 recognizes the lane change start Cs, if the lane reaching index lcr at that time is not more than a predetermined value lcro1 shown in FIG. As shown in the figure, the steering angle ratio correction coefficient Kp is set to 1 so as not to perform the correction, and when it is larger than a predetermined value lcro1, the steering angle ratio Nd is corrected as shown in FIG. The correction coefficient Kp is set to less than 1.
[0041]
As shown in FIG. 7, when the lane arrival index lcr at the start of lane change is larger than the predetermined value lcro1, the characteristic of the steering angle ratio correction coefficient Kp is such that the lane arrival index lcr at the start of lane change changes from the predetermined value lcro1 to lcro2. It gradually decreases to 0 as the size increases. In other words, as expressed by the following equation,
Kp = {-1 / (lcro2-lcro1) lcr + lcro2 // (lcro2-lcro1) (6)
It is assumed that the lane reach index lcr at the start of the lane change is kept at 0 in a region equal to or more than the predetermined value lcro2.
[0042]
In FIG. 5, the electronic control unit 11 is shown by a functional block diagram. However, this electronic control unit can perform the same steering control by the processing shown in the flowchart of FIG. In this figure, step S6 described in FIG. 4 is replaced with steps S26 and S27, and the same reference numerals as those in FIG. 4 are used for common flows. Here, a control flow different from the flowchart shown in FIG. 4 will be described.
[0043]
In step S26, the same processing as that performed by the lane arrival index calculating means 28 in FIG. 5 is performed, and the lane arrival index lcr is calculated based on the vehicle traveling environment such as the vehicle speed VSP and road condition data.
[0044]
In step S27, a coefficient Kp for correcting the steering angle ratio Nd is calculated based on the lane reaching index lcr when the lane change start Cs is recognized. First, when it is determined that the lane end reaching index lcr at the start of the lane change exceeds the predetermined value lcro2, 0 is stored in the correction coefficient Kp so that the steering angle ratio Nd becomes the lane keeping steering angle ratio N1.
Next, when it is determined that the lane end reaching index lcr at the start of the lane change is larger than the predetermined value lcro1 and smaller than the predetermined value lcro2, a map search is performed on the characteristic diagram shown in FIG. 7 from the lane end reaching index lcr. A numerical value corresponding to the lane reaching index lcr at the start of the lane change is stored in the correction coefficient Kp in the range of 0 to 1, and the steering angle ratio Nd is changed for the lane changing according to the increase of the lane reaching index lcr at the start of the lane change. The steering angle ratio N2 is gradually reduced to the lane keeping steering angle ratio N1.
Finally, when it is determined that the lane end reaching index lcr at the start of the lane change is smaller than the predetermined value lcro1, the correction coefficient Kp is set so that the steering angle ratio Nd is not corrected from the lane changing steering angle ratio N2. 1 is stored.
[0045]
According to the present embodiment, the lane reaching index calculation for detecting the lane reaching index lcr which is the reciprocal of the lane reaching distance dlc or the lane reaching time tlc from the running vehicle to the intersection of the vehicle travel direction extension line and the lane. When the driving behavior recognizing means 21 recognizes the start Cs of the lane change, the steering transfer characteristic correcting means 27 adds the detected steering amount θlco at the start of the lane change to the lane arrival index lcr. Since the steering transfer characteristic Np is changed based on the steering transfer characteristic Np, even when the vehicle is traveling near the lane, the steering transfer characteristic Np is adapted to the driving behavior, and the driver performs the lane changing behavior. An appropriate steering angle ratio can be set.
[0046]
When the driving behavior recognizing unit 21 recognizes the start Cs of the lane change, the steering transfer characteristic correction unit 27 changes the target steering angle δw with respect to the detected steering amount θlco as the lane reach index lcr at the start of the lane change increases. Since the steering transmission characteristic Np is changed so that the ratio Np becomes small, when the traveling vehicle arrives at the lane after a short time, when the lane is changed, the steering transmission characteristic that the driver did not predict may be changed. Prevent changes. That is, the steering angle ratio Np is prevented from increasing and the vehicle is prevented from turning more than predicted by the driver, and the driver can perform the steering operation while predicting the next steering transmission characteristic.
[0047]
Further, according to the present embodiment, when the driving behavior recognizing unit 21 recognizes the start Cs of the lane change, the steering transfer characteristic correcting unit 27 determines whether the lane arrival index lcr at the start of the lane change is equal to or larger than the set index lcro2. For example, the steering transmission characteristic Np is set to the characteristic N1 immediately before the start Cs of the lane change is recognized. Therefore, when the traveling vehicle reaches the lane after a very short time, when the lane change is performed, the steering angle is changed. By changing the ratio Np, it is possible to prevent the vehicle from turning in an unexpected range of the driver.
[Brief description of the drawings]
FIG. 1 is a control system diagram of a vehicle including a steering control device according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing a relationship between a driving behavior determination result DSd and a steering angle ratio Nd.
FIG. 3 is a characteristic diagram illustrating a relationship between a steering angle θlco at the time of recognition of a lane change start Cs and a steering angle ratio corrector Kp.
FIG. 4 is a flowchart showing a control program executed by an electronic control unit 11 shown in FIG.
FIG. 5 is a control system diagram of a vehicle including a steering control device according to another embodiment of the present invention.
FIG. 6 is a plan view showing a lane reach distance dlc from a running vehicle to an intersection of a vehicle traveling direction extension line and a lane.
FIG. 7 is a characteristic diagram showing a relationship between a lane reaching index lcr at the time of recognition of a lane change start Cs and a steering angle ratio corrector Kp.
8 is a flowchart showing a control program executed by the electronic control unit 11 shown in FIG.
[Explanation of symbols]
1 Steering wheel
2 Steering column shaft
3 Means for providing steering torque
4 Steering amount detection means
6 Turning means
7 racks
8 Knuckles
9 Steering wheel
11 Electronic control unit
12 Forward road condition detecting means
13 Vehicle speed sensor
21 Driving behavior recognition means
22 Driving environment detection means
23 Steering torque output characteristic control means
24 Steering angle ratio (steering transmission characteristics) correction coefficient determining means
25 Steering angle ratio (steering transmission characteristics) setting means
26 Target rudder angle calculation means
27 Steering angle ratio (steering transmission characteristics) correction means
28 Lane arrival index calculating means

Claims (7)

運転者が入力する操舵量を検出する操舵量検出手段と、この検出操舵量に応じた目標舵角だけ転舵輪を転舵する転舵手段とを具え、
前記検出操舵量に対する前記目標舵角の比率である操舵伝達特性を変更可能な車両の操舵装置において、
運転者の特定の運転行動を認識する運転行動認識手段と、
該手段により前記特定の運転行動が認識されるとき、前記操舵伝達特性を該特定の運転行動に適合した特性となす操舵伝達特性設定手段と、
該手段により設定した操舵伝達特性を、前記特定の運転行動が認識された時における前記検出操舵量に応じ補正して前記目標舵角の演算に資する操舵伝達特性補正手段とを具備したことを特徴とする車両用操舵制御装置。
Steering amount detecting means for detecting a steering amount input by the driver, and turning means for turning the steered wheels by a target steering angle corresponding to the detected steering amount,
In a vehicle steering apparatus capable of changing a steering transmission characteristic that is a ratio of the target steering angle to the detected steering amount,
Driving behavior recognition means for recognizing a specific driving behavior of the driver;
When the specific driving behavior is recognized by the means, a steering transmission characteristic setting unit that makes the steering transmission characteristic a characteristic suitable for the specific driving behavior;
A steering transmission characteristic correction means for correcting the steering transmission characteristic set by the means in accordance with the detected steering amount when the specific driving action is recognized, and contributing to the calculation of the target steering angle. Vehicle steering control device.
請求項1に記載の車両用操舵制御装置において、前記運転行動認識手段は車線変更の開始および車線変更の終了を前記特定の運転行動として認識するものであることを特徴とする車両用操舵制御装置。2. The vehicle steering control device according to claim 1, wherein the driving behavior recognizing means recognizes the start of lane change and the end of lane change as the specific driving behavior. . 請求項2に記載の車両用操舵制御装置において、前記操舵伝達特性補正手段は、前記運転行動認識手段が車線変更の開始を認識したとき、該車線変更開始時における前記検出操舵量が大きいほど前記検出操舵量に対する目標舵角の変化割合が小さくなるよう前記操舵伝達特性の変更を行うものであることを特徴とする車両用操舵制御装置。3. The vehicle steering control device according to claim 2, wherein the steering transfer characteristic correction unit is configured such that, when the driving behavior recognition unit recognizes the start of the lane change, the larger the detected steering amount at the start of the lane change, the larger the detected steering amount. A steering control device for a vehicle, wherein the steering transmission characteristic is changed so that a change ratio of a target steering angle to a detected steering amount is reduced. 請求項2または3に記載の車両用操舵制御装置において、前記操舵伝達特性補正手段は、前記運転行動認識手段が車線変更の開始を認識したとき、該車線変更開始時における前記検出操舵量が設定操舵量以上であれば、前記操舵伝達特性を前記車線変更の開始が認識される直前の特性とするものであることを特徴とする車両用操舵制御装置。4. The vehicle steering control device according to claim 2, wherein the steering transfer characteristic correction unit sets the detected steering amount at the start of the lane change when the driving behavior recognition unit recognizes the start of the lane change. 5. If the steering amount is equal to or more than the steering amount, the steering transmission characteristic is a characteristic immediately before the start of the lane change is recognized. 請求項2乃至4のいずれか1項に記載の車両用操舵制御装置において、走行中の車両から、車両走行方向延長線と車線との交点までの車線到達距離または車線到達時間の逆数である車線到達指標を検出する車線到達指標算出手段を有し、
前記操舵伝達特性補正手段は、前記運転行動認識手段が車線変更の開始を認識したとき、該車線変更開始時における前記検出操舵量に代えて前記車線到達指標に基づき前記操舵伝達特性の変更を行うものであることを特徴とする車両用操舵制御装置。
5. The vehicle steering control device according to claim 2, wherein the lane is a reciprocal of a lane reach distance or a lane reach time from a running vehicle to an intersection of the vehicle travel direction extension line and the lane. Having a lane arrival index calculating means for detecting the arrival index,
The steering transfer characteristic correction unit changes the steering transfer characteristic based on the lane arrival index instead of the detected steering amount at the start of the lane change when the driving behavior recognition unit recognizes the start of the lane change. A vehicle steering control device, comprising:
請求項5に記載の車両用操舵制御装置において、前記操舵伝達特性補正手段は、前記運転行動認識手段が車線変更の開始を認識したとき、該車線変更開始時における前記車線到達指標が大きいほど前記検出操舵量に対する目標舵角の変化割合が小さくなるよう前記操舵伝達特性の変更を行うものであることを特徴とする車両用操舵制御装置。6. The vehicle steering control device according to claim 5, wherein the steering transfer characteristic correction unit is configured such that, when the driving behavior recognition unit recognizes the start of the lane change, the larger the lane arrival index at the time of the start of the lane change, the larger the steering transfer characteristic correction unit. A steering control device for a vehicle, wherein the steering transmission characteristic is changed so that a change ratio of a target steering angle to a detected steering amount is reduced. 請求項5または6に記載の車両用操舵制御装置において、前記操舵伝達特性補正手段は、前記運転行動認識手段が車線変更の開始を認識したとき、該車線変更開始時における前記車線到達指標が設定指標以上であれば、前記操舵伝達特性を前記車線変更の開始が認識される直前の特性とするものであることを特徴とする車両用操舵制御装置。7. The vehicle steering control device according to claim 5, wherein the steering transfer characteristic correction unit sets the lane arrival index at the start of the lane change when the driving behavior recognition unit recognizes the start of the lane change. 8. If the index is equal to or more than the index, the steering transmission characteristic is a characteristic immediately before the start of the lane change is recognized.
JP2002366638A 2002-12-18 2002-12-18 Vehicle steering control device Expired - Fee Related JP4107078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366638A JP4107078B2 (en) 2002-12-18 2002-12-18 Vehicle steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366638A JP4107078B2 (en) 2002-12-18 2002-12-18 Vehicle steering control device

Publications (2)

Publication Number Publication Date
JP2004196100A true JP2004196100A (en) 2004-07-15
JP4107078B2 JP4107078B2 (en) 2008-06-25

Family

ID=32763780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366638A Expired - Fee Related JP4107078B2 (en) 2002-12-18 2002-12-18 Vehicle steering control device

Country Status (1)

Country Link
JP (1) JP4107078B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094111A (en) * 2006-10-05 2008-04-24 Toyota Motor Corp Traveling assistance device
WO2009028461A1 (en) * 2007-08-27 2009-03-05 Toyota Jidosha Kabushiki Kaisha Steering control device
JP2010006271A (en) * 2008-06-27 2010-01-14 Toyota Motor Corp Driving assistance system
JP2011059855A (en) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd Driving status detection device for vehicle, driving status detection method for vehicle, and motor vehicle
US8321090B2 (en) 2006-07-21 2012-11-27 Nissan Motor Co., Ltd. Steering mechanism control system
JPWO2011161777A1 (en) * 2010-06-23 2013-08-19 トヨタ自動車株式会社 Vehicle travel control device
KR20140082279A (en) * 2012-12-24 2014-07-02 현대자동차주식회사 Autonomous lane change control system
CN109720406A (en) * 2018-11-12 2019-05-07 浙江安骥汽车科技有限公司 A kind of vehicle wire-controlled steering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061254A (en) * 1992-06-22 1994-01-11 Honda Motor Co Ltd Steering angle ratio adjusting device
JPH1178944A (en) * 1997-09-12 1999-03-23 Honda Motor Co Ltd Variable steering angle ratio steering device of vehicle
JP2002255040A (en) * 2001-02-28 2002-09-11 Nissan Motor Co Ltd Steering device for vehicle
JP2003327151A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Support system for keeping lane for vehicle
JP2004058730A (en) * 2002-07-25 2004-02-26 Koyo Seiko Co Ltd Steering system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061254A (en) * 1992-06-22 1994-01-11 Honda Motor Co Ltd Steering angle ratio adjusting device
JPH1178944A (en) * 1997-09-12 1999-03-23 Honda Motor Co Ltd Variable steering angle ratio steering device of vehicle
JP2002255040A (en) * 2001-02-28 2002-09-11 Nissan Motor Co Ltd Steering device for vehicle
JP2003327151A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Support system for keeping lane for vehicle
JP2004058730A (en) * 2002-07-25 2004-02-26 Koyo Seiko Co Ltd Steering system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8321090B2 (en) 2006-07-21 2012-11-27 Nissan Motor Co., Ltd. Steering mechanism control system
JP2008094111A (en) * 2006-10-05 2008-04-24 Toyota Motor Corp Traveling assistance device
WO2009028461A1 (en) * 2007-08-27 2009-03-05 Toyota Jidosha Kabushiki Kaisha Steering control device
US8352124B2 (en) 2007-08-27 2013-01-08 Toyota Jidosha Kabushiki Kaisha Steering control device
JP2010006271A (en) * 2008-06-27 2010-01-14 Toyota Motor Corp Driving assistance system
JP2011059855A (en) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd Driving status detection device for vehicle, driving status detection method for vehicle, and motor vehicle
JPWO2011161777A1 (en) * 2010-06-23 2013-08-19 トヨタ自動車株式会社 Vehicle travel control device
JP5338983B2 (en) * 2010-06-23 2013-11-13 トヨタ自動車株式会社 Vehicle travel control device
KR20140082279A (en) * 2012-12-24 2014-07-02 현대자동차주식회사 Autonomous lane change control system
KR101896720B1 (en) 2012-12-24 2018-09-07 현대자동차주식회사 Autonomous lane change control system
CN109720406A (en) * 2018-11-12 2019-05-07 浙江安骥汽车科技有限公司 A kind of vehicle wire-controlled steering system

Also Published As

Publication number Publication date
JP4107078B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
US10649454B2 (en) Autonomous vehicle
JP5124874B2 (en) Vehicle travel support device, vehicle, vehicle travel support program
JP5168421B2 (en) Driving assistance device
US8150581B2 (en) Driving assistance system and driving assistance method
JP4229051B2 (en) Driving intention estimation device, vehicle driving assistance device, and vehicle equipped with vehicle driving assistance device
EP2025577B1 (en) Travel assistance device
JP5137617B2 (en) Steering support device
US10427712B2 (en) Automatic driving system
EP2052949B1 (en) Steering support device
JP6327701B2 (en) Vehicle lane departure prevention control device
JP4946403B2 (en) Steering support device
JP5150958B2 (en) Vehicle travel support device, vehicle, vehicle travel support program
CN112440995A (en) Lane departure suppression control device for vehicle
JP4107078B2 (en) Vehicle steering control device
JP3882318B2 (en) Vehicle steering control device
JP4852851B2 (en) Driving intention estimation device, vehicle driving assistance device, and vehicle equipped with vehicle driving assistance device
JP4951947B2 (en) Steering device
CN111511625B (en) Vehicle control device
JP4517958B2 (en) Traveling path detection device
JP2001233227A (en) Steering device for vehicle
JP4923564B2 (en) Steering device
JP4892958B2 (en) Steering device
JP5082237B2 (en) Vehicle steering assist device
JP4591262B2 (en) Steering support device
JP4240006B2 (en) Steering support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees