JP2004195497A - Method of heating steel sheet - Google Patents

Method of heating steel sheet Download PDF

Info

Publication number
JP2004195497A
JP2004195497A JP2002365867A JP2002365867A JP2004195497A JP 2004195497 A JP2004195497 A JP 2004195497A JP 2002365867 A JP2002365867 A JP 2002365867A JP 2002365867 A JP2002365867 A JP 2002365867A JP 2004195497 A JP2004195497 A JP 2004195497A
Authority
JP
Japan
Prior art keywords
steel sheet
width direction
heating
bar
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002365867A
Other languages
Japanese (ja)
Other versions
JP3793503B2 (en
Inventor
Takehiro Nakamoto
武広 中本
Hiroki Sakagami
浩喜 坂上
Hiroshi Kimura
寛 木村
Koji Noguchi
浩嗣 野口
Kouya Takahashi
航也 高橋
Tomoaki Yoshiyama
智明 吉山
Kisho Tanaka
紀章 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002365867A priority Critical patent/JP3793503B2/en
Priority to KR1020047019940A priority patent/KR100698502B1/en
Priority to TW092115378A priority patent/TWI261000B/en
Priority to PCT/JP2003/007229 priority patent/WO2004000476A1/en
Priority to CNB038187701A priority patent/CN100333846C/en
Priority to AU2003238695A priority patent/AU2003238695A1/en
Publication of JP2004195497A publication Critical patent/JP2004195497A/en
Application granted granted Critical
Publication of JP3793503B2 publication Critical patent/JP3793503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of heating a steel sheet by which an arbitrary region in the width direction of a steel sheet (steel strip) is heated and the temperature distribution in the width direction of the steel sheet is controlled. <P>SOLUTION: A plurality of bar heaters arranged in the longitudinal direction of the steel sheet are shifted in the width direction of the steel sheet. The amount of the shift is determined by measuring the temperature distribution in the width direction of the steel sheet with width-direction thermometers arranged upstream from the bar heaters and on the basis of the measured temperature distribution. In the concentrated heating in the middle part in the width direction, for example, the plurality of bar heaters are moved to the middle of the width direction of the steel sheet and, in overall heating in the width of the steel sheet, the plurality of bar heaters are moved so as to be spaced at a fixed interval over the entire in the width direction. Each of the shifted bar heater is then operated for heating, and the temperature distribution in the width direction of the steel sheet is controlled. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板の加熱方法に関し、特に鋼板の幅方向温度分布を加熱制御する鋼板の加熱方法に関するものである。
【0002】
【従来の技術】
鋼板の熱間圧延は、図1に示すように、加熱炉1に低温のスラブ2を装入して、所定の温度に再加熱し、再加熱したスラブ2を粗圧延機3で所定の厚さに圧延して粗バー4となし、クロップシャー5を用いて粗バーの先尾端を切断し、粗バー4の幅方向両エッジ部の温度低下を回復するためにエッジヒーター6で両エッジ部を加熱して、複数基のスタンドからなる連続仕上圧延機7で所定の熱延鋼板に仕上圧延した後に、ランアウトテーブル上の冷却スタンド8において冷却し、コイラー9で巻き取ることにより行われている。
【0003】
また、仕上圧延の前に粗バー同士を接合して仕上圧延を行うエンドレス圧延がなされる場合には、図2に示すように、加熱炉1に低温のスラブ2を装入して、所定の温度に再加熱し、再加熱したスラブ2を粗圧延機3で所定の厚さに圧延して粗バー4となし、コイルボックス10で巻き取り、コイルボックスから巻き戻された粗バーの先端を接合シャー11で切断し、先行する粗バーの後端と後行する粗バーの先端を溶接装置12により接合し、粗バー4の幅方向両エッジ部の温度低下を回復するためにエッジヒーター6で両エッジ部を加熱して、複数基のスタンドからなる連続仕上圧延機7で所定の熱延鋼板に仕上圧延した後に、ランアウトテーブル上の冷却スタンド8において冷却し、コイラー9で巻き取ることにより行われている。
【0004】
このような熱延鋼板の熱間圧延又はエンドレス圧延工程においては、低温スラブを加熱炉で再加熱するために、偏熱の発生が避けられず、また加熱炉抽出の放熱や、圧延材は圧延中に板幅に対して板厚が小さくなることが原因で、粗圧延中に粗バーの両エッジ部に温度低下が発生する。これらの温度低下は、粗バーの幅方向の温度分布の不均一を招き、仕上温度の不均一の原因となる。
【0005】
そして、粗バーの幅方向の温度分布が不均一になると、仕上圧延中に熱延鋼板に耳波や中伸びが生じ、また熱延鋼板の幅方向の機械的性質等の材質特性が不均一となる等の問題が生ずる。
【0006】
このような粗バーの幅方向の温度分布の不均一に起因する問題を防止するために、粗圧延機と仕上圧延機との間に加熱装置とエッジヒーターとを設け、粗圧延機によって粗圧延された粗バーを加熱することが知られている。従来は、粗圧延機と仕上圧延機との間に、粗バーをその幅方向全体にわたって加熱するためのソレノイド型誘導加熱装置と、粗バーの両エッジ部を加熱するためのエッジヒータとを設け、ソレノイド型誘導加熱装置とエッジヒータとによって、仕上圧延機の入側における粗バーをその幅方向に均一な温度となるように加熱することが提案されている(例えば、特許文献1)。
【0007】
ここで使用するソレノイド型誘導加熱装置の特徴は、板を取り囲むようにコイルを巻き、板と平行に磁場を発生させるという磁場特性があり、板全表面を集中加熱し、伝熱により温度が平均化するものであるため、板幅方向温度分布がほぼ一定の状態で全幅に均一温度だけ昇温する。
【0008】
即ち、ソレノイド型誘導加熱装置で圧延負荷が減少するように粗バーを幅方向に均一加熱すると共に、エッジヒータで温度低下の大きい両エッジ部(エッジ部)を加熱して幅方向を均一な温度分布となるようにしようとするものである。
【0009】
ところが、本発明者が熱延鋼板の幅方向の材質特性について研究した結果、仕上圧延機入側の粗バーについて、その温度低下の大きいエッジ部をエッジヒーターで加熱して幅方向の温度分布を均一化しても、仕上圧延によって得られる鋼板の幅方向材質特性が均一となっていないことを見出した。即ち、粗圧延機と仕上圧延機との間で粗バーを幅方向に全体を均一に加熱すると共に、エッジヒーターにより温度低下の大きい両エッジ部を加熱する加熱方法では、仕上圧延して得られた熱延鋼板の幅方向材質特性を均一化することは困難であった。その原因について、種々実験を行い究明したところ、加熱炉におけるスラブ加熱時に原因があることを見出した。即ち、加熱炉は高温雰囲気中でスラブを加熱するものであるので、必然的にスラブの中心部の温度が低く、この温度分布は圧延により板厚が薄くなっても維持されるため、幅方向平均温度に対して中心部は低く、エッジ部に向かって高くなっているアルファベットのM型の幅方向温度分布を呈している。
【0010】
従って、幅方向温度分布を均一化して板幅方向の材質特性の均一化を図ることは、エッジヒーターによる加熱方法や、幅方向温度一律一定値昇温のバーヒータによる加熱方法では不可能である。
【0011】
また、自動車等の車体部品のプレス素材(ブランク材)として、板幅方向に強度の異なるテーラードブランク材が製造されている。このテーラードブランク材は、車体部品にプレス成形すると、車体部品の所定の部分の機械的性質を異ならせることが可能となる。
【0012】
従来は、複数の鋼帯を溶接してテーラードブランク材とする方法が一般的であるが、近年熱延鋼帯をランアウトテーブル(ROT)で水冷する際に、鋼帯幅方向の冷却速度を変化させることにより、鋼帯の幅方向の機械的性質を異ならしめて、溶接を行うことなしにテーラードブランク材を製造する方法が種々提案されている(例えば、特許文献2及び3)。
【0013】
ところが、鋼帯の幅方向の冷却速度を変化させるよりも、仕上圧延前に鋼帯幅方向の温度差を異ならしめて、テーラードブランク材とすることにより、機械的性質、特に穴広げ率と伸び特性に優れたテーラードブランク材が製造できることを見出した。この方法においては、鋼帯幅方向の温度差を効果的に異ならしめるための鋼帯の加熱方法及び装置が必要とされているのが実状である。
【0014】
【特許文献1】
特開平3−314216号公報
【特許文献2】
特開平11−192501号公報
【特許文献3】
特開2000−11541号公報
【0015】
【発明が解決しようとする課題】
そこで、本発明は、上記実状に鑑み、鋼板(鋼帯)幅方向の任意の領域を加熱することが可能で、かつ鋼板幅方向の温度分布を制御することが可能な鋼板の加熱方法を提供することを課題とするものである。
【0016】
【課題を解決するための手段】
本発明者は、幅方向の材質特性のばらつきがない熱延鋼板を得るには、仕上圧延機入側の粗バーの幅方向温度分布を均一にすることが必要であるが、そのためにはスラブ加熱時にスラブ中心部の温度が低いことに起因する粗バー中央低温部を加熱昇温させること、また、仕上圧延前に鋼板(粗バー)幅方向の温度差を異ならしめて、テーラードブランク材とするためには、粗バー幅方向の任意の領域を加熱昇温させることが要求される。このため、鋼板(粗バー)長手方向に複数台のトランスバース型誘導加熱装置からなるバーヒータを配設し、各バーヒータを鋼板長手方向で重なり合う部分(合計昇温量が大きいこととなる)が存在するように鋼板幅方向にシフトさせ、各バーヒータを加熱運転すれば、鋼板幅方向の任意の領域を温度差を付けて加熱昇温できるので、幅方向温度分布を制御できることを知見して本発明を完成した。
【0017】
本発明の要旨は、以下のとおりである。
【0018】
(1) 鋼板長手方向に配設した複数台のバーヒータを鋼板幅方向にシフトさせ、各バーヒータを加熱運転し、鋼板幅方向温度分布を制御することを特徴とする鋼板の加熱方法。
【0019】
(2) 鋼板長手方向に配設した複数台のバーヒータを鋼板長手方向で重なり合い部分が存在するように鋼板幅方向にシフトさせ、重なり合い部分量を制御することで鋼板幅方向温度分布を制御することを特徴とする鋼板の加熱方法。
【0020】
(3) 鋼板幅方向の中央部集中加熱では、複数台のバーヒータを鋼板幅方向中央に移動させて加熱運転を行うことを特徴とする上記(1)または(2)記載の鋼板の加熱方法。
【0021】
(4) 鋼板幅方向全体加熱では、複数台のバーヒータを幅方向全体に一定間隔となるように移動させて加熱運転を行うことを特徴とする上記(1)または(2)記載の鋼板の加熱方法。
【0022】
(5) 熱延ラインの仕上最終スタンドよりも上流側に設置した複数台のバーヒータにより加熱することを特徴とする上記(1)〜(4)の内のいずれかに記載の鋼板の加熱方法。
【0023】
(6) バーヒータよりも上流側に配置した幅方向温度計により、鋼板幅方向温度分布を測定し、該測定した温度分布に基いて各バーヒータのシフト量を決定することを特徴とする上記(1)〜(5)のいずれかに記載の鋼板の加熱方法。
【0024】
(7) インコイルでシフトが可能となっている上記(1)〜(6)のいずれかに記載の鋼板の加熱方法。
【0025】
(8) インコイルでそれぞれのバーヒータの加熱量を独立して可変させることを特徴とする上記(1)〜(7)のいずれかに記載の鋼板の加熱方法。
【0026】
(9) インコイルでぞれぞれのバーヒータの鉄心間距離を独立して可変させることを特徴とする上記(1)〜(8)のいずれかに記載の鋼板の加熱方法。
【0027】
(10) エッジヒータで板幅方向端部を加熱することを特徴とする上記(1)〜(9)のいずれに記載の鋼板の加熱方法。
【0028】
【発明の実施の形態】
以下、図に基いて本発明を詳細に説明する。
【0029】
図3は、加熱炉で加熱したスラブを粗圧延した粗バーの幅方向温度分布を示す図である。
【0030】
加熱炉は高温雰囲気中でスラブを加熱するので、加熱されたスラブは、その周囲は高温となり中心部に低温部が生じることは避けられない。このため、加熱されたスラブを粗圧延した粗バーは、図3(a)に示すように、粗バー4のエッジ部は放冷大13であるため温度低下し、中央部はスラブの低温部14の履歴がそのまま維持され、図3(b)のように例えば板幅中央部の温度が1033℃、中央部からエッジ部に向かって最高温度の1056℃、エッジ部が1002℃であるアルファベットのM型を呈する幅方向温度分布となる。このような幅方向温度分布の粗バーを仕上圧延すると、図3(c)のように、板幅中央部の温度が852℃、中央部からエッジ部に向かって最高温度の865℃、エッジ部が800℃とアルファベットのM型を呈する仕上圧延鋼板となるので、冷却後に得られた熱延鋼板の幅方向の機械的性質等の材質特性は不均一となる。
【0031】
従来の熱間圧延方法においては、図4(a)に示すように、粗バーのエッジ部のみが放冷で温度低下するので、エッジヒーターにより加熱すると幅方向温度分布が均一化すると考えられていたが、エッジヒーターでエッジ部を斜線で示す昇温量15だけ加熱昇温(1056℃)させても、中央低温部(1033℃)を昇温させることができない。また、ソレノイド型誘導加熱装置を用いて、粗バー幅方向全体を加熱昇温させる方法においても、図4(b)に示すように、斜線で示すソレノイド型誘導加熱装置による昇温量16だけ全体の温度が昇温し、M型の幅方向温度分布は維持される。したがって、エッジヒーターやソレノイド型誘導加熱装置による加熱昇温では、幅方向温度分布の均一化は達成することができない。
【0032】
また、鋼帯の幅方向に異なる機械的特性、特に穴広げ特性と伸び特性との異なる特性を有するテーラード鋼板を熱間圧延によって製造するのに、仕上圧延前に鋼板幅方向で温度差を異ならしめて仕上圧延すると、鋼板の穴広げ特性が熱間仕上温度によって効果的に改善されることを見出した。
【0033】
例えば、C:0.09〜0.11%、Si:1.30〜1.50%、Mn:1.25〜1.45%、P:0.010%以下、S:0.002%以下の成分系からなる590MPa級高張力鋼帯をクロスメンバー等の自動車用部品に適用する場合には、鋼帯の幅方向に部品取りされ、その部品形状からコイル幅中央付近では伸びフランジ加工、鋼帯の1/4幅〜幅エッジ部では張り出し加工が主となる加工が行われる。
【0034】
このような加工においては、伸びフランジ加工部に対して、鋼帯の穴広げ率70%以上、望ましくは80%以上が必要で、張り出し加工に対して、鋼板の伸び率31%以上、望ましくは34%以上が必要である。
【0035】
上記の機械的性質を得るための条件について検討する。
【0036】
図5(a)は590MPa級高張力鋼帯の熱間仕上温度(℃)と穴広げ率(%)との関係を示す図で、図5(b)は、590MPa級高張力鋼帯の熱間仕上温度(℃)と伸びEL(%)との関係を示す図である。図5(a)に示すように、熱間仕上温度の上昇に対応して鋼帯の穴広げ率は改善されるが、図5(b)に示すように、熱間仕上温度の上昇に対応して鋼帯の伸びは低下する。つまり、熱間仕上温度に対して、穴広げ特性と伸び特性は相反する傾向を示す。
【0037】
したがって、図5(a)から穴広げ率70%以上とするためには熱間仕上温度が矢印で示す878℃以上とすることが要求され、また、図5(b)から伸び率31%以上とするためには、矢印で示す860℃以下とすることが要求され、両者で要求される温度範囲が異なることがわかる。しかしながら、両者の特性を併せ持つ鋼帯を得るには、熱間仕上温度を860〜880℃の極めて狭い範囲にコントロール(斜線で示す範囲)すれば得ることができるが、温度条件的中が困難であり条件外れが発生する事、たとえ温度条件を的中させても材質のばらつきによる材質目標外れが発生する事による歩留まりの低下という問題がある。
【0038】
本発明では、鋼帯幅方向の熱間仕上温度を異ならしめて、鋼帯幅中央付近は熱間仕上温度870℃以上、鋼帯の1/4幅〜幅エッジ部は熱間仕上温度860℃以下となるように鋼帯幅中央部を20℃以上加熱する熱間仕上温度条件とすることで、鋼帯幅中央付近は70%以上の穴広げ率を有し、鋼帯の1/4幅〜幅エッジ部では31%以上の伸び率を有する機械特性が幅方向で異なるテーラード鋼帯を容易に製造できることがわかった。
【0039】
ところが、幅方向の材質特性が均一化した鋼板や幅方向の材質特性が異なるテーラード鋼板を製造するに必要である加熱装置、即ち、鋼板の幅方向温度分布を任意に制御して、幅方向温度分布を均一化すること、あるいは幅方向温度を効果的に異ならしめることができる加熱装置はこれまで提案されていない。
【0040】
本発明者は、鋼板幅方向温度分布を任意に制御することができる鋼板の加熱方法及び装置について鋭意研究し、トランスバース型誘導加熱装置からなるバーヒータを鋼板長手方向(圧延ライン)に複数台配置し、各バーヒータを幅方向にシフトさせ、鋼板長手方向のバーヒータの重なり合い部分量を制御して、各バーヒータを加熱運転することで、幅方向温度分布を任意に制御し得ることを見出した。
【0041】
図6に示すように、トランスバース型誘導加熱装置17は、ソレノイド誘導加熱装置とは異なり、鉄心18にコイル19を巻き回すことによって構成されていて鉄心幅に応じて鋼板20の幅方向特定部分を均一に加熱することができる特性を有している。
【0042】
しかも、鋼板の上下位置に配置して使用することができるので、鋼板幅方向へのシフトを容易に行うことができ、鋼板表面に疵をつけることがないという特性を有している。
【0043】
図7(a)は、バーヒータ1台の鋼板幅方向の配置とその昇温量を示す図で、図7(c)〜(e)は、鋼板長手方向に3台のバーヒータを配置し、各バーヒータを幅方向に所定量シフトした場合の、鋼板幅方向の昇温量を示す図である。
【0044】
図7(a)に示すように、鋼板21中央部に1台のバーヒータ(トランスバース型誘導加熱装置)22を配置してバーヒータを加熱運転すると、鋼板幅方向の昇温量分布23は、バーヒータの幅(鉄心幅)に対応して山型の昇温量分布となる。このような昇温特性を有するバーヒータ3台を鋼板長手方向に配設し、各バーヒータを鋼板幅方向に所定量シフト(幅方向の中心をシフト量の基準とする。またシフト量ゼロの場合も含む。)させると、例えば、図7(b)は、シフト量がゼロで、バーヒータ3台全てが重なりあう場合の例で、バーヒータ3台の昇温量が合算されて、下部の図に示すように鋼板幅方向中央部の昇温量分布が高い状態となり、図7(c)は、中央の1台のバーヒータはシフトさせずに上流側及び下流側の2台のバーヒータを逆方向にシフトさせ、バーヒータの重なりあう部分を少し減少させた場合の例で、3台のバーヒータの昇温量がシフト量に応じてずれた状態で合算されて、下部の図に示すように鋼板幅方向に広い山型の昇温量分布となり、そして、図7(d)は、上流側及び下流側の2台のバーヒータのシフト量を図7(c)よりも大きくし、バーヒータの重なりあう部分をさらに減少させた場合の例で、3台のバーヒータの合算昇温量分布は、図7(c)よりも更に広い山型の昇温量分布となる。また図7(e)はバーヒータを幅方向全体に一定間隔となるように移動させて、バーヒータの重なりあう部分を無くして、幅全体を加熱する場合の例であり、図7(c)よりも更に広い山型の昇温量分布となる。
【0045】
なお、シフトさせるバーヒータは下流側に限らずどのバーヒータをシフトさせても同様の昇温分布が達成できる。上記例では3台のバーヒータの例を示したが、バーヒータの台数を更に多くすれば、合算昇温量を高くすることができると共に、鋼板幅方向の昇温量分布を精度よく制御することが可能となる。即ち、複数台(2台以上)のバーヒータを鋼板幅方向にシフト可能とし、シフトすることで幅方向の鋼板昇温の分担の分布を可変化させることができるので、鋼板幅方向の任意の領域を昇温させることができ、幅方向温度分布を制御できる。また、バーヒータはインコイルでシフト可能とすることができ、更にバーヒータは、同幅および/または異幅のバーヒータを組み合わせて使用することが可能である。さらに複数のバーヒータはインコイルでそれぞれのバーヒータの加熱量や鉄心間距離を独立して可変させることにより、さらに温度制御性を向上させることが可能になる。
【0046】
例えば、鋼板(粗バー)中央部の温度が低い場合に、同幅の3台のバーヒータを用いて幅方向温度偏差を改善する例を説明する。
【0047】
図8(a)に示すように、1500mm幅の粗バーの幅方向温度分布は、中央部が40℃低いアルファベットのM型となっていた(点線で示す)。そこで、鋼板中央部を逆M型に40℃昇温させて幅方向の温度分布を均一にするため、3台のバーヒータを用いて加熱昇温した(斜線領域が昇温量である)。3台のバーヒータの合算昇温量(実線で示す)は、中央部が40℃高いなだらかな山型の昇温量分布(逆M型)とする必要がある。この昇温量分布とするため、図8(b)に示すように、3台のバーヒーターはそれぞれの鉄心間距離及び昇温量は同じものとし、600mm幅の3台のバーヒータ(No.1〜3)の内2台のバーヒータ(No.1及びNo.3)を幅方向の中心(板幅方向距離が750mm位置)を基準として±150mmシフトさせ加熱運転を行った。即ち、板幅方向距離が600mm〜900mm位置(板幅方向の中心を基準として±150mm)はNo.1〜3の3台全てのバーヒータの鉄心が重なり合う部分を存在させ、板幅方向距離が450mm〜600mm位置(板幅方向の中心を基準として、−300mm〜−150mm)はNo.1と2の2台のバーヒータの鉄心が、さらに板幅方向距離が750mm〜900mm位置(板幅方向の中心を基準として、+150mm〜+300mm)はNo.2と3の2台のバーヒータの鉄心がそれぞれ重なり合う部分を存在させた。その結果各バーヒータ(No.1〜No.3)の昇温量分布は、ずれたなだらかな山型となり、3台の合計昇温量は中央部が40℃高い山型の昇温量分布となった。
【0048】
鋼板の昇温量の決定の仕方は、鋼板(粗バー)の幅別、バーヒータのシフト量別、バーヒータの昇温量別にバーヒータの幅方向の加熱プロフィールを計算機に記憶させ、バーヒータよりも上流側に配置した幅方向温度計により鋼板幅方向の温度分布を把握し、目的とする幅方向温度分布のプロフィールの差分を加熱するように、最も近いシフト量、昇温量を計算機で選択して、その指令を電気シーケンサーに指示してバーヒータシフト量(バーヒータの重なり合い部分量)、加熱量を設定することにより行うことができる。これによって、鋼板の幅方向の任意の領域を所定量昇温させることが可能となる。
【0049】
また、バーヒータをシフトさせる手段としては、例えばレール上を走行可能な台車に、昇降自在にバーヒータを設置し、駆動装置により台車をシフトさせることにより、鋼板幅方向にバーヒータをシフトさせることができる。そして、上下のバーヒータを昇降させてバーヒータの間隙を調整することができる。
【0050】
【実施例】
以下、実施例に基いて本発明を詳細に説明する。
【0051】
熱間圧延において、600mm幅の3台の同幅のトランスバース型バーヒータ(BH1、BH2、BH3)を用いて、900mm幅、1200mm幅、1500mm幅、及び1800mm幅の4種類の粗圧延された鋼板(粗バー)を仕上圧延機前でバーヒータを幅方向にシフトさせて加熱し、鋼板幅方向温度分布を均一化する試験(a)〜(e)を行った。なお、上下のバーヒータの鉄心間距離(ギャップ)はそれぞれの板幅で▲1▼210mm、▲2▼160mm、▲3▼130mmの3水準変更して行った。そして、それぞれの水準での昇温量及び昇温量差を求めた。さらに900mm幅ではさらにエッジヒータでの加熱を付加した場合の試験(e)もおこなった。
【0052】
表1に試験条件及び昇温量を示す。表1に示すように、上下のバーヒータの鉄心間距離(ギャップ)が狭いほど昇温量、昇温量差が大きく、また、バーヒータの重なりが大きいほど昇温量、昇温量差が大きくなっていた。なお、図9に示すように、3台のバーヒータ(BH1〜3)の各々は、WS(Work Side)側、或いはDS(Drive Side)側にシフトさせた。図12の(a)〜(e)は各加熱試験a〜eに対応するバーヒータの幅方向シフトの状態を示している。表1のバーヒータによる「昇温量」は、図10(a)に示すように、昇温前後の板幅方向のそれぞれの最低温度の差とした。また、同様に表1の「昇温量差」は、図10(b)に示すように、鋼板幅方向のセンターの昇温量に対して、鋼板エッジから150mmの位置の昇温量の差とした。
【0053】
【表1】

Figure 2004195497
【0054】
図11に4種類の鋼板をバーヒータで加熱昇温(バーヒータの鉄心間距離=210mm)させたそれぞれの仕上圧延機前でのバーヒータによる昇温量(BH昇温量)と仕上圧延機出側の板幅方向の温度分布の比較(バーヒータの加熱の有無の比較)結果を示す。図11に示すように、粗圧延された各鋼板はアルファベットM型の温度偏差を有する点線で示す温度分布であったが、3台のバーヒータによる細い実線で示す温度分布の合計昇温量により昇温された。その結果、太い実線で示すように鋼板幅方向温度分布はほぼ均一化された。
【0055】
このように幅方向温度分布を有する鋼板を仕上圧延することにより、鋼板幅方向に材質特性が均一化された熱延鋼板が得られる。
【0056】
【発明の効果】
本発明によれば、鋼板幅方向の任意の領域を加熱昇温することができるので、熱間圧延において、鋼板(粗バー)幅方向の温度分布の均一化することができ、その結果熱延鋼板幅方向の材質特性の均一化を達成することができる。また、鋼板(粗バー)幅方向の温度分布を意図的に異ならしめることもでき、熱間圧延によって幅方向材質特性の異なるテーラード鋼板を得ることができる。
【図面の簡単な説明】
【図1】熱間圧延工程を示す模式図である。
【図2】連続熱間圧延工程を示す模式図である。
【図3】粗圧延した粗バー及び仕上圧延した鋼板の幅方向温度分布を示す図である。
【図4】(a)は、エッジヒーターによる昇温を行った鋼板幅方向温度分布を示す図で、(b)はソレノイド型誘導加熱装置によって昇温された鋼板幅方向温度分布を示す図である。
【図5】(a)は600MPa級高張力鋼板の熱間仕上温度(℃)と穴広げ率(%)との関係を示す図で、(b)は600MPa級高張力鋼板の熱間仕上温度(℃)と伸びEL(%)との関係を示す図である。
【図6】トランスバース型バーヒータの概要を示す図である。
【図7】複数台のバーヒータを鋼板幅方向にシフトして、鋼板を加熱する際の幅方向昇温量を示す模式図である。
【図8】バーヒータによる幅方向昇温分布及び鋼板の幅方向温度偏差改善を示す図である。
【図9】実施例におけるバーヒータの幅方向シフトを説明するための図である。
【図10】実施例におけるバーヒータによる昇温量及び昇温量差の規定を説明するための図である。
【図11】実施例における鋼板幅方向温度偏差改善を示す図である。
【図12】実施例における(a)〜(e)の加熱試験に対応する幅方向シフトの状態を示す図である。
【符号の説明】
1 加熱炉
2 スラブ
3 粗圧延機
4 粗バー
5 クロップシャー
6 エッジヒーター
7 連続仕上圧延機
8 冷却スタンド
9 コイラー
10 コイルボックス
11 接合シャー
12 溶接装置
13 放冷大
14 低温部
15 エッジヒーターによる昇温量
16 ソレノイド型誘導加熱装置による昇温量
17 トランスバース型誘導加熱装置
18 鉄心
19 コイル
20 鋼板
21 鋼板(粗バー)
22 バーヒータ
23 昇温量分布[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for heating a steel sheet, and more particularly to a method for heating a steel sheet that controls the temperature distribution in the width direction of the steel sheet.
[0002]
[Prior art]
As shown in FIG. 1, hot rolling of a steel sheet is performed by charging a low-temperature slab 2 into a heating furnace 1 and reheating the slab 2 to a predetermined temperature. The coarse bar 4 is rolled into a coarse bar 4, and the leading and trailing ends of the coarse bar are cut off using a crop shear 5. After the part is heated and finish-rolled to a predetermined hot-rolled steel sheet by a continuous finishing rolling mill 7 comprising a plurality of stands, it is cooled by a cooling stand 8 on a run-out table and wound up by a coiler 9. I have.
[0003]
Further, when endless rolling is performed in which rough bars are joined and finish rolling is performed before finish rolling, a low-temperature slab 2 is charged into a heating furnace 1 as shown in FIG. The slab 2 which has been reheated to the temperature and is reheated is rolled to a predetermined thickness by the rough rolling mill 3 to form the rough bar 4, which is wound up by the coil box 10 and the tip of the coarse bar unwound from the coil box is removed. It is cut by the joining shear 11, and the rear end of the preceding coarse bar and the front end of the following coarse bar are joined by the welding device 12, and the edge heater 6 is used to recover the temperature drop at both edges in the width direction of the coarse bar 4. After heating both edge portions with a continuous finishing mill 7 consisting of a plurality of stands and finish rolling to a predetermined hot-rolled steel sheet, the resultant is cooled in a cooling stand 8 on a run-out table and wound up by a coiler 9. Is being done.
[0004]
In the hot rolling or endless rolling process of such a hot-rolled steel sheet, in order to reheat the low-temperature slab in the heating furnace, the occurrence of uneven heating is inevitable, and the heat release from the heating furnace and the rolled material are rolled. During the rough rolling, a temperature drop occurs at both edges of the rough bar due to the fact that the plate thickness becomes smaller than the plate width during the rolling. These temperature decreases cause unevenness of the temperature distribution in the width direction of the rough bar, which causes unevenness of the finishing temperature.
[0005]
If the temperature distribution in the width direction of the rough bar becomes uneven, the eaves and middle elongation occur in the hot-rolled steel sheet during finish rolling, and the material properties such as the mechanical properties in the width direction of the hot-rolled steel sheet become uneven. And other problems arise.
[0006]
In order to prevent such a problem caused by non-uniform temperature distribution in the width direction of the rough bar, a heating device and an edge heater are provided between the rough rolling mill and the finishing rolling mill, and the rough rolling is performed by the rough rolling mill. It is known to heat a roughened bar. Conventionally, between a rough rolling mill and a finishing rolling mill, a solenoid-type induction heating device for heating the rough bar over its entire width direction and an edge heater for heating both edges of the rough bar are provided. It has been proposed to heat a coarse bar on the entry side of a finishing mill to a uniform temperature in the width direction by using a solenoid-type induction heating device and an edge heater (for example, Patent Document 1).
[0007]
The characteristic of the solenoid type induction heating device used here is that it has a magnetic field characteristic that a coil is wound around the plate and a magnetic field is generated in parallel with the plate. Therefore, the temperature is increased over the entire width by a uniform temperature while the temperature distribution in the plate width direction is substantially constant.
[0008]
That is, the coarse bar is uniformly heated in the width direction by the solenoid type induction heating device so as to reduce the rolling load, and the both edge portions (edge portions) where the temperature drop is large are heated by the edge heater, so that the temperature in the width direction is uniform. It is intended to be distributed.
[0009]
However, as a result of the present inventor's research on the material properties of the hot-rolled steel sheet in the width direction, the rough bar on the entrance side of the finishing mill was heated by an edge heater with a large temperature drop by an edge heater to obtain a temperature distribution in the width direction. It has been found that even when the steel sheet is made uniform, the width direction material properties of the steel sheet obtained by finish rolling are not uniform. That is, the heating method of uniformly heating the entire rough bar in the width direction between the rough rolling mill and the finishing rolling mill, and heating both edges having a large temperature drop by the edge heater, is obtained by finish rolling. It was difficult to make the width direction material properties of the hot rolled steel sheet uniform. Various experiments were conducted to determine the cause, and it was found that there was a cause during slab heating in a heating furnace. That is, since the heating furnace heats the slab in a high-temperature atmosphere, the temperature at the center of the slab is inevitably low, and this temperature distribution is maintained even if the sheet thickness is reduced by rolling. The center temperature is lower than the average temperature, and the width of the letter M in the width direction increases toward the edge.
[0010]
Therefore, it is impossible to make the temperature distribution in the width direction uniform and to make the material properties in the plate width direction uniform by a heating method using an edge heater or a bar heater that raises the temperature in the width direction by a constant value.
[0011]
Also, tailored blanks having different strengths in the width direction of the board are manufactured as press blanks (blanks) for body parts of automobiles and the like. When this tailored blank is press-formed into a vehicle body part, it becomes possible to make the mechanical properties of a predetermined portion of the vehicle body part different.
[0012]
Conventionally, a method of welding a plurality of steel strips to form a tailored blank material is generally used. In recent years, when a hot-rolled steel strip is water-cooled with a run-out table (ROT), a cooling rate in a width direction of the steel strip is changed. Various methods have been proposed for producing tailored blanks without welding by varying the mechanical properties of the steel strip in the width direction (for example, Patent Documents 2 and 3).
[0013]
However, rather than changing the cooling rate in the width direction of the steel strip, by changing the temperature difference in the width direction of the steel strip before finish rolling, and making it a tailored blank material, the mechanical properties, especially the hole expansion rate and elongation properties It was found that tailored blanks excellent in quality can be manufactured. In this method, a method and an apparatus for heating a steel strip for effectively changing the temperature difference in the width direction of the steel strip are required.
[0014]
[Patent Document 1]
JP-A-3-314216 [Patent Document 2]
JP-A-11-192501 [Patent Document 3]
JP 2000-11541 A
[Problems to be solved by the invention]
In view of the above circumstances, the present invention provides a steel sheet heating method capable of heating an arbitrary region in the width direction of a steel plate (steel strip) and controlling the temperature distribution in the width direction of the steel plate. The task is to do so.
[0016]
[Means for Solving the Problems]
In order to obtain a hot-rolled steel sheet having no variation in the material properties in the width direction, the present inventor needs to make the temperature distribution in the width direction of the rough bar on the entry side of the finishing mill uniform, but for that purpose, the slab is used. Heating and raising the temperature of the center low temperature part of the rough bar due to the low temperature of the center part of the slab during heating, and changing the temperature difference in the width direction of the steel sheet (rough bar) before finish rolling to obtain a tailored blank material For this purpose, it is required to heat and raise an arbitrary region in the coarse bar width direction. For this reason, bar heaters composed of a plurality of transverse induction heating devices are arranged in the longitudinal direction of the steel plate (coarse bar), and there is a portion where each bar heater overlaps in the longitudinal direction of the steel plate (the total amount of temperature rise is large). The present invention has been found to be possible by controlling the widthwise temperature distribution by controlling the widthwise temperature distribution by shifting the width of the steel sheet in the width direction and performing a heating operation on each bar heater so that an arbitrary region in the width direction of the steel sheet can be heated and heated with a temperature difference. Was completed.
[0017]
The gist of the present invention is as follows.
[0018]
(1) A method for heating a steel sheet, comprising shifting a plurality of bar heaters arranged in the longitudinal direction of the steel sheet in the width direction of the steel sheet, performing a heating operation on each bar heater, and controlling a temperature distribution in the width direction of the steel sheet.
[0019]
(2) The temperature distribution in the steel sheet width direction is controlled by shifting a plurality of bar heaters arranged in the steel sheet longitudinal direction in the steel sheet width direction so that the overlapping part exists in the steel sheet longitudinal direction and controlling the amount of the overlapping part. A method for heating a steel sheet.
[0020]
(3) The method for heating a steel sheet according to the above (1) or (2), wherein, in the centralized central heating in the steel sheet width direction, a plurality of bar heaters are moved to the center in the steel sheet width direction to perform a heating operation.
[0021]
(4) The heating of the steel sheet according to the above (1) or (2), wherein the heating operation is performed by moving a plurality of bar heaters so as to have a constant interval in the entire width direction in the entire heating in the width direction of the steel sheet. Method.
[0022]
(5) The method for heating a steel sheet according to any one of the above (1) to (4), wherein heating is performed by a plurality of bar heaters installed upstream of a finishing final stand of the hot rolling line.
[0023]
(6) The temperature distribution in the width direction of the steel sheet is measured by a width direction thermometer disposed upstream of the bar heater, and the shift amount of each bar heater is determined based on the measured temperature distribution. ) The method for heating a steel sheet according to any one of (1) to (5).
[0024]
(7) The method for heating a steel sheet according to any one of the above (1) to (6), wherein the shift is possible by in-coil.
[0025]
(8) The method for heating a steel sheet according to any one of the above (1) to (7), wherein the heating amount of each bar heater is independently varied by an in-coil.
[0026]
(9) The method for heating a steel sheet according to any one of the above (1) to (8), wherein the distance between the iron cores of each bar heater is independently varied by in-coil.
[0027]
(10) The method for heating a steel sheet according to any one of the above (1) to (9), wherein the edge in the sheet width direction is heated by an edge heater.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0029]
FIG. 3 is a diagram showing a temperature distribution in a width direction of a rough bar obtained by roughly rolling a slab heated in a heating furnace.
[0030]
Since the heating furnace heats the slab in a high-temperature atmosphere, it is inevitable that the heated slab has a high temperature around its periphery and a low-temperature portion in the center. For this reason, as shown in FIG. 3A, the temperature of the rough bar obtained by roughly rolling the heated slab is lowered because the edge of the rough bar 4 is a large cooling portion 13, and the center portion is at the low temperature portion of the slab. As shown in FIG. 3B, for example, as shown in FIG. 3 (b), the temperature of the central part of the plate width is 1033 ° C., the maximum temperature is 1056 ° C. from the central part toward the edge, and the edge is 1002 ° C. The temperature distribution in the width direction is M-shaped. When the rough bar having such a temperature distribution in the width direction is finish-rolled, as shown in FIG. 3 (c), the temperature at the center of the plate width is 852 ° C., the maximum temperature from the center to the edge is 865 ° C., and the edge is at the edge. Is 800 ° C. and a finish-rolled steel sheet exhibiting the letter M shape, so that the hot rolled steel sheet obtained after cooling has non-uniform material properties such as mechanical properties in the width direction.
[0031]
In the conventional hot rolling method, as shown in FIG. 4A, only the edge portion of the rough bar is cooled by cooling, and it is considered that the temperature distribution in the width direction becomes uniform when heated by the edge heater. However, even if the edge heater is heated and heated (1056 ° C.) by a heating amount 15 indicated by oblique lines in the edge portion, the central low-temperature portion (1033 ° C.) cannot be heated. Also, in the method of heating and raising the temperature in the entire coarse bar width direction by using the solenoid-type induction heating device, as shown in FIG. Is raised, and the M-type widthwise temperature distribution is maintained. Therefore, uniform heating in the width direction cannot be achieved by heating with an edge heater or a solenoid-type induction heating device.
[0032]
In addition, to manufacture tailored steel sheets having different mechanical properties in the width direction of the steel strip, particularly, different properties of hole expansion properties and elongation properties by hot rolling, if the temperature difference in the width direction of the steel sheet is different before finish rolling, It has been found that when finish rolling is performed, the hole expanding properties of the steel sheet are effectively improved by the hot finishing temperature.
[0033]
For example, C: 0.09 to 0.11%, Si: 1.30 to 1.50%, Mn: 1.25 to 1.45%, P: 0.010% or less, S: 0.002% or less When applying a 590 MPa class high-strength steel strip composed of the following components to automotive parts such as cross members, parts are removed in the width direction of the steel strip, and from the part shape, stretch flange processing is performed near the center of the coil width, and steel is removed. At the quarter width to the width edge portion of the band, processing mainly involving overhanging processing is performed.
[0034]
In such processing, the steel strip needs to have a hole expansion ratio of 70% or more, preferably 80% or more for the stretch flanged portion, and the elongation ratio of the steel sheet is 31% or more for the overhanging process, and desirably. 34% or more is required.
[0035]
Consider the conditions for obtaining the above mechanical properties.
[0036]
FIG. 5A is a diagram showing the relationship between the hot finishing temperature (° C.) and the hole expansion rate (%) of the 590 MPa class high tensile steel strip, and FIG. It is a figure which shows the relationship between finishing temperature (degreeC) and elongation EL (%). As shown in FIG. 5A, the hole expansion ratio of the steel strip is improved in response to the increase in the hot finishing temperature, but as shown in FIG. As a result, the elongation of the steel strip decreases. In other words, the hole expanding property and the elongation property show a tendency to be contradictory to the hot finishing temperature.
[0037]
Therefore, the hot finishing temperature is required to be 878 ° C. or more as shown by the arrow in order to make the hole expansion rate 70% or more from FIG. 5A, and the elongation is 31% or more from FIG. 5B. Is required to be 860 ° C. or lower as indicated by an arrow, and it can be seen that the required temperature ranges are different between the two. However, in order to obtain a steel strip having both properties, it is possible to obtain a steel strip by controlling the hot finishing temperature to a very narrow range of 860 to 880 ° C. (the range indicated by oblique lines). There is a problem that the deviation from the given condition occurs, and even if the temperature condition is hit, the target deviation due to the variation of the material occurs, thereby lowering the yield.
[0038]
In the present invention, the hot finishing temperature in the steel strip width direction is varied, and the hot finishing temperature in the vicinity of the center of the steel strip width is 870 ° C or higher, and the 1 / width to width edge portion of the steel strip is 860 ° C or lower. By applying a hot finishing temperature condition in which the central portion of the steel strip width is heated by 20 ° C. or more so that the width of the central portion of the steel strip is increased by 70% or more, and the width of the central portion of the steel strip is reduced to 1/4 width or more. It was found that a tailored steel strip having an elongation of 31% or more at the width edge portion and having different mechanical properties in the width direction can be easily manufactured.
[0039]
However, a heating device necessary to manufacture a steel sheet having uniform material properties in the width direction or a tailored steel sheet having different material properties in the width direction, that is, arbitrarily controlling the temperature distribution in the width direction of the steel sheet, and controlling the temperature in the width direction. There has not been proposed a heating device capable of making the distribution uniform or effectively changing the temperature in the width direction.
[0040]
The inventor of the present invention has conducted intensive studies on a method and an apparatus for heating a steel sheet that can arbitrarily control the temperature distribution in the width direction of the steel sheet. Then, it has been found that the widthwise temperature distribution can be arbitrarily controlled by shifting each bar heater in the width direction, controlling the overlapping portion amount of the bar heaters in the steel plate longitudinal direction, and performing the heating operation of each bar heater.
[0041]
As shown in FIG. 6, unlike the solenoid induction heating device, the transverse induction heating device 17 is configured by winding a coil 19 around an iron core 18. Has the property that it can be uniformly heated.
[0042]
In addition, since the steel sheet can be used by being arranged at the upper and lower positions of the steel sheet, it can be easily shifted in the width direction of the steel sheet, and has a characteristic that the surface of the steel sheet is not flawed.
[0043]
FIG. 7A is a diagram showing the arrangement of one bar heater in the width direction of the steel sheet and the amount of temperature rise. FIGS. 7C to 7E show three bar heaters arranged in the longitudinal direction of the steel sheet. It is a figure which shows the amount of temperature rise of the steel plate width direction at the time of shifting the bar heater by a predetermined amount in the width direction.
[0044]
As shown in FIG. 7 (a), when one bar heater (transverse induction heating device) 22 is disposed in the center of the steel plate 21 and the bar heater is operated for heating, the temperature rise distribution 23 in the width direction of the steel plate becomes the bar heater. Corresponding to the width (iron core width). Three bar heaters having such a temperature increasing characteristic are arranged in the longitudinal direction of the steel sheet, and each bar heater is shifted by a predetermined amount in the width direction of the steel sheet (the center of the width direction is used as a reference for the shift amount. 7B, for example, FIG. 7B shows an example in which the shift amount is zero and all three bar heaters overlap each other, and the temperature rise amounts of the three bar heaters are summed up and shown in the lower diagram. As shown in FIG. 7 (c), the temperature distribution in the central portion in the width direction of the steel sheet is high, and the two bar heaters on the upstream side and the downstream side are shifted in the opposite direction without shifting one bar heater in the center. In the example where the overlapping portions of the bar heaters are slightly reduced, the amounts of temperature rise of the three bar heaters are added in a state of being shifted according to the shift amount, and are added in the width direction of the steel sheet as shown in the lower figure. As a result, the distribution of the temperature rise becomes a broad mountain shape, and FIG. FIG. 7D is an example in which the shift amount of the two bar heaters on the upstream side and the downstream side is made larger than that in FIG. 7C, and the overlapping portion of the bar heaters is further reduced. The temperature distribution is a mountain-shaped temperature rise distribution that is wider than that in FIG. 7C. FIG. 7E shows an example in which the bar heater is moved so as to have a constant interval in the entire width direction to eliminate the overlapping portion of the bar heater and to heat the entire width. A wider mountain-shaped temperature rise distribution is obtained.
[0045]
The bar heater to be shifted is not limited to the downstream side, and the same temperature distribution can be achieved by shifting any bar heater. In the above example, an example of three bar heaters is shown. However, if the number of bar heaters is further increased, the total temperature increase can be increased, and the distribution of the temperature increase in the steel sheet width direction can be controlled accurately. It becomes possible. That is, a plurality (two or more) of bar heaters can be shifted in the width direction of the steel sheet, and the shift can make the distribution of the temperature increase of the steel sheet in the width direction variable. Can be raised, and the temperature distribution in the width direction can be controlled. The bar heaters can be shifted in-coil, and the bar heaters can be used in combination with bar heaters having the same width and / or different widths. Further, the temperature controllability can be further improved by independently varying the heating amount of each bar heater and the distance between the iron cores with the in-coil of the plurality of bar heaters.
[0046]
For example, an example will be described in which the temperature deviation in the width direction is improved by using three bar heaters having the same width when the temperature of the central portion of the steel plate (rough bar) is low.
[0047]
As shown in FIG. 8A, the temperature distribution in the width direction of the coarse bar having a width of 1500 mm was a letter M type (shown by a dotted line) whose central portion was lower by 40 ° C. Then, in order to raise the temperature of the central part of the steel sheet to 40 ° C. in an inverted M-shape to make the temperature distribution in the width direction uniform, the temperature was raised using three bar heaters (the hatched area indicates the amount of temperature increase). It is necessary that the total temperature rise amount (indicated by a solid line) of the three bar heaters be a gentle mountain-shaped temperature rise amount distribution (inverted M type) whose central part is higher by 40 ° C. As shown in FIG. 8 (b), the three bar heaters have the same distance between the iron cores and the same amount of temperature rise, and the three bar heaters having a width of 600 mm (No. 1) are used. The heating operation was performed by shifting two of the bar heaters (No. 1 and No. 3) in (1) to (3) ± 150 mm with respect to the center in the width direction (the distance in the plate width direction is 750 mm). That is, the position where the distance in the plate width direction is 600 mm to 900 mm (± 150 mm based on the center in the plate width direction) is No. No. 1 to No. 3 are provided at positions where the iron cores of all three bar heaters overlap each other, and the distance in the plate width direction is 450 mm to 600 mm (-300 mm to -150 mm based on the center in the plate width direction). The iron cores of the two bar heaters No. 1 and No. 2 have a distance of 750 mm to 900 mm in the plate width direction (+150 mm to +300 mm based on the center in the plate width direction). There were portions where the iron cores of the two bar heaters 2 and 3 overlapped each other. As a result, the heating amount distribution of each of the bar heaters (No. 1 to No. 3) becomes a shifted gentle mountain shape, and the total heating amount of the three units is the same as the mountain-shaped heating amount distribution in which the central part is higher by 40 ° C. became.
[0048]
The method of determining the heating amount of the steel sheet is as follows. The heating profile in the width direction of the bar heater is stored in the calculator for each width of the steel sheet (coarse bar), for each shift amount of the bar heater, and for each heating amount of the bar heater, and the upstream side of the bar heater is stored. The temperature distribution in the width direction of the steel sheet is grasped by the width direction thermometer arranged in the direction, and the nearest shift amount and temperature increase amount are selected by a computer so as to heat the difference in the profile of the target width direction temperature distribution, This instruction can be performed by instructing the electric sequencer to set the bar heater shift amount (overlapping portion of the bar heater) and the heating amount. This makes it possible to raise the temperature of an arbitrary region in the width direction of the steel sheet by a predetermined amount.
[0049]
Further, as means for shifting the bar heater, for example, a bar heater is installed on a carriage that can travel on rails so as to be able to move up and down, and the carriage is shifted by a driving device, so that the bar heater can be shifted in the steel sheet width direction. Then, the gap between the bar heaters can be adjusted by raising and lowering the upper and lower bar heaters.
[0050]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0051]
In hot rolling, four types of roughly-rolled steel plates of 900 mm width, 1200 mm width, 1500 mm width, and 1800 mm width were produced using three 600 mm width transverse bar heaters (BH1, BH2, BH3). Tests (a) to (e) were conducted in which the (rough bar) was heated by shifting the bar heater in the width direction in front of the finish rolling mill to make the temperature distribution in the width direction of the steel sheet uniform. The distance (gap) between the iron cores of the upper and lower bar heaters was changed by three levels of (1) 210 mm, (2) 160 mm, and (3) 130 mm in each plate width. Then, the temperature rise amount and the temperature rise difference at each level were determined. Further, for the 900 mm width, a test (e) in which heating by an edge heater was further added was also performed.
[0052]
Table 1 shows the test conditions and the temperature rise. As shown in Table 1, as the distance (gap) between the iron cores of the upper and lower bar heaters is smaller, the temperature rise amount and the difference in the temperature rise amount are larger, and as the overlap between the bar heaters is larger, the temperature rise amount and the temperature difference are larger. I was As shown in FIG. 9, each of the three bar heaters (BH1 to BH1) was shifted to the WS (Work Side) side or the DS (Drive Side) side. (A) to (e) of FIG. 12 show the state of the width shift of the bar heater corresponding to each of the heating tests a to e. As shown in FIG. 10 (a), the "heating amount" by the bar heater in Table 1 was defined as the difference between the minimum temperatures in the plate width direction before and after the heating. Similarly, as shown in FIG. 10 (b), the “temperature rise difference” in Table 1 indicates the difference between the temperature rise at the center 150 mm from the steel plate edge and the temperature rise at the center in the steel sheet width direction. And
[0053]
[Table 1]
Figure 2004195497
[0054]
In FIG. 11, the temperature rise amount (BH temperature rise amount) by the bar heater in front of each finishing mill in which four types of steel plates were heated by a bar heater (distance between the iron cores of the bar heater = 210 mm) and the exit side of the finishing mill were shown. The result of comparison of the temperature distribution in the plate width direction (comparison of the presence or absence of heating of the bar heater) is shown. As shown in FIG. 11, each of the rough-rolled steel sheets had a temperature distribution indicated by a dotted line having a temperature deviation of the letter M, but the temperature distribution was increased by a total temperature increase amount indicated by a thin solid line by three bar heaters. Was warmed. As a result, as shown by the thick solid line, the temperature distribution in the width direction of the steel sheet was substantially uniformized.
[0055]
By subjecting the steel sheet having the temperature distribution in the width direction to finish rolling, a hot-rolled steel sheet having uniform material properties in the width direction of the steel sheet can be obtained.
[0056]
【The invention's effect】
According to the present invention, an arbitrary region in the width direction of the steel sheet can be heated and heated, so that in hot rolling, the temperature distribution in the width direction of the steel sheet (rough bar) can be made uniform, and as a result, hot rolling can be performed. Uniformity of material properties in the width direction of the steel sheet can be achieved. Further, the temperature distribution in the width direction of the steel sheet (rough bar) can be intentionally made different, and tailored steel sheets having different material properties in the width direction can be obtained by hot rolling.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a hot rolling step.
FIG. 2 is a schematic view showing a continuous hot rolling step.
FIG. 3 is a diagram showing a temperature distribution in a width direction of a rough-rolled rough bar and a finish-rolled steel sheet.
FIG. 4 (a) is a diagram showing a temperature distribution in a width direction of a steel sheet heated by an edge heater, and FIG. 4 (b) is a diagram showing a temperature distribution in a width direction of a steel sheet heated by a solenoid-type induction heating device. is there.
FIG. 5A is a diagram showing a relationship between a hot finishing temperature (° C.) and a hole expansion ratio (%) of a 600 MPa class high strength steel sheet, and FIG. 5B is a diagram showing a hot finishing temperature of a 600 MPa class high strength steel sheet. It is a figure which shows the relationship between (° C) and elongation EL (%).
FIG. 6 is a diagram showing an outline of a transverse bar heater.
FIG. 7 is a schematic diagram showing a widthwise heating amount when heating a steel sheet by shifting a plurality of bar heaters in the width direction of the steel sheet.
FIG. 8 is a diagram showing a widthwise temperature rise distribution by a bar heater and an improvement in a widthwise temperature deviation of a steel sheet.
FIG. 9 is a view for explaining a shift in the width direction of the bar heater in the embodiment.
FIG. 10 is a view for explaining the regulation of the temperature rise amount and the temperature rise amount difference by the bar heater in the embodiment.
FIG. 11 is a diagram showing improvement in temperature deviation in the steel sheet width direction in the example.
FIG. 12 is a diagram showing a state of a shift in the width direction corresponding to the heating tests (a) to (e) in the example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Slab 3 Rough rolling mill 4 Rough bar 5 Crop shear 6 Edge heater 7 Continuous finishing rolling mill 8 Cooling stand 9 Coiler 10 Coil box 11 Joining shear 12 Welding equipment 13 Large cooling unit 14 Low temperature unit 15 Heating by edge heater Quantity 16 Temperature rise by solenoid type induction heating device 17 Transverse type induction heating device 18 Iron core 19 Coil 20 Steel plate 21 Steel plate (coarse bar)
22 Bar heater 23 Heating amount distribution

Claims (10)

鋼板長手方向に配設した複数台のバーヒータを鋼板幅方向にシフトさせ、各バーヒータを加熱運転し、鋼板幅方向温度分布を制御することを特徴とする鋼板の加熱方法。A method for heating a steel sheet, comprising shifting a plurality of bar heaters arranged in the longitudinal direction of the steel sheet in the width direction of the steel sheet, performing a heating operation on each bar heater, and controlling a temperature distribution in the width direction of the steel sheet. 鋼板長手方向に配設した複数台のバーヒータを鋼板長手方向で重なり合い部分が存在するように鋼板幅方向にシフトさせ、重なり合い部分量を制御することで鋼板幅方向温度分布を制御することを特徴とする鋼板の加熱方法。A plurality of bar heaters arranged in the longitudinal direction of the steel sheet are shifted in the width direction of the steel sheet so as to have an overlapping portion in the longitudinal direction of the steel sheet, and the temperature distribution in the width direction of the steel sheet is controlled by controlling the amount of the overlapping portion. Steel sheet heating method. 鋼板幅方向の中央部集中加熱では、複数台のバーヒータを鋼板幅方向中央に移動させて加熱運転を行うことを特徴とする請求項1または2記載の鋼板の加熱方法。The method for heating a steel sheet according to claim 1 or 2, wherein in the central heating in the width direction of the steel sheet, a plurality of bar heaters are moved to the center in the width direction of the steel sheet to perform a heating operation. 鋼板幅方向全体加熱では、複数台のバーヒータを幅方向全体に一定間隔となるように移動させて加熱運転を行うことを特徴とする請求項1または2記載の鋼板の加熱方法。3. The method for heating a steel sheet according to claim 1, wherein, in the entire heating in the width direction of the steel sheet, the heating operation is performed by moving a plurality of bar heaters at regular intervals in the entire width direction. 熱延ラインの仕上最終スタンドよりも上流側に設置した複数台のバーヒータにより加熱することを特徴とする請求項1〜4の内のいずれかに記載の鋼板の加熱方法。The method for heating a steel sheet according to any one of claims 1 to 4, wherein the heating is performed by a plurality of bar heaters installed on the upstream side of a finishing final stand of the hot rolling line. バーヒータよりも上流側に配置した幅方向温度計により、鋼板幅方向温度分布を測定し、該測定した温度分布に基いて各バーヒータのシフト量を決定することを特徴とする請求項1〜5のいずれかに記載の鋼板の加熱方法。The temperature distribution in the width direction of the steel sheet is measured by a width-direction thermometer disposed upstream of the bar heater, and the shift amount of each bar heater is determined based on the measured temperature distribution. The method for heating a steel sheet according to any one of the above. インコイルでシフトが可能となっている請求項1〜6のいずれかに記載の鋼板の加熱方法。The method for heating a steel sheet according to any one of claims 1 to 6, wherein the shift can be performed by in-coil. インコイルでそれぞれのバーヒータの加熱量を独立して可変させることを特徴とする請求項1〜7のいずれかに記載の鋼板の加熱方法。The method for heating a steel sheet according to any one of claims 1 to 7, wherein a heating amount of each bar heater is independently varied by an in-coil. インコイルでぞれぞれのバーヒータの鉄心間距離を独立して可変させることを特徴とする請求項1〜8のいずれかに記載の鋼板の加熱方法。The method for heating a steel sheet according to any one of claims 1 to 8, wherein a distance between iron cores of the respective bar heaters is independently varied by an in-coil. エッジヒータで板幅方向端部を加熱することを特徴とする請求項1〜9のいずれに記載の鋼板の加熱方法。The method for heating a steel sheet according to any one of claims 1 to 9, wherein the edge portion in the sheet width direction is heated by an edge heater.
JP2002365867A 2002-06-07 2002-12-17 Steel plate heating method Expired - Fee Related JP3793503B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002365867A JP3793503B2 (en) 2002-12-17 2002-12-17 Steel plate heating method
KR1020047019940A KR100698502B1 (en) 2002-06-07 2003-06-06 Hot rolling method and apparatus for hot steel sheet
TW092115378A TWI261000B (en) 2002-06-07 2003-06-06 Hot rolling method and apparatus for steel strip
PCT/JP2003/007229 WO2004000476A1 (en) 2002-06-07 2003-06-06 Hot rolling method and apparatus for hot steel sheet
CNB038187701A CN100333846C (en) 2002-06-07 2003-06-06 Hot rolling method and apparatus for hot steel sheet
AU2003238695A AU2003238695A1 (en) 2002-06-07 2003-06-06 Hot rolling method and apparatus for hot steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365867A JP3793503B2 (en) 2002-12-17 2002-12-17 Steel plate heating method

Publications (2)

Publication Number Publication Date
JP2004195497A true JP2004195497A (en) 2004-07-15
JP3793503B2 JP3793503B2 (en) 2006-07-05

Family

ID=32763294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365867A Expired - Fee Related JP3793503B2 (en) 2002-06-07 2002-12-17 Steel plate heating method

Country Status (1)

Country Link
JP (1) JP3793503B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237240A (en) * 2006-03-08 2007-09-20 Nippon Steel Corp Hot-rolling equipment and method
JP2008093694A (en) * 2006-10-11 2008-04-24 Nippon Steel Corp Method of heating steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237240A (en) * 2006-03-08 2007-09-20 Nippon Steel Corp Hot-rolling equipment and method
JP2008093694A (en) * 2006-10-11 2008-04-24 Nippon Steel Corp Method of heating steel

Also Published As

Publication number Publication date
JP3793503B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
KR100698502B1 (en) Hot rolling method and apparatus for hot steel sheet
JP5655852B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
CN1278792C (en) Metal plate flatness controlling method and device
TW553783B (en) Production method and installation for producing thin flat products
CN104603298A (en) Rapidly heating device of continuous annealing equipment
CN107109510A (en) Method for alignment, related device and the implementation methods described or the equipment of device of steel plate crystal grain
JP6083156B2 (en) Rapid heating apparatus and rapid heating method for continuous annealing equipment
KR101819303B1 (en) Apparatus for induction heating material and endless rolling method of thesame
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
JP3329186B2 (en) Hot-rolled steel strip rolling method and apparatus
JP3418739B2 (en) Continuous casting hot rolling equipment and continuous casting hot rolling method
JP3793503B2 (en) Steel plate heating method
CN107405658B (en) Rolling mill
JP3971295B2 (en) Induction heating device and hot rolling equipment
JP2016160501A (en) Hot rolled steel sheet excellent in processability, and method for manufacturing the same
JP3371686B2 (en) Hot rolled steel strip rolling method
JP4427269B2 (en) Manufacturing method of high-tensile hot-rolled steel strip with different mechanical properties in the width direction
JP3620464B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
JP4133042B2 (en) Steel sheet hot rolling method and apparatus
JP2001314901A (en) Method for rolling hot rolled steel plate and hot rolling apparatus
JP3698088B2 (en) Manufacturing method of hot-rolled steel strip
JP2003013134A (en) Manufacturing method for steel sheet, and facility therefor
JP2004050183A (en) Method and device for hot-rolling steel sheet
JP2004283846A (en) Hot rolling method and its equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

R151 Written notification of patent or utility model registration

Ref document number: 3793503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees