JP2004195787A - Injection-compression molding method and mold - Google Patents

Injection-compression molding method and mold Download PDF

Info

Publication number
JP2004195787A
JP2004195787A JP2002366557A JP2002366557A JP2004195787A JP 2004195787 A JP2004195787 A JP 2004195787A JP 2002366557 A JP2002366557 A JP 2002366557A JP 2002366557 A JP2002366557 A JP 2002366557A JP 2004195787 A JP2004195787 A JP 2004195787A
Authority
JP
Japan
Prior art keywords
mold
resin
pressure
compression
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002366557A
Other languages
Japanese (ja)
Inventor
Katsu Nakao
克 中尾
Hiroto Inoue
裕人 井ノ上
Masayuki Takahashi
昌之 高橋
Naoki Kaneko
直樹 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002366557A priority Critical patent/JP2004195787A/en
Publication of JP2004195787A publication Critical patent/JP2004195787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection-compression molding method which reduces the deterioration in shape precision by the residual strain of a molded article occurring in a compression and cooling process without applying labor in the setting of molding conditions due to trial and error, and a mold in injection-compression molding. <P>SOLUTION: When the resin in the mold immediately after holding pressure is in a liquid phase state, a high compression pressure is applied. From a point of time when the average temperature of a molded article reaches the vicinity of a TC point (phase change point), the relation between the temperature and pressure of the resin is exhibited as a functional formula in such a case that a specific volume is made constant from PVT characteristics being a material physical property value specific to the resin. Similarly, the time change of a resin temperature in a cooling solidification process for the molten resin is calculated from the equation of the pressure and flow rate of the molten resin using a finite-element method by numerical calculation. By calculating the relation between pressure and time from two functional formulae obtaned by setting the average temperature of the molded article to the resin temperature, the time change of the compression pressure of the mold is calculated. The mold is subjected to compression control on the basis of the conditions of the time change of the compression pressure. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プロジェクションテレビやプロジェクタ用の投射レンズ、ビデオカメラ用ズームレンズなどのに用いられるプラスチックレンズ等の厚肉部を有する超精密樹脂成型品の射出圧縮成形方法および射出圧縮成形金型に関するものである。
【0002】
【従来の技術】
昨今では、プロジェクションテレビやプロジェクタ用の投射レンズ、ビデオカメラやデジタルカメラ用の撮像レンズ等の精密光学部品にプラスチック成形の非球面レンズが用いられる割合が多くなっており、樹脂成形では難しい分野である厚肉、偏肉形状の精密成形品が増加している。
【0003】
この樹脂成形では、成型機で熱可塑性樹脂を可塑化し、金型内に射出充填する射出成形が一般的であるが、溶融状態の樹脂を高圧で金型内に充填すると共に、樹脂の収縮による金型面との転写性劣化を改善するため保圧を加えることによって、ゲート付近で圧力が高く、ゲートから離れるにつれて圧力が低くなることから、型内の圧力分布は不均一になる。その結果、ゲート付近での残留応力による複屈折や、ゲートから流動末端にかけての成形歪みの差による形状不良等が発生し易くなり、プラスチックレンズ等の精密光学部品では光学的に不均一な成形品が得られるという課題を有している。
【0004】
特にプラスチックレンズは厚肉形状であることから、溶融樹脂の冷却固化に伴う収縮が大きく、金型面との転写性を維持するためには、ゲートからの保圧を大きくする必要があることからその影響は顕著である。
【0005】
これに対して金型を樹脂の収縮分に相当する分だけ、成型品の厚さ方向にあらかじめ開いておいて樹脂を射出充填し、保圧、ゲートシール後、金型の初期開き量に相当する分だけ圧縮動作を行う射出圧縮成形では、金型内での圧力差が少なくなること、金型が開いている分だけ型内圧力が低く分子配向が起こりにくいこと、成形品全体に均一な圧縮圧力をかけることができることから、成型工法や成型金型は複雑になるものの、ゲート付近での残留応力による複屈折や、ゲートから流動末端にかけての反りや成形歪を減少させ面精度を高めることができる。
また、通常の射出成形方法で大型レンズを成形するとき、ゲートから樹脂が射出される方向と、これに直角な方向で収縮率の差が発生して回転対称性がくずれやすいという問題点も解決することができることから、大口径で厚肉、偏肉形状のもの、また高精度が要求されるレンズの成形に射出圧縮成形が用いられる場合が多い。
【0006】
この原理を図7、図8、図9に示すPMMA樹脂のPVT特性図を用いて理論的に説明する。PMMAは非晶性の熱可塑性樹脂であり、透明で透過率に優れ、複屈折も少ないことからプラスチックレンズ等に多用されている。PVT特性図とは、各圧力印加状態における温度と樹脂の比容積の関係を示したものであり、樹脂固有の特性を表している。また高温域での液相状態と、低温域での固相状態ではそれぞれの各圧力ごとの温度と非容積の曲線の傾きが変化しており、この傾きの変化点をTC点すなわち相変化点もしくはガラス転移点と呼んでいる。このPVT特性図を用いて保圧、冷却課程における樹脂の収縮状態を説明することができる。
【0007】
一般の射出成形の場合を例にとると、約240℃前後に昇温させた溶融樹脂を、成形機から型温90℃の金型に充填し、充填完了後、保圧、冷却課程においては図7に示す▲1▼−▲2▼−▲3▼−▲4▼−▲5▼の経路をたどって金型温度近傍まで冷却され、金型から離型後、常温になるまで大気中で温度が低下する。
【0008】
樹脂の収縮が始まるタイミングについては、一般的に、溶融状態の樹脂が冷却され、流動停止温度に到達した段階、もしくは樹脂に加えられていた圧力が無くなり大気圧レベルになった段階のどちらか早い方から樹脂の収縮が始まると考えられている。
【0009】
従って、この場合では圧力が大気圧になる時間の方が、PMMAの流動停止温度である155℃に達した時間よりも早いと仮定すると、大気圧に到達した時点での樹脂の比容積0.925cc/gと、常温に到達した比容積0.85cc/gとの差である0.07cc/gが樹脂の1グラム単位における収縮量となり、この場合の収縮率は2.7%となる。
【0010】
一方、射出圧縮成形の場合では、あらかじめ充填前に金型を移動し成形品のキャビティ容積を増加させておき、射出成形の場合と同様に、約240℃前後に昇温させた溶融樹脂を、成形機から型温90℃の金型に充填し、保圧後に金型を移動し、キャビティ容積を減少させて圧縮冷却するが、この保圧および圧縮冷却課程においては図8に示す▲1▼−▲2▼−▲3▼−▲4▼−▲5▼−▲6▼の経路をたどって金型温度近傍まで冷却され、金型から離型後、常温になるまで大気中で温度が低下する。すなわち圧縮圧力を100MPa一定とした場合、図5に示すPTV特性図において圧力80MPaの曲線に沿って温度が低下していき、PMMAの流動停止温度である155℃に到達した時点での樹脂の比容積0.865cc/gと、常温に到達した比容積0.85cc/gとの差である0.025cc/gが樹脂の1グラム単位における収縮量となり、この場合の収縮率は0.6%となる。従って、射出圧縮成形の方が射出成形よりも収縮率が小さく、形状精度に優れていることがわかる。
【0011】
【特許文献1】
特開平5−162184号公報
【特許文献2】
特開平9−39007号公報
【特許文献3】
特公平7−53404号公報
【特許文献4】
特開2000−313035号公報
【0012】
【発明が解決しようとする課題】
しかしながら、従来の射出圧縮成形においては、図10で示した金型圧縮の成形条件として圧力を冷却時間の間に均一に加える図中1の方法あるいは、図10に示す途中で半分程度の低い圧力に切替えるという2段階に分けて圧力を加える図中2の方法が一般的であった。
そのため、冷却課程後半において、薄肉部や成形品表面の温度が低く、PTV特性図で示す固相状態になっている部分に対して圧力がかかりすぎることから、この部分に残留応力、残留歪が発生し、圧縮冷却したにもかかわらず形状精度が悪くなるという課題を有していた。また圧縮冷却時間が長くなると、射出成形の場合と異なり、上記と同様の理由で形状精度が悪くなることから最適な圧縮冷却を見出すのに試行錯誤が必要であるという課題を有していた。
【0013】
また、良好な形状精度を得るためには冷却課程で樹脂温度の低下に応じて付加する圧力を低減させて一定体積を保つような制御が必要であるということで、図9に示すように冷却圧縮課程において▲1▼−▲2▼−▲3▼−▲4▼−▲5▼の経路をたどって、初期圧力から順次樹脂温度の変化に合わせて圧力を徐々に低減していく方法が提案されている。しかし、成形品の表面と中心、また薄肉部と厚肉部とで温度の分布があり、実際はPVT特性図で示すように温度が一意ではないことから、どの部分の温度を評価指針とすればよいのか、また肉厚中心の温度をどのようにモニターすればよいのか、温度変化に合わせるためには、圧力をどのタイミングで変化させどのように低減させてやればよいのかがわからないないこと、圧縮冷却課程の間絶えず圧縮圧力を変化させる制御が面倒であること、また圧縮開始から高い圧力が加わるため、金型表面に近い成形品部位のようにすでに温度が低く固化している部分に残留歪が発生し易い等の理由から実用的に使用されていなかった。
【0014】
上記の問題に鑑み本発明の目的は、射出圧縮成形の圧縮冷却課程において発生する成形品の残留歪を最小限に低減するための、圧縮圧力の制御と圧縮冷却時間を最適化する成形方法および成形金型を簡素な構成で安価に提供するものである。
【0015】
【課題を解決するための手段】
この課題を解決するためにかかる請求項1記載の発明によれば、熱可塑性の樹脂を充填する前に金型を移動させることにより、成形品のキャビティ容積を増加させ、溶融状態の樹脂を金型内に充填し、保圧後に金型を移動させることで、キャビティ容積を減少させるように金型内の樹脂を圧縮する射出圧縮成形工法において、樹脂固有の材料物性値であるPVT特性から比容積一定とした場合の樹脂温度と圧力の関係を関数式化し、また同様に溶融樹脂が冷却固化する課程での樹脂温度の時間変化を関数式化した2つの関数式から圧力と時間の関係を計算することによって、金型の圧縮圧力の時間変化を算出し、この圧縮圧力の時間変化の条件に基づいて金型を圧縮制御することを特徴とするものである。
【0016】
上記構成により、金型内に充填された樹脂の冷却課程における温度変化に合わせて、金型の圧縮圧力を低減させて一定体積を保つような制御が可能になることから、冷却課程後半の固相状態において成型品に過度に圧縮圧力が加わらず、残留歪が生じない良好な形状精度を得ることが可能となる。さらに、圧縮冷却時間を最適化できることから、過度に圧縮冷却時間を延ばすことなく、生産効率と品質に優れた成形工法を実現することができる。
【0017】
また請求項2記載の発明によれば、保圧直後の金型内の樹脂が液相状態である場合は高い圧縮圧力を加え、成形品の平均温度がTC点すなわちガラス転移点付近に達した時点から非容積一定として2つの関数式で計算した圧力と時間の関係に従って圧縮圧力を低下させていくことを特徴とするものである。
【0018】
上記構成により、圧縮開始から必要以上の高い圧力が加わらず、金型表面に近い成形品部位のようにすでに温度が低く固化している部分に残留歪が発生することを防ぎ、良好な形状精度を得ることが可能となる。さらに、圧縮冷却課程の前半である液相状態では金型の圧縮圧力を一定にし、後半の固相状態で圧縮圧力を制御することができることから、金型の圧縮圧力の制御を簡素化し成形設備の負担を低減することができる。
【0019】
また請求項4記載の発明によれば、成形品形状モデルを微少要素に分割し、有限要素法を含む数値解析手法を用いた充填・保圧流動解析と圧縮・冷却解析によって成形品の樹脂温度の時間変化を算出し、成形品の平均温度を樹脂温度として、N次の高次間数式でカーブフィットし、樹脂温度と時間の関係を関数式化したことを特徴とするものである。
【0020】
上記構成により、金型内に温度センサーを取り付けて多点測定をする労力を掛けることなく、またこれまで金型内の温度センサーによる測定では不可能であった成形品樹脂内部の温度の情報も含めて算出し、平均化処理を行うことができる。
従って、厚肉成形品の表面と中心、また薄肉部と厚肉部というように温度差がある場合においても、PVT特性図で制御する温度を一意に決めることができることから、残留歪みによる形状精度劣化の少ない精度の高い圧力制御を行うことができる。
【0021】
また請求項5記載の発明によれば、金型内に設けた温度センサーと、金型圧縮制御システムによって、あらかじめ設定した樹脂温度の時間変化を補正して、金型の圧縮圧力の時間変化を算出し、この圧縮圧力の時間変化の条件に基づいて金型を圧縮制御することを特徴とするものである。
【0022】
上記構成により、季節の変化による環境温度変化や、成形設備あるいは金型の温度が変動した場合においても、温度センサーによって初期設定条件を補正することができるため、形状不良といった品質不良が発生しにくい成形金型を実現することができる。
【0023】
このように、上記した本発明の成形工法および成形金型を用いることにより、射出圧縮成形の圧縮冷却課程において発生する成形品の残留歪を最小限に低減することができことから、形状精度に優れた成形品を成形することが可能となる。
【0024】
【発明の実施の形態】
以下、本発明の射出圧縮成形工法および成形金型の実施の形態を、図面に基づいて説明する。
図1は本発明の実施の形態における射出圧縮成形工法の圧縮プロファイルを算出するブロック図である。
図2は本発明の実施の形態において樹脂のPVT特性曲線上に作成した成形時に目標とするPVT特性プロファイルである。
図3は本発明の実施の形態において有限要素法を用いた充填・保圧流動解析と圧縮冷却解析を行い、数値計算により算出した成形品部分の樹脂の温度プロファイルデータである。
図4は本発明の実施の形態において温度プロファイルとPVT特性プロファイルから算出した金型圧縮圧力プロファイルである。
図5は本発明の実施の形態におけるプラスチックレンズの射出圧縮成形金型の充填開始時の断面図である。
図6は本発明の実施の形態におけるプラスチックレンズの射出成形金型の圧縮終了状態の断面図である。
【0025】
図1のブロック図において、11は樹脂PVT物性データを関数式化するPVTカーブフィット処理部で、Pを圧力、Vを比容積、Tを温度、Tcを固相と液相の相変化点、A1、A2、A3、A4、A5、A6、A7、B1、B2、B3、B4、C1、C2を変数として、T>Tcの場合、Tc=C1×P+C2、V=A2×T/(P+A1)+A4/(P+A3)+A4×EXP(A6×T−A7×P)、T≦Tcの場合、V=B2×T/(P+B1)+B4/(P+B3)の関数式でカーブフィットしている。また12は11で得られた関数式を用いて目標値のPVT特性を設定する成形時の目標PTVカーブ設定箇所であり、図2に示すように、保圧直後の樹脂が液相状態である場合は高い圧縮圧力を加え、成形品の平均温度がTC点付近に達した時点から非容積一定として温度低下に沿って圧縮圧力を低減させている。
【0026】
一方、13は樹脂物性データ、成形品形状データ、成形条件データ、金型データを入力し、成形品形状モデルを微少要素に分割する有限要素法を用いて充填・保圧流動解析および圧縮冷却解析を行う充填・保圧流動解析および圧縮冷却解析計算箇所であり、14は13で計算した成形品全体の温度プロファイル結果を記憶格納する成形時の温度プロファイルデータベースであり、15は図3に示すように14の成形品全体の温度プロファイルを平均化する成形品の温度プロファイル平均化演算部であり、16は15で計算した成形品全体の平均温度プロファイルをN次の高次間数式でカーブフィットし関数式化する温度プロファイルカーブフィット処理部である。また17は12で設定した成形時の目標PTVカーブの比容積一定として圧力を低減させていく部分を樹脂温度と圧力の関係を関数式化したものと、16で設定した平均樹脂温度と時間の関係を関数式化した2つの関数式から図4に示すように圧力と時間の関係を計算することによって、金型の圧縮圧力の時間変化を算出する圧縮圧力プロファイル処理部であり、18は17で求めた圧縮圧力のプロファイルを成形機の型締め力稼動条件に変換し、金型の圧縮圧力を制御する金型の圧縮圧力制御部である。また19は図5および図6に示すように樹脂温度を計測するために金型内に設けた温度センサーであり、20は温度センサー19で計測した樹脂温度と14で記憶格納した温度プロファイルの内で温度センサーと同じ位置の部分の温度の値を比較し、差異がある場合は、温度センサーと計算値の差を補正して13で計算した温度プロファイルを補正処理する温度プロファイル比較・補正処理部である。
【0027】
次に本発明の実施の形態におけるプラスチックレンズの射出圧縮成形金型の構成について図5および図6を用いて説明する。図5に示すように成形金型は可動側と固定側のモールドベース23a、23bにレンズ形状が彫られた可動側と固定側のインサート金型24a、24bがそれぞれはめ込まれた構造であり、水等の温度冷却媒体を通しインサート金型24a、24bを冷却するための、温調溝27a、27bが設けられている。また所定の圧縮代だけ成形品のキャビティ21の容積を増加させて型閉じし、充填後、圧縮代だけ金型を移動させて所定の形状に形成する射出圧縮成形に対応するため、固定側のモールドベース23bとインサート金型24bは、金型開閉方向に摺動自在に構成されており、モールドベース23bはモールドベース24aの型締め機構26とは別の型内圧シリンダー25により駆動制御される。
【0028】
成形機(図示せず)から溶融した熱可塑性樹脂を充填するため、成形金型にはスプール22、ランナー23が設けられており、ランナー23と成形品キャビティ21の間にはゲート25が構成されている。また19は樹脂温度を計測するために成形品キャビティ近傍の金型内に設けた温度センサーであり、計測したデータは圧縮圧力演算システム10に送られ上記したように温度プロファイル比較・補正処理部20で処理されて、圧縮圧力プロファイル処理部17で処理されたのち、金型圧縮圧力制御部18に送られ、型締め機構26によって圧縮制御する構成となっている。
【0029】
図5は樹脂充填前段階の型内圧シリンダー25によってモールドベース23bを可動側のモールドベース23a側に移動させて成形品キャビティ21の容積を大きくした状態であり、一方図6はモールドベース23aを金型圧縮圧力制御部18の指示に沿って型締め機構26により移動させて圧縮完了した状態を表している。
【0030】
ここで、本発明の実施の形態における射出圧縮成形工法および成形金型の動作と効果について説明する。
【0031】
あらかじめ樹脂物性データ、成形品形状データ、成形条件データ、金型データを入力して、充填・保圧流動解析、圧縮冷却解析計算13を行い、成形時の温度プロファイルデータベース14に成形品全体の温度プロファイル結果を記憶格納し、温度プロファイル平均化演算部15で図3のように平均化した温度プロファイルを、温度プロファイルカーブフィット処理部16で平均樹脂温度と時間の関係に関数式化する。また一方、上記樹脂物性データをPVTカーブフィット処理部11に入力して計算した関数式を使って、成形時の目標PTVカーブ設定12で図2のように設定し、この中で非容積一定として温度低下に沿って圧縮圧力を低減させていく部分を樹脂温度と圧力の関係を関数式化する。そして、圧縮圧力プロファイル17において目標PTVカーブ設定12と温度プロファイルカーブフィット処理部16それぞれで定義した2つの関数式から、圧力と時間の関係を計算することによって図4に示す金型の圧縮圧力の時間変化を算出する。ここで圧縮圧力がゼロとなる時間が最適圧縮冷却時間である。
【0032】
そして金型の圧縮圧力制御部18に圧縮圧力プロファイル17で求めた圧縮圧力のプロファイルを送り、成形機の型締め力稼動条件に変換して、金型の圧縮圧力を制御する。また金型には樹脂温度を計測するための温度センサー19が設けられており、温度プロファイル比較・補正処理部20によって、温度センサー19で計測した樹脂温度と、成形時の温度プロファイルデータベース14で記憶格納した温度プロファイルの内で温度センサーと同じ位置の部分の温度の値を比較し、差異がある場合は、温度センサーと計算値の差を補正して充填・保圧流動解析、圧縮冷却解析計算13で計算した温度プロファイルを補正処理し、再度同じ手順をたどって圧縮圧力プロファイルを算出する。
【0033】
このように本発明の実施の形態における射出圧縮成形工法および成形金型は、樹脂の冷却課程における温度変化に合わせて、金型の圧縮圧力を低減させて一定体積を保つような制御が可能になることから、冷却課程後半の固相状態において成型品に過度に圧縮圧力が加わらず、残留歪が生じない良好な形状精度を得るという効果と、圧縮冷却時間を最適化できることから、過度に圧縮冷却時間を延ばすことなく、生産効率と品質に優れた成形工法を実現するという効果が得られる。
【0034】
また、保圧直後の樹脂が液相状態である場合は高い圧縮圧力を加え、平均温度がTC点付近に達した時点から非容積一定として圧縮圧力を低下させていく構成により、圧縮開始から必要以上の高い圧力が加わらず、金型表面に近い成形品部位のようにすでに温度が低く固化している部分に残留歪が発生することを防ぎ、良好な形状精度を得るという効果と、圧縮冷却課程の前半である液相状態では金型の圧縮圧力を一定にし、後半の固相状態で圧縮圧力を制御することができることから、金型の圧縮圧力の制御を簡素化し成形設備の負担を低減するという効果が得られる。
【0035】
また数値解析を用いて成形品の平均樹脂温度の時間変化を算出し、樹脂温度と時間の関係を関数式化する構成により、金型内に温度センサーを取り付けて多点測定をする労力を掛けることなく、またこれまで金型内の温度センサーによる測定では不可能であった成形品樹脂内部の温度の情報も含めて算出し、平均化処理を行うことができることから、厚肉成形品の表面と中心、また薄肉部と厚肉部というように温度差がある場合においても、PVT特性図で制御する温度を一意に決めることができ、残留歪みによる形状精度劣化の少ない精度の高い圧力制御を行えるという効果が得られる。
【0036】
また温度センサーを用いてあらかじめ設定した樹脂温度の時間変化を補正する構成により、数値計算と実成形との差異を低減するだけでなく、季節の変化による環境温度変化や、成形設備あるいは金型の温度が変動した場合においても、温度センサーによって設定条件を補正することができるため、形状不良といった品質不良が発生しにくい成形金型を実現するという効果が得られる。
このように、射出圧縮成形の圧縮冷却課程において発生する成形品の残留歪を最小限に低減することができことから、形状精度に優れた成形品を成形することが可能となる。
【0037】
なお、本発明の実施の形態では温度センサーは1つとしているが、これに限定されるものではなく、複数設けた場合には、さらに温度補正精度が向上し、本発明の効果をあげることが可能となる。
【0038】
また、本発明の実施の形態では充填開始前に金型を移動させて、成形品のキャビティ容積を増加させ、充填、保圧後に金型を移動させることで、キャビティ容積を減少させるように金型内の樹脂を圧縮する成形工法としたが、金型内に樹脂を充填、保圧する課程において金型を移動させることで、キャビティ容積を減少させるように金型内の樹脂を圧縮する成形工法としても、なんら本発明の効果を失うものではない。
【0039】
【発明の効果】
以上のように本発明の射出圧縮成形工法および成形金型は、樹脂のPVT特性から比容積一定とした場合の樹脂温度と圧力の関係を関数式化し、また樹脂が冷却固化する課程での樹脂温度の時間変化を関数式化した2つの関数式から圧力と時間の関係を計算することにより、金型の圧縮圧力の時間変化を算出し、この圧縮圧力の時間変化の条件に基づいて金型を圧縮制御する構成により、以下に示す効果を上げることができる。まず金型内に充填された樹脂の冷却課程における温度変化に合わせて、金型の圧縮圧力を低減させて一定体積を保つような制御が可能になることから、冷却課程後半の固相状態において成型品に過度に圧縮圧力が加わらず、残留歪が生じない良好な形状精度を得るという効果が得られる。さらに、圧縮冷却時間を最適化できることから、過度に圧縮冷却時間を延ばすことなく、生産効率と品質に優れた成形工法を実現するという効果も得られる。
【0040】
また、保圧直後の樹脂が液相状態である場合は高い圧縮圧力を加え、平均温度がTC点付近に達した時点から非容積一定として2つの関数式で計算した圧力と時間の関係に従って圧縮圧力を低下させていく構成によって、圧縮開始から必要以上の高い圧力が加わらず、金型表面に近い成形品部位のようにすでに温度が低く固化している部分に残留歪が発生することを防ぎ、良好な形状精度を得るという効果が得られる。さらに、圧縮冷却課程の前半である液相状態では金型の圧縮圧力を一定にし、後半の固相状態で圧縮圧力を制御することができることから、金型の圧縮圧力の制御を簡素化し成形設備の負担を低減するという効果が得られる。
【0041】
また数値解析を用いて成形品の樹脂温度の時間変化を算出し、成形品の平均温度を樹脂温度として、N次の高次間数式でカーブフィットし、樹脂温度と時間の関係を関数式化する構成により、金型内に温度センサーを取り付けて多点測定をする労力を掛けることなく、またこれまで金型内の温度センサーによる測定では不可能であった成形品樹脂内部の温度の情報も含めて算出し、平均化処理を行うことができる。従って、厚肉成形品の表面と中心、また薄肉部と厚肉部というように温度差がある場合においても、PVT特性図で制御する温度を一意に決めることができ、残留歪みによる形状精度劣化の少ない精度の高い圧力制御を行えるという効果が得られる。
【0042】
また金型内に設けた温度センサーと、金型圧縮制御システムによって、あらかじめ設定した樹脂温度の時間変化を補正して、金型の圧縮圧力の時間変化を算出し、この圧縮圧力の時間変化の条件に基づいて金型を圧縮制御する構成により、数値計算と実成形との差異を低減するだけでなく、季節の変化による環境温度変化や、成形設備あるいは金型の温度が変動した場合においても、温度センサーによって初期設定条件を補正することができるため、形状不良といった品質不良が発生しにくい成形金型を実現するという効果が得られる。このように、本発明の構成によって、射出圧縮成形の圧縮冷却課程において発生する成形品の残留歪を最小限に低減することができことから、形状精度に優れた成形品を成形することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態における射出圧縮成形工法の圧縮プロファイルを算出するブロック図
【図2】本発明の実施の形態において樹脂のPVT特性曲線上に作成した成形時に目標とするPVT特性プロファイルを示す図
【図3】発明の実施の形態において有限要素法を用いた充填・保圧流動解析と圧縮冷却解析を行い、数値計算により算出した成形品部分の樹脂の温度プロファイルデータを示す図
【図4】本発明の実施の形態において温度プロファイルとPVT特性プロファイルから算出した金型圧縮圧力プロファイルを示す図
【図5】本発明の実施の形態におけるプラスチックレンズの射出圧縮成形金型の充填開始時の断面図
【図6】本発明の実施の形態におけるプラスチックレンズの射出成形金型の圧縮終了状態の断面図
【図7】PMMA樹脂のPVT特性を示す図
【図8】PMMA樹脂のPVT特性を示す図
【図9】PMMA樹脂のPVT特性を示す図
【図10】金型圧縮の成形条件を示す図
【符号の説明】
11 PVTカーブフィット処理部
12 成形時の目標PTVカーブ設定
13 充填・保圧流動解析
14 成形時の温度プロファイルデータベース
15 成形品の温度プロファイル平均化演算部
16 温度プロファイルカーブフィット処理部
17 圧縮圧力プロファイル処理部
18 金型の圧縮圧力制御部
19 温度センサー
20 温度プロファイル比較・補正処理部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an injection compression molding method and an injection compression molding die for an ultra-precision resin molded product having a thick portion such as a plastic lens used for a projection lens for a projection television or a projector, a zoom lens for a video camera, or the like. It is.
[0002]
[Prior art]
In recent years, plastic molding aspherical lenses are increasingly used in precision optical components such as projection lenses for projection televisions and projectors, and imaging lenses for video cameras and digital cameras, which is an area where resin molding is difficult. Thick and uneven thickness precision molded products are increasing.
[0003]
In this resin molding, injection molding is generally used in which a thermoplastic resin is plasticized by a molding machine and injected and filled into a mold. By applying a holding pressure in order to improve the transferability with the mold surface, the pressure is high near the gate and decreases as the distance from the gate increases, so that the pressure distribution in the mold becomes non-uniform. As a result, birefringence due to residual stress in the vicinity of the gate and shape defects due to the difference in molding distortion from the gate to the flow end are likely to occur, and molded optical products such as plastic lenses are optically non-uniform. Is obtained.
[0004]
In particular, since plastic lenses are thick-walled, the shrinkage due to cooling and solidification of the molten resin is large, and it is necessary to increase the pressure holding from the gate to maintain transferability with the mold surface. The effect is significant.
[0005]
On the other hand, the mold is opened in advance in the thickness direction of the molded product by the amount equivalent to the shrinkage of the resin, the resin is injected and filled, and after holding pressure and gate sealing, it is equivalent to the initial opening amount of the mold. In the injection compression molding, which performs the compression operation as much as possible, the pressure difference in the mold is reduced, the pressure inside the mold is low due to the opening of the mold, molecular orientation is unlikely to occur, and the uniform The ability to apply compression pressure complicates molding methods and molding dies, but increases surface accuracy by reducing birefringence due to residual stress near the gate and warpage and molding distortion from the gate to the flow end. Can be.
Also, when molding a large lens by the usual injection molding method, the problem that the difference in shrinkage ratio between the direction in which the resin is injected from the gate and the direction perpendicular to the direction of resin is generated and the rotational symmetry is easily broken is solved. Injection compression molding is often used for molding large-diameter, thick-walled, uneven-walled lenses, and lenses requiring high precision.
[0006]
This principle will be theoretically described with reference to the PVT characteristic diagrams of the PMMA resin shown in FIGS. 7, 8, and 9. PMMA is an amorphous thermoplastic resin, and is widely used for plastic lenses and the like because it is transparent, has excellent transmittance, and has low birefringence. The PVT characteristic diagram shows the relationship between the temperature and the specific volume of the resin in each pressure applied state, and shows the characteristics unique to the resin. In the liquid state in the high temperature range and the solid state in the low temperature range, the slope of the temperature and non-volume curve at each pressure changes, and the point of change of this slope is the TC point, that is, the phase change point. Or it is called the glass transition point. Using this PVT characteristic diagram, the shrinkage state of the resin during the dwelling and cooling processes can be described.
[0007]
Taking the case of general injection molding as an example, molten resin heated to about 240 ° C. is filled into a mold at a mold temperature of 90 ° C. from a molding machine, and after the filling is completed, in the pressure-holding and cooling processes, It is cooled to the vicinity of the mold temperature by following the path of (1)-(2)-(3)-(4)-(5) shown in FIG. The temperature drops.
[0008]
The timing at which the resin starts to shrink is generally either earlier when the molten resin is cooled and reaches the flow stop temperature, or when the pressure applied to the resin is reduced to the atmospheric pressure level, whichever is earlier. It is believed that the resin starts to shrink.
[0009]
Therefore, in this case, assuming that the time at which the pressure reaches the atmospheric pressure is earlier than the time at which the flow stop temperature of PMMA reaches 155 ° C., the specific volume of the resin at the time when the pressure reaches the atmospheric pressure is 0.1 mm. 0.07 cc / g, which is the difference between 925 cc / g and the specific volume of 0.85 cc / g that has reached room temperature, is the amount of shrinkage in units of 1 gram of the resin, and the shrinkage in this case is 2.7%.
[0010]
On the other hand, in the case of injection compression molding, the mold is moved in advance before filling to increase the cavity volume of the molded product, and similarly to the case of injection molding, the molten resin heated to about 240 ° C. The mold is filled into a mold having a mold temperature of 90 ° C., and after holding the pressure, the mold is moved to reduce the cavity volume and perform compression cooling. In this holding pressure and compression cooling process, (1) shown in FIG. Following the route of -2 -3 -4 -5 -6, it is cooled to near the mold temperature. After releasing from the mold, the temperature drops in the atmosphere until it reaches room temperature. I do. That is, when the compression pressure is kept constant at 100 MPa, the temperature decreases along the curve of the pressure 80 MPa in the PTV characteristic diagram shown in FIG. 5, and the ratio of the resin at the time when the flow stop temperature of PMMA reaches 155 ° C. 0.025 cc / g, which is the difference between the volume of 0.865 cc / g and the specific volume of 0.85 cc / g that has reached room temperature, is the amount of shrinkage in units of 1 gram of the resin. In this case, the shrinkage is 0.6%. It becomes. Accordingly, it can be seen that the injection compression molding has a smaller shrinkage ratio than the injection molding and is superior in shape accuracy.
[0011]
[Patent Document 1]
JP-A-5-162184
[Patent Document 2]
JP 9-39007 A
[Patent Document 3]
Japanese Patent Publication No. 7-53404
[Patent Document 4]
JP 2000-313035 A
[0012]
[Problems to be solved by the invention]
However, in the conventional injection compression molding, as a molding condition of the die compression shown in FIG. 10, a method shown in FIG. 1 in which pressure is uniformly applied during a cooling time, or a pressure as low as about halfway in the middle shown in FIG. The method shown in FIG. 2 in which pressure is applied in two stages of switching to the conventional method is generally used.
Therefore, in the latter half of the cooling process, the temperature of the thin-walled part and the surface of the molded product is low, and excessive pressure is applied to the solid-phase portion shown in the PTV characteristic diagram. However, there is a problem that the shape accuracy is deteriorated despite compression and cooling. Further, when the compression cooling time is long, unlike the case of injection molding, the shape accuracy is deteriorated for the same reason as described above, so there is a problem that trial and error is required to find the optimal compression cooling.
[0013]
In addition, in order to obtain good shape accuracy, it is necessary to perform control such that the applied pressure is reduced in accordance with the decrease in the resin temperature in the cooling process to maintain a constant volume, and as shown in FIG. In the compression process, a method is proposed in which the pressure is gradually reduced in accordance with the change in the resin temperature from the initial pressure by following the path of (1)-(2)-(3)-(4)-(5). Have been. However, there is a temperature distribution between the surface and the center of the molded product, and between the thin portion and the thick portion, and the temperature is not unique as shown in the PVT characteristic diagram. I don't know how to monitor the temperature in the center of the wall thickness, how to monitor the temperature, and how to change the pressure and how to reduce the pressure in order to match the temperature change. Since the control to constantly change the compression pressure during the cooling process is troublesome, and high pressure is applied from the start of compression, residual strain is already set in parts where the temperature is already low and solidified, such as molded parts close to the mold surface. It has not been practically used because of the tendency to cause cracks.
[0014]
In view of the above problems, an object of the present invention is to provide a molding method for controlling compression pressure and optimizing compression cooling time to minimize the residual strain of a molded product generated in a compression cooling process of injection compression molding, and It is intended to provide a molding die with a simple configuration at a low cost.
[0015]
[Means for Solving the Problems]
According to the first aspect of the present invention, a mold is moved before filling with a thermoplastic resin, so that the cavity volume of a molded product is increased and the molten resin is removed from the mold. In the injection compression molding method, in which the mold is moved so that the cavity volume is reduced by filling the inside of the mold and moving the mold after holding the pressure, the ratio of the PVT characteristic, which is the physical property value of the resin, is reduced. The relationship between the resin temperature and the pressure when the volume is fixed is made into a functional expression. Similarly, the relationship between the pressure and the time is obtained from the two functional formulas that similarly express the time change of the resin temperature in the process of cooling and solidifying the molten resin. The calculation is to calculate the time change of the compression pressure of the mold, and to control the compression of the mold based on the condition of the time change of the compression pressure.
[0016]
According to the above configuration, it is possible to control such that the compression pressure of the mold is reduced to maintain a constant volume in accordance with the temperature change in the cooling process of the resin filled in the mold. In the phase state, no excessive compressive pressure is applied to the molded product, and it is possible to obtain good shape accuracy without residual strain. Further, since the compression cooling time can be optimized, a molding method excellent in production efficiency and quality can be realized without excessively increasing the compression cooling time.
[0017]
According to the second aspect of the invention, when the resin in the mold immediately after the pressure holding is in a liquid phase, a high compression pressure is applied, and the average temperature of the molded product reaches the TC point, that is, the vicinity of the glass transition point. It is characterized in that the compression pressure is reduced in accordance with the relationship between the pressure and time calculated by the two function formulas as a non-volume constant from the time point.
[0018]
With the above configuration, no excessively high pressure is applied from the start of compression, and it is possible to prevent the occurrence of residual strain in a portion where the temperature is already low and solidified, such as a molded product portion close to the mold surface, and excellent shape accuracy. Can be obtained. Furthermore, since the compression pressure of the mold can be kept constant in the liquid phase, which is the first half of the compression cooling process, and the compression pressure can be controlled in the second half of the solid phase, control of the compression pressure of the mold is simplified, and molding equipment is simplified. Can be reduced.
[0019]
According to the invention described in claim 4, the molded product shape model is divided into minute elements, and the resin temperature of the molded product is calculated by filling / holding flow analysis and compression / cooling analysis using a numerical analysis method including a finite element method. Is calculated, and the average temperature of the molded article is set as the resin temperature, and curve fitting is performed by an N-th higher-order mathematical expression, and the relationship between the resin temperature and time is expressed as a function.
[0020]
With the above configuration, there is no need to install a temperature sensor in the mold to perform multi-point measurement, and it is also possible to obtain information on the temperature inside the molded resin that was not possible with the temperature sensor in the mold. It is possible to perform the averaging process.
Therefore, even when there is a temperature difference between the surface and the center of a thick molded product, or between a thin portion and a thick portion, the temperature controlled by the PVT characteristic diagram can be uniquely determined. Highly accurate pressure control with little deterioration can be performed.
[0021]
According to the fifth aspect of the present invention, the temperature change provided in the mold and the mold compression control system correct the time change of the resin temperature set in advance, and the time change of the compression pressure of the mold is obtained. It is characterized in that it is calculated and the compression of the mold is controlled based on the condition of the time change of the compression pressure.
[0022]
With the above configuration, even when the environmental temperature changes due to seasonal changes or the temperature of the molding equipment or the mold fluctuates, the initial setting conditions can be corrected by the temperature sensor, so that quality defects such as shape defects are less likely to occur. A molding die can be realized.
[0023]
As described above, by using the molding method and the molding die of the present invention described above, it is possible to minimize the residual distortion of the molded product generated in the compression cooling process of the injection compression molding. An excellent molded product can be formed.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of an injection compression molding method and a molding die of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram for calculating a compression profile of the injection compression molding method according to the embodiment of the present invention.
FIG. 2 shows a target PVT characteristic profile at the time of molding formed on a PVT characteristic curve of the resin in the embodiment of the present invention.
FIG. 3 shows the temperature profile data of the resin of the molded product portion calculated by numerical calculation by performing the filling / holding flow analysis and the compression cooling analysis using the finite element method in the embodiment of the present invention.
FIG. 4 is a mold compression pressure profile calculated from the temperature profile and the PVT characteristic profile in the embodiment of the present invention.
FIG. 5 is a cross-sectional view of a plastic lens according to an embodiment of the present invention at the time of starting filling of an injection compression molding die.
FIG. 6 is a cross-sectional view of the plastic lens injection molding die in the embodiment of the present invention in a state where the compression is completed.
[0025]
In the block diagram of FIG. 1, reference numeral 11 denotes a PVT curve fitting processing unit for formulating resin PVT physical property data, wherein P is pressure, V is specific volume, T is temperature, Tc is a phase change point between a solid phase and a liquid phase, With A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, C1, and C2 as variables, when T> Tc, Tc = C1 × P + C2, V = A2 × T / (P + A1) In the case of + A4 / (P + A3) + A4 × EXP (A6 × T−A7 × P), and T ≦ Tc, curve fitting is performed using a function formula of V = B2 × T / (P + B1) + B4 / (P + B3). Reference numeral 12 denotes a target PTV curve setting portion at the time of molding for setting the PVT characteristic of the target value by using the function equation obtained in 11, and as shown in FIG. 2, the resin immediately after the pressure holding is in a liquid state. In such a case, a high compression pressure is applied, and when the average temperature of the molded article reaches the vicinity of the TC point, the compression pressure is reduced along with the temperature drop as the non-volume is constant.
[0026]
On the other hand, the numeral 13 is used to input resin physical property data, molded product shape data, molding condition data, and mold data, and to use a finite element method for dividing the molded product shape model into minute elements, to perform a filling / holding flow analysis and a compression cooling analysis. 14 is a temperature profile database at the time of molding for storing and storing the temperature profile results of the entire molded product calculated in 13, and 15 is as shown in FIG. 3. A temperature profile averaging unit for averaging the temperature profile of the entire molded product in 14; and 16 curve-fitting the average temperature profile of the entire molded product calculated in 15 by an N-th higher order equation. This is a temperature profile curve fitting processing unit for function expression. Reference numeral 17 denotes a part in which the pressure is reduced as the specific volume of the target PTV curve at the time of molding set in 12 is reduced as a function of the relationship between the resin temperature and the pressure. A compression pressure profile processing unit calculates the time change of the compression pressure of the mold by calculating the relationship between the pressure and time as shown in FIG. 4 from the two functional expressions obtained by functionalizing the relationship. The compression pressure control section of the mold converts the profile of the compression pressure obtained in the above into the operating condition of the mold clamping force of the molding machine and controls the compression pressure of the mold. Reference numeral 19 denotes a temperature sensor provided in the mold for measuring the resin temperature as shown in FIGS. 5 and 6, and reference numeral 20 denotes the resin temperature measured by the temperature sensor 19 and the temperature profile stored and stored by 14. A temperature profile comparison / correction processing unit that compares the temperature value at the same position as the temperature sensor and, if there is a difference, corrects the difference between the temperature sensor and the calculated value and corrects the temperature profile calculated in step 13 It is.
[0027]
Next, the configuration of an injection compression molding die for a plastic lens according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 5, the molding die has a structure in which movable-side and fixed-side insert dies 24a and 24b each having a lens shape carved into the movable-side and fixed-side mold bases 23a and 23b, respectively. Temperature control grooves 27a and 27b are provided for cooling the insert dies 24a and 24b through a temperature cooling medium such as. Further, the mold is closed by increasing the volume of the cavity 21 of the molded product by a predetermined compression allowance, and after filling, the mold is moved by the compression allowance to form an injection compression molding in a predetermined shape. The mold base 23b and the insert mold 24b are configured to be slidable in the mold opening and closing direction, and the drive of the mold base 23b is controlled by a mold internal pressure cylinder 25 different from the mold clamping mechanism 26 of the mold base 24a.
[0028]
The molding die is provided with a spool 22 and a runner 23 for filling a thermoplastic resin melted from a molding machine (not shown). A gate 25 is formed between the runner 23 and the molded product cavity 21. ing. Reference numeral 19 denotes a temperature sensor provided in a mold near the molded product cavity for measuring the resin temperature, and the measured data is sent to the compression pressure calculation system 10 and is sent to the temperature profile comparison / correction processing unit 20 as described above. After being processed by the compression pressure profile processing unit 17, it is sent to the mold compression pressure control unit 18, and compression is controlled by the mold clamping mechanism 26.
[0029]
FIG. 5 shows a state in which the mold base 23b is moved to the movable mold base 23a side by the in-mold pressure cylinder 25 before the resin filling to increase the volume of the molded product cavity 21, while FIG. The state in which the mold is moved by the mold clamping mechanism 26 in accordance with the instruction of the mold compression pressure control unit 18 and the compression is completed is shown.
[0030]
Here, the operation and effect of the injection compression molding method and the molding die according to the embodiment of the present invention will be described.
[0031]
The resin property data, the molded product shape data, the molding condition data, and the mold data are input in advance, and the filling / holding pressure flow analysis and compression cooling analysis calculation 13 are performed. The profile results are stored and stored, and the temperature profile averaged as shown in FIG. 3 by the temperature profile averaging operation unit 15 is converted into a functional expression by the temperature profile curve fitting processing unit 16 into a relationship between the average resin temperature and time. On the other hand, using the function formula calculated by inputting the resin physical property data to the PVT curve fitting processing unit 11, the target PTV curve setting 12 at the time of molding is set as shown in FIG. The relationship between the resin temperature and the pressure is expressed as a function in a portion where the compression pressure is reduced as the temperature decreases. Then, the relationship between pressure and time is calculated from the two function expressions defined by the target PTV curve setting 12 and the temperature profile curve fitting processing unit 16 in the compression pressure profile 17 to thereby obtain the compression pressure of the mold shown in FIG. Calculate the time change. Here, the time when the compression pressure becomes zero is the optimal compression cooling time.
[0032]
Then, the profile of the compression pressure obtained by the compression pressure profile 17 is sent to the compression pressure control unit 18 of the mold, and converted into the operating condition of the mold clamping force of the molding machine to control the compression pressure of the mold. The mold is provided with a temperature sensor 19 for measuring the resin temperature. The temperature profile comparison / correction processing unit 20 stores the resin temperature measured by the temperature sensor 19 and the temperature profile database 14 during molding. In the stored temperature profile, compare the temperature value at the same position as the temperature sensor, and if there is a difference, correct the difference between the temperature sensor and the calculated value to calculate the filling / packing flow analysis, compression cooling analysis The temperature profile calculated in step 13 is corrected, and a compression pressure profile is calculated by following the same procedure again.
[0033]
As described above, the injection compression molding method and the molding die according to the embodiment of the present invention can be controlled so as to maintain a constant volume by reducing the compression pressure of the die in accordance with the temperature change in the cooling process of the resin. Therefore, in the solid state in the latter half of the cooling process, excessive compression is not applied to the molded product, and there is obtained an effect of obtaining good shape accuracy in which no residual strain is generated, and since the compression cooling time can be optimized, excessive compression can be achieved. The effect of realizing a molding method excellent in production efficiency and quality can be obtained without extending the cooling time.
[0034]
When the resin immediately after the pressure holding is in a liquid phase, a high compression pressure is applied, and the compression pressure is reduced as the non-volume is constant from the time when the average temperature reaches around the TC point. Prevents the generation of residual strain in parts where the temperature is already low and solidified, such as molded parts close to the mold surface without the application of the above high pressure, and achieves good shape accuracy and compression cooling. In the liquid phase, which is the first half of the process, the compression pressure of the mold can be kept constant, and in the second half, the compression pressure can be controlled in the solid state. This simplifies the control of the compression pressure of the mold and reduces the load on the molding equipment. The effect is obtained.
[0035]
In addition, by using a numerical analysis to calculate the change over time in the average resin temperature of the molded product and formulating the relationship between the resin temperature and time as a function, a multi-point measurement with a temperature sensor installed in the mold is required. Without the use of a temperature sensor inside the mold, it is possible to calculate and average the temperature inside the resin of the molded product, and perform the averaging process. In the case where there is a temperature difference between the center and the thin portion and the thick portion, the temperature to be controlled can be uniquely determined by the PVT characteristic diagram. The effect that it can be performed is obtained.
[0036]
In addition, the configuration that corrects the time change of the preset resin temperature using a temperature sensor not only reduces the difference between the numerical calculation and the actual molding, but also changes the environmental temperature due to seasonal changes, and changes the molding equipment or mold. Even when the temperature fluctuates, the setting condition can be corrected by the temperature sensor, so that an effect of realizing a molding die in which a quality defect such as a shape defect hardly occurs is obtained.
As described above, since the residual distortion of the molded product generated in the compression cooling process of the injection compression molding can be reduced to a minimum, it is possible to mold a molded product having excellent shape accuracy.
[0037]
In the embodiment of the present invention, one temperature sensor is used. However, the present invention is not limited to this. When a plurality of temperature sensors are provided, the accuracy of temperature correction can be further improved, and the effect of the present invention can be improved. It becomes possible.
[0038]
Further, in the embodiment of the present invention, the mold is moved so as to increase the cavity volume of the molded product before filling is started, and the mold is moved after filling and holding the pressure so as to reduce the cavity volume. The molding method is to compress the resin in the mold, but the molding method is to compress the resin in the mold so as to reduce the cavity volume by moving the mold in the process of filling and holding the resin in the mold. Even so, the effect of the present invention is not lost at all.
[0039]
【The invention's effect】
As described above, the injection compression molding method and the molding die of the present invention make the relationship between the resin temperature and the pressure when the specific volume is constant from the PVT characteristics of the resin a functional formula, and the resin in the process of cooling and solidifying the resin. By calculating the relationship between pressure and time from two functional expressions obtained by functionalizing the temperature change over time, the time change of the compression pressure of the mold is calculated, and the mold is calculated based on the condition of the time change of the compression pressure. The following effects can be achieved by a configuration in which compression control is performed. First, it is possible to control the mold to maintain a constant volume by reducing the compression pressure of the mold in accordance with the temperature change in the cooling process of the resin filled in the mold. An effect is obtained in which no excessive compressive pressure is applied to the molded product, and good shape accuracy without residual strain is obtained. Furthermore, since the compression cooling time can be optimized, an effect of realizing a molding method excellent in production efficiency and quality can be obtained without excessively increasing the compression cooling time.
[0040]
When the resin immediately after the pressure holding is in a liquid phase, a high compression pressure is applied, and the resin is compressed according to the relationship between the pressure and time calculated from the time when the average temperature reaches the vicinity of the TC point as a non-volume constant and two functions. The structure that reduces the pressure prevents the application of excessively high pressure from the start of compression and prevents the occurrence of residual strain in areas where the temperature is already low and solidified, such as molded parts close to the mold surface. The effect of obtaining good shape accuracy is obtained. Furthermore, since the compression pressure of the mold can be kept constant in the liquid phase, which is the first half of the compression cooling process, and the compression pressure can be controlled in the second half of the solid phase, control of the compression pressure of the mold is simplified, and molding equipment is simplified. The effect of reducing the burden on the user is obtained.
[0041]
In addition, the time change of the resin temperature of the molded product is calculated using numerical analysis, and the average temperature of the molded product is used as the resin temperature, and curve fitting is performed using the N-th higher-order mathematical formula, and the relationship between the resin temperature and time is expressed as a function. With this configuration, there is no need to install a temperature sensor inside the mold to perform multi-point measurement, and it is also possible to obtain information on the temperature inside the molded resin that was previously impossible with the temperature sensor inside the mold. It is possible to perform the averaging process. Therefore, even when there is a temperature difference between the surface and the center of a thick molded product, or between a thin portion and a thick portion, the temperature controlled by the PVT characteristic diagram can be uniquely determined, and the shape accuracy deteriorates due to residual strain. The effect is obtained that the pressure control can be performed with high accuracy and little.
[0042]
In addition, the temperature change provided in the mold and the mold compression control system correct the time change of the preset resin temperature, calculate the time change of the compression pressure of the mold, and calculate the time change of the compression pressure. The configuration that controls the compression of the mold based on the conditions not only reduces the difference between the numerical calculation and the actual molding, but also when the environmental temperature changes due to seasonal changes and the temperature of the molding equipment or the mold fluctuates. Since the initial setting condition can be corrected by the temperature sensor, an effect of realizing a molding die in which quality defects such as shape defects are unlikely to occur can be obtained. As described above, with the configuration of the present invention, it is possible to minimize the residual distortion of the molded product generated in the compression cooling process of the injection compression molding, so that it is possible to mold the molded product having excellent shape accuracy. It becomes.
[Brief description of the drawings]
FIG. 1 is a block diagram for calculating a compression profile of an injection compression molding method according to an embodiment of the present invention.
FIG. 2 is a diagram showing a target PVT characteristic profile at the time of molding created on a PVT characteristic curve of a resin in the embodiment of the present invention.
FIG. 3 is a diagram showing a temperature profile data of a resin of a molded article portion calculated by numerical calculation by performing a filling / holding flow analysis and a compression cooling analysis using a finite element method in the embodiment of the invention.
FIG. 4 is a diagram showing a mold compression pressure profile calculated from a temperature profile and a PVT characteristic profile in the embodiment of the present invention.
FIG. 5 is a cross-sectional view at the time of starting filling of an injection compression molding die for a plastic lens according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a state in which compression of an injection mold for a plastic lens according to an embodiment of the present invention is completed.
FIG. 7 is a view showing PVT characteristics of PMMA resin.
FIG. 8 is a view showing PVT characteristics of PMMA resin.
FIG. 9 is a view showing PVT characteristics of PMMA resin.
FIG. 10 is a diagram showing molding conditions for mold compression.
[Explanation of symbols]
11 PVT curve fit processing unit
12 Target PTV curve setting during molding
13 Filling / Packing Flow Analysis
14 Temperature profile database during molding
15 Temperature profile averaging calculator for molded products
16 Temperature profile curve fit processing unit
17 Compression pressure profile processing section
18 Mold pressure control section
19 Temperature sensor
20 Temperature profile comparison / correction processing unit

Claims (9)

熱可塑性の樹脂を充填する前に金型を移動させることにより、成形品のキャビティ容積を増加させ、溶融状態の前記樹脂を前記金型内に充填し、保圧後に前記金型を移動させることで、前記キャビティ容積を減少させるように前記金型内の樹脂を圧縮する射出圧縮成形工法において、前記樹脂固有の材料物性値であるPVT特性から比容積一定とした場合の前記樹脂温度と圧力の関係を関数式化し、また同様に前記溶融樹脂が冷却固化する課程での樹脂温度の時間変化を関数式化した2つの関数式から圧力と時間の関係を計算することによって、前記金型の圧縮圧力の時間変化を算出し、この圧縮圧力の時間変化の条件に基づいて金型を圧縮制御する射出圧縮成形工法。By moving the mold before filling the thermoplastic resin, the cavity volume of the molded product is increased, the molten resin is filled in the mold, and the mold is moved after holding the pressure. In the injection compression molding method of compressing the resin in the mold so as to reduce the cavity volume, the resin temperature and pressure when the specific volume is constant from the PVT characteristic which is a material property value of the resin, The relationship between the pressure and time is calculated from two functional formulas that express the relationship as a function and similarly the time change of the resin temperature during the process of cooling and solidifying the molten resin. An injection compression molding method in which a time change in pressure is calculated, and a die is compression-controlled based on the condition of the time change in compression pressure. 保圧直後の前記金型内の樹脂が液相状態である場合は高い圧縮圧力を加え、成形品の平均温度がTC点すなわちガラス転移点付近に達した時点から非容積一定として前記2つの関数式で計算した圧力と時間の関係に従って圧縮圧力を低下させていくことを特徴とする請求項1記載の射出圧縮成型工法。When the resin in the mold is in a liquid state immediately after the holding pressure, a high compression pressure is applied, and the two functions are regarded as non-volume constant from the time when the average temperature of the molded product reaches the TC point, that is, near the glass transition point. 2. The injection compression molding method according to claim 1, wherein the compression pressure is reduced according to the relationship between the pressure and the time calculated by the equation. 前記樹脂固有の材料物性値であるPVT特性から比容積一定とした場合の前記樹脂温度と圧力の関係をPを圧力、Vを比容積、Tを温度、Tcを固相と液相の相変化点、A1、A2、A3、A4、A5、A6、A7、B1、B2、B3、B4、C1、C2を変数として、T>Tcの場合、Tc=C1×P+C2、V=A2×T/(P+A1)+A4/(P+A3)+A4×EXP(A6×T−A7×P)
T≦Tcの場合、V=B2×T/(P+B1)+B4/(P+B3)の関数式でカーブフィットしたことを特徴とする請求項1または2に記載の射出圧縮成形工法。
The relationship between the resin temperature and the pressure when the specific volume is constant from the PVT characteristic which is the material property value of the resin is P for pressure, V for specific volume, T for temperature, and Tc for phase change between solid phase and liquid phase. When T> Tc, using points A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, C1, and C2 as variables, Tc = C1 × P + C2, V = A2 × T / ( (P + A1) + A4 / (P + A3) + A4 × EXP (A6 × T−A7 × P)
The injection compression molding method according to claim 1, wherein when T ≦ Tc, curve fitting is performed by a function formula of V = B2 × T / (P + B1) + B4 / (P + B3).
成形品形状モデルを微少要素に分割し、有限要素法を含む数値解析手法を用いた充填・保圧流動解析と圧縮・冷却解析によって前記成形品の樹脂温度の時間変化を算出し、前記成形品の平均温度を前記樹脂温度として、N次の高次間数式でカーブフィットし、樹脂温度と時間の関係を関数式化したことを特徴とする請求項1〜3のいずれかに記載の射出圧縮成形工法。The molded product shape model is divided into microelements, and the time variation of the resin temperature of the molded product is calculated by filling / packing flow analysis and compression / cooling analysis using a numerical analysis method including a finite element method, The injection compression according to any one of claims 1 to 3, wherein a curve fit is performed by an N-th higher-order mathematical expression with the average temperature of the resin as the resin temperature, and the relationship between the resin temperature and time is expressed as a function. Molding method. 前記金型内に設けた温度センサーと、金型圧縮制御システムによって、あらかじめ設定した前記樹脂温度の時間変化を補正して、前記金型の圧縮圧力の時間変化を算出し、この圧縮圧力の時間変化の条件に基づいて金型を圧縮制御する請求項1〜4のいずれかに記載の射出圧縮成形工法および成形金型。A temperature sensor provided in the mold and a mold compression control system correct a preset time change of the resin temperature, calculate a time change of the compression pressure of the mold, and calculate a time of the compression pressure. The injection compression molding method and the molding die according to any one of claims 1 to 4, wherein the compression of the die is controlled based on a condition of the change. 固定側と可動側それぞれにインサート金型とダイセット金型を有し、型開き方向に対向する一対の成形金型において、固定側のインサート金型とダイセット金型がそれぞれ金型圧縮方向に摺動自在に構成され、樹脂充填前に固定側のダイセット金型を可動側のダイセット金型側に移動させることで成形品のキャビティ容積を増加させ、保圧終了後に可動側のインサート金型とダイセット金型を可動側の金型に移動させることで、前記キャビティ容積を減少させるように前記金型内の樹脂を圧縮する請求項1記載の射出圧縮成形工法および成形金型。The fixed side and the movable side each have an insert mold and a die set mold, and in a pair of molding dies facing in the mold opening direction, the fixed side insert mold and the die set mold are respectively in the mold compression direction. It is configured to be slidable, and the cavity volume of the molded product is increased by moving the fixed die set mold to the movable die set mold side before filling with resin. The injection compression molding method and the molding die according to claim 1, wherein the resin in the die is compressed so as to reduce the cavity volume by moving the die and the die set die to the movable die. 熱可塑性の樹脂を充填する前に金型を移動させることにより、成形品のキャビティ容積を増加させて、溶融状態の前記樹脂を前記金型内に充填し、前記溶融樹脂の充填および保圧後の冷却プロセスにおいて前記金型を移動させることで、前記キャビティ容積を減少させるように前記金型内の樹脂を圧縮する射出圧縮成形工法において、前記樹脂固有の材料物性値であるPVT特性から比容積一定とした場合の前記樹脂温度と圧力の関係を関数式化し、また同様に前記溶融樹脂が冷却固化する課程での樹脂温度の時間変化を関数式化した2つの関数式から圧力と時間の関係を計算することによって、前記金型の圧縮圧力の時間変化を算出し、この圧縮圧力の時間変化の条件に基づいて金型を圧縮制御する射出圧縮成形工法。By moving the mold before filling the thermoplastic resin, the cavity volume of the molded product is increased, the molten resin is filled in the mold, and after filling and holding the molten resin. In the injection compression molding method of compressing the resin in the mold so as to reduce the cavity volume by moving the mold in the cooling process, the specific volume is determined from the PVT characteristic, which is a physical property value of the resin. The relationship between the resin temperature and the pressure when it is constant is expressed as a function, and similarly, the relationship between the pressure and the time is obtained from the two function expressions obtained by functionalizing the time change of the resin temperature during the process of cooling and solidifying the molten resin. And calculating the time change of the compression pressure of the mold, and controlling the compression of the mold based on the condition of the time change of the compression pressure. 前記熱可塑性の樹脂を非晶性樹脂であることを特徴とする請求項1〜7のいずれかに記載の射出圧縮成形工法および成形金型。The injection compression molding method and the molding die according to any one of claims 1 to 7, wherein the thermoplastic resin is an amorphous resin. 前記成形品がプラスチックレンズであることを特徴とする請求項1〜8のいずれかに記載の射出圧縮成形工法および成形金型。The injection compression molding method and the molding die according to any one of claims 1 to 8, wherein the molded product is a plastic lens.
JP2002366557A 2002-12-18 2002-12-18 Injection-compression molding method and mold Pending JP2004195787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366557A JP2004195787A (en) 2002-12-18 2002-12-18 Injection-compression molding method and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366557A JP2004195787A (en) 2002-12-18 2002-12-18 Injection-compression molding method and mold

Publications (1)

Publication Number Publication Date
JP2004195787A true JP2004195787A (en) 2004-07-15

Family

ID=32763723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366557A Pending JP2004195787A (en) 2002-12-18 2002-12-18 Injection-compression molding method and mold

Country Status (1)

Country Link
JP (1) JP2004195787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233881A (en) * 2008-03-26 2009-10-15 Polyplastics Co Injection molding process analysis method
CN115056414A (en) * 2022-04-28 2022-09-16 冰山松洋生物科技(大连)有限公司 Automatic temperature control system of polyurethane foaming mould

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233881A (en) * 2008-03-26 2009-10-15 Polyplastics Co Injection molding process analysis method
CN115056414A (en) * 2022-04-28 2022-09-16 冰山松洋生物科技(大连)有限公司 Automatic temperature control system of polyurethane foaming mould
CN115056414B (en) * 2022-04-28 2024-03-15 冰山松洋生物科技(大连)有限公司 Automatic temperature control system of polyurethane foaming mould

Similar Documents

Publication Publication Date Title
KR102089845B1 (en) Method and apparatus for producing a multilayer injection moulding with interstage cooling
JP2868165B2 (en) Plastic molded optical element and molding die thereof
US20080152886A1 (en) High-pressure injection moulding process for the production of optical components
JP2000084945A (en) Plastic molding and method for molding it
JP2004195787A (en) Injection-compression molding method and mold
JP3476841B2 (en) Plastic lens injection molding method
JP4057385B2 (en) Molding method of plastic molded product and injection mold
US5399303A (en) Method of controlling resin molding conditions
JPH0128688B2 (en)
JPS63178021A (en) Method and apparatus for controlling injection molder
CN113059774B (en) Method for controlling injection molding pressure maintaining process
US20070010303A1 (en) High quality optical windows for mobile phones and cameras
JP2537231B2 (en) Plastic lens molding method
JP4019134B2 (en) Plastic molding method and molding die
JPH07304076A (en) Production of plastic lens
JP3392023B2 (en) Method and apparatus for predicting finished shape of molded article
JP4032996B2 (en) Injection molding method
JPH07186291A (en) Method and mold for molding square plastic lens
Regi et al. Direct flow visualization of hesitation during injection molding of thermoplastic polymers
JPH07148795A (en) Plastic part and molding thereof
JP2022126095A (en) Resin molding method and resin molded article
JP2010143129A (en) Method for molding resin lens
JP3161579B2 (en) Control method of injection compression molding
JP3296910B2 (en) Manufacturing method of uneven thickness molded products
WO2008018280A1 (en) Die for molding optical component and method for manufacturing optical component