JP2009233881A - Injection molding process analysis method - Google Patents

Injection molding process analysis method Download PDF

Info

Publication number
JP2009233881A
JP2009233881A JP2008079711A JP2008079711A JP2009233881A JP 2009233881 A JP2009233881 A JP 2009233881A JP 2008079711 A JP2008079711 A JP 2008079711A JP 2008079711 A JP2008079711 A JP 2008079711A JP 2009233881 A JP2009233881 A JP 2009233881A
Authority
JP
Japan
Prior art keywords
temperature
pressure
injection molding
flow
molding process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008079711A
Other languages
Japanese (ja)
Other versions
JP5095461B2 (en
Inventor
Gen Aoki
現 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2008079711A priority Critical patent/JP5095461B2/en
Priority to CN 200910119721 priority patent/CN101544043B/en
Publication of JP2009233881A publication Critical patent/JP2009233881A/en
Application granted granted Critical
Publication of JP5095461B2 publication Critical patent/JP5095461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process analysis method remarkably improving entire whole accuracy of the injection molding simulation, by accurately considering flow/solidifying characteristics of resin. <P>SOLUTION: In the flow analysis in the injection molding process of resin materials, the effect of solidifying due to the progress of crystallization by application of pressure during flowing and stopping of the flow of the resin materials, is taken into account, and a temperature of stopping the flow of the resin materials is assumed as the crystallization temperature Ts at pressurizing time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、樹脂の射出成形プロセスにおいて特に樹脂流動・固化挙動の予測精度を向上させる技術に関する。   The present invention relates to a technique for improving the prediction accuracy of resin flow / solidification behavior particularly in a resin injection molding process.

流動過程においては流体力学におけるHele-Show流れを仮定して2.5次元薄肉シェル要素あるいは3次元要素を用いて、ナビエ-ストークス式を解くことにより、充填パターン、圧力を予測し、ショートショット、型締力、ウエルドライン発生などの射出成形上の問題点を予測している。樹脂射出成形における充填から保圧、冷却および離型過程までのプロセスに関しては、特許文献1や非特許文献1に記載されるような樹脂成形シミュレーション方法が知られている。その他、関連する文献として特許文献2や非特許文献2がある。
特開平09−150443号公報 特表2003−510202号公報 日本塑性加工学会編 「流動解析―プラスチック成形」コロナ社 2004 R.Tフェナー薯「有限要素法の実際」サイエンス社 1980年
In the flow process, assuming the Hele-Show flow in hydrodynamics, the Navier-Stokes equation is predicted by using a 2.5D thin shell element or a 3D element to predict the filling pattern, pressure, short shot, mold clamping Predicts problems in injection molding such as force and weld line generation. With respect to processes from filling to holding pressure, cooling, and mold release in resin injection molding, resin molding simulation methods as described in Patent Document 1 and Non-Patent Document 1 are known. In addition, there are Patent Document 2 and Non-Patent Document 2 as related documents.
JP 09-150443 A Special table 2003-510202 gazette The Japan Society for Technology of Plasticity "Flow Analysis-Plastic Molding" Corona Corporation 2004 RT Fenner, “Practical Finite Element Method” Science 1980

上記したように従来技術では、充填圧力の予測精度が不十分であり、ショートショット、型締力、ウエルドライン発生に加え、流動解析の結果を元とした保圧工程、冷却工程での圧力分布、温度分布、繊維配向分布、収縮量などの予測結果に影響を与えるため、そり変形解析精度が悪い原因となっている。よって、試作品、量産品を問わず、射出成形工程でのシミュレーションの予測精度を高めたいというプラスチックに関わる産業からの要請は非常に強い。本発明の目的は、樹脂の流動・固化特性を精度よく考慮させることにより、射出成形シミュレーションの全体的な精度を著しく向上させることである。   As described above, the conventional technology has insufficient prediction accuracy of filling pressure, and in addition to short shot, mold clamping force, and weld line generation, pressure distribution in pressure holding process and cooling process based on flow analysis results This affects the prediction results such as temperature distribution, fiber orientation distribution, shrinkage, etc., which causes poor warpage deformation analysis accuracy. Therefore, regardless of whether it is a prototype or a mass-produced product, there is a strong demand from the plastics industry to increase the accuracy of simulation prediction in the injection molding process. An object of the present invention is to significantly improve the overall accuracy of the injection molding simulation by accurately considering the flow and solidification characteristics of the resin.

本発明は、射出成形シミュレーションの精度を著しく向上させるため、流動中に圧力が加わることにより結晶化が進行し、流動が停止して固化する効果をシミュレーション上にて考慮させるものである。   In the present invention, in order to remarkably improve the accuracy of the injection molding simulation, the effect of the crystallization progressing by the application of pressure during the flow and the flow stopping and solidifying is considered in the simulation.

即ち本発明は、樹脂材料の射出成形プロセスにおける流動解析において、樹脂材料が流動を停止する温度を、加圧時結晶化温度Tsとすることを特徴とする、射出成形プロセス解析方法である。   That is, the present invention is an injection molding process analysis method characterized in that, in the flow analysis in a resin material injection molding process, the temperature at which the resin material stops flowing is the crystallization temperature Ts during pressurization.

本発明は、射出成形プロセスにおける樹脂の流動解析を精度よく行うことができるようになり、特にショートショットの予測、薄肉部を有する製品の充填パターン、収縮率の予測等の精度向上に効果がある。これにより、試作にかかるコストや、製品金型の修正費用の削減、納期の短縮、製品品質の向上が実現できるようになる。   INDUSTRIAL APPLICABILITY The present invention enables accurate analysis of resin flow in an injection molding process, and is particularly effective in improving accuracy such as short shot prediction, filling pattern of products having thin-walled portions, and shrinkage rate prediction. . As a result, it is possible to reduce the cost of trial production, the cost of correcting the product mold, the shortening of the delivery time, and the improvement of the product quality.

以下に本発明の詳細を記載する。   Details of the present invention will be described below.

非特許文献1によれば、ナビエ−ストークス式は対流項を省略する近似により以下のように簡略化される。   According to Non-Patent Document 1, the Navier-Stokes equation is simplified as follows by approximation that omits the convection term.

Figure 2009233881
Figure 2009233881

Figure 2009233881
Figure 2009233881

他方、エネルギー保存則、およびフーリエの熱伝導法則から熱伝導方程式が導かれ、温度が求められる。この温度などから(4)式に使われている粘度を求め、圧力などを求めていく。   On the other hand, the heat conduction equation is derived from the energy conservation law and the Fourier heat conduction law, and the temperature is obtained. From this temperature, etc., the viscosity used in equation (4) is obtained, and the pressure is obtained.

更に、繊維状フィラーを含有している場合は、上記計算結果から、各要素における速度の時間依存性が求められ、その結果より繊維配向状態が計算される。繊維配向状態から要素ごとの材料異方性、収縮量の異方性、弾性率などの力学的異方性が求められる。   Furthermore, when the fibrous filler is contained, the time dependency of the speed in each element is obtained from the calculation result, and the fiber orientation state is calculated from the result. Mechanical anisotropy such as material anisotropy for each element, shrinkage anisotropy, and elastic modulus is required from the fiber orientation state.

以上は主に流動工程における計算方法である。流動工程においては、密度変化は充填パターンなどの計算にあまり大きな影響を及ぼさない場合がほとんどであるが、保圧工程では主に密度変化が大きい。そこで(4)式で表される圧力方程式を以下に示す(6)式の様に変更して計算する。   The above is the calculation method mainly in the flow process. In the flow process, the density change does not largely affect the calculation of the filling pattern or the like in most cases, but in the pressure holding process, the density change is mainly large. Therefore, the pressure equation expressed by the equation (4) is changed to the following equation (6) to calculate.

Figure 2009233881
Figure 2009233881

この式を用いて、冷却終了まで、圧力変化、密度変化を計算し、各要素の収縮率を求める。   Using this equation, the pressure change and density change are calculated until the end of cooling, and the shrinkage rate of each element is obtained.

次に線形構造計算を行い、変位つまり収縮後の変形量を算出する。冷却後の収縮率は個々の要素について求められるが、要素間の釣り合いがなされていない。そこで、個々の収縮率から、成形品全体の収縮率および変形を求めるために構造計算を行う。ここで線形構造計算の基本概念を説明すると、まず応力・歪方程式は、応力−歪式、歪−変位式、力のつり合いの式から成る。そして、応力−歪式は次式(7)、(8)で表わされる。   Next, linear structure calculation is performed to calculate the displacement, that is, the amount of deformation after contraction. Although the shrinkage after cooling is determined for each element, the elements are not balanced. Therefore, structural calculation is performed to obtain the shrinkage rate and deformation of the entire molded product from the individual shrinkage rates. Here, the basic concept of linear structure calculation will be explained. First, the stress / strain equation is composed of a stress-strain equation, a strain-displacement equation, and a force balance equation. The stress-strain formula is expressed by the following formulas (7) and (8).

Figure 2009233881
Figure 2009233881

ここで、εは歪、Eはヤング率σは応力、νはポアソン比γはせん断歪、τはせん断応力、Gはせん断剛性率、小文字x,y,zは各座標成分を表わす。また、εy,εzなどのy,z成分も上式(7)、(8)と同様に表わされるが、これらに対する式は省略する。次に、歪−変位式は下記の式(9)から(11)で表わされる。 Here, ε is strain, E is Young's modulus σ is stress, ν is Poisson's ratio γ is shear strain, τ is shear stress, G is shear rigidity, and lowercase letters x, y, and z are coordinate components. Further, y and z components such as εy and εz are also expressed in the same manner as the above formulas (7) and (8), but formulas for these are omitted. Next, the strain-displacement formula is expressed by the following formulas (9) to (11).

Figure 2009233881
Figure 2009233881

ここで、u,v,wはそれぞれ変位のx,y,z成分を示す。更に、力のつり合いの式は、Xを外力のx成分とすると、式(12)で表わすことができる。 Here, u, v, and w indicate x, y, and z components of displacement, respectively. Furthermore, the equation of force balance can be expressed by equation (12), where X is the x component of the external force.

Figure 2009233881
Figure 2009233881

(7)から(12)式を離散化し、さらに仮想仕事の原理に従って積分すると、要素に関する下記の剛性方程式(13)式が得られる。 When the equations (7) to (12) are discretized and further integrated according to the principle of virtual work, the following stiffness equation (13) relating to elements is obtained.

Figure 2009233881
Figure 2009233881

ここで、[K]は弾性剛性マトリックス、{d}は節点変位、{f}は節点力である。最後に、要素についての剛性方程式(13)を全要素について重ね合わせると系全体の剛性方程式が得られる。これは連立一次方程式の集合であり、[K]の逆行列を求めることにより、節点変位を変換することにより成形品全体の収縮量、変形が求められる。上記の構造解析における詳細な計算方法は非特許文献2等にて周知であり、市販されているソフトウエアで計算可能であるので、詳細説明は省略する。 Here, [K] is an elastic stiffness matrix, {d} is a nodal displacement, and {f} is a nodal force. Finally, the stiffness equation (13) for the elements is overlapped for all the elements to obtain the stiffness equation for the entire system. This is a set of simultaneous linear equations, and by calculating the inverse matrix of [K], the amount of contraction and deformation of the entire molded product can be determined by converting the nodal displacement. A detailed calculation method in the above structural analysis is well known in Non-Patent Document 2 and the like, and can be calculated using commercially available software, and thus detailed description thereof is omitted.

以上は2.5次元薄肉シェル構造要素を用いた場合である。3次元要素を用いた場合を以下に示す。特許文献1には(4)、(5)式のSとして示されている流動コンダクタンスを用い、以下の(14)式を用いて計算することにより圧力等を求める方法が示されている。   The above is the case where a 2.5-dimensional thin shell structural element is used. The case where a three-dimensional element is used is shown below. Patent Document 1 discloses a method for obtaining a pressure and the like by using the flow conductance shown as S in equations (4) and (5) and calculating using the following equation (14).

Figure 2009233881
Figure 2009233881

しかし、これは簡略化された計算であり、より詳細には非特許文献1に示されているように、連続の式、ナビエストークス式、エネルギー保存式を用い計算される。その他の式については次元を拡張しても同様に計算できる。   However, this is a simplified calculation, and more specifically, as shown in Non-Patent Document 1, it is calculated using a continuous equation, Navier-Stokes equation, and energy conservation equation. Other formulas can be calculated in the same way even if the dimension is expanded.

実際に流動・保圧工程における数値解析を行う場合には、前述の構造計算のように連続的な計算領域を離散化し、支配微分方程式を代数方程式に変換する必要がある。離散化の方法としては、差分法、変分法、有限要素法、コントロールボリューム法などの方法が知られており、これらの方法から適宜選択して使用できる。また、上記で省略した慣性の影響、重力の影響等も考慮に入れることができる。   When a numerical analysis is actually performed in the flow / holding process, it is necessary to discretize a continuous calculation area as in the above-described structural calculation and convert the governing differential equation into an algebraic equation. As a discretization method, methods such as a difference method, a variational method, a finite element method, and a control volume method are known, and these methods can be appropriately selected and used. Also, the influence of inertia, the influence of gravity, etc. omitted above can be taken into consideration.

上記の方法においては、圧力、充填の進行の計算と同時に熱伝導方程式に基づく温度計算を連成させている。温度計算は粘度に温度依存性があることと、冷却による固化領域の影響を考慮することが計算精度を高めるために必要である。充填が進行し、時間が経過するのに伴い、樹脂が冷却される。固化領域では樹脂は流動しないため、溶融領域を特定して計算する必要がある。その溶融・固化領域を分ける基準として温度を用い、以降では固化領域、溶融領域に分ける温度としての名称を流動停止温度と呼ぶ。上記の流動停止温度とは、一般的にノーフロー温度、固体化温度、固化温度、転移温度、固液転移温度とも言われている。   In the above method, the temperature calculation based on the heat conduction equation is coupled simultaneously with the calculation of the pressure and the progress of filling. In order to increase the calculation accuracy, it is necessary to consider the temperature dependence of the viscosity in the temperature calculation and the influence of the solidified region due to cooling. As the filling progresses and time elapses, the resin is cooled. Since the resin does not flow in the solidified region, it is necessary to calculate by specifying the molten region. The temperature is used as a reference for dividing the melting / solidifying region, and the name as the temperature divided into the solidifying region and the melting region is hereinafter referred to as a flow stop temperature. The flow stop temperature is generally also referred to as a no-flow temperature, a solidification temperature, a solidification temperature, a transition temperature, and a solid-liquid transition temperature.

従来技術では固化領域を考慮するため、2.5次元要素を用いた場合において、または特許文献1に記載の方法では樹脂の固化に伴い、流動コンダクタンスの計算にて肉厚を減少させて計算している。これらの場合、流動停止温度は、流動中の圧力を考慮せず、流動停止温度を固定して計算している。実際には流動停止温度は圧力に依存し、キャビティにおける固化状態が圧力に依存するため、肉厚の減少量を少なく見積もってしまい、結果として充填パターン、温度、圧力などが実際と差異を生じる。本発明では、流動停止温度を流動中の圧力変化を考慮して決定するため、従来技術に比べ、予測精度が高くなる。   In the conventional technology, in order to consider the solidification region, when using a 2.5-dimensional element, or in the method described in Patent Document 1, calculation is performed by reducing the wall thickness by calculating the flow conductance with the solidification of the resin. . In these cases, the flow stop temperature is calculated by fixing the flow stop temperature without considering the pressure during flow. Actually, the flow stop temperature depends on the pressure, and since the solidified state in the cavity depends on the pressure, the amount of decrease in the wall thickness is underestimated, and as a result, the filling pattern, temperature, pressure, and the like are different from actual ones. In the present invention, since the flow stop temperature is determined in consideration of the pressure change during the flow, the prediction accuracy is higher than that in the prior art.

一方、特許文献2に記載の方法では、固化層を流動しない領域として考慮するため、要素毎に要素を構成する全接点の粘度を計算し、かつ熱伝導解析により求めた温度結果から、要素を固化領域、溶融領域に分け、溶融領域部分の平均粘度を求めて、それを用いて圧力などの計算をしている。その際、固化領域、溶融領域を判定する際に用いる固体化温度については何も考慮されてはいない。流動・保圧工程での解析精度は、流動停止温度が圧力に依存することを考慮することにより、向上することが明らかとなった。   On the other hand, in the method described in Patent Document 2, in order to consider the solidified layer as a non-flowing region, the viscosity of all contacts constituting the element is calculated for each element, and the element is calculated from the temperature result obtained by heat conduction analysis. It is divided into a solidified region and a melted region, the average viscosity of the melted region is obtained, and the pressure is calculated using the average viscosity. At that time, no consideration is given to the solidification temperature used when determining the solidified region and the molten region. It became clear that the analysis accuracy in the flow and pressure holding process is improved by considering that the flow stop temperature depends on the pressure.

圧力印加時の流動停止温度はPVT(圧力-体積-温度)測定装置あるいはISO-11443記載の粘度計などで測定可能である。   The flow stop temperature at the time of pressure application can be measured with a PVT (pressure-volume-temperature) measuring device or a viscometer described in ISO-11443.

流動解析により求められる圧力Pにおける流動停止温度は   The flow stop temperature at pressure P determined by flow analysis is

Figure 2009233881
Figure 2009233881

として近似する。より正確には、種々の圧力下における結晶化温度のデータと対比すればよく、流動停止温度は圧力Pの高次関数として表すことが可能であるが、1次の項のみで実用十分な計算精度を有しているので計算負荷の軽減を考慮した(15)式が工学的に有用である。これらの効果を考慮させる具体的な計算方法、およびb6、Ts0の測定例については実施例に示す。 Approximate as More precisely, it may be compared with the crystallization temperature data under various pressures, and the flow stop temperature can be expressed as a high-order function of the pressure P. Since it has accuracy, Equation (15) considering reduction of calculation load is useful in engineering. Specific calculation methods that take these effects into consideration, and measurement examples of b6 and Ts 0 are shown in Examples.

以下、本発明に係る実施例を、図面を用いて説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は全体の解析処理手順を示すフローチャートである。まず、形状定義およびメッシュ分割(要素分割)を行う(ステップS1)。このステップS1の処理では、CADシステムなどにより形状を定義する。CADインターフェースを利用して形状を取り込む、あるいはCADシステムにより形状を作成するなど解析対象となる成形品の形状、およびランナー、ゲートなどの成形機のノズルの先端からキャビティに至るまでの樹脂流路を定義する。その後、要素分割プリプロセッサで有限要素法などの要素分割を行い、解析用のモデルを作成する。金型内の冷却状況に強く依存されることが予想される場合には、金型冷却管、金型外壁、入れ駒なども形状を定義し、有限要素法などの要素分割を行い、モデルに加える。   FIG. 1 is a flowchart showing the entire analysis processing procedure. First, shape definition and mesh division (element division) are performed (step S1). In the process of step S1, the shape is defined by a CAD system or the like. Use the CAD interface to capture the shape, or create the shape using a CAD system, and the shape of the molded product to be analyzed, and the resin flow path from the tip of the nozzle of the molding machine such as the runner and gate to the cavity Define. After that, an element division preprocessor performs element division such as a finite element method to create a model for analysis. If it is expected to depend heavily on the cooling conditions in the mold, the mold cooling pipe, mold outer wall, insert frame, etc. are defined in shape and divided into elements such as the finite element method. Add.

この後、解析を行うための温度依存性を考慮した樹脂と金型の物性データ(粘性、比容積、熱伝導率、比熱など)、成形条件(射出速度、樹脂温度、保圧値、保圧時間など)および解析条件、そり変形解析用の境界条件を定義して、解析用の入力データを作成する(ステップS2)。   After this, the physical property data (viscosity, specific volume, thermal conductivity, specific heat, etc.) of the resin and mold taking into account the temperature dependence for the analysis, molding conditions (injection speed, resin temperature, holding pressure value, holding pressure) Time), analysis conditions, boundary conditions for warp deformation analysis are defined, and input data for analysis is created (step S2).

金型内の冷却状況に強く依存されることが予想される場合は必要に応じてステップS2で作成された入力データに基づき、主に金型内での温度分布を計算するため冷却解析(ステップS3)を実施する。   If it is expected that the cooling state is strongly dependent on the cooling state in the mold, a cooling analysis (step) is performed to calculate mainly the temperature distribution in the mold based on the input data created in step S2 as necessary. S3) is performed.

ステップS2で作成された入力データに基づき、あるいはステップS3で得られた金型内での温度分布を入力データに加え、樹脂が金型内に充填する過程、およびその後の保圧冷却過程での金型を含めた流動解析を実施し(ステップS4)、圧力、温度などの解析結果を得る。   Based on the input data created in step S2 or by adding the temperature distribution in the mold obtained in step S3 to the input data, the process in which the resin fills the mold and the subsequent holding pressure cooling process Flow analysis including the mold is performed (step S4), and analysis results such as pressure and temperature are obtained.

ステップS4で得られた結果より、繊維配向を計算する(ステップS5)。この結果から弾性率、ポアソン比、収縮量を計算し、構造計算の入力条件とする(ステップS6)。そして線形構造計算を行い、変形量を求める(ステップS7)。それにより、残留応力、そり変形後の変形量、変形後の形状が求められる。   The fiber orientation is calculated from the result obtained in step S4 (step S5). From this result, the elastic modulus, Poisson's ratio, and shrinkage are calculated and used as input conditions for the structure calculation (step S6). Then, linear structure calculation is performed to obtain the deformation amount (step S7). Thereby, a residual stress, a deformation amount after warping deformation, and a shape after deformation are obtained.

図2はステップS2からステップS4に至るまでの解析処理手順を詳細に示すフローチャートである。ステップS2−1としてISO-11443記載の方法に準じてキャピラリーにて粘度測定する。更にその粘度データから粘度の関数近似をする(ステップS2−2)。この関数は一般的にCross-WLF式、Cross式等が用いられる。そして設定した境界条件を元に、ナビエストークス式を簡略化して、離散化し、充填段階の計算をする。それは同時にせん断による発熱、流動中の固化を考慮するために伝熱計算を加える(ステップS4−1)。流動停止する場合の条件として、(15)式の温度を用い、その温度以下の部分は固体として扱い、肉厚つまり充填する方向に対して断面部面積、ないし溶融領域を変更させる(ステップS4−2)。それを充填解析計算終了条件が満たされるまで(ステップS4−3)繰り返し計算する。その充填解析計算終了条件としては、すべての樹脂流動先端部が流動しない温度に達する、あるいはキャビティ内をすべて樹脂により充填するということを条件としている。計算終了後、充填パターン、温度、圧力等の結果を記録し(ステップS4−4)、場合により出力する。   FIG. 2 is a flowchart showing in detail the analysis processing procedure from step S2 to step S4. In step S2-1, the viscosity is measured with a capillary according to the method described in ISO-11443. Furthermore, the function approximation of the viscosity is performed from the viscosity data (step S2-2). For this function, the Cross-WLF formula, the Cross formula, etc. are generally used. Based on the set boundary conditions, the Navier-Stokes equation is simplified and discretized, and the filling stage is calculated. At the same time, heat transfer calculation is added to consider heat generation due to shearing and solidification during flow (step S4-1). As a condition for stopping the flow, the temperature of the equation (15) is used, the portion below that temperature is treated as a solid, and the cross-sectional area or the melting region is changed with respect to the thickness, that is, the filling direction (step S4- 2). It is repeatedly calculated until the filling analysis calculation end condition is satisfied (step S4-3). The condition for completing the filling analysis calculation is that all the resin flow fronts reach a temperature at which they do not flow, or that the entire cavity is filled with resin. After the calculation is completed, the filling pattern, temperature, pressure, and other results are recorded (step S4-4) and optionally output.

以下、実施例をもとに具体的に説明するが、これら実施例は本発明を制限するものではない。   Hereinafter, although concretely demonstrated based on an Example, these Examples do not restrict | limit this invention.

用いる試験片の形状は80mm角平板および円盤状平板である。計算に用いた要素分割モデル形状を図3、図4に示す。   The shape of the test piece used is an 80 mm square flat plate and a disk-shaped flat plate. The element division model shape used for the calculation is shown in FIGS.

本実施形態の解析では、流動解析に引き続いて構造解析を行うので、形状定義およびメッシュ分割を行う際、予め拘束条件などの構造解析用の境界条件を付加しておく。
樹脂材料:無充填ポリブチレンテレフタレート樹脂、およびガラス繊維30重量%含有強化ポリブチレンテレフタレート樹脂
80mm角平板 金型及び成形条件
形状:キャビティ 縦80mm、横80mm、厚さ2mm
ゲートサイズ 幅4mm、厚さ2mm(サイドゲート)
樹脂温度:260℃
金型温度:60℃
射出流量:25cm3/s
保圧圧力:PBT 30MPa PBT/GF 60MPa
保圧時間:15秒
冷却時間:10秒
円盤状平板 金型及び成形条件
形状:キャビティ 直径80mm、厚さ3〜0.5mm
ゲートサイズ φ1.2mm(センターピンゲート)
樹脂温度:260℃
金型温度:60℃
射出流量:1.54cm3/s
・PVT装置
一定圧力下での降温時における比容積の変曲点温度の測定には株式会社東洋精機製作所製PVTテストシステムを用いる。無充填ポリブチレンテレフタレート樹脂を260℃にて溶融後、2水準以上の圧力下にて放冷条件で体積の温度依存性を測定する。結果は図5に示す。図6に示す変曲点の温度依存性から、(15)式の関係を用い、最小二乗法にて、Ts0、b6を求める。その結果、Ts0は224℃、b6は0.38(℃/MPa)である。この方法は、温度制御がしやすいため、精度の高い測定結果が得られる。
In the analysis of the present embodiment, the structural analysis is performed subsequent to the flow analysis. Therefore, boundary conditions for structural analysis such as constraint conditions are added in advance when performing shape definition and mesh division.
Resin material: Unfilled polybutylene terephthalate resin and reinforced polybutylene terephthalate resin containing 30% by weight of glass fiber
80mm square flat plate mold and molding condition shape: cavity 80mm long, 80mm wide, 2mm thick
Gate size width 4mm, thickness 2mm (side gate)
Resin temperature: 260 ℃
Mold temperature: 60 ℃
Injection flow rate: 25cm 3 / s
Holding pressure: PBT 30MPa PBT / GF 60MPa
Holding pressure time: 15 seconds Cooling time: 10 seconds Disk-shaped flat plate Mold and molding condition shape: Cavity diameter 80mm, thickness 3-0.5mm
Gate size φ1.2mm (Center pin gate)
Resin temperature: 260 ℃
Mold temperature: 60 ℃
Injection flow rate: 1.54cm 3 / s
-PVT apparatus A PVT test system manufactured by Toyo Seiki Seisakusho Co., Ltd. is used to measure the inflection point temperature of the specific volume when the temperature is lowered under a constant pressure. After melting an unfilled polybutylene terephthalate resin at 260 ° C., the temperature dependence of the volume is measured under a cooling condition under a pressure of 2 levels or more. The results are shown in FIG. From the temperature dependence of the inflection point shown in FIG. 6, Ts 0 and b6 are obtained by the method of least squares using the relationship of equation (15). As a result, Ts 0 is 224 ° C. and b6 is 0.38 (° C./MPa). Since this method is easy to control the temperature, a highly accurate measurement result can be obtained.

・溶融粘度測定装置
一定温度下での圧力変化時における流動停止圧力の測定には株式会社東洋精機製作所製キャピログラフ1Cを用い、ISO-11443記載の方法に準拠して実施する。無充填ポリブチレンテレフタレート樹脂を使用し、シリンダー温度は240℃、250℃、260℃に設定し、ダイの寸法はL=20mm、D=1mmとする。測定結果は図7に示す。240℃においては、せん断速度が2432(1/s)以上の場合、測定中に圧力は増加し続けるが、せん断速度2432(1/s)における流動停止圧力は41MPaとなる。更に2水準以上の温度において得られる流動停止圧力をもとに変曲点を求め、(15)式に当てはめ最小二乗法により、転移温度の圧力依存性が求められる。その結果、Ts0は224℃、b6は0.38(℃/MPa)である。この方法は、PVT装置を用いた場合に比べ、測定時間を短縮できるという利点がある。また、測定中の発生ガス成分が排除できるので、熱劣化等でガスを発生するような材料に適している。
-Melt viscosity measuring device The flow stop pressure at the time of pressure change at a constant temperature is measured using a capillograph 1C manufactured by Toyo Seiki Seisakusho Co., Ltd. according to the method described in ISO-11443. Unfilled polybutylene terephthalate resin is used, the cylinder temperature is set to 240 ° C., 250 ° C., 260 ° C., and the die dimensions are L = 20 mm and D = 1 mm. The measurement results are shown in FIG. At 240 ° C., when the shear rate is 2432 (1 / s) or more, the pressure continues to increase during the measurement, but the flow stop pressure at the shear rate 2432 (1 / s) is 41 MPa. Further, the inflection point is obtained based on the flow stop pressure obtained at a temperature of two or more levels, and the pressure dependence of the transition temperature is obtained by the least square method applied to the equation (15). As a result, Ts 0 is 224 ° C. and b6 is 0.38 (° C./MPa). This method has an advantage that the measurement time can be shortened as compared with the case where the PVT apparatus is used. Further, since the generated gas component during measurement can be eliminated, it is suitable for a material that generates gas due to thermal degradation or the like.

・収縮率
収縮率の測定は成形後、23℃、50%RHで24時間放置後、3次元寸法測定機にて、流動方向と流動直角方向を測定した。室温における金型寸法と、実際の寸法から 成形収縮率(%)として、(金型寸法−製品寸法)/金型寸法×100を計算する。
-Shrinkage The shrinkage was measured at 23 ° C. and 50% RH for 24 hours after molding, and the flow direction and the direction perpendicular to the flow were measured with a three-dimensional dimension measuring machine. From the mold dimensions at room temperature and the actual dimensions, the mold shrinkage rate (%) is calculated as (mold dimension-product dimension) / mold dimension x 100.

実施例1
(15)式を用い、b6=0.38(℃/MPa)として解析を行なう。解析によるゲートシール時間については、ゲート部要素内での最高温度が(15)式の温度以下になる時間とする。このゲートシール時間判定方法は以下の比較例、実施例とも同じである。収縮率については、実測時と同じ位置の節点の変位から求める。
Example 1
Using the equation (15), analysis is performed with b6 = 0.38 (° C./MPa). The gate seal time based on the analysis is a time during which the maximum temperature in the gate element is equal to or lower than the temperature of equation (15). This gate seal time determination method is the same in the following comparative examples and examples. The contraction rate is obtained from the displacement of the node at the same position as the actual measurement.

比較例1
実施例1と同じ条件にて、(15)式にてB6=0とする。
Comparative Example 1
Under the same conditions as in Example 1, B6 = 0 in the equation (15).

実施例2
実施例1と同様で、ガラス繊維30%充填ポリブチレンテレフタレート樹脂にした場合を示す。b6=0.38(℃/MPa)とする。
Example 2
Similar to Example 1, the case where 30% glass fiber filled polybutylene terephthalate resin is used is shown. b6 = 0.38 (℃ / MPa).

比較例2
実施例2と同じ条件にて、(15)式にてb6=0とする。
Comparative Example 2
Under the same conditions as in Example 2, b6 = 0 is set in equation (15).

結果を表1に示す。   The results are shown in Table 1.

Figure 2009233881
Figure 2009233881

実施例3
(15)式を用い、b6=0.38(℃/MPa)とする。解析におけるショートショットの判定としては、完全充填する前にノズル部圧力が成形機の最大射出圧力に達した場合とする。図8に実際の充填領域を、図9に実施例3での充填領域を示す。
Example 3
Using equation (15), b6 = 0.38 (° C./MPa). The determination of short shot in the analysis is made when the nozzle pressure reaches the maximum injection pressure of the molding machine before full filling. FIG. 8 shows an actual filling area, and FIG. 9 shows a filling area in the third embodiment.

比較例3
実施例3と同じ条件にて、(15)式にてb6=0とした場合である。図10に比較例3での充填領域を示す。
Comparative Example 3
This is a case where b6 = 0 in the equation (15) under the same conditions as in the third embodiment. FIG. 10 shows the filling region in Comparative Example 3.

実施例4
実施例1の場合より樹脂をガラス繊維30%充填ポリブチレンテレフタレート樹脂にした場合を示す。b6=0.38(℃/MPa)とした。図11に実際の充填領域を、図12に実施例4での充填領域を示す。
Example 4
A case where the resin is a polybutylene terephthalate resin filled with 30% glass fiber is shown in the case of Example 1. b6 = 0.38 (° C./MPa). FIG. 11 shows an actual filling region, and FIG. 12 shows a filling region in Example 4.

比較例4
実施例2と同じ条件にて、(15)式にてb6=0とした場合である。図13に比較例4での充填領域を示す。
Comparative Example 4
This is a case where b6 = 0 in the equation (15) under the same conditions as in the second embodiment. FIG. 13 shows the filling region in Comparative Example 4.

結果を表2に示す。   The results are shown in Table 2.

Figure 2009233881
Figure 2009233881

全体の解析処理手順を示すフローチャートである。It is a flowchart which shows the whole analysis processing procedure. ステップS2からステップS4に至るまでの解析処理手順を詳細に示すフローチャートである。It is a flowchart which shows in detail the analysis processing procedure from step S2 to step S4. 計算に用いた要素分割モデル形状(平板)である。It is the element division | segmentation model shape (flat plate) used for calculation. 計算に用いた要素分割モデル形状(円盤)である。It is an element division model shape (disk) used for calculation. 無充填ポリブチレンテレフタレート樹脂の体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the volume of unfilled polybutylene terephthalate resin. 無充填ポリブチレンテレフタレート樹脂の変曲点の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the inflection point of unfilled polybutylene terephthalate resin. 無充填ポリブチレンテレフタレート樹脂の粘度のせん断速度依存性を示すグラフである。It is a graph which shows the shear rate dependence of the viscosity of unfilled polybutylene terephthalate resin. 円盤状平板(無充填ポリブチレンテレフタレート樹脂)の実際の充填領域を示す図である。It is a figure which shows the actual filling area | region of a disk shaped flat plate (unfilled polybutylene terephthalate resin). 円盤状平板(無充填ポリブチレンテレフタレート樹脂)の実施例3での充填領域を示す図である。It is a figure which shows the filling area | region in Example 3 of a disk shaped flat plate (unfilled polybutylene terephthalate resin). 円盤状平板(無充填ポリブチレンテレフタレート樹脂)の比較例3での充填領域を示す図である。It is a figure which shows the filling area | region in the comparative example 3 of a disk shaped flat plate (unfilled polybutylene terephthalate resin). 円盤状平板(ガラス繊維含有ポリブチレンテレフタレート樹脂)の実際の充填領域を示す図である。It is a figure which shows the actual filling area | region of a disk shaped flat plate (glass fiber containing polybutylene terephthalate resin). 円盤状平板(ガラス繊維含有ポリブチレンテレフタレート樹脂)の実施例4での充填領域を示す図である。It is a figure which shows the filling area | region in Example 4 of a disk shaped flat plate (glass fiber containing polybutylene terephthalate resin). 円盤状平板(ガラス繊維含有ポリブチレンテレフタレート樹脂)の比較例4での充填領域を示す図である。It is a figure which shows the filling area | region in the comparative example 4 of a disk shaped flat plate (glass fiber containing polybutylene terephthalate resin).

Claims (5)

樹脂材料の射出成形プロセスにおける流動解析において、樹脂材料が流動を停止する温度を、次の式で求める加圧時結晶化温度Tsとすることを特徴とする、射出成形プロセス解析方法。
Figure 2009233881
Ts0:常圧における樹脂材料の結晶化温度(℃)
P:流動解析により求める樹脂材料にかかる圧力(MPa)
b6:結晶化温度の圧力依存性係数(MPa/℃)
In the flow analysis in the injection molding process of a resin material, the temperature at which the resin material stops flowing is set as a crystallization temperature Ts during pressurization obtained by the following formula: an injection molding process analysis method.
Figure 2009233881
Ts 0 : Crystallization temperature of resin material at normal pressure (° C)
P: Pressure applied to resin material by flow analysis (MPa)
b6: Pressure dependence coefficient of crystallization temperature (MPa / ° C)
結晶化温度の圧力依存性係数b6が、一定圧力下での降温時における比容積の変曲点温度を、2水準以上の圧力において測定することにより求められる、請求項1に記載の射出成形プロセス解析方法。 The injection molding process according to claim 1, wherein the pressure dependency coefficient b6 of the crystallization temperature is obtained by measuring an inflection point temperature of a specific volume when the temperature is lowered under a constant pressure at a pressure of two or more levels. analysis method. 結晶化温度の圧力依存性係数b6が、一定温度下での圧力変化時における流動停止圧力を、2水準以上の温度において測定することにより求められる、請求項1に記載の射出成形プロセス解析方法。 The injection molding process analysis method according to claim 1, wherein the pressure dependency coefficient b6 of the crystallization temperature is obtained by measuring a flow stop pressure at a temperature of two or more levels when the pressure changes at a constant temperature. 請求項1〜3の何れか1項記載の射出成形プロセス解析方法を用いることを特徴とする、樹脂材料を射出成形する際の、キャビティ中への樹脂材料の充填パターン解析方法。 A method for analyzing a filling pattern of a resin material into a cavity when the resin material is injection-molded, wherein the injection molding process analysis method according to any one of claims 1 to 3 is used. 請求項1〜3の何れか1項記載の射出成形プロセス解析方法を用いることを特徴とする、樹脂材料を射出成形して得られる成形品の、寸法ならびに変形解析方法。 A dimension and deformation analysis method for a molded product obtained by injection molding of a resin material, wherein the injection molding process analysis method according to any one of claims 1 to 3 is used.
JP2008079711A 2008-03-26 2008-03-26 Injection molding process analysis method Active JP5095461B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008079711A JP5095461B2 (en) 2008-03-26 2008-03-26 Injection molding process analysis method
CN 200910119721 CN101544043B (en) 2008-03-26 2009-03-24 Injection molding process analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079711A JP5095461B2 (en) 2008-03-26 2008-03-26 Injection molding process analysis method

Publications (2)

Publication Number Publication Date
JP2009233881A true JP2009233881A (en) 2009-10-15
JP5095461B2 JP5095461B2 (en) 2012-12-12

Family

ID=41191546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079711A Active JP5095461B2 (en) 2008-03-26 2008-03-26 Injection molding process analysis method

Country Status (2)

Country Link
JP (1) JP5095461B2 (en)
CN (1) CN101544043B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199714A (en) * 2019-06-11 2020-12-17 ファナック株式会社 Mechanical learning device, and design support device
WO2023195420A1 (en) * 2022-04-08 2023-10-12 ポリプラスチックス株式会社 Method for determining gate sealing time

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779176B2 (en) * 2017-06-02 2020-11-04 株式会社ブリヂストン Resin member
CN110556302A (en) * 2019-08-28 2019-12-10 大同新成新材料股份有限公司 preparation method of electronic silicon carbide chip
CN110948811A (en) * 2019-11-29 2020-04-03 湖南工业大学 Polymer crystallization on-line measuring device
CN112743789A (en) * 2021-01-25 2021-05-04 温州市信维五金卫浴有限公司 Bathroom hanging parts self-learning production system
CN114407314B (en) * 2022-01-24 2024-04-05 拓凌机械(浙江)有限公司 Micro injection mold with in-mold rheological online measurement function and measurement and control method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258229A (en) * 1989-03-31 1990-10-19 Hitachi Ltd Method and apparatus for simulating molding process
JPH09150443A (en) * 1995-09-26 1997-06-10 Toray Ind Inc Apparatus for analyzing fluid-flow process and manufacture of injection molding
JP2000289076A (en) * 1999-04-02 2000-10-17 Plamedia Research Corp Method for simulating resin molding
JP2000313035A (en) * 1999-04-30 2000-11-14 Teijin Ltd Injection molding process simulation method and apparatus, and production of resin molded article using result thereof
JP2002292674A (en) * 2001-03-30 2002-10-09 Asahi Kasei Corp Injection molding method for molding having good appearance
JP2003510202A (en) * 1999-09-24 2003-03-18 モルドフロウ コーポレイション Method and apparatus for modeling fluid injection in a mold cavity
JP2004001248A (en) * 2002-05-31 2004-01-08 Denso Corp Injection molding process simulation method
JP2004195787A (en) * 2002-12-18 2004-07-15 Matsushita Electric Ind Co Ltd Injection-compression molding method and mold
JP2005301852A (en) * 2004-04-15 2005-10-27 Olympus Corp Simulation method and simulation program for injection molding
JP2006518516A (en) * 2003-02-05 2006-08-10 モルドフロウ アイルランド リミテッド Apparatus and method for performing process simulation using a hybrid model
JP2006523351A (en) * 2003-03-03 2006-10-12 モルドフロウ アイルランド リミテッド Apparatus and method for predicting properties of materials to be processed
JP2006346941A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Injection molding method and injection mold
JP2008023974A (en) * 2006-06-19 2008-02-07 Toray Ind Inc Injection molding analysis method, sled deformation analysis method, and its apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1260920A1 (en) * 2001-05-23 2002-11-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for computing an interface of a fluid in a space
JP2003231167A (en) * 2002-02-07 2003-08-19 Toray Ind Inc Numerical analysis method and device of injection molding process

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258229A (en) * 1989-03-31 1990-10-19 Hitachi Ltd Method and apparatus for simulating molding process
JPH09150443A (en) * 1995-09-26 1997-06-10 Toray Ind Inc Apparatus for analyzing fluid-flow process and manufacture of injection molding
JP2000289076A (en) * 1999-04-02 2000-10-17 Plamedia Research Corp Method for simulating resin molding
JP2000313035A (en) * 1999-04-30 2000-11-14 Teijin Ltd Injection molding process simulation method and apparatus, and production of resin molded article using result thereof
JP2003510202A (en) * 1999-09-24 2003-03-18 モルドフロウ コーポレイション Method and apparatus for modeling fluid injection in a mold cavity
JP2002292674A (en) * 2001-03-30 2002-10-09 Asahi Kasei Corp Injection molding method for molding having good appearance
JP2004001248A (en) * 2002-05-31 2004-01-08 Denso Corp Injection molding process simulation method
JP2004195787A (en) * 2002-12-18 2004-07-15 Matsushita Electric Ind Co Ltd Injection-compression molding method and mold
JP2006518516A (en) * 2003-02-05 2006-08-10 モルドフロウ アイルランド リミテッド Apparatus and method for performing process simulation using a hybrid model
JP2006523351A (en) * 2003-03-03 2006-10-12 モルドフロウ アイルランド リミテッド Apparatus and method for predicting properties of materials to be processed
JP2005301852A (en) * 2004-04-15 2005-10-27 Olympus Corp Simulation method and simulation program for injection molding
JP2006346941A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Injection molding method and injection mold
JP2008023974A (en) * 2006-06-19 2008-02-07 Toray Ind Inc Injection molding analysis method, sled deformation analysis method, and its apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199714A (en) * 2019-06-11 2020-12-17 ファナック株式会社 Mechanical learning device, and design support device
US11602876B2 (en) 2019-06-11 2023-03-14 Fanuc Corporation Machine learning device and design support device
JP7277273B2 (en) 2019-06-11 2023-05-18 ファナック株式会社 Machine learning device and design support device
WO2023195420A1 (en) * 2022-04-08 2023-10-12 ポリプラスチックス株式会社 Method for determining gate sealing time
JP7366327B1 (en) 2022-04-08 2023-10-20 ポリプラスチックス株式会社 How to find gate seal time

Also Published As

Publication number Publication date
CN101544043B (en) 2013-07-24
JP5095461B2 (en) 2012-12-12
CN101544043A (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP5095461B2 (en) Injection molding process analysis method
US9283695B1 (en) Computer-implemented simulation method and non-transitory computer medium capable of predicting fiber orientation for use in a molding process
Kim et al. Residual stress distributions and their influence on post-manufacturing deformation of injection-molded plastic parts
Gebelin et al. Modelling of the investment casting process
Nguyen et al. Effects of polymer melt compressibility on mold filling in micro-injection molding
JP2009233882A (en) Void generation prediction method of resin molded article
Wu et al. The influence of cavity deformation on the shrinkage and warpage of an injection-molded part
JP2006205740A (en) Design support equipment and method for resin mold component
JP2007083602A (en) Method for forecasting molding shrinkage rate of injection-molded article
Marin et al. Influences of the mesh in the CAE simulation for plastic injection molding
JPH0622840B2 (en) Molding process simulation system
JP4006316B2 (en) Resin flow analysis method and apparatus
Chockalingam et al. Development of thermal and structural deformation model to predict the part build dimensional error in fused deposition modeling
CN115938507A (en) Injection Molding Warpage Prediction
Zhou et al. Integrated simulation of the injection molding process with stereolithography molds
Liu et al. Numerical simulations of residual stresses and warpage in injection molding
JP2000289076A (en) Method for simulating resin molding
Seo et al. Simulation study and application on HPDC process with automobile part
Shen et al. An improved algorithm for the simulation of injection-molding filling process
Cannell et al. Predicting pattern tooling and casting dimensions for investment casting, phase II
Tutar et al. Computational study of the effect of governing parameters on a polymer injection molding process for single-cavity and multicavity mold systems
JP2017149020A (en) Apparatus, method, program, and medium for analyzing viscoelastic structure of molded article
JP2010030259A (en) Method of predicting molded article shape, method of predicting cavity shape and apparatus of them, prediction program for molded article shape or cavity shape and recording medium therefor
JP2002219739A (en) Method for estimating amount of change in shape of injection-molded article
Kleindel et al. Experimental and numerical investigation of shrinkage and warpage of a U-shaped injection molded part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250