JP2004195481A - Gravity casting method and gravity casting apparatus - Google Patents

Gravity casting method and gravity casting apparatus Download PDF

Info

Publication number
JP2004195481A
JP2004195481A JP2002364171A JP2002364171A JP2004195481A JP 2004195481 A JP2004195481 A JP 2004195481A JP 2002364171 A JP2002364171 A JP 2002364171A JP 2002364171 A JP2002364171 A JP 2002364171A JP 2004195481 A JP2004195481 A JP 2004195481A
Authority
JP
Japan
Prior art keywords
temperature
solidification
mold
time
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002364171A
Other languages
Japanese (ja)
Other versions
JP4274788B2 (en
Inventor
Tsutomu Koike
勉 小池
Teruyuki Oda
輝幸 小田
Shigeru Koyama
茂 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Koyama Co Ltd
Original Assignee
Koyama Co Ltd
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyama Co Ltd, Fuji Heavy Industries Ltd filed Critical Koyama Co Ltd
Priority to JP2002364171A priority Critical patent/JP4274788B2/en
Publication of JP2004195481A publication Critical patent/JP2004195481A/en
Application granted granted Critical
Publication of JP4274788B2 publication Critical patent/JP4274788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gravity casting method and a gravity casting apparatus by which a work efficiency is improved by setting a solidification time appropriately without using intuitional operation and the quality of a cast product is improved. <P>SOLUTION: In the gravity casting method and the gravity casting apparatus, by which the molten metal is filled up into a cavity 13 in a metallic mold 10 from a sprue 17 with the gravity and the mold is opened after passing the solidified time and the cast product is taken out, the temperature of a temperature measuring point s set in a feeder head part 16 as the last solidified part of the molten metal filled up in the metallic mold 10, is detected with a temperature detecting means 24 and a point of time becoming the temperature when the detected temperature is progressed into the solidification in the preset last solidified part, is made to be the completion of the solidified time. Thus, the solidification time is set appropriately just enough without resort to the seat-of-the-pants operation, thereby securing the quality of the cast product and improving the work efficiency. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、重力鋳造法および重力鋳造装置に関する。
【0002】
【従来の技術】
重力鋳造法は、金型のキャビティ内にアルミニウム合金、マグネシウム合金等の金属溶湯を重力による流し込みによって鋳造する方法であって、寸法精度が高く、鋳物の組織が緻密で機械的性質および耐久性に優れると共に、鋳造装置および金型の寿命も長く、設備費が比較的安価であることから広く行われている。
【0003】
しかし、鋳造時の金型温度が低過ぎると溶湯が充填途中において薄肉部で凝固して不廻りや湯ざかい、巣等の鋳造欠陥を引き起こし、また金型温度が高過ぎると熱容量の大きな肉厚部で巣等の鋳造欠陥が発生して不良鋳造品の発生要因となる。
【0004】
この対策として、鋳造サイクル終了から次の鋳造サイクル開始までの時間と溶湯を充填する直前の金型の温度を測定し、この測定時間および測定温度と予め設定した時間および金型温度とを比較演算し、演算結果に基づいて金型が設定温度になるように加熱手段および鋳造サイクル時間を調整することによって、金型温度を所定温度領域に制御して、鋳造欠陥の発生を防止する金型温度制御方法が知られている(例えば特許文献1参照)。
【0005】
一方、重力鋳造法は、金型のキャビティ内での鋳込みが徐々に行われて先に流入した溶湯が先端に流れていくので、先端から先に凝固して押湯部が最後に凝固するように指向性凝固を進行させる必要があり、この押湯部を含む湯口、湯道等の総称が方案部であって、方案部が確実に凝固した時点で金型を開き、製品を取り出している。
【0006】
この方案部は、溶湯をキャビティに注湯、すなわち充填する際の空気の巻き込みおよび酸化物の発生を抑制し、押湯部に向かう指向性凝固を確保しての品質を確保するうえで重要な部分である。
【0007】
また、注湯から型開きまでに要する凝固時間、すなわち型締め時間や型開き時間を決定する凝固状態の把握は、キャビティ内または金型に熱電対温度計等の温度測定手段を設置し、その温度測定手段による温度検出に基づいて鋳物の凝固状態を把握する方法が一般に行われている。
【0008】
例えば、重量約10kgの鋳造品を鋳造するときの金型の温度は、図8に示す金型温度と凝固時間の相関図を示すように湯口からキャビティに充填された溶湯の溶湯熱によって次第に上昇し、最高温度a、例えば491℃に達した後にキャビティ内の溶湯の凝固開始に伴って次第に下降し、押湯部まで凝固が進行して鋳物となったものが金型を開型して離型しても変形やかじりが発生しない凝固温度に達したときの金型の温度b、例えば453℃に達した時間t、例えば210秒を凝固時間として予め実験的に確認して設定しておき、このときの時間tを凝固時間終了、すなわち型開き時間とすることができる。しかし、例えば鋳造作業開始時等における金型の温度は低く、鋳造作業の繰り返しにより次第に金型温度が上昇することから、金型の温度には例えば約±15℃のばらつきがある。したがって、真の凝固温度に対する金型の温度は438℃〜468℃となり、これを考慮して凝固時間を設定しなければならず、真の凝固に要する時間より余分な時間が設定される。
【0009】
【特許文献1】
特開平6−262337号公報
【0010】
【発明が解決しようとする課題】
しかし、凝固した鋳物が金型を開いて離型しても変形やかじりが発生しない温度に鋳物の温度が降下するまでの凝固時間の設定は、予め実験的に確認した時間に基づいて、鋳造毎に鋳造作業者の経験と感で人為的に設定されることから、凝固時間の設定には鋳造作業者による個人差がある。また、実際の鋳造にあたっては雰囲気温度、金型温度、金型熱容量等の不確定な要素が影響し、各鋳造サイクル毎に凝固時間にばらつきが発生する。
【0011】
この金型の凝固時間の設定が適切でなく、方案部の部分が完全に凝固しない状態で開型すると十分な押湯効果が得られず巣が発生する。この巣の発生を回避するために凝固時間を長く設定すると、真の凝固に要する時間より余分な時間が設定されて作業効率の低下を招くことが懸念される。また、必要以上の凝固時間が設定されると溶湯から受けた金型の熱が放熱して良品を鋳造するに必要な金型温度が変化して鋳造品の品質に影響を及ぼすおそれがある。さらに、凝固時間の設定が適切でなく、離型する温度が高過ぎると鋳造品にかじりや変形が発生し、また離型する温度が低過ぎると離型が困難になることが懸念される。
【0012】
一方、キャビティ内または金型に設けられた温度測定手段による温度検出に基づいて溶湯の凝固状態を把握する方法にあっては、金型の製品押出ピン、製品形状等の製品仕様、金型構成等により温度測定手段の設置部位が制約され、かつ金型自体の熱および熱容量の影響により鋳物の凝固状態を高い精度で把握することが困難である。
【0013】
従って、かかる点に鑑みなされた本発明の目的は、凝固時間を人為によらず適切に設定することによって作業効率の向上を図り、かつ鋳造品の品質向上が得られる重力鋳造法および重力鋳造装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成する請求項1に記載の重力鋳造法の発明は、湯口から金型のキャビティ内に溶湯を重力によって充填して凝固時間経過後に型開きして鋳造品を取り出す重力鋳造法において、金型に充填された溶湯の最終凝固部に設定された温度測定点の温度が、予め設定された上記最終凝固部まで凝固が進行したときの温度となった時点を凝固時間終了とすることを特徴とする。
【0015】
請求項1に記載の発明によると、雰囲気温度、金型温度、金型熱容量等の不確定な要素による影響が極めて少なく溶湯の凝固状態と極めて高い相関性がある最終凝固部に設定された温度測定点の温度が、予め実験的あるいはシミュレーションにより確認して設定された凝固温度に達した時点を凝固時間終了とすることで、高精度でかつ人為によることなく過不足のない適切な凝固時間が設定され、適切な状態での開型が可能になり鋳造品の品質が確保できると共に、作業効率が向上する。
【0016】
請求項2に記載の発明は、請求項1の重力鋳造法において、上記温度測定点は、押湯部内に設定されたことを特徴とする。
【0017】
請求項2の発明は、請求項1における温度測定点が設定される最終凝固部をより具体的にするものであって、押湯部は湯口からキャビティ内に充填された溶湯が凝固の進行によって体積減少するのを補うために溶湯を供給する役割をし、押湯効果を確保するために押湯部内の溶湯が最後に凝固する最終凝固部となるように設定されている。
【0018】
請求項3に記載の発明は、請求項1の重力鋳造法において、上記温度測定点は、湯道内に設定されたことを特徴とする。
【0019】
請求項3の発明は、請求項1における温度測定点が設定される最終凝固部をより具体的にするものであって、湯道は湯口からキャビティ内に溶湯を誘導するものであって、最後に凝固する最終凝固部となるものである。また、この湯道は押湯部を兼ねることが多い。
【0020】
請求項4に記載の発明は、請求項1から3のいずれか1項に記載の重力鋳造法において、上記金型のキャビティ内への溶湯充填による凝固時間開始から上記凝固時間終了までの凝固到達時間と、予め設定された基準凝固到達時間範囲とを比較演算して上記凝固到達時間が上記基準凝固到達時間範囲内でないときは鋳造欠陥があると判断することを特徴とする。
【0021】
請求項4の発明によると、凝固開始から凝固終了までの凝固時間が、予め実験的に設定された基準凝固到達時間範囲内でないときには、巣等の鋳造欠陥の発生が懸念される。よって、凝固到達時間が上記基準到達時間範囲内でないときには鋳造欠陥があると判断することによって、鋳造品の品質向上が得られる。
【0022】
請求項5に記載の発明は、請求項1〜4のいずれか1項の重力鋳造法において、上記最終凝固部の最高温度および上記金型のキャビティ内への溶湯充填による凝固時間開始から上記最高温度に達するまでの最高温度到達時間と、予め設定された基準最高温度範囲および基準最高温度到達時間範囲とを比較演算して上記最高温度および最高温度到達時間が上記基準最高温度範囲あるいは基準最高温度到達時間範囲内でないときには鋳造欠陥があると判断する。
【0023】
請求項5の発明によると、最終凝固部の最高温度および最高温度到達時間が、予め実験的に設定された基準最高温度範囲内および基準最高温度到達時間範囲内でないときには巣等の鋳造欠陥の発生が懸念される。よって、最終凝固部の最高温度および最高温度到達時間が、それぞれ基準最高温度範囲および基準最高温度到達時間範囲内でないときには鋳造欠陥があると判断することによって、鋳造品の品質向上が得られる。
【0024】
上記目的を達成する請求項6に記載の重力鋳造装置の発明は、湯口から金型のキャビティ内に溶湯を重力によって充填して凝固時間経過後に型開きして鋳造品を取り出す重力鋳造装置において、上記金型に充填された溶湯の最終凝固部に温度測定点が設定された温度測定手段を有し、この温度測定手段の検出温度が、予め設定された上記最終凝固部まで凝固が進行した時点の温度を検出したときを凝固時間終了とすることを特徴とする。
【0025】
請求項6の発明によると、雰囲気温度、金型温度、金型熱容量等の不確定な要素による影響が極めて少なく溶湯の凝固状態と極めて高い相関性がある最終凝固部に温度測定点が設定された温度測定手段を設け、予め実験的にあるいはシミュレーションにより確認して設定された凝固温度に達した時点を温度測定手段により検出したときを凝固時間終了とすることで、高精度でかつ人為によることなく過不足のない適切な凝固時間が設定されて、適切な状態での開型が可能になり鋳造品の品質が確保できると共に、作業効率の向上が得られる。
【0026】
請求項7に記載の発明は、請求項6の重力鋳造装置において、上記温度測定手段の温度測定点は、押湯部内に設定されたことを特徴とする。
【0027】
請求項7の発明は、、請求項6における温度測定手段の温度測定点の設定位置をより具体的にするものであって、押湯部は湯口からキャビティ内に充填された溶湯が凝固の進行によって体積減少するのを補う溶湯を供給する役割をし、押湯効果を確保するために押湯部内の溶湯が最後に凝固する最終凝固部となるように設定されている。また、押湯部は金型の形状等の影響を極力少なくなるように設定することが可能であり、金型の熱等の影響が抑制された部位に温度測定手段を配置することができる。
【0028】
請求項8に記載の発明は、請求項6の重力鋳造装置にいて、上記温度測定手段の温度測定点は、湯道内に設定されたことを特徴とする。
【0029】
請求項8の発明は、温度測定手段の温度測定点をより具体的にするものであって、湯道は湯口からキャビティ内に溶湯を導くものであって、湯道内の溶湯が最後に凝固する最終凝固部となるように設定されている。また、湯道は金型の形状等に影響することなく形成することができ、金型の熱等の影響が抑制された部位に温度測定手段を配置することができる。
【0030】
【発明の実施の形態】
以下、本発明による重力鋳造法および重力鋳造装置の実施の形態をアルミニウム合金の鋳造を例に図1乃至図7を参照して説明する。
【0031】
図1は重力鋳造装置1の概念図であって、基台2に支持軸3によって支持部本体4が傾転自在に支持され、支持部本体4は図示しない傾倒駆動手段によって給湯・開型位置と充填・凝固位置との間で傾転される。図1に示す給湯・開型位置における支持部本体4の上側にキャビティ13を形成する下型11と上型12を備えた金型10が取り付けられている。
【0032】
上型12は、下型11に対して略L字状に形成されたアーム31を介して図1に示す型締め位置と、図2に示すように下型11に対して約90°回動して起立した型開き位置との間で傾転自在に支持され、型締め機構であるアーム31と支持部本体4の下部との間に掛け渡された型締めシリンダ32の伸縮作動によって型締め位置と型開き位置に回動し、かつそれらの位置に保持される。
【0033】
上型12には、キャビティ13内に突出して鋳造された製品を上型12から離型する押出ピンを作動させる上型製品押出用シリンダ33が設けられ、支持部本体4の下部に下型11側からキャビティ13内に突出して鋳造された製品を押し出す押出ピンを作動する下型製品押出用シリンダ34が設けられている。
【0034】
支持部本体4には、揺動自在に軸支された湯受けアーム35によって上方が開放された有底状のラドル36が支持されている。通常時にはラドル36の注湯口36aが後述する金型10の湯口17内に挿入された状態に保持されると共に、仮想線で示すように湯受けアーム35を傾倒可能にしてラドル36内に堆積した溶滓等の排除作業等のメンテナンスを容易にしている。
【0035】
さらに金型10は、支持部本体4を図1に示す給湯・開型位置から90°傾転した充填・凝固位置における要部断面図を図3に示し、かつ図4に図3のI−I線断面図を示すように、充填・凝固位置において下型11のキャビティサイド11aと上型12のキャビティサイド12aによって形成された中空状のキャビティ13の上方に、それぞれのキャビティサイド11a、12aに連続する押湯部サイド11b、12bによって押湯部16が連続形成され、さらに押湯部サイド11b、12bに連続する湯口サイド11c、12cによってテーパ状に拡径して上端が開口する湯口17が連続形成されている。本実施の形態では押湯部16は、湯口17から供給された溶湯をキャビティ13内に誘導する湯道を兼ね、これら押湯部16および湯口17によって方案部15を形成している。
【0036】
金型10には押湯部16内に温度測定点sが設定された温度検出装置21が設けられている。温度検出装置21について図3のII部拡大図を示す図5を参照して説明する。
【0037】
上型12に、外側から押湯部16に貫通し、かつ段部22aを介して外側の大径部22bと押湯部16側の小径部22cによって形成される取付孔22が穿設され、取付孔22に温度検出手段、例えば熱電対による熱電対温度計24を保持する保護ピン23が取り付けられている。保護ピン23は、取付孔22の段部22aに係合可能な段部23aを介して大径部22bに嵌合する比較的大径の基部23bと小径部22cに嵌合する例えば外径が約6mm〜8mmの軸部23cを有する棒状であって、外側から取付孔22に挿入し、その段部23aを取付孔22の段部22aに当接することによって軸部23cの先端が押湯部サイド12bより約10mm〜15mm程度押湯部16内に突出する長さを有し、基部23bから軸部23cの先端近傍に達する保持孔23dが穿設された先端肉厚が約2〜3mmに形成されている。
【0038】
保護ピン23の保持孔23dに、保護ピン23の先端近傍に対応して保持孔23dの先端に接する温度測定点sが設定された熱電対温度計24が挿入され、保護ピン23を取付孔22に装着することによって、最終凝固部となる押湯部16内の温度測定が可能になる。
【0039】
この取付孔22に装着された熱電対温度計24が内装された保護ピン23は、貫通孔25aが穿孔され、図示しない取付ボルトによって上型12に取り付けられたピン押さえプレート25によって取付孔22からの脱落が防止され、かつピン押さえプレート25に螺合する抜け止めボルト27によって熱電対温度計24が固定されている。また、熱電対温度計24を保護ピン23に内装することによって、金型10の構成を複雑にすることなく熱電対温度計24を配設できると共に熱電対温度計24を溶湯等から保護される。
【0040】
また、押湯部16への熱電対温度計24の設置は、金型10の形状等に影響されることなく制約が極めて小さく製品に合わせてその設置部位が容易に選択でき、金型10自体の熱および熱容量の影響を極力排除した状態で設置することができる。
【0041】
ここで、押湯部16の溶湯は、湯口17からキャビティ13内に充填された溶湯が凝固進行中における体積減少を補う溶湯を供給する役割をするものであり、キャビティ13内に注湯された溶湯は、先に注湯された湯口17から遠いキャビティ13の先端、すなわち下端から凝固が行われ、押湯部16内の溶湯が最後に凝固する最終凝固部となるように設定されている。
【0042】
この押湯部16内に設定された温度測定点sの温度は、キャビティ13内に充填された溶湯の凝固状態と極めて高い相関性があり、湯口17から給湯された溶湯が充填されたときを凝固時間開始とし、キャビティ13に注湯された溶湯の溶湯熱によって最高温度に達した後に、溶湯がキャビティ13の先端となる下端からの凝固の開始に伴って次第に下降することから、押湯部16まで凝固が進行して溶湯が凝固して鋳物となったものが金型10を開型して離型しても変形やかじりが発生しない温度まで降下した時点の温度を予め実験的にあるいはシミュレーションにより確認して設定しておくことにより、熱電対温度計24がこの温度を検知した時点を凝固時間終了とすることができる。
【0043】
また、熱電対温度計24による検出温度と予め設定された温度との比較および各部の作動は制御部によって制御されるが、この作用等については次に説明する鋳造法において逐次説明する。
【0044】
このように構成された重力鋳造装置1による鋳造法について図6に示すフローチャートおよび図7に示す押湯部16内の溶湯温度、すなわち押湯温度と凝固時間の相関図を参照して説明する。
【0045】
図1に示す給湯・型開位置に支持部本体4が保持され、かつ金型10の上型12が型締め位置に保持された状態で、ラドル36に予め設定された1鋳造分の金属溶湯を給湯する(ステップS1)。続いて支持軸3廻りに金型10の湯口17が上方となるまで支持部本体4を傾転駆動手段により90°傾転させる。支持部本体4の傾転に伴って一体的に金型10およびラドル36が充填・凝固位置に傾転する(ステップS2)。
【0046】
金型10およびラドル36の充填・凝固位置への傾転に伴って、ラドル36内の溶湯がその注湯口36aから金型10の湯口17を介してキャビティ13内に流入して充填される(ステップS3)。このキャビティ13内への溶湯充填が凝固時間開始として制御部に送られる。
【0047】
この溶湯充填に伴って、押湯部16に配置された温度測定点sの温度は、例えば図7に示すように、キャビティ13および押湯部16に注湯された溶湯の溶湯熱によって上昇が開始し、熱電対温度計24の検出温度が上昇する。
【0048】
溶湯熱による温度測定点sの温度が凝固時間開始から約85秒経過後に最高温度A、例えば約520℃に程度に達した後、キャビティ13内に充填された溶湯が押湯部16から離れたキャビティ13の下端から凝固を開始し、この凝固に伴って温度測定点sの温度は降下を開始する。
【0049】
この最高温度Aの温度を熱電対温度計24によって検知し、この時点の温度と予め設定された基準最高温度範囲、例えば510℃〜530℃とを制御部で比較演算し、検知温度が基準最高温度範囲内か否を判断する(ステップS4)。
【0050】
ここで、基準最高温度範囲は予め実験的にあるいはシミュレーションにより確認され設定された良好な鋳造条件であって、検出温度が基準最高温度範囲より高い要因としては、キャビティ13内に注湯された溶湯温度が高い場合や金型10の温度が高過ぎる等があり、一方、基準最高温度範囲より低い要因として溶湯量不足や溶湯温度が低い場合、または金型10の温度が低過ぎる等があり、検出温度が基準最高温度範囲より高いときあるいは低いときには巣等の鋳造欠陥が発生することが懸念される。よって、最終凝固部の最高温度Aが、基準最高温度範囲内でないときは鋳造欠陥があると判断される。
【0051】
熱電対温度計24により検知された最高温度Aと前回鋳造された際の最高温度とを比較演算し、温度差が基準温度差内、例えば差温10℃以内か否か判断する(ステップS5)。ここで前回との温度差が基準温度差を越える要因として、湯温あるいは金型10の温度変化がある場合等がり、巣等の鋳造欠陥の発生が懸念される。最高温度Aの温度検知温度と前回鋳造された際の最高温度との基準温度差内でないときには鋳造欠陥があるものと判断する。
【0052】
凝固開始時間から最高温度Aに到達した時点までの最高温度到達時間T1と予め実験的に確認された適切な基準最高温度到達時間範囲、例えば75秒〜95秒とを比較演算し、最高温度到達時間T1が基準最高温度到達時間範囲内であるか否か判断する(ステップS6)。ここで、最高温度到達時間T1が基準最高温度到達時間範囲より長い要因として、キャビティ13に注湯される溶湯の不足や湯温が低い場合、金型10の温度が低過ぎる等があり、基準最高温度到達時間範囲が短い要因として湯温が高過ぎる場合や金型10の温度が高過ぎる等があり、巣の発生等の鋳造欠陥を引き起こすことが懸念される。したがって、最高温度到達時間T1が基準最高温度到達時間範囲内でないときには鋳造欠陥があるものと判断する。
【0053】
最高温度Aに達した後、キャビティ13内に充填された溶湯が湯口17から最も遠い下端から凝固を開始し、この凝固の進行に伴って温度測定点sの温度は降下を開始する。
【0054】
押湯部16の部分まで凝固が進行し(ステップS7)、凝固して鋳物となったものが金型10を離型しても変形やかじりが発生しない凝固温度B、例えば495℃を熱電対温度計24が検知すると、熱電対温度計24から凝固時間終了として凝固時間解除信号を制御部に発する。この凝固時間解除信号に従って凝固開始時間から凝固温度Bを検出する時点までの凝固到達時間T2と予め設定された基準凝固到達時間範囲、例えば165秒〜185秒と比較演算し、凝固到達時間が基準凝固到達時間範囲内か否か判断する(ステップS8)。ここで、凝固到達時間が基準到達時間範囲より長い要因としては金型10の温度が高過ぎる等があり、短い要因としては金型10の温度が低過ぎる等があり、良好な指向性凝固が得られず巣の発生が懸念される。したがって、凝固到達時間T2が基準凝固到達時間範囲内でないときには鋳造欠陥があるものと判断する。
【0055】
続いて、支持軸3廻りに支持部本体4を傾転駆動手段により90°傾転させて、図1に示す給湯・開型位置に復帰させる(ステップS9)。
【0056】
給湯・開型位置に復帰した後、型締めシリンダ32を伸張させ、図2に示すように上型12を型締め位置から型開き位置に回動させて型開きする。この型締めシリンダ32による型開き動作と連動して上型12に設けられた上型製品押出シリンダ33により押出ピンをキャビティ13内に突出させて上型12からの鋳造品の離型を促進させ、かつ下型製品押出用シリンダ34により押出ピンをキャビティ13内に突出させて下型11からの離型を促進させる(ステップS10)。
【0057】
しかる後、型開きされた鋳造品を金型10からローダ等によって取り出す(ステップS11)。ここでステップS4、ステップS5、ステップS6、ステップS8においてすべてが予め実験的にあるいはシミュレーションにより確認されて設定された範囲内であると判断されたものは巣等の鋳造欠陥がない高品質の鋳造品であり、コンベヤ等によって次の工程へ移送する。
【0058】
一方、ステップS4、ステップS5、ステップS6のいずれかにおいて否と判断されたものは、鋳造欠陥がある可能性があり、未凝固状態であることから開型を容易にするため凝固させる(ステップS12)。また、ステップS8で否と判断されたものは、巣等の鋳造欠陥があることが懸念され、これらは金型10を給湯・開型位置に傾転させて(ステップS13)、型開きし(ステップS14)、ローダー等で取り出され、NGパレット等に搬出される。
【0059】
従って、本実施の形態によると、雰囲気温度、金型温度、金型熱容量等の不確定な要素による影響が極めて少なく、溶湯の凝固状態と極めて相関性がある最終凝固部となる押湯部16に温度測定点sを設定し、その温度測定点sにおける最高温度および最高温度到達時間T1と、予め設定された基準最高温度範囲および基準最高温度到達時間範囲と比較演算して最高温度Aおよび最高温度到達時間T1が上記基準温度最高範囲あるいは基準最高温度到達時間範囲内か否かを判断することによって、また、凝固時間開始から上記凝固時間終了までの凝固到達時間T2と、予め設定された基準凝固到達時間範囲とを比較演算して凝固到達時間T2が基準到達時間範囲内か否かを判断することよって鋳造欠陥を検知することができる。よって、人為によることなく過不足のない凝固時間の設定がなされて鋳造品の品質が確保できると共に作業効率が向上する。
【0060】
なお、本発明は、上記実施の形態に限定されることなく、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば上記実施の形態では金型10が傾転する重力鋳造装置について説明したが、金型が傾転しない重力鋳造装置や、湯口からキャビティに溶湯を誘導する湯道と押湯部がそれぞれ独立した重力鋳造装置に適用することもできる。また、湯道と押湯部が独立した重力鋳造装置にあっては最終凝固部となる湯道あるいは押湯部に温度測定点sを設定することもできる。
【0061】
さらに、鋳造品の形状や肉厚等により金型に冷却水通路を形成し、冷却水によりキャビティ内の凝固速度を制御することも可能である。また、アルミニウム合金の鋳造以外に、銅や鉄等の高融点合金の鋳造も可能である。
【0062】
【発明の効果】
以上説明した本発明の重力鋳造法および重力鋳造装置によると、湯口からキャビティ内に注湯して充填された溶湯が最終に凝固する金型等の温度等による影響が極めて少なく溶湯の凝固状態と極めて高い相関性がある最終凝固部の温度が、予め実験的にあるいはシミュレーションにより確認して設定された凝固温度に達した時点を凝固時間終了とすることで、人為によることなく過不足のない適切な凝固時間が設定されて、鋳造品の品質が確保できると共に、作業効率が向上する。
【図面の簡単な説明】
【図1】本発明による実施の形態の概要を示す重力鋳造装置の概念図である。
【図2】型開状態を示す重力鋳造装置の要部側面図である。
【図3】金型の要部断面図である。
【図4】図3のI−I線断面図である。
【図5】図3のII部拡大図である。
【図6】重力鋳造装置の動作フローチャートである。
【図7】押湯温度と凝固時間の相関図である。
【図8】金型温度と凝固時間の相関図である。
【符号の説明】
1 重力鋳造装置
10 金型
11 下型
12 上型
13 キャビティ
15 方案部
16 押湯部(湯道)
17 湯口
21 温度検出装置
23 保護ピン
24 熱電対温度計(温度検出手段)
s 温度測定点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gravity casting method and a gravity casting apparatus.
[0002]
[Prior art]
The gravity casting method is a method in which a molten metal such as an aluminum alloy or a magnesium alloy is cast into a cavity of a mold by casting by gravity, and has a high dimensional accuracy, a dense casting structure, high mechanical properties and durability. It is widely used because it is excellent, the life of the casting apparatus and the mold is long, and the equipment cost is relatively low.
[0003]
However, if the mold temperature during casting is too low, the molten metal will solidify in the thin part during filling, causing casting defects such as roundness, hot springs, nests, etc. Casting defects such as nests occur in the part, which is a cause of defective castings.
[0004]
As a countermeasure, measure the time from the end of the casting cycle to the start of the next casting cycle and the temperature of the mold immediately before filling the molten metal, and compare the measured time and measured temperature with the preset time and mold temperature. Then, by adjusting the heating means and the casting cycle time so that the mold reaches the set temperature based on the calculation result, the mold temperature is controlled to a predetermined temperature range to prevent the occurrence of casting defects. A control method is known (for example, see Patent Document 1).
[0005]
On the other hand, in the gravity casting method, the casting is gradually performed in the cavity of the mold, and the molten metal that has flowed first flows to the tip, so that the tip solidifies first and the feeder part solidifies last. It is necessary to proceed with directional solidification, and the general name of the gate, runner, etc. including the feeder part is the plan part, and when the plan part has solidified surely, the mold is opened and the product is taken out .
[0006]
This method is important for securing the quality of pouring molten metal into the cavity, that is, suppressing entrainment of air and generation of oxides during filling, and ensuring directional solidification toward the riser. Part.
[0007]
In addition, the solidification time required from pouring to mold opening, that is, grasping of the solidification state that determines the mold closing time and mold opening time is determined by installing a temperature measuring means such as a thermocouple thermometer in the cavity or in the mold. Generally, a method of grasping the solidification state of a casting based on temperature detection by a temperature measuring means has been performed.
[0008]
For example, the temperature of the mold when casting a casting having a weight of about 10 kg gradually increases due to the heat of the molten metal filled in the cavity from the gate, as shown in the correlation diagram between the mold temperature and the solidification time shown in FIG. After reaching the maximum temperature a, for example, 491 ° C., the molten metal in the cavity gradually lowers with the start of solidification, and solidification proceeds to the feeder to form a casting. A temperature b of the mold when the solidification temperature at which deformation and galling does not occur even when the mold is reached, for example, a time t at which the temperature reaches 453 ° C., for example, 210 seconds, is previously experimentally confirmed and set as a solidification time. The time t at this time can be regarded as the end of the solidification time, that is, the mold opening time. However, for example, the temperature of the mold at the start of the casting operation is low, and the temperature of the mold gradually increases due to the repetition of the casting operation. Therefore, the temperature of the mold with respect to the true solidification temperature is 438 ° C. to 468 ° C., and the solidification time must be set in consideration of this, and an extra time than the time required for true solidification is set.
[0009]
[Patent Document 1]
JP-A-6-262337
[0010]
[Problems to be solved by the invention]
However, the setting of the solidification time until the temperature of the casting decreases to a temperature at which deformation and galling does not occur even if the solidified casting opens the mold and releases the mold, based on the time experimentally confirmed in advance, Since the casting time is set artificially based on the experience and feeling of the casting operator, the setting of the solidification time varies from one casting operator to another. In addition, in actual casting, uncertain factors such as ambient temperature, mold temperature, mold heat capacity, and the like affect the solidification time of each casting cycle.
[0011]
If the setting of the solidification time of the mold is not appropriate, and the mold is opened in a state where the portion of the plan portion is not completely solidified, a sufficient feeder effect cannot be obtained and nests are generated. If the coagulation time is set to be long in order to avoid the occurrence of nests, there is a concern that an extra time is set as compared with the time required for true coagulation, which causes a reduction in work efficiency. If the solidification time is set longer than necessary, the heat of the mold received from the molten metal is radiated, and the temperature of the mold required for casting a good product changes, which may affect the quality of the cast product. Furthermore, if the setting of the solidification time is not appropriate and the mold release temperature is too high, the cast product may be subject to galling or deformation, and if the mold release temperature is too low, the mold release may be difficult.
[0012]
On the other hand, in a method of grasping the solidification state of a molten metal based on temperature detection by a temperature measuring means provided in a cavity or in a mold, a product specification such as a product extrusion pin of a mold, a product shape, a mold configuration, etc. For example, it is difficult to grasp the solidification state of the casting with high accuracy due to the influence of the heat and heat capacity of the mold itself.
[0013]
Accordingly, an object of the present invention, which has been made in view of such a point, is to improve the working efficiency by appropriately setting the solidification time without human intervention, and to achieve a gravity casting method and a gravity casting apparatus capable of improving the quality of a cast product. Is to provide.
[0014]
[Means for Solving the Problems]
The invention of the gravity casting method according to claim 1, which achieves the above object, is a gravity casting method in which a molten metal is filled into a cavity of a mold from a gate by gravity, and after a solidification time has elapsed, a mold is opened and a cast product is taken out. The time at which the temperature at the temperature measurement point set in the final solidification part of the molten metal filled in the mold reaches the temperature at which solidification has progressed to the previously set final solidification part is defined as the end of the solidification time. Features.
[0015]
According to the first aspect of the present invention, the temperature set in the final solidification portion which is extremely little affected by uncertain factors such as the ambient temperature, the mold temperature, and the mold heat capacity and has a very high correlation with the solidification state of the molten metal. By setting the time when the temperature at the measurement point reaches the set solidification temperature confirmed by experiment or simulation in advance as the end of the solidification time, the appropriate solidification time with high accuracy and without human error Once set, the mold can be opened in an appropriate state, the quality of the cast product can be ensured, and the working efficiency is improved.
[0016]
According to a second aspect of the present invention, in the gravity casting method of the first aspect, the temperature measurement point is set in a feeder section.
[0017]
The invention of claim 2 makes the final solidification portion in which the temperature measurement point is set in claim 1 more concrete, and the feeder portion is configured such that the molten metal filled in the cavity from the gate is caused by the progress of solidification. It serves to supply the molten metal in order to compensate for the volume decrease, and is set so that the molten metal in the riser becomes the final solidification part in which the molten metal finally solidifies in order to secure the riser effect.
[0018]
According to a third aspect of the present invention, in the gravity casting method of the first aspect, the temperature measurement point is set in a runner.
[0019]
According to a third aspect of the present invention, the final solidification portion in which the temperature measurement point is set in the first aspect is more concretely described. The runner guides the molten metal from the gate to the cavity. This is the final solidification part that solidifies into a solid. In addition, the runner often serves also as a feeder section.
[0020]
According to a fourth aspect of the present invention, in the gravity casting method according to any one of the first to third aspects, the solidification attained from the start of the solidification time to the end of the solidification time by filling the molten metal into the cavity of the mold. The time is compared with a preset reference solidification arrival time range, and when the solidification arrival time is not within the reference solidification arrival time range, it is determined that there is a casting defect.
[0021]
According to the invention of claim 4, when the solidification time from the start of solidification to the end of solidification is not within the reference solidification arrival time range experimentally set in advance, casting defects such as cavities may be generated. Therefore, when the solidification arrival time is not within the reference arrival time range, it is determined that there is a casting defect, so that the quality of the cast product can be improved.
[0022]
According to a fifth aspect of the present invention, in the gravity casting method according to any one of the first to fourth aspects, the maximum temperature of the final solidification portion and the maximum temperature from the start of the solidification time due to the filling of the molten metal into the cavity of the mold. The maximum temperature arrival time until the temperature is reached is compared with a preset reference maximum temperature range and a reference maximum temperature arrival time range, and the maximum temperature and the maximum temperature arrival time are set to the reference maximum temperature range or the reference maximum temperature. If it is not within the arrival time range, it is determined that there is a casting defect.
[0023]
According to the invention of claim 5, when the maximum temperature and the time to reach the maximum temperature of the final solidified portion are not within the reference maximum temperature range and the time range to reach the reference maximum temperature, which are set experimentally in advance, the occurrence of casting defects such as nests occurs. Is concerned. Therefore, when the maximum temperature and the maximum temperature arrival time of the final solidified portion are not within the reference maximum temperature range and the reference maximum temperature arrival time range, respectively, it is determined that there is a casting defect, thereby improving the quality of the cast product.
[0024]
The invention of a gravity casting apparatus according to claim 6, which achieves the above object, is a gravity casting apparatus in which a molten metal is filled into a cavity of a mold from a gate by gravity, and after a solidification time has elapsed, a mold is opened to take out a casting. A temperature measuring means having a temperature measuring point set at a final solidification part of the molten metal filled in the mold, and a temperature detected by the temperature measurement means is set at a time when solidification proceeds to the preset final solidification part. When the temperature is detected, the coagulation time ends.
[0025]
According to the invention of claim 6, the temperature measurement point is set in the final solidification part which is extremely little affected by uncertain factors such as the ambient temperature, the mold temperature, and the mold heat capacity and has a very high correlation with the solidification state of the molten metal. Temperature measurement means is provided, and the time when the temperature reaches the set solidification temperature confirmed experimentally or by simulation is detected by the temperature measurement means as the end of the coagulation time. An appropriate solidification time without any excess or shortage is set, the mold can be opened in an appropriate state, the quality of the cast product can be secured, and the working efficiency can be improved.
[0026]
According to a seventh aspect of the present invention, in the gravity casting apparatus of the sixth aspect, the temperature measuring point of the temperature measuring means is set in a feeder section.
[0027]
According to a seventh aspect of the present invention, the setting position of the temperature measuring point of the temperature measuring means in the sixth aspect is more specific. It serves to supply the molten metal that compensates for the decrease in volume due to the molten metal, and is set so that the molten metal in the molten metal part becomes a final solidified part in which the molten metal finally solidifies in order to secure the molten metal effect. Further, the feeder section can be set so as to minimize the influence of the shape of the mold and the like, and the temperature measuring means can be arranged at a portion where the influence of the heat and the like of the mold is suppressed.
[0028]
The invention according to claim 8 is the gravity casting apparatus according to claim 6, wherein the temperature measuring point of the temperature measuring means is set in a runner.
[0029]
The invention according to claim 8 is to make the temperature measuring point of the temperature measuring means more concrete, wherein the runner guides the molten metal from the gate to the cavity, and the molten metal in the runner finally solidifies. It is set to be the final solidification part. In addition, the runner can be formed without affecting the shape and the like of the mold, and the temperature measuring means can be arranged in a portion where the influence of the heat and the like of the mold is suppressed.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a gravity casting method and a gravity casting apparatus according to the present invention will be described below with reference to FIGS.
[0031]
FIG. 1 is a conceptual view of a gravity casting apparatus 1, in which a support body 4 is tiltably supported on a base 2 by a support shaft 3, and the support body 4 is moved to a hot water supply / opening position by tilt drive means (not shown). And between the filling and solidification positions. A mold 10 having a lower mold 11 and an upper mold 12 forming a cavity 13 is mounted above the support portion main body 4 in the hot water supply / opening position shown in FIG.
[0032]
The upper mold 12 is rotated by approximately 90 ° with respect to the lower mold 11 through an arm 31 formed in a substantially L-shape with respect to the lower mold 11 as shown in FIG. The mold is clamped by an expansion and contraction operation of a mold clamping cylinder 32 bridged between an arm 31 serving as a mold clamping mechanism and a lower portion of the support portion main body 4 while being tiltably supported between the mold opening position where the mold is opened. It is pivoted to the position and the mold opening position and is held in those positions.
[0033]
The upper die 12 is provided with an upper product extruding cylinder 33 for operating an extrusion pin for releasing the cast product protruding into the cavity 13 from the upper die 12. A lower product extrusion cylinder 34 is provided which operates an extrusion pin for projecting the cast product by projecting into the cavity 13 from the side.
[0034]
The support portion main body 4 supports a bottomed ladle 36 whose upper part is opened by a hot water receiving arm 35 pivotally supported. Normally, the pouring port 36a of the ladle 36 is held in a state of being inserted into the pouring port 17 of the mold 10 to be described later, and the hot water receiving arm 35 can be tilted as shown by the imaginary line to accumulate in the ladle 36. Maintenance such as slag removal work is facilitated.
[0035]
Further, FIG. 3 is a sectional view of a main part of the mold 10 at a filling / solidification position where the support body 4 is tilted by 90 ° from the hot water supply / opening position shown in FIG. 1, and FIG. As shown in the cross-sectional view along the line I, above the hollow cavities 13 formed by the cavity side 11a of the lower mold 11 and the cavity side 12a of the upper mold 12 at the filling / solidification position, the respective cavity sides 11a, 12a The feeder portion 16 is continuously formed by the continuous feeder portion sides 11b and 12b, and furthermore, the spout 17 whose taper shape is increased and the upper end is open is formed by the spout sides 11c and 12c which are continuous with the feeder portion sides 11b and 12b. It is formed continuously. In the present embodiment, feeder section 16 also serves as a runner for guiding molten metal supplied from gate 17 into cavity 13, and form section 15 is formed by feeder section 16 and gate 17.
[0036]
The mold 10 is provided with a temperature detecting device 21 in which a temperature measuring point s is set in the feeder unit 16. The temperature detecting device 21 will be described with reference to FIG.
[0037]
The upper die 12 is provided with a mounting hole 22 that penetrates the feeder portion 16 from the outside and is formed by the outer large-diameter portion 22b and the small-diameter portion 22c on the feeder portion 16 side via the step portion 22a. A protection pin 23 for holding a temperature detecting means, for example, a thermocouple thermometer 24 using a thermocouple is attached to the attachment hole 22. The protection pin 23 has a relatively large-diameter base portion 23b that fits into the large-diameter portion 22b and a relatively large-diameter portion 22c that fits into the small-diameter portion 22c via a step 23a that can be engaged with the step 22a of the mounting hole 22. A rod having a shaft portion 23c of about 6 mm to 8 mm is inserted into the mounting hole 22 from the outside, and the step portion 23a abuts on the step portion 22a of the mounting hole 22 so that the tip of the shaft portion 23c becomes a feeder portion. It has a length protruding from the side 12b into the feeder section 16 by about 10 mm to 15 mm, and has a tip wall thickness of about 2 to 3 mm in which a holding hole 23d extending from the base 23b to the vicinity of the tip of the shaft 23c is formed. Is formed.
[0038]
A thermocouple thermometer 24 having a temperature measurement point s in contact with the tip of the holding hole 23d corresponding to the vicinity of the tip of the protection pin 23 is inserted into the holding hole 23d of the protection pin 23, and the protection pin 23 is attached to the mounting hole 22. The temperature measurement in the feeder section 16 which is the final solidification section can be performed.
[0039]
The protection pin 23 in which the thermocouple thermometer 24 mounted on the mounting hole 22 is provided has a through hole 25a formed therein, and the protection pin 23 is separated from the mounting hole 22 by a pin holding plate 25 mounted on the upper die 12 by a mounting bolt (not shown). The thermocouple thermometer 24 is fixed by a retaining bolt 27 screwed to the pin holding plate 25. In addition, by mounting the thermocouple thermometer 24 on the protection pin 23, the thermocouple thermometer 24 can be disposed without complicating the configuration of the mold 10, and the thermocouple thermometer 24 is protected from molten metal or the like. .
[0040]
Further, the installation of the thermocouple thermometer 24 in the feeder section 16 is extremely small without being affected by the shape of the mold 10 and the like, and the installation site can be easily selected according to the product. It can be installed in a state where the influence of heat and heat capacity is eliminated as much as possible.
[0041]
Here, the molten metal of the feeder section 16 serves to supply molten metal from the gate 17 to fill the cavity 13 with a decrease in volume during solidification, and the molten metal is poured into the cavity 13. The molten metal is set so that solidification is performed from the tip, that is, the lower end of the cavity 13 far from the gate 17 into which the molten metal has been poured earlier, and the molten metal in the feeder unit 16 becomes the final solidified portion where it is finally solidified.
[0042]
The temperature at the temperature measurement point s set in the feeder section 16 has a very high correlation with the solidification state of the molten metal filled in the cavity 13, and the temperature when the molten metal supplied from the gate 17 is filled. Since the solidification time starts and the molten metal poured into the cavity 13 reaches the maximum temperature by the heat of the molten metal, the molten metal gradually descends with the start of solidification from the lower end, which is the tip of the cavity 13, so that the feeder section The temperature at the time when the solidification progresses to 16 and the molten metal solidifies to form a casting is lowered to a temperature at which deformation and galling does not occur even when the mold 10 is opened and released, or experimentally or in advance. By confirming and setting by simulation, the time when the thermocouple thermometer 24 detects this temperature can be regarded as the end of the coagulation time.
[0043]
Further, the comparison between the temperature detected by the thermocouple thermometer 24 and the preset temperature and the operation of each unit are controlled by the control unit. This operation and the like will be sequentially described in the casting method described below.
[0044]
The casting method using the gravity casting apparatus 1 configured as described above will be described with reference to the flowchart shown in FIG. 6 and the molten metal temperature in the feeder section 16 shown in FIG. 7, that is, a correlation diagram between the feeder temperature and the solidification time.
[0045]
In a state where the support part main body 4 is held at the hot water supply / mold opening position shown in FIG. Is supplied (step S1). Subsequently, the support portion main body 4 is tilted by 90 ° by the tilt drive means until the gate 17 of the mold 10 is turned upward around the support shaft 3. The mold 10 and the ladle 36 are integrally tilted to the filling / solidification position with the tilting of the support portion main body 4 (step S2).
[0046]
With the tilt of the mold 10 and the ladle 36 to the filling / solidification position, the molten metal in the ladle 36 flows from the pouring port 36a into the cavity 13 through the sprue 17 of the mold 10 to be filled ( Step S3). The filling of the melt into the cavity 13 is sent to the control unit as the start of the solidification time.
[0047]
With the filling of the molten metal, the temperature at the temperature measurement point s arranged in the riser 16 rises due to the heat of the molten metal poured into the cavity 13 and the riser 16 as shown in FIG. 7, for example. Starting, the temperature detected by the thermocouple thermometer 24 increases.
[0048]
After the temperature at the temperature measurement point s due to the heat of the molten metal reaches the maximum temperature A, for example, about 520 ° C. after about 85 seconds from the start of the solidification time, the molten metal filled in the cavity 13 is separated from the feeder section 16. The solidification starts from the lower end of the cavity 13, and the temperature at the temperature measurement point s starts to decrease with the solidification.
[0049]
The temperature of the maximum temperature A is detected by the thermocouple thermometer 24, and the control unit compares the temperature at this time with a preset reference maximum temperature range, for example, 510 ° C. to 530 ° C. It is determined whether the temperature is within the temperature range (step S4).
[0050]
Here, the reference maximum temperature range is a good casting condition confirmed and set in advance experimentally or by simulation, and the reason why the detected temperature is higher than the reference maximum temperature range is that the molten metal poured into the cavity 13 When the temperature is high or the temperature of the mold 10 is too high, on the other hand, as a factor lower than the reference maximum temperature range, when the amount of the molten metal is insufficient or the temperature of the molten metal is low, or when the temperature of the mold 10 is too low, When the detected temperature is higher or lower than the reference maximum temperature range, casting defects such as cavities may occur. Therefore, when the maximum temperature A of the final solidified portion is not within the reference maximum temperature range, it is determined that there is a casting defect.
[0051]
The maximum temperature A detected by the thermocouple thermometer 24 is compared with the maximum temperature at the time of the previous casting, and it is determined whether or not the temperature difference is within the reference temperature difference, for example, within 10 ° C. (step S5). . Here, as a factor that the temperature difference from the previous time exceeds the reference temperature difference, there is a case where there is a change in the temperature of the hot water or the temperature of the mold 10, and there is a concern that a casting defect such as a cavity may occur. When the difference between the detected temperature of the maximum temperature A and the maximum temperature at the time of the previous casting is not within the reference temperature difference, it is determined that there is a casting defect.
[0052]
The maximum temperature arrival time T1 from the solidification start time to the time when the maximum temperature A is reached is compared with an appropriate reference maximum temperature arrival time range experimentally confirmed in advance, for example, 75 seconds to 95 seconds, and the maximum temperature arrival time is calculated. It is determined whether or not the time T1 is within the reference maximum temperature reaching time range (step S6). The reason why the maximum temperature arrival time T1 is longer than the reference maximum temperature arrival time range is that the temperature of the mold 10 is too low if the molten metal poured into the cavity 13 is insufficient or the temperature is low. Factors for which the maximum temperature reaching time range is short include a case where the hot water temperature is too high and a case where the temperature of the mold 10 is too high. Therefore, when the maximum temperature arrival time T1 is not within the reference maximum temperature arrival time range, it is determined that there is a casting defect.
[0053]
After reaching the maximum temperature A, the molten metal filled in the cavity 13 starts to solidify from the lower end farthest from the gate 17, and as the solidification progresses, the temperature of the temperature measurement point s starts to decrease.
[0054]
The solidification proceeds to the feeder portion 16 (step S7), and the solidified casting becomes a solidification temperature B at which the deformation and galling does not occur even when the mold 10 is released, for example, 495 ° C., a thermocouple. Upon detection by the thermometer 24, the thermocouple thermometer 24 sends a coagulation time release signal to the control unit as the end of the coagulation time. In accordance with the coagulation time release signal, the coagulation arrival time T2 from the coagulation start time to the point at which the coagulation temperature B is detected is compared with a preset reference coagulation arrival time range, for example, 165 seconds to 185 seconds, and the coagulation arrival time is set as a reference. It is determined whether it is within the coagulation arrival time range (step S8). Here, a factor that the solidification arrival time is longer than the reference arrival time range is that the temperature of the mold 10 is too high, and a factor that is short is that the temperature of the mold 10 is too low. There is concern about the occurrence of nests. Therefore, when the solidification arrival time T2 is not within the reference solidification arrival time range, it is determined that there is a casting defect.
[0055]
Subsequently, the support section main body 4 is tilted by 90 ° around the support shaft 3 by tilt drive means to return to the hot water supply / opening position shown in FIG. 1 (step S9).
[0056]
After returning to the hot water supply / opening position, the mold clamping cylinder 32 is extended, and the upper mold 12 is rotated from the mold clamping position to the mold opening position to open the mold as shown in FIG. In conjunction with the mold opening operation by the mold clamping cylinder 32, the extrusion pin is projected into the cavity 13 by the upper product extrusion cylinder 33 provided on the upper mold 12, thereby facilitating the release of the casting from the upper mold 12. In addition, the extruding pin is projected into the cavity 13 by the lower product extrusion cylinder 34 to promote the release from the lower mold 11 (step S10).
[0057]
Thereafter, the cast product whose mold has been opened is taken out of the mold 10 by a loader or the like (step S11). Here, in step S4, step S5, step S6, and step S8, all of which are determined in advance by experiments or simulations and determined to be within the set range are high quality castings without casting defects such as nests. The product is transferred to the next process by a conveyor or the like.
[0058]
On the other hand, those determined to be NO in any of Steps S4, S5, and S6 are likely to have a casting defect and are in an unsolidified state, so that they are solidified to facilitate opening (Step S12). ). Those judged to be negative in step S8 are concerned with casting defects such as nests, and these are caused to tilt the mold 10 to the hot water supply / opening position (step S13) and open the mold (step S13). Step S14), taken out by a loader or the like, and carried out to an NG pallet or the like.
[0059]
Therefore, according to the present embodiment, the influence of uncertain factors such as the ambient temperature, the mold temperature, and the mold heat capacity is extremely small, and the feeder section 16 serving as the final solidification section that is highly correlated with the solidification state of the molten metal. The maximum temperature A and the maximum temperature are calculated by comparing the maximum temperature and the maximum temperature arrival time T1 at the temperature measurement point s with a preset reference maximum temperature range and a reference maximum temperature arrival time range. By determining whether the temperature arrival time T1 is within the reference temperature maximum range or the reference maximum temperature arrival time range, a solidification arrival time T2 from the start of the solidification time to the end of the solidification time, and a predetermined reference value are set. The casting defect can be detected by comparing and calculating the solidification arrival time range and determining whether the solidification arrival time T2 is within the reference arrival time range. Therefore, the solidification time can be set without excess or shortage without human intervention, and the quality of the cast product can be ensured, and the working efficiency is improved.
[0060]
It should be noted that the present invention is not limited to the above embodiment, but can be variously modified without departing from the spirit of the present invention. For example, in the above-described embodiment, the gravity casting apparatus in which the mold 10 tilts is described. However, the gravity casting apparatus in which the mold does not tilt, and a runner and a feeder that guide the molten metal from the gate to the cavity are independent of each other. It can also be applied to gravity casting equipment. Further, in a gravity casting apparatus in which the runner and the feeder are independent, the temperature measurement point s can be set in the runner or the feeder that will be the final solidification part.
[0061]
Further, it is also possible to form a cooling water passage in the mold by the shape and thickness of the casting, and to control the solidification rate in the cavity by the cooling water. In addition to casting of aluminum alloy, casting of high melting point alloy such as copper and iron is also possible.
[0062]
【The invention's effect】
According to the gravity casting method and the gravity casting apparatus of the present invention described above, the molten metal filled by pouring from the gate into the cavity is very little affected by the temperature of the mold or the like in which the molten metal is finally solidified. When the temperature of the final solidification part, which has a very high correlation, reaches the solidification temperature set beforehand, confirmed experimentally or by simulation, the solidification time is terminated, so that there is no excess or deficiency without human intervention By setting a proper solidification time, the quality of the cast product can be ensured, and the working efficiency is improved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a gravity casting apparatus showing an outline of an embodiment according to the present invention.
FIG. 2 is a side view of a main part of the gravity casting apparatus showing a mold open state.
FIG. 3 is a sectional view of a main part of a mold.
FIG. 4 is a sectional view taken along line II of FIG. 3;
FIG. 5 is an enlarged view of a portion II in FIG. 3;
FIG. 6 is an operation flowchart of the gravity casting apparatus.
FIG. 7 is a correlation diagram between the riser temperature and the solidification time.
FIG. 8 is a correlation diagram between a mold temperature and a solidification time.
[Explanation of symbols]
1 Gravity casting device
10 Mold
11 Lower mold
12 Upper type
13 cavities
15 Planning department
16 Hot water section (runner)
17 Yuguchi
21 Temperature detector
23 Protection Pin
24 Thermocouple thermometer (temperature detection means)
s Temperature measurement point

Claims (8)

湯口から金型のキャビティ内に溶湯を重力によって充填して凝固時間経過後に型開きして鋳造品を取り出す重力鋳造法において、
金型に充填された溶湯の最終凝固部に設定された温度測定点の温度が、予め設定された上記最終凝固部まで凝固が進行したときの温度となった時点を凝固時間終了とすることを特徴とする重力鋳造法。
In the gravity casting method, the molten metal is filled into the cavity of the mold from the gate by gravity and the mold is opened after the solidification time has elapsed and the cast product is taken out.
The time at which the temperature at the temperature measurement point set in the final solidification part of the molten metal filled in the mold reaches the temperature at which solidification has progressed to the previously set final solidification part is defined as the end of the solidification time. Features gravity casting.
上記温度測定点は、押湯部内に設定されたことを特徴とする請求項1に記載の重力鋳造法。The gravity casting method according to claim 1, wherein the temperature measurement point is set in a feeder section. 上記温度測定点は、湯道内に設定されたことを特徴とする請求項1に記載の重力鋳造法。The gravity casting method according to claim 1, wherein the temperature measurement point is set in a runner. 上記金型のキャビティ内への溶湯充填による凝固時間開始から上記凝固時間終了までの凝固到達時間と、予め設定された基準凝固到達時間範囲とを比較演算して上記凝固到達時間が上記基準凝固到達時間範囲内でないときは鋳造欠陥があると判断することを特徴とする請求項1〜3のいずれか1項に記載の重力鋳造法。The solidification arrival time from the start of the solidification time to the end of the solidification time by filling the molten metal into the cavity of the mold is compared with a preset reference solidification arrival time range, and the solidification arrival time is set to the reference solidification arrival time. The gravity casting method according to any one of claims 1 to 3, wherein it is determined that there is a casting defect when the time is not within the time range. 上記最終凝固部の最高温度および上記金型のキャビティ内への溶湯充填による凝固時間開始から上記最高温度に達するまでの最高温度到達時間と、予め設定された基準最高温度範囲および基準最高温度到達時間範囲とを比較演算して上記最高温度および最高温度到達時間が上記基準最高温度範囲あるいは基準最高温度到達時間範囲内でないときには鋳造欠陥があると判断することを特徴とする請求項1〜4のいずれか1項に記載の重力鋳造法。The maximum temperature of the final solidification part and the maximum temperature arrival time from the start of the solidification time due to filling of the melt into the cavity of the mold until the maximum temperature is reached, and the preset reference maximum temperature range and reference maximum temperature arrival time 5. The method according to claim 1, wherein a comparison with a range is performed to determine that there is a casting defect when the maximum temperature and the maximum temperature arrival time are not within the reference maximum temperature range or the reference maximum temperature arrival time range. Or the gravity casting method according to claim 1. 湯口から金型のキャビティ内に溶湯を重力によって充填して凝固時間経過後に型開きして鋳造品を取り出す重力鋳造装置において、
上記金型に充填された溶湯の最終凝固部に温度測定点が設定された温度測定手段を有し、この温度測定手段の検出温度が、予め設定された上記最終凝固部まで凝固が進行した時点の温度を検出したときを凝固時間終了とすることを特徴とする重力鋳造装置。
In a gravity casting apparatus, the molten metal is filled into the cavity of the mold from the gate by gravity, and after the solidification time has elapsed, the mold is opened and the cast product is taken out.
A temperature measuring means having a temperature measuring point set at a final solidification part of the molten metal filled in the mold, and a temperature detected by the temperature measurement means is set at a time when solidification proceeds to the preset final solidification part. A gravity casting apparatus characterized in that when the temperature is detected, the solidification time ends.
上記温度測定手段の温度測定点は、押湯部内に設定されたことを特徴とする請求項6に記載の重力鋳造装置。The gravity casting apparatus according to claim 6, wherein the temperature measuring point of the temperature measuring means is set in a feeder section. 上記温度測定手段の温度測定点は、湯道内に設定されたことを特徴とする請求項6に記載の重力鋳造装置。The gravity casting apparatus according to claim 6, wherein the temperature measuring point of the temperature measuring means is set in a runner.
JP2002364171A 2002-12-16 2002-12-16 Gravity casting Expired - Fee Related JP4274788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364171A JP4274788B2 (en) 2002-12-16 2002-12-16 Gravity casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364171A JP4274788B2 (en) 2002-12-16 2002-12-16 Gravity casting

Publications (2)

Publication Number Publication Date
JP2004195481A true JP2004195481A (en) 2004-07-15
JP4274788B2 JP4274788B2 (en) 2009-06-10

Family

ID=32762115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364171A Expired - Fee Related JP4274788B2 (en) 2002-12-16 2002-12-16 Gravity casting

Country Status (1)

Country Link
JP (1) JP4274788B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205436A (en) * 2004-01-21 2005-08-04 Yamaha Motor Co Ltd Temperature sensor for casting machine and casting machine
WO2005070592A1 (en) * 2004-01-21 2005-08-04 Yamaha Hatsudoki Kabushiki Kaisha Casting machine
JP2006218529A (en) * 2005-02-14 2006-08-24 Yokohama Rubber Co Ltd:The Gravity casting method and device therefor
EP2578333A1 (en) * 2011-10-07 2013-04-10 Nemak Linz GmbH Method for controlling a casting assembly
CN103317105A (en) * 2012-03-18 2013-09-25 昆山华盟电子精密模具有限公司 Mold
CN104439062A (en) * 2014-12-08 2015-03-25 中国南方航空工业(集团)有限公司 Mold for measuring temperature in casting process and production method of mold
CN109175277A (en) * 2018-09-13 2019-01-11 浙江万丰奥威汽轮股份有限公司 A kind of the installation of TC technology
CN110125342A (en) * 2019-06-11 2019-08-16 清华大学 A kind of positioning of sand casting casting mold inside temperature thermocouple and fixing means

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205436A (en) * 2004-01-21 2005-08-04 Yamaha Motor Co Ltd Temperature sensor for casting machine and casting machine
WO2005070592A1 (en) * 2004-01-21 2005-08-04 Yamaha Hatsudoki Kabushiki Kaisha Casting machine
WO2005070593A1 (en) * 2004-01-21 2005-08-04 Yamaha Hatsudoki Kabushiki Kaisha Thermosensor for casting machine and casting machine
JP2006218529A (en) * 2005-02-14 2006-08-24 Yokohama Rubber Co Ltd:The Gravity casting method and device therefor
EP2578333A1 (en) * 2011-10-07 2013-04-10 Nemak Linz GmbH Method for controlling a casting assembly
WO2013050237A1 (en) * 2011-10-07 2013-04-11 Nemak Linz Gmbh Method for controlling a casting system
CN103958092A (en) * 2011-10-07 2014-07-30 内马克林茨有限公司 Method for controlling a casting system
JP2014528358A (en) * 2011-10-07 2014-10-27 ネマク リンツ ゲゼルシャフト ミット ベシュレンクテル ハフツングNemak Linz GmbH Casting plant control method
CN103317105A (en) * 2012-03-18 2013-09-25 昆山华盟电子精密模具有限公司 Mold
CN104439062A (en) * 2014-12-08 2015-03-25 中国南方航空工业(集团)有限公司 Mold for measuring temperature in casting process and production method of mold
CN109175277A (en) * 2018-09-13 2019-01-11 浙江万丰奥威汽轮股份有限公司 A kind of the installation of TC technology
CN110125342A (en) * 2019-06-11 2019-08-16 清华大学 A kind of positioning of sand casting casting mold inside temperature thermocouple and fixing means

Also Published As

Publication number Publication date
JP4274788B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
WO2016142983A1 (en) Molten metal pouring device and molten metal pouring method
RU2533221C1 (en) Method to eliminate shrinkage cavity in ingot being cast
US8141616B2 (en) Gravity casting method
US8387678B1 (en) Sensor aided direct gating for metal casting
KR20060121935A (en) Casting machine
JP2004195481A (en) Gravity casting method and gravity casting apparatus
JP2008511442A5 (en)
EP0594961B1 (en) Estimation of metal temperature by consumption amount of pouring tube due to immersion in molten metal
WO2011086776A1 (en) Method and device for molding semi-solidified metal, and cooling circuit structure for cooling jig
JP2005205436A (en) Temperature sensor for casting machine and casting machine
EP1317327A1 (en) Metal-casting method and apparatus, casting system and cast-forging system
JP4341494B2 (en) Mold calorimetry method, temperature control method, calorimetry device, and temperature control device
JPH06262337A (en) Method for controlling temperature of die
JPH09271930A (en) Method for supplying molten metal, and device therefor
JP4872719B2 (en) Mold apparatus for casting and casting method
JP2006272388A (en) Method and apparatus for control of pouring from molten metal furnace in gravity casting method, and method for manufacturing metallic die for vulcanizing tire to be manufactured by the same method
JP2003311389A (en) Method for casting metal and casting apparatus used therefor
JPH09300064A (en) Method for automatically pouring molten metal
JP2004195533A (en) Method for controlling cooling of metallic mold in low-pressure casting apparatus, and metallic mold in low-pressure casting apparatus
JP2004276050A (en) Method for starting continuous casting
JP2003112247A (en) Apparatus and method for supplying molten metal, and die-casting machine
JP2021023957A (en) Casting system and casting method
KR101175642B1 (en) Simulater for forming mold slag film layer
JP2013193100A (en) Tilting gravity casting apparatus and tilting gravity casting method
CN116274883B (en) Alloy steel casting method for vehicle crawler belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R150 Certificate of patent or registration of utility model

Ref document number: 4274788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees