JP2004193363A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2004193363A
JP2004193363A JP2002359894A JP2002359894A JP2004193363A JP 2004193363 A JP2004193363 A JP 2004193363A JP 2002359894 A JP2002359894 A JP 2002359894A JP 2002359894 A JP2002359894 A JP 2002359894A JP 2004193363 A JP2004193363 A JP 2004193363A
Authority
JP
Japan
Prior art keywords
wire
semiconductor chip
semiconductor
semiconductor device
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002359894A
Other languages
Japanese (ja)
Inventor
Koji Hozumi
孝司 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002359894A priority Critical patent/JP2004193363A/en
Publication of JP2004193363A publication Critical patent/JP2004193363A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which is obtained by laminating semiconductor chips, which is not restricted by a chip size, which uses a wire bonding and which is short in height. <P>SOLUTION: First and second semiconductor chips 2a and 2b are laminated in order on a substrate 1, and electrodes on the respective semiconductor chips 2a and 2b and an electrode on the substrate are connected by wire bonding. A space between first and second semiconductor chips 2a and 2b is filled with an insulating adhesive 4, and a first wire 3a to be connected to the upper surface of the first semiconductor chip 2a on a lower side is crushed by the lower surface of the second semiconductor chip 2b. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はワイヤボンデングされた半導体チップを積層して封止した半導体装置に関し、とくに背高が低い半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
モジュールの小型化を図るため、半導体チップを積層して封止した半導体装置が開発されている。図5は従来の半導体装置断面図であり、半導体チップを積層して封止した装置を表している。
従来は、図5(a)を参照して、リード11のダイパッド上に第一〜第三の半導体チップ2a〜2cを接着材5を介して積層する。この第一〜第三の半導体チップ2a〜2cは上方に向かうに従って順次チップ寸法が小さくなり、下方の半導体チップの上面にボンデング電極を設ける余地が設けられている。第一〜第三の各半導体チップ2a〜2cに形成された半導体回路は、それぞれの半導体チップ2a〜2c上面に設けられた余地からボンデングワイヤ3a〜3cを介してリード11に接続される。全体は、モールド等の封止材6を用いて封止される。(例えば特許文献1を参照。)。
【0003】
しかし、この半導体装置は、ボンデング電極を設ける余地を残すために、上方に積層する半導体チップを小さくしなければならず、設計上の自由度が制限される。
同一寸法の半導体チップを積層する方法として、スペーサを用いたものがある。これは、図5(b)を参照して、回路基板1上に第一の半導体チップ2aを接着し、回路基板1と半導体チップ2aとをワイヤボンデングされたワイヤ3aで接続したのち、スペーサ12を介して第二の半導体チップ2bを積層する。このスペーサ12は、第二の半導体チップ2bの積層時にワイヤ3aのループが変形しないように設けられる。(例えば特許文献2を参照。)。
【0004】
この方法では、積層する半導体チップの寸法に特別の制限はない。しかし、スペーサ12を介するため、背高が高くなるという問題がある。
さらに、スペーサに代えて絶縁性樹脂を用いる方法が考案されている。図5(c)を参照して、回路基板1上に第一の半導体チップ2aを接着してワイヤボンデングした後、第一の半導体チップ2aの上面に絶縁性樹脂13をワイヤ3aを覆う高さに塗布し、その上に第二の半導体チップ2bを載置して絶縁性樹脂13を硬化する。その後、全体を封止材6により封止する。(例えば特許文献3を参照。)。
【0005】
この方法も、ボンデングされたワイヤ3aのループ形状を維持するもので、絶縁性樹脂13の厚さをループ高さより高くしなければならず背高が高くなるという問題が生ずる。
半導体チップを積層した半導体装置の背高を低くする方法に、下層の半導体チップをフエイスダウンボンデングし、上層の半導体チップをワイヤボンデングするものがある。(例えば特許文献4参照)。
【0006】
この方法では下層と上層の半導体チップを密着することができるので背高が低くなる。しかし、フエイスダウンボンデング用とワイヤボンデング用との二種類の半導体チップが必要で、上下の半導体チップを同一にすることができないという問題がある。また、フエイスダウンはワイヤボンデングに比較してコスト高である。
【0007】
さらに背高の低いパッケージを形成し、これを積層する方法もある。この方法では、図5(d)を参照して、まず半導体チップ2上面に絶縁層13を介してリード11を配置し、このリードと半導体チップ上面とをワイヤボンデングされたワイヤ3で接続する。その後、下面に接着剤14が塗布されたポリイミド薄膜15を積層、押圧して、ワイヤ3のループを押し潰す。こうして形成されたパッケージは、複数個積層することができる。(例えば特許文献5を参照。)。
【0008】
この方法では、ワイヤ3のボンデングで形成されたループを押し潰すので、その分だけパッケージの背高を低くすることができる。しかし、積層後の半導体チップ間には、リード11及びポリイミド薄膜15が介在するため背高をあまり低くすることはできない。
【0009】
【特許文献1】
特開2001−118877号公報
【0010】
【特許文献2】
特開2002−141459号公報
【0011】
【特許文献3】
特開平8−88316号公報
【0012】
【特許文献4】
特開2001−35994号公報
【0013】
【特許文献5】
特開平5−109801号公報
【0014】
【発明が解決しようとする課題】
上述したように、従来の半導体チップを積層しワイヤボンデングで接続する半導体装置では、半導体チップの寸法が制限される、あるいは背高を十分に低くすることができないという問題がある。また、フエイスダウンボンデングを併用する半導体装置では、同一半導体チップを使用できない、かつボンデングコストが上昇するという問題がある。
【0015】
本発明は、積層した半導体チップをワイヤボンデングにより接続しかつ一つのパッケージ内に封止した半導体装置において、積層する半導体チップの寸法に制限されずかつ背高の低い半導体装置を提供することを目的としている。
【0016】
【課題を解決するための手段】
上述した課題を解決するための本発明の半導体装置は、基板上に第一及び第二の半導体チップを順次積層し、それぞれの半導体チップの上面に設けられた第一及び第二の電極と基板上に設けられたボンデング電極とをボンデングワイヤで接続した半導体装置において、第一及び第二の半導体チップ間を絶縁性接着剤により充填し、かつ第一のワイヤのループを第二の半導体チップにより押し潰していることを特徴とする。
【0017】
本発明の半導体装置では、下側に位置する第一の半導体チップ上面の電極にワイヤボンデングされ基板上に引き出されたワイヤを、上側の第二の半導体チップの下面で押し下げ、ボンデングにより形成されるワイヤのループを押し潰して第二の半導体チップが積層されている。従って、第一及び第二の半導体チップの間隔を、ボンデング時のワイヤのループ高さより狭くすることができるので、半導体装置全体の背高を低くすることができる。また、第一の半導体チップ上面へワイヤボンデングした状態で第二の半導体チップを積層するから、上側の第二の半導体チップの寸法上の制約はない。
【0018】
かかる半導体装置は、下側の第一の半導体チップ上面の電極に第一のワイヤをボンデングした後、第一の半導体チップ上に熱可塑性の絶縁性接着剤を形成し、加熱した状態で絶縁性接着剤の上から第二の半導体チップを押下し、ワイヤボンデングにより形成された第一のワイヤのループを押し潰すことにより形成することができる。
【0019】
この方法によると、ワイヤのループを押し潰す際に、ワイヤが可塑性の絶縁性接着剤により被覆されるため、ワイヤが保護され傷や破断の発生を回避することができる。また、ワイヤと上下の半導体チップとの電気的な絶縁が保たれる。
本発明の半導体チップは、上面にワイヤボンデング用の電極を有するものであればよい。第一及び第二の半導体チップの寸法は、同一であっても、異なっていても差し支えない。例えば、上方の半導体チップの寸法を大きくすることもできる。ワイヤは、第一及び第二の半導体チップの上面の電極と、基板上のボンデング電極とを接続するようにワイヤボンデングされる。このとき、一本のワイヤが一つのボンデング電極に接続してもよく、また複数のワイヤが一つのボンデング電極に接続してもよい。
【0020】
また、第一のワイヤが第一の半導体チップの上面角に接触することを防止するために、下側に位置する第一の半導体チップの上面外周部分の表面を、上面中央部分の表面より窪ませることが好ましい。さらに、第一のワイヤを押し下げる第二の半導体チップの裏面を絶縁処理することが好ましい。
なお、本発明の絶縁性接着剤に、第一のワイヤの直径より大きな直径のフィラーを含ませてもよい。これにより、第一及び第二の半導体チップの間隔をフィラーの径で定まる一定値に保ちワイヤの無用な折曲を防止することができる。
【0021】
【発明の実施の形態】
図1は本発明の第一実施形態例断面工程図であり、2個の半導体チップを積層して封止した半導体装置の製造工程を表している。また、図2は本発明の第一実施形態例部分拡大断面図であり、図2(a)は図1(b)の一部を、図2(b)は図1(d)の一部を拡大して表している。
【0022】
本発明の第一実施形態例では、図1(a)を参照して、まず基板1(インターポーザ)上に接着剤5を用いて第一の半導体チップ2aを接着する。次いで、第一の半導体チップ2a上面に形成された第一の電極17aと、この基板1の周辺部上面に形成されたボンデング電極16とを第一のワイヤ3aをワイヤボンデングして接続する。このとき、第一のワイヤ3aは、ボンデングツールにより定まる上に凸のループを形成する。次いで、絶縁性接着剤4を第一の半導体チップ2aの上面に塗布する。この絶縁性接着剤4は、熱可塑性かつ充填性の接着剤をもちいた。
【0023】
次いで、図1(b)を参照して、基板1を図外の加熱台上に載置し、加熱して熱可塑性の絶縁性接着剤4を液状化する。このとき、図2(a)を参照して、液状化した絶縁性接着剤4は、第一の半導体チップ上面をループ状の第一のワイヤ3aを覆うように広がる。
次いで、図1(c)を参照して、第一の半導体チップ2aと同一寸法の第二の半導体チップ2bを載置し、押圧して第一のワイヤ3aのループを押し潰す。その結果、図2(b)を参照して、第一のワイヤ3aは第二の半導体チップ2bの下面により第一の半導体チップ2a表面に押しつけられる。この状態を保持したまま、温度を下げて絶縁性接着剤を硬化する。
【0024】
なお、本実施形態例では、第一の半導体チップ2aの上面及び第二の半導体チップ2bの下面に、絶縁膜7が形成されている。このため、第一及び第二の半導体チップ2a、2bに挟まれた第一のワイヤ3aが、これらの半導体チップに接触しても電気的な絶縁は担保される。さらに、第一のワイヤ3aとして、絶縁被覆されたボンデングワイヤを用いる場合は、これらの絶縁膜7を省略することができる。なお、絶縁膜7を形成せずかつ絶縁被覆されていないボンデングワイヤを用いても、絶縁性接着剤4が第一のワイヤ3aを被覆するため第一及び第二の半導体チップ2a、2bと第一のワイヤ3a間の絶縁は保持される。
【0025】
次いで、図1(d)を参照して、第二の半導体チップ2b上面に形成された電極17bと、基板1上面に形成されたボンデング電極16との間を、第二のワイヤ3bをワイヤボンデングして接続する。
次いで、図1(e)を参照して、基板1上面に封止材6を満たして封止する。このとき、第一及び第二の半導体チップ2a、2b間にはさまれた第一のワイヤ3aは硬化した絶縁性接着材4中に埋設されているので、封止材6の流動圧力により移動又は切断されるおそれが少ない。次いで、基板1の下面に半田ボール8を接合して、半導体装置が製造される。
【0026】
本第一実施形態例では、半導体装置ごとに独立した基板1(インターポーザ)を用いたが、大きな基板1(例えばウエーハ)を用いて封止材6による封止乃至半田ボール8の接合工程までを経た後、個別の半導体装置に分割することもできる。
また、本実施形態例では、絶縁性接着材4を基板1上に接着された第一の半導体チップ2aの上面に供給したが、予め上面に絶縁性接着材4を備える第一の半導体チップ2aを基板1上に接着してもよい。絶縁性接着材4を第一の半導体チップ2a上面に供給するには、液状の絶縁性接着材4を滴下する、ペースト状の絶縁性接着材4を印刷する、シート状に積層した絶縁性接着材4を貼着する方法を用いることができる。さらに、これらの絶縁性接着材4の供給方法を、第一の半導体チップ2aが作製された半導体ウエーハに適用した後、個々の半導体チップに分割してもよい。
【0027】
図3は本発明の第二実施形態例断面図である。本実施形態例では、図3を参照して、下側の第一の半導体チップ2aの上面周縁部分に窪み9が形成されている。本実施形態例によれば、第一のワイヤ3aが第一の半導体チップ2aの上面周縁部分に接触しにくく、第一のワイヤ3aと第一の半導体チップ2a間の絶縁をより確かにすることができる。
【0028】
図4は本発明の第三実施形態例断面図である。本実施形態例では、図4を参照して、絶縁性接着材4がフィラーを含有しており、第一及び第二の半導体チップ2a、2b間の距離がフィラーの直径に維持される。したがって、フィラーの直径を、第一のワイヤ3aが折損しない範囲で最小とすることで、信頼性を損なうことなく半導体装置の背高を確実に最小にすることができる。
【0029】
上述した本明細書には、以下の付記記載の発明が含まれている。
(付記1)ボンデング電極が設けられた基板上に順次積層された第一及び第二の半導体チップと、該第一の半導体チップ上面に設けられた第一の電極と該ボンデング電極とを接続する第一のワイヤと、該第二の半導体チップ上面に設けられた第二の電極と該ボンデング電極とを接続する第二のワイヤとを有する半導体装置において、
該第一及び該第二の半導体チップ間は絶縁性接着剤により充填され、かつ該第一のワイヤは該第二の半導体チップにより押し潰されていることを特徴とする半導体装置。
(付記2)付記1記載の半導体装置において、
該絶縁性接着剤は、該ワイヤの直径より大きな直径を有するフィラーを含むことを特徴とする半導体装置。
(付記3)付記1又は2記載の半導体装置において、
該第一の半導体チップは、上面外周部分の表面が上面中央部分の表面より窪んでいることを特徴とする半導体装置。
(付記4)付記1、2又は3記載の半導体装置において、
該第二の半導体チップの裏面は、絶縁処理されていることを特徴とする半導体装置の製造方法。
(付記5)付記1、2、3又は4記載の半導体装置の製造方法において、
該基板上に該第一の半導体チップを搭載し、該第一のワイヤをワイヤボンデングする工程と、
次いで、該第一の半導体チップ上に熱可塑性の該絶縁性接着剤を形成する工程と、
次いで、加熱した状態で該絶縁性接着剤の上から該第二の半導体チップを押下し、該ワイヤボンデングにより形成された該第一のワイヤのループを押し潰す工程とを有することを特徴とする半導体装置の製造方法。
(付記6)付記1、2、3又は4記載の半導体装置の製造方法において、
ウエーハ上に該第一の半導体チップを搭載し、該第一のワイヤをワイヤボンデングする工程と、
次いで、該第一の半導体チップ上に熱可塑性の該絶縁性接着剤を形成する工程と、
次いで、加熱した状態で該絶縁性接着剤の上から該第二の半導体チップを押下し、該ワイヤボンデングにより形成された該第一のワイヤのループを押し潰す工程と、
該ウエーハ上に封止材を供給して該第一及び該第二の半導体チップを封止する工程と、
該封止材ごと該ウエーハを個々の基板に分割して、個別の半導体装置に分離する工程とを有することを特徴とする半導体装置の製造方法。
(付記7)上面にワイヤボンデング用の電極と、該電極へワイヤをボンデングしたときに該ワイヤが形成するループの高さより薄い膜厚を有する熱可塑性の絶縁性接着材とが設けられた半導体チップ。
【0030】
【発明の効果】
本発明によれば、積層した半導体チップ間のボンデングワイヤのループを押し潰して半導体チップの間隔を最小にすることができるので、ワイヤボンデングを用いても背高の低い半導体装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態例断面工程図
【図2】本発明の第一実施形態例部分拡大断面図
【図3】本発明の第二実施形態例断面図
【図4】本発明の第三実施形態例断面図
【図5】従来の半導体装置断面図
【符号の説明】
1 基板
2 半導体チップ
2a 第一の半導体チップ
2b 第二の半導体チップ
2c 第三の半導体チップ
3 ワイヤ
3a 第一のワイヤ
3b 第二のワイヤ
3c 第三のワイヤ
4 絶縁性接着剤
5 接着剤
6 封止材
7 絶縁膜
8 半田ボール
9 窪み
10 フィラー
11 リード
11a ダイパッド
12 スペーサ
13 絶縁性樹脂
14 接着材
15 ポリイミド薄膜
16 ボンデング電極
17a 第一の電極
17b 第二の電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device in which wire-bonded semiconductor chips are stacked and sealed, and more particularly to a semiconductor device having a short height and a method of manufacturing the same.
[0002]
[Prior art]
In order to reduce the size of the module, a semiconductor device in which semiconductor chips are stacked and sealed has been developed. FIG. 5 is a sectional view of a conventional semiconductor device, and shows a device in which semiconductor chips are stacked and sealed.
Conventionally, referring to FIG. 5A, first to third semiconductor chips 2a to 2c are laminated on a die pad of a lead 11 with an adhesive 5 interposed therebetween. The first to third semiconductor chips 2a to 2c gradually decrease in chip size as going upward, and there is room for bonding electrodes on the upper surface of the lower semiconductor chip. The semiconductor circuits formed on the first to third semiconductor chips 2a to 2c are connected to the leads 11 from the spaces provided on the upper surfaces of the semiconductor chips 2a to 2c via the bonding wires 3a to 3c. The whole is sealed using a sealing material 6 such as a mold. (See, for example, Patent Document 1).
[0003]
However, in this semiconductor device, in order to leave room for providing a bonding electrode, a semiconductor chip to be stacked on the upper side must be reduced in size, which limits the degree of freedom in design.
As a method of stacking semiconductor chips of the same size, there is a method using a spacer. Referring to FIG. 5B, the first semiconductor chip 2a is bonded to the circuit board 1 and the circuit board 1 and the semiconductor chip 2a are connected to each other by the wire-bonded wires 3a. The second semiconductor chip 2b is stacked via the second semiconductor chip 2b. The spacer 12 is provided so that the loop of the wire 3a is not deformed when the second semiconductor chip 2b is stacked. (See, for example, Patent Document 2).
[0004]
In this method, there is no particular limitation on the dimensions of the semiconductor chips to be stacked. However, there is a problem that the height is increased due to the interposition of the spacers 12.
Further, a method using an insulating resin instead of the spacer has been devised. Referring to FIG. 5C, after bonding and wire bonding the first semiconductor chip 2a on the circuit board 1, an insulating resin 13 is applied to the upper surface of the first semiconductor chip 2a to cover the wire 3a. Then, the second semiconductor chip 2b is mounted thereon, and the insulating resin 13 is cured. Thereafter, the whole is sealed with a sealing material 6. (See, for example, Patent Document 3).
[0005]
This method also maintains the loop shape of the bonded wire 3a, and has a problem that the thickness of the insulating resin 13 must be higher than the loop height, which increases the height.
As a method of lowering the height of a semiconductor device in which semiconductor chips are stacked, there is a method in which a lower semiconductor chip is face-down bonded and an upper semiconductor chip is wire-bonded. (For example, see Patent Document 4).
[0006]
In this method, the lower and upper semiconductor chips can be in close contact with each other, so that the height is reduced. However, two types of semiconductor chips, one for face-down bonding and one for wire bonding, are required, and there is a problem that the upper and lower semiconductor chips cannot be made identical. In addition, face down is more expensive than wire bonding.
[0007]
There is also a method of forming a short package and stacking it. In this method, referring to FIG. 5 (d), first, a lead 11 is arranged on an upper surface of a semiconductor chip 2 via an insulating layer 13, and the lead and the upper surface of the semiconductor chip are connected by wire-bonded wires 3. . Then, the polyimide thin film 15 coated with the adhesive 14 is laminated on the lower surface and pressed to crush the loop of the wire 3. A plurality of packages thus formed can be stacked. (See, for example, Patent Document 5).
[0008]
In this method, since the loop formed by bonding the wire 3 is crushed, the height of the package can be reduced accordingly. However, since the leads 11 and the polyimide thin film 15 are interposed between the stacked semiconductor chips, the height cannot be reduced too much.
[0009]
[Patent Document 1]
JP 2001-118877 A
[Patent Document 2]
JP-A-2002-141449
[Patent Document 3]
JP-A-8-88316
[Patent Document 4]
JP 2001-35994 A
[Patent Document 5]
JP-A-5-109801
[Problems to be solved by the invention]
As described above, in a conventional semiconductor device in which semiconductor chips are stacked and connected by wire bonding, there is a problem that the dimensions of the semiconductor chip are limited or the height cannot be reduced sufficiently. Further, in a semiconductor device using face-down bonding, there is a problem that the same semiconductor chip cannot be used and the bonding cost increases.
[0015]
An object of the present invention is to provide a semiconductor device in which stacked semiconductor chips are connected by wire bonding and sealed in one package, and are not limited by the dimensions of the stacked semiconductor chips and have a short height. The purpose is.
[0016]
[Means for Solving the Problems]
A semiconductor device according to the present invention for solving the above-described problems includes a first and a second semiconductor chips sequentially stacked on a substrate, and a first and a second electrode provided on an upper surface of each semiconductor chip and a substrate. In a semiconductor device in which a bonding electrode provided above is connected with a bonding wire, a gap between the first and second semiconductor chips is filled with an insulating adhesive, and a loop of the first wire is connected to the second semiconductor chip. Characterized by being crushed.
[0017]
In the semiconductor device of the present invention, a wire that is wire-bonded to the electrode on the upper surface of the first semiconductor chip located on the lower side and drawn out onto the substrate is pressed down on the lower surface of the upper second semiconductor chip, and is formed by bonding. The second semiconductor chip is stacked by crushing the wire loop. Therefore, the interval between the first and second semiconductor chips can be made smaller than the wire loop height at the time of bonding, so that the overall height of the semiconductor device can be reduced. In addition, since the second semiconductor chip is stacked while being wire-bonded to the upper surface of the first semiconductor chip, there is no restriction on the dimensions of the upper second semiconductor chip.
[0018]
In such a semiconductor device, after bonding a first wire to an electrode on the upper surface of a lower first semiconductor chip, a thermoplastic insulating adhesive is formed on the first semiconductor chip, and the insulating material is heated in an insulated state. It can be formed by pressing down the second semiconductor chip from above the adhesive and crushing the loop of the first wire formed by wire bonding.
[0019]
According to this method, when the loop of the wire is crushed, the wire is covered with the plastic insulating adhesive, so that the wire is protected and the generation of scratches and breakage can be avoided. Further, electrical insulation between the wires and the upper and lower semiconductor chips is maintained.
The semiconductor chip of the present invention only needs to have an electrode for wire bonding on the upper surface. The dimensions of the first and second semiconductor chips may be the same or different. For example, the size of the upper semiconductor chip can be increased. The wires are wire-bonded so as to connect the electrodes on the upper surfaces of the first and second semiconductor chips and the bonding electrodes on the substrate. At this time, one wire may be connected to one bonding electrode, or a plurality of wires may be connected to one bonding electrode.
[0020]
Further, in order to prevent the first wire from coming into contact with the upper surface corner of the first semiconductor chip, the surface of the outer peripheral portion of the upper surface of the lower first semiconductor chip is recessed from the surface of the central portion of the upper surface. It is preferable to do so. Further, it is preferable to insulate the back surface of the second semiconductor chip that pushes down the first wire.
The insulating adhesive of the present invention may include a filler having a diameter larger than the diameter of the first wire. Thereby, the interval between the first and second semiconductor chips can be maintained at a constant value determined by the diameter of the filler, and unnecessary bending of the wire can be prevented.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a cross-sectional process diagram of the first embodiment of the present invention, showing a manufacturing process of a semiconductor device in which two semiconductor chips are stacked and sealed. 2 is a partially enlarged sectional view of the first embodiment of the present invention. FIG. 2 (a) is a part of FIG. 1 (b), and FIG. 2 (b) is a part of FIG. 1 (d). Is enlarged.
[0022]
In the first embodiment of the present invention, referring to FIG. 1A, first, a first semiconductor chip 2a is bonded onto a substrate 1 (interposer) using an adhesive 5. Next, the first electrode 17a formed on the upper surface of the first semiconductor chip 2a and the bonding electrode 16 formed on the upper surface of the peripheral portion of the substrate 1 are connected by wire bonding the first wire 3a. At this time, the first wire 3a forms an upwardly convex loop determined by the bonding tool. Next, the insulating adhesive 4 is applied to the upper surface of the first semiconductor chip 2a. As the insulating adhesive 4, a thermoplastic and filling adhesive was used.
[0023]
Next, referring to FIG. 1B, the substrate 1 is placed on a heating table (not shown) and heated to liquefy the thermoplastic insulating adhesive 4. At this time, referring to FIG. 2A, the liquefied insulating adhesive 4 spreads over the upper surface of the first semiconductor chip so as to cover the loop-shaped first wire 3a.
Next, referring to FIG. 1C, a second semiconductor chip 2b having the same dimensions as the first semiconductor chip 2a is placed and pressed to crush the loop of the first wire 3a. As a result, referring to FIG. 2B, the first wire 3a is pressed against the surface of the first semiconductor chip 2a by the lower surface of the second semiconductor chip 2b. While maintaining this state, the temperature is lowered to cure the insulating adhesive.
[0024]
In this embodiment, the insulating film 7 is formed on the upper surface of the first semiconductor chip 2a and the lower surface of the second semiconductor chip 2b. For this reason, even if the first wire 3a sandwiched between the first and second semiconductor chips 2a and 2b contacts these semiconductor chips, electrical insulation is ensured. Further, when a bonding wire coated with insulation is used as the first wire 3a, the insulating film 7 can be omitted. In addition, even if the bonding wire which does not form the insulating film 7 and is not coated with the insulation is used, since the insulating adhesive 4 covers the first wire 3a, the first and second semiconductor chips 2a and 2b are not covered. The insulation between the first wires 3a is maintained.
[0025]
Next, referring to FIG. 1D, a second wire 3b is wire-bonded between the electrode 17b formed on the upper surface of the second semiconductor chip 2b and the bonding electrode 16 formed on the upper surface of the substrate 1. Dengue and connect.
Next, referring to FIG. 1E, the upper surface of the substrate 1 is filled with a sealing material 6 and sealed. At this time, since the first wire 3a sandwiched between the first and second semiconductor chips 2a and 2b is buried in the cured insulating adhesive material 4, the first wire 3a moves by the flow pressure of the sealing material 6. Or there is little possibility of being cut. Next, solder balls 8 are joined to the lower surface of the substrate 1 to manufacture a semiconductor device.
[0026]
In the first embodiment, the independent substrate 1 (interposer) is used for each semiconductor device. However, the process from the sealing with the sealing material 6 to the bonding step of the solder balls 8 using the large substrate 1 (for example, a wafer) is performed. After that, the semiconductor device can be divided into individual semiconductor devices.
In the present embodiment, the insulating adhesive 4 is supplied to the upper surface of the first semiconductor chip 2a bonded on the substrate 1, but the first semiconductor chip 2a having the insulating adhesive 4 on the upper surface in advance is provided. May be adhered to the substrate 1. In order to supply the insulating adhesive material 4 to the upper surface of the first semiconductor chip 2a, the liquid insulating adhesive material 4 is dropped, the paste insulating adhesive material 4 is printed, and the sheet-shaped insulating adhesive material is laminated. A method of attaching the material 4 can be used. Further, the method of supplying the insulating adhesive 4 may be applied to the semiconductor wafer on which the first semiconductor chip 2a is manufactured, and then divided into individual semiconductor chips.
[0027]
FIG. 3 is a sectional view of a second embodiment of the present invention. In the present embodiment, referring to FIG. 3, a depression 9 is formed in a peripheral portion of the upper surface of the lower first semiconductor chip 2a. According to the present embodiment, the first wire 3a is unlikely to come into contact with the peripheral portion of the upper surface of the first semiconductor chip 2a, and the insulation between the first wire 3a and the first semiconductor chip 2a is further ensured. Can be.
[0028]
FIG. 4 is a sectional view of a third embodiment of the present invention. In the present embodiment, referring to FIG. 4, the insulating adhesive 4 contains a filler, and the distance between the first and second semiconductor chips 2a, 2b is maintained at the diameter of the filler. Therefore, by minimizing the diameter of the filler within a range where the first wire 3a does not break, the height of the semiconductor device can be reliably minimized without impairing reliability.
[0029]
The above specification includes the following aspects of the invention.
(Supplementary Note 1) Connecting first and second semiconductor chips sequentially laminated on a substrate provided with a bonding electrode, and connecting the first electrode provided on the upper surface of the first semiconductor chip and the bonding electrode. In a semiconductor device having a first wire and a second wire connecting the second electrode provided on the upper surface of the second semiconductor chip and the bonding electrode,
A semiconductor device, wherein a space between the first and second semiconductor chips is filled with an insulating adhesive, and the first wire is crushed by the second semiconductor chip.
(Supplementary Note 2) In the semiconductor device according to Supplementary Note 1,
The semiconductor device, wherein the insulating adhesive includes a filler having a diameter larger than a diameter of the wire.
(Supplementary Note 3) In the semiconductor device according to Supplementary Note 1 or 2,
The semiconductor device according to claim 1, wherein the first semiconductor chip has a surface at an outer peripheral portion of the upper surface recessed from a surface at a central portion of the upper surface.
(Supplementary Note 4) In the semiconductor device according to Supplementary Note 1, 2, or 3,
A method for manufacturing a semiconductor device, wherein a back surface of the second semiconductor chip is subjected to an insulation treatment.
(Supplementary Note 5) In the method for manufacturing a semiconductor device according to Supplementary Note 1, 2, 3, or 4,
Mounting the first semiconductor chip on the substrate, and wire bonding the first wire;
Then, forming the thermoplastic insulating adhesive on the first semiconductor chip,
Then, pressing the second semiconductor chip from above the insulating adhesive in a heated state, and crushing the loop of the first wire formed by the wire bonding. Semiconductor device manufacturing method.
(Supplementary Note 6) In the method of manufacturing a semiconductor device according to Supplementary Note 1, 2, 3, or 4,
Mounting the first semiconductor chip on a wafer, and wire bonding the first wire;
Then, forming the thermoplastic insulating adhesive on the first semiconductor chip,
Then, pressing the second semiconductor chip over the insulating adhesive in a heated state, crushing the loop of the first wire formed by the wire bonding,
Supplying a sealing material on the wafer to seal the first and second semiconductor chips;
Dividing the wafer into individual substrates together with the sealing material and separating the wafer into individual semiconductor devices.
(Supplementary Note 7) A semiconductor in which an electrode for wire bonding and a thermoplastic insulating adhesive having a film thickness smaller than the height of a loop formed by bonding the wire to the electrode are provided on the upper surface. Chips.
[0030]
【The invention's effect】
According to the present invention, it is possible to minimize the gap between the semiconductor chips by crushing the loops of the bonding wires between the stacked semiconductor chips, so that there is provided a semiconductor device which is short even when wire bonding is used. be able to.
[Brief description of the drawings]
FIG. 1 is a sectional process view of a first embodiment of the present invention; FIG. 2 is a partially enlarged sectional view of a first embodiment of the present invention; FIG. 3 is a sectional view of a second embodiment of the present invention; FIG. FIG. 5 is a sectional view of a third embodiment of the invention. FIG. 5 is a sectional view of a conventional semiconductor device.
DESCRIPTION OF SYMBOLS 1 Substrate 2 Semiconductor chip 2a First semiconductor chip 2b Second semiconductor chip 2c Third semiconductor chip 3 Wire 3a First wire 3b Second wire 3c Third wire 4 Insulating adhesive 5 Adhesive 6 Sealing Stopping material 7 Insulating film 8 Solder ball 9 Depression 10 Filler 11 Lead 11a Die pad 12 Spacer 13 Insulating resin 14 Adhesive material 15 Polyimide thin film 16 Bonding electrode 17a First electrode 17b Second electrode

Claims (5)

ボンデング電極が設けられた基板上に順次積層された第一及び第二の半導体チップと、該第一の半導体チップ上面に設けられた第一の電極と該ボンデング電極とを接続する第一のワイヤと、該第二の半導体チップ上面に設けられた第二の電極と該ボンデング電極とを接続する第二のワイヤとを有する半導体装置において、
該第一及び該第二の半導体チップ間は絶縁性接着剤により充填され、かつ該第一のワイヤは該第二の半導体チップにより押し潰されていることを特徴とする半導体装置。
First and second semiconductor chips sequentially stacked on a substrate provided with a bonding electrode, and a first wire connecting the first electrode provided on the upper surface of the first semiconductor chip and the bonding electrode And a semiconductor device having a second electrode provided on the upper surface of the second semiconductor chip and a second wire connecting the bonding electrode,
A semiconductor device, wherein a space between the first and second semiconductor chips is filled with an insulating adhesive, and the first wire is crushed by the second semiconductor chip.
請求項1記載の半導体装置において、
該絶縁性接着剤は、該ワイヤの直径より大きな直径を有するフィラーを含むことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the insulating adhesive includes a filler having a diameter larger than a diameter of the wire.
請求項1又は2記載の半導体装置において、
該第一の半導体チップは、上面外周部分の表面が上面中央部分の表面より窪んでいることを特徴とする半導体装置。
The semiconductor device according to claim 1, wherein
The semiconductor device according to claim 1, wherein the first semiconductor chip has a surface at an outer peripheral portion of the upper surface recessed from a surface at a central portion of the upper surface.
請求項1、2又は3記載の半導体装置において、
該第二の半導体チップの裏面は、絶縁処理されていることを特徴とする半導体装置の製造方法。
The semiconductor device according to claim 1, 2 or 3,
A method for manufacturing a semiconductor device, wherein a back surface of the second semiconductor chip is subjected to an insulation treatment.
請求項1、2、3又は4記載の半導体装置の製造方法において、
該基板上に該第一の半導体チップを搭載し、該第一のワイヤをワイヤボンデングする工程と、
次いで、該第一の半導体チップ上に熱可塑性の該絶縁性接着剤を形成する工程と、
次いで、加熱した状態で該絶縁性接着剤の上から該第二の半導体チップを押下し、該ワイヤボンデングにより形成された該第一のワイヤのループを押し潰す工程とを有することを特徴とする半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 1, 2, 3, or 4,
Mounting the first semiconductor chip on the substrate, and wire bonding the first wire;
Then, forming the thermoplastic insulating adhesive on the first semiconductor chip,
Then, pressing the second semiconductor chip from above the insulating adhesive in a heated state, and crushing the loop of the first wire formed by the wire bonding. Semiconductor device manufacturing method.
JP2002359894A 2002-12-11 2002-12-11 Semiconductor device and method of manufacturing the same Withdrawn JP2004193363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359894A JP2004193363A (en) 2002-12-11 2002-12-11 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359894A JP2004193363A (en) 2002-12-11 2002-12-11 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004193363A true JP2004193363A (en) 2004-07-08

Family

ID=32759156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359894A Withdrawn JP2004193363A (en) 2002-12-11 2002-12-11 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004193363A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210792A (en) * 2005-01-31 2006-08-10 Nec Electronics Corp Semiconductor device
JP2008187109A (en) * 2007-01-31 2008-08-14 Toshiba Corp Stacked semiconductor device and method of manufacturing the same
JP2008198909A (en) * 2007-02-15 2008-08-28 Elpida Memory Inc Semiconductor package
JPWO2006109506A1 (en) * 2005-03-30 2008-10-23 新日鐵化学株式会社 Semiconductor device manufacturing method and semiconductor device
CN100440464C (en) * 2005-03-28 2008-12-03 株式会社东芝 Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
US7615413B2 (en) 2005-03-28 2009-11-10 Kabushiki Kaisha Toshiba Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
US7629695B2 (en) 2004-05-20 2009-12-08 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US7675180B1 (en) 2006-02-17 2010-03-09 Amkor Technology, Inc. Stacked electronic component package having film-on-wire spacer
US7863723B2 (en) 2001-03-09 2011-01-04 Amkor Technology, Inc. Adhesive on wire stacked semiconductor package
US8129849B1 (en) 2006-05-24 2012-03-06 Amkor Technology, Inc. Method of making semiconductor package with adhering portion
JP4998268B2 (en) * 2005-08-24 2012-08-15 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143727B2 (en) 2001-03-09 2012-03-27 Amkor Technology, Inc. Adhesive on wire stacked semiconductor package
US7863723B2 (en) 2001-03-09 2011-01-04 Amkor Technology, Inc. Adhesive on wire stacked semiconductor package
US9024424B2 (en) 2004-05-20 2015-05-05 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US8268673B2 (en) 2004-05-20 2012-09-18 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US8008763B2 (en) 2004-05-20 2011-08-30 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US7629695B2 (en) 2004-05-20 2009-12-08 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
JP4589743B2 (en) * 2005-01-31 2010-12-01 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2006210792A (en) * 2005-01-31 2006-08-10 Nec Electronics Corp Semiconductor device
US7615413B2 (en) 2005-03-28 2009-11-10 Kabushiki Kaisha Toshiba Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
US7785926B2 (en) 2005-03-28 2010-08-31 Kabushiki Kaisha Toshiba Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
CN100440464C (en) * 2005-03-28 2008-12-03 株式会社东芝 Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
JPWO2006109506A1 (en) * 2005-03-30 2008-10-23 新日鐵化学株式会社 Semiconductor device manufacturing method and semiconductor device
JP4976284B2 (en) * 2005-03-30 2012-07-18 新日鐵化学株式会社 Semiconductor device manufacturing method and semiconductor device
JP4998268B2 (en) * 2005-08-24 2012-08-15 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
US8841776B2 (en) 2005-08-24 2014-09-23 Fujitsu Semiconductor Limited Stacked semiconductor chips having double adhesive insulating layer interposed therebetween
US7675180B1 (en) 2006-02-17 2010-03-09 Amkor Technology, Inc. Stacked electronic component package having film-on-wire spacer
US8129849B1 (en) 2006-05-24 2012-03-06 Amkor Technology, Inc. Method of making semiconductor package with adhering portion
US8039970B2 (en) 2007-01-31 2011-10-18 Kabushiki Kaisha Toshiba Stacked semiconductor device and method of manufacturing the same
JP2008187109A (en) * 2007-01-31 2008-08-14 Toshiba Corp Stacked semiconductor device and method of manufacturing the same
JP2008198909A (en) * 2007-02-15 2008-08-28 Elpida Memory Inc Semiconductor package

Similar Documents

Publication Publication Date Title
TW544902B (en) Semiconductor device and manufacture the same
TWI331382B (en) Stacked package structure and method for manufacturing the same
JP5529371B2 (en) Semiconductor device and manufacturing method thereof
JP4871280B2 (en) Semiconductor device and manufacturing method thereof
US8058717B2 (en) Laminated body of semiconductor chips including pads mutually connected to conductive member
TWI222731B (en) Semiconductor device
TWI415201B (en) Multiple chips stack structure and method for fabricating the same
TWI724744B (en) Semiconductor device and manufacturing method of semiconductor device
JP2004312008A (en) Semiconductor multi-chip package and manufacturing method therefor
TW200414471A (en) Semiconductor device and manufacturing method for the same
JP2001110986A (en) Power element with multi-chip package structure and manufacturing method thereof
JP2004172157A (en) Semiconductor package and package stack semiconductor device
JP2008187207A (en) Stacked electronic component
JP2003078105A (en) Stacked chip module
US8803304B2 (en) Semiconductor package and manufacturing method thereof
JP2008541431A (en) Multi-chip module and manufacturing method
TW201218317A (en) Method of multi-chip stacking for decreasing void between chips
JP2004193363A (en) Semiconductor device and method of manufacturing the same
US11670622B2 (en) Stacked semiconductor package and packaging method thereof
JP2011243724A (en) Semiconductor device and method for manufacturing the same
TW201246474A (en) Semiconductor device, semiconductor package
JP2007242684A (en) Laminated semiconductor device and laminating method of device
TW202008529A (en) Semiconductor device and method for manufacturing the same
JP2002184936A (en) Semiconductor device and its manufacturing method
TWI321349B (en) Multi-chip stack package

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307