JP2004192663A - 光ピックアップ - Google Patents

光ピックアップ Download PDF

Info

Publication number
JP2004192663A
JP2004192663A JP2002355610A JP2002355610A JP2004192663A JP 2004192663 A JP2004192663 A JP 2004192663A JP 2002355610 A JP2002355610 A JP 2002355610A JP 2002355610 A JP2002355610 A JP 2002355610A JP 2004192663 A JP2004192663 A JP 2004192663A
Authority
JP
Japan
Prior art keywords
light beam
optical
photodetector
light
spherical aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002355610A
Other languages
English (en)
Other versions
JP3911475B2 (ja
Inventor
Shiyouhei Kobayashi
章兵 小林
Nobuyoshi Iwasaki
暢喜 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002355610A priority Critical patent/JP3911475B2/ja
Publication of JP2004192663A publication Critical patent/JP2004192663A/ja
Application granted granted Critical
Publication of JP3911475B2 publication Critical patent/JP3911475B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】球面収差の補正を確実に行なえる光ピックアップを提供する。
【解決手段】光ピックアップ100は、光ビームを射出する光源12と、光源12からの光ビームを光ディスク80に方向付けると共に光ディスク80から戻る光ビームを光ディスク80に向かう光ビームの光路から分離する分離用ビームスプリッター16と、光ビームを光ディスク80に収束させる対物レンズ18と、光ディスク80から戻る光ビームに基づいて少なくともフォーカスエラー信号を検出する光検出部とを有している。光ピックアップ100は更に、光ディスク80に収束される光ビームの球面収差を補正する球面収差補正装置40と、光検出部内のフォーカスエラー信号検出回路32で検出されるフォーカスエラー信号の振幅を検出する振幅検出回路52と、振幅検出回路52で検出される情報に基づいて球面収差補正装置40を駆動する駆動回路54とを有している。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、収差補正手段を有する光記録/再生用の光ピックアップ装置に関する。
【0002】
【従来の技術】
光ディスクに高密度で情報を記録したり、光ディスクに高密度で記録された情報を再生するために、光ピックアップの対物レンズの開口数(NA)を大きくし、使用する光の波長を短くすることが提案されている。このような光ピックアップにおいては、光ディスクのカバー層の光学的厚さの変化(光ディスクの製造バラツキによるカバー層の厚さの変化や、複数の記録層を有する光ディスクの層毎に異なるカバー層の厚さの変化)により発生する球面収差を補正する球面収差補正装置が必要である。
【0003】
特開2001−266392号公報は、光ディスクで反射されたレーザ光を受光する光検出器と、液晶パネルを用いた球面収差補正装置とを有する光ピックアップを開示している。このピックアップでは、光検出器から出力される電気信号からトラッキングエラー信号またはプリピット検出信号または透過基板厚誤差検出信号を生成し、これらの信号のうちのいずれか一つを用いて、信号レベルが判定基準を満たしたとき、球面収差補正が完了したと判断する。例えば、フォーカスサーボをかけた後、トラッキングエラー信号のエンベロープレベルを検出し、このエンベロープレベルと所定の基準レベル(REFとする)との比較を行なう。エンベロープレベルがREFを超えていれば、球面収差補正が完了したと判定する。
【0004】
【特許文献1】
特開2001−266392号公報
【0005】
【発明が解決しようとする課題】
図6(特開2001−266392号公報の図4)は、光ディスクのカバー層の厚さ誤差に対するトラッキングエラー信号のエンベロープレベルと再生信号のエラー率との関係を示している。図6においてREFが判定基準であり、エラー率の許容範囲である。
【0006】
しかし、トラッキングエラー信号のエンベロープは球面収差で変化するだけではなく、光ディスクの記録層の材質や、光ディスクに刻まれたガイド溝または信号ピットの幅と深さや、光ピックアップの部品精度や、光ピックアップの組み立て精度に強く依存している。その結果、球面収差(光ディスクのカバー層の厚さ誤差)とは関係なく、トラッキングエラー信号のエンベロープがREFを超えない場合が発生して、球面収差補正が完了したことを正しく判断できなくなることがある。
【0007】
逆に、球面収差(光ディスクのカバー層の厚さ誤差)とは関係なく、トラッキングエラー信号のエンベロープが大きい場合、REFで判定したとき許容される光ディスクの厚さ誤差範囲が広がり(図6の縦の二本の破線の間隔が両側に開く)、再生信号のエラー率の許容範囲内にないにもかかわらず、球面収差補正が完了したと判断することもある。
【0008】
トラッキングエラー信号に限らず、プリピット検出信号と透過基板厚誤差検出信号を用いた場合も、同様の不具合がある。
【0009】
本発明の目的は、球面収差の補正を確実に行なえる光ピックアップを提供することである。
【0010】
【課題を解決するための手段】
本発明の光ビックアップは、光ビームを射出する光源と、光源からの光ビームを光ディスクに方向付けると共に光ディスクから戻る光ビームを光ディスクに向かう光ビームの光路から分離する分離用ビームスプリッターと、光ディスクに向かう光ビームを光ディスクに収束させる対物レンズと、分離用ビームスプリッターによって光ディスクに向かう光ビームの光路から分離された光ディスクから戻る光ビームに基づいて少なくともフォーカスエラー信号を検出する光検出部と、光ディスクに収束される光ビームの球面収差を補正する球面収差補正装置と、光検出部で検出されるフォーカスエラーの情報に基づいて球面収差補正装置を駆動する駆動回路とを有している。駆動回路は、フォーカスエラー信号の振幅が最大となるように球面収差補正装置を駆動する。
【0011】
光ピックアップは、一例においては、対物レンズを光軸に沿って移動させるアクチュエーターを更に有しており、アクチュエーターは対物レンズを光軸に沿って振動させ、駆動回路は、フォーカスエラー信号のフォーカスエラー検出感度が最大となるように球面収差補正装置を駆動する。
【0012】
光検出部は、例えば、光ディスクから戻る光ビームを収束させる収束レンズと、収束レンズからの収束光ビームを第一の収束光ビームと第二の収束光ビームに分割する分割用ビームスプリッターと、分割用ビームスプリッターで分割された第一の収束光ビームを検出する第一の光検出器と、分割用ビームスプリッターで分割された第二の収束光ビームを検出する第二の光検出器と、第一の光検出器と第二の光検出器の出力信号に基づいてフォーカスエラー信号を検出するフォーカスエラー信号検出回路とを有しており、第一の光検出器は光ディスクに収束される光ビームが合焦状態にあるときの第一の収束光ビームの集光点よりも手前に位置し、第二の光検出器は光ディスクに収束される光ビームが合焦状態にあるときの第二の収束光ビームの集光点よりも後方に位置しており、さらに、光ディスクに収束される光ビームが合焦状態にあるときの第一の収束光ビームの集光点と第一の光検出器の間隔は光ディスクに収束される光ビームが合焦状態にあるときの第二の収束光ビームの集光点と第二の光検出器の間隔に等しい。好ましくは、第一の光検出器と第二の光検出器はそれぞれ互いに隣接して一列に整列している三つの矩形形状の受光領域を有しており、それらの中央の受光領域はいずれも光源から射出される光ビームの光の波長を入射する収束光ビームの開口数で割った値以下の寸法の幅を有している。
【0013】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0014】
図1は本発明の実施形態の光ピックアップの構成を示している。
【0015】
光ピックアップ100は、光ビームを射出する光源12と、光源12から射出された発散光ビームを平行光ビームに変えるコリメートレンズ14と、光源12からの光ビームを光ディスク80に方向付けると共に光ディスク80から戻る光ビームを光ディスク80に向かう光ビームの光路から分離する分離用ビームスプリッター16と、光ディスク80に向かう光ビームを光ディスク80に収束させる対物レンズ18とを有している。
【0016】
光源12は、例えば、半導体レーザーで構成されるが、特にこれに限定されるものではない。半導体レーザーは例えば405nmの波長の光ビームを射出する。対物レンズ18は0.7以上の開口数を有している。対物レンズ18は、図1には単一のレンズとして描かれているが、二枚のレンズで構成されてもよい。
【0017】
光ピックアップ100は更に、分離用ビームスプリッター16によって光ディスク80に向かう光ビームの光路から分離された光ディスク80から戻る光ビームに基づいて少なくともフォーカスエラー信号を検出する光検出部を有している。光検出部は、これに限定されないが、例えばビームサイズ法によりフォーカスエラー信号を検出する。
【0018】
このため、光検出部は、光ディスク80から戻る光ビームを収束させる収束レンズ22と、収束レンズ22からの収束光ビームを二本の光ビーム(第一の収束光ビームと第二の収束光ビーム)に分割する分割用ビームスプリッター24と、分割用ビームスプリッター24で分割された第一の収束光ビームを検出する第一の光検出器26と、分割用ビームスプリッター24で分割された第二の収束光ビームを検出する第二の光検出器28と、第一の光検出器26と第二の光検出器28の出力信号に基づいてフォーカスエラー信号を検出するフォーカスエラー信号検出回路32を有している。
【0019】
再生用の光ピックアップにおいては、光検出部は更に、第一の光検出器26と第二の光検出器28の出力信号に基づいて再生信号を検出する再生信号検出回路34を有している。更に光検出部は、図示されていないが、第一の光検出器26と第二の光検出器28の出力信号に基づいてトラッキングエラー信号を検出するトラッキングエラー信号検出回路を有していてもよい。
【0020】
光ピックアップ100は更に、対物レンズ18を光軸に沿って移動させるアクチュエーター62と、フォーカスエラー信号検出回路32で検出されるフォーカスエラー信号に基づいてアクチュエーター62を駆動する駆動回路64とを有している。アクチュエーター62と駆動回路64は、例えば、光ビームのフォーカスを光ディスクの記録層に合わせるために対物レンズ18と光ディスク80の間隔を調整するフォーカス調整機構を構成する。フォーカスが合っている状態すなわち合焦状態では、光ディスク80の記録層上に形成される光ビームのスポット径は最小となる。
【0021】
第一の光検出器26は合焦状態における第一の収束光ビームの集光点よりも手前に位置し、第二の光検出器28は合焦状態における第二の収束光ビームの集光点よりも後方に位置している。さらに、合焦状態における第一の収束光ビームの集光点と第一の光検出器26の間隔は、合焦状態における第二の収束光ビームの集光点と第二の光検出器28の間隔に等しい。従って、合焦状態においては、第一の光検出器26に形成される第一の収束光ビームのスポットと第二の光検出器28に形成される第二の収束光ビームのスポットは等しい径を持つ。
【0022】
光ピックアップ100は更に、光ディスク80に収束される光ビームの球面収差を補正する球面収差補正装置40と、フォーカスエラー信号検出回路32で検出されるフォーカスエラー信号の振幅を検出する振幅検出回路52と、振幅検出回路52で検出される情報に基づいて球面収差補正装置40を駆動する駆動回路54とを有している。
【0023】
球面収差補正装置40は、例えば液晶セルで構成され、例えば分離用ビームスプリッター16と対物レンズ18の間に配置される。液晶セルは、例えば、図5に示されるように、同心円によって区画された三つの透明電極42と44と46を有しており、それらの透明電極42と44と46の領域毎に屈折率を変更し得る。
【0024】
光源12から射出された発散光ビームは、コリメートレンズ14で平行光ビームに変えられ、分離用ビームスプリッター16で反射され、液晶セル40を透過し、対物レンズ18で光ディスク80の記録層に収束される。
【0025】
対物レンズ18は大きい開口数を有しているため、光ディスク80のカバー層の厚さのわずかな変化に対しても、光ディスク80の記録層に形成される光ビームのスポットに大きな球面収差が発生する。光ディスク80のカバー層の厚さの変化は、例えば、光ディスクの製造過程のバラツキによって発生する。また、複数の記録層を持つ光ディスクではそれぞの記録層に対するカバー層の厚さは異なっており、これが光ディスク80のカバー層の厚さの変化となる。
【0026】
光ディスク80で反射された光ビームは、対物レンズ18と液晶セル40と分離用ビームスプリッター16を透過して検出部に向かう。分離用ビームスプリッター16を透過した光ビームは、収束レンズ22で収束され、分割用ビームスプリッター24で第一の収束光ビームと第二の収束光ビームとに分割される。第一の収束光ビームと第二の収束光ビームは互いに等しい光量を有し、第一の収束光ビームは第一の光検出器26に入射し、第二の収束光ビームは第二の光検出器28に入射する。
【0027】
図2は、光ディスクに対する光ビームのフォーカスの合い具合に応じて変化する第一の光検出器26と第二の光検出器28に形成される光ビームスポットの径の相関関係を示している。
【0028】
図2に示されるように、第一の光検出器26は三つの受光領域26aと26bと26cを有している。三つの受光領域26aと26bと26cは、いずれも矩形形状を有し、互いに隣接して一列に整列している。同様に、第二の光検出器28は三つの受光領域28aと28bと28cを有している。三つの受光領域28aと28bと28cは、いずれも矩形形状を有し、互いに隣接して一列に整列している。
【0029】
合焦状態においては、光ディスク80で反射された光ビームは対物レンズ18によって平行光ビームに変えられる。従って、収束レンズ22に入射する光ビームは、平行光ビームであり、収束レンズ22の焦点位置に収束される。
【0030】
対物レンズ18と光ディスク80の間隔が合焦状態における対物レンズ18と光ディスク80の間隔よりも狭い場合には、収束レンズ22に入射する光ビームは、発散光ビームとなるため、収束レンズ22の焦点位置よりも遠い位置に収束される。
【0031】
反対に、対物レンズ18と光ディスク80の間隔が合焦状態における対物レンズ18と光ディスク80の間隔よりも広い場合には、収束レンズ22に入射する光ビームは、収束光ビームとなるため、収束レンズ22の焦点位置よりも近い位置に収束される。
【0032】
図2(c)は、対物レンズ18と光ディスク80の間隔が合焦状態における対物レンズ18と光ディスク80の間隔に等しいときのスポットの様子を示している。合焦状態においては、第一の光検出器26に形成される第一の収束光ビームのスポットS1と第二の光検出器28に形成される第二の収束光ビームのスポットS2は等しい径を有する。
【0033】
図2(b)は、対物レンズ18と光ディスク80の間隔が合焦状態における対物レンズ18と光ディスク80の間隔よりも狭まったときのスポットの様子を示している。この状態では、収束光ビームはいずれも収束レンズ22の焦点位置よりも遠い位置に収束されるため、第一の光検出器26に形成される第一の収束光ビームのスポットS1は合焦状態と比較して大きい径を有し、第二の光検出器28に形成される第二の収束光ビームのスポットS2は合焦状態と比較して小さい径を有する。
【0034】
図2(a)は、対物レンズ18と光ディスク80の間隔が図2(b)の状態における対物レンズ18と光ディスク80の間隔よりも更に狭まったときのスポットの様子を示している。この状態では、第一の収束光ビームの収束点が第一の光検出器26から更に遠ざかるため、第一の光検出器26に形成される第一の収束光ビームのスポットS1は図2(b)の状態と比較して大きい径を有する。一方、第二の光検出器28に入射する第二の収束光ビームは第二の光検出器28よりも後ろの位置で収束しており、第二の光検出器28に形成される第二の収束光ビームのスポットS2は図2(b)の状態と比較して大きい径を有している。
【0035】
図2(d)は、対物レンズ18と光ディスク80の間隔が合焦状態における対物レンズ18と光ディスク80の間隔よりも広がったときのスポットの様子を示している。この状態では、収束光ビームはいずれも収束レンズ22の焦点位置よりも近い位置に収束されるため、第一の光検出器26に形成される第一の収束光ビームのスポットS1は合焦状態と比較して小さい径を有し、第二の光検出器28に形成される第二の収束光ビームのスポットS2は合焦状態と比較して大きい径を有する。
【0036】
図2(e)は、対物レンズ18と光ディスク80の間隔が図2(d)の状態における対物レンズ18と光ディスク80の間隔よりも更に広がったときのスポットの様子を示している。この状態では、第二の収束光ビームの収束点が第二の光検出器28から更に遠ざかるため、第二の光検出器28に形成される第二の収束光ビームのスポットS2は図2(d)の状態と比較して大きい径を有する。一方、第一の光検出器26に入射する第一の収束光ビームは第一の光検出器26よりも前の位置で収束しており、第一の光検出器26に形成される第一の収束光ビームのスポットS1は図2(d)の状態と比較して大きい径を有している。
【0037】
フォーカスエラー信号検出回路32はフォーカスエラー信号FESをFES=(I26b−I26a−I26c)−(I28b−I28a−I28c)で表現される演算に従って求める。ここで、I26aとI26bとI26cはそれぞれ第一の光検出器26の受光領域26aと26bと26cの出力、I28aとI28bとI28cはそれぞれ第二の光検出器28の受光領域28aと28bと28cの出力である。さらに、I26=I26b−I26a−I26c、I28=I28b−I28a−I28cとおくと、FES=I26−I28と表せる。
【0038】
図3は、球面収差が発生していない状態における、対物レンズ18と光ディスク80の間隔(WD)に対するFESとI26とI28の変化を示している。FESはいわゆるS字曲線となり、I26とI28は山形の曲線になる。
【0039】
図2(d)に示されるように、第一の収束光ビームが第一の光検出器26の受光領域26bに集光している場合、ほとんどI26a=I26c=0となり、I26=I26b=一定となる(図3におけるI26max部分)。スポットS1の径が、受光領域26bの幅と等しいときから、わずかに大きくなると、I26は急激に減少し、スポットS1の径が受光領域26bの幅に比べて十分に大きくなると、受光領域26bの影響は相対的に小さくなり、I26の変化は小さくなる。
【0040】
また、図2(b)に示されるように、第二の収束光ビームが第二の光検出器28の受光領域28bに集光している場合、ほとんどI28a=I28c=0となり、I28=I28b=一定となる(図3におけるI28max部分)。スポットS2の径が、受光領域28bの幅と等しいときから、わずかに大きくなると、I28は急激に減少し、スポットS2の径が受光領域28bの幅に比べて十分に大きくなると、受光領域28bの影響は相対的に小さくなり、I28の変化は小さくなる。
【0041】
光ディスク80のカバー層の厚さのわずかな変化で、光ディスク80の記録層に収束された光ビームのスポットに球面収差が発生している場合、第一の光検出器26と第二の光検出器28の受光領域上でも球面収差が発生している。球面収差が発生している状態では、第一の光検出器26や第二の光検出器28の受光領域上に形成されるスポットの径は十分に小さくならず、受光領域26bや受光領域28bに集中しなくなる。
【0042】
図4は、球面収差が発生している状態における、対物レンズ18と光ディスク80の間隔(WD)に対するFESとI26とI28の変化を示している。球面収差が発生している状態では、第一の収束光ビームや第二の収束光ビームのスポットの径は十分に小さくならず、受光領域26bや受光領域28bに集中しないため、図4に示されるように、球面収差が発生していない状態での特性(図3参照)と比較して、I26とI28の山は低くなり、FESの振幅Tは小さくなる。
【0043】
振幅検出回路52は、フォーカスエラー信号検出回路32で検出されるフォーカスエラー信号の振幅Tを検出し、駆動回路54は、振幅検出回路52で検出されるフォーカスエラー信号の振幅が最大になるように液晶セル40を駆動する。つまり、駆動回路54は、図5に示される液晶セル40の透明電極42と44と46に適当な電圧を印加して透明電極42と44と46の領域毎の屈折率を調整する。
【0044】
球面収差が発生していない状態では、第一の収束光ビームや第二の収束光ビームのスポットの径は十分に小さく絞られるため、フォーカスエラー信号の振幅Tは大きい値を示す。従って、フォーカスエラー信号の振幅Tが最大になるように液晶セル40を駆動することにより、球面収差が補正される。
【0045】
一例においては、球面収差の補正は、光ディスクの装填時に一回だけ行なう。この例では、光ディスクの装填直後に、フォーカスサーボをかけることなく光ディスクを回転させる。このように光ディスクが回転している間、光ディスクの面振れのため、図4に示されるようなフォーカスエラー信号がフォーカスエラー信号検出回路32で検出される。振幅検出回路52は、そのフォーカスエラー信号の振幅Tを検出し、駆動回路54は、振幅検出回路52で検出されるフォーカスエラー信号の振幅Tを最大にするように液晶セル40を駆動する。
【0046】
その結果、このように光ディスクが回転している状態において、球面収差が最小となるように補正される。その後は、アクチュエーター62と駆動回路64とで構成されるフォーカス調整機構が常にFES=0となるようにフォーカスサーボをかける。
【0047】
別の例においては、球面収差の補正は、対物レンズ18を光軸に沿って焦点深度内で一定の振幅で振動させながら常時行なう。この例では、光ディスクの装填直後から常にFES=0となるようにフォーカスサーボをかけると共に、アクチュエーター62によって対物レンズ18を光軸に沿って焦点深度内で一定の振幅で振動させる。対物レンズ18が焦点深度内で振動しているために、フォーカスエラー信号もFES=0を中心に振動する。このように振動するフォーカスエラー信号の振幅はフォーカスエラー信号の検出感度で決まり、検出感度は球面収差に依存する。
【0048】
球面収差が発生している状態では、前述したように、フォーカスエラー信号の振幅が小さくなるため、合焦状態付近(図3や図4のFES=0近傍)でのFESの傾き(すなわちFESの検出感度)も小さくなる。すなわち、対物レンズ18を振動させたとき発生するフォーカスエラー信号の振動の振幅はFESの検出感度に比例する。振幅検出回路52は、そのフォーカスエラー信号の振動の振幅(検出感度)を検出し、駆動回路54は、振幅検出回路52で検出されるフォーカスエラー信号の検出感度を最大にするように液晶セル40を駆動する。その結果、フォーカスサーボをかけた状態で、球面収差が常に最小となるように補正される。
【0049】
この例では、フォーカスサーボをかけた状態で、球面収差を補正できるので、光ディスク80の記録または再生の動作中でも常に最適に球面収差を補正できる。
【0050】
球面収差が発生した状態では、集光したビーム径が受光領域26bや受光領域28bの幅より大きくなりフォーカスエラー信号の振幅が低下するので、受光領域26bや受光領域28bの幅は狭いほうが望ましい。収束レンズ22で収束される光ビームは、光の波長λと収束される光ビームの開口数NAで決まる大きさに収束されるので、受光領域26bや受光領域28bの幅は、λ/NA以下であることが望ましい。λ=0.4μm、NA=0.05とすると、8μm以下が望ましい。
【0051】
これまで、図面を参照しながら本発明の実施の形態を述べたが、本発明は、これらの実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。
【0052】
例えば、本実施形態では、分割用ビームスプリッター24によって第一の収束光ビームと第二の収束光ビームとに分割しているが、分割用ビームスプリッター24の代わりにホログラムを用いて光ビームの分割を行なってもよい。また、光検出器は、三つの受光領域を有している代わりに、同心円状に位置する二つの受光領域を有していてもよい。
【0053】
光検出部は、ビームサイズ法によりフォーカスエラー信号を検出しているが、ナイフエッジ法や非点収差法など、他の方式によってフォーカスエラー信号を検出してもよい。
【0054】
ナイフエッジ法では、光ディスクから戻る光ビームのスポットが、二つの受光領域を持つ光検出器の受光面上を移動することを利用する。球面収差が発生して戻り光ビームのスポットが大きくなると、移動量が相対的に小さくなるため、フォーカスエラー信号の振幅が小さくなり、検出感度も低下する。
【0055】
非点収差法では、格子状に並ぶ四つの受光領域を持つ光検出器の受光面上において光ディスクから戻る光ビームのスポットが楕円に変形することを利用する。球面収差が発生して戻り光ビームのスポットが大きくなると、変形が相対的に小さくなるため、フォーカスエラー信号の振幅が小さくなり、検出感度も低下する。
【0056】
更に、球面収差補正装置40は、液晶セルに限定されるものではなく、例えば形状可変ミラーで構成されてもよい。また、球面収差を補正する手法は、液晶セルや形状可変ミラーを用いたものに限定されない。例えば、対物レンズ18を二枚のレンズで構成し、それらの二枚のレンズの間隔を調整することにより、球面収差を補正してもよい。この場合、球面収差補正装置40は、対物レンズを構成する二枚のレンズの間隔を調整する機構で構成される。
【0057】
【発明の効果】
本発明によれば、球面収差の補正を確実に行なえる光ピックアップが提供される。
【図面の簡単な説明】
【図1】本発明の実施形態の光ピックアップの構成を示している。
【図2】光ディスクに対する光ビームのフォーカスの合い具合に応じて変化する第一の光検出器と第二の光検出器に形成される光ビームスポットの径の相関関係を示している。
【図3】球面収差が発生していない状態における、対物レンズと光ディスクの間隔(WD)に対するFESとI26とI28の変化を示している。
【図4】球面収差が発生している状態における、対物レンズと光ディスクの間隔(WD)に対するFESとI26とI28の変化を示している。
【図5】球面収差補正装置の一具体例である液晶セルを示している。
【図6】光ディスクのカバー層の厚さ誤差に対するトラッキングエラー信号のエンベロープレベルと再生信号のエラー率との関係を示している。
【符号の説明】
12 光源
14 コリメートレンズ
16 分離用ビームスプリッター
18 対物レンズ
22 収束レンズ
24 分割用ビームスプリッター
26 第一の光検出器
28 第二の光検出器
32 フォーカスエラー信号検出回路
40 球面収差補正装置
52 振幅検出回路
54 駆動回路
100 光ピックアップ

Claims (6)

  1. 光ビームを射出する光源と、
    光源からの光ビームを光ディスクに方向付けると共に光ディスクから戻る光ビームを光ディスクに向かう光ビームの光路から分離する分離用ビームスプリッターと、
    光ディスクに向かう光ビームを光ディスクに収束させる対物レンズと、
    分離用ビームスプリッターによって光ディスクに向かう光ビームの光路から分離された光ディスクから戻る光ビームに基づいて少なくともフォーカスエラー信号を検出する光検出部と、
    光ディスクに収束される光ビームの球面収差を補正する球面収差補正装置と、
    光検出部で検出されるフォーカスエラーの情報に基づいて球面収差補正装置を駆動する駆動回路とを有している、光ピックアップ。
  2. 請求項1において、駆動回路はフォーカスエラー信号の振幅が最大となるように球面収差補正装置を駆動する、光ピックアップ。
  3. 請求項1において、対物レンズを光軸に沿って移動させるアクチュエーターを更に有しており、アクチュエーターは対物レンズを光軸に沿って振動させ、駆動回路はフォーカスエラー信号のフォーカスエラー検出感度が最大となるように球面収差補正装置を駆動する、光ピックアップ。
  4. 請求項1ないし請求項3のいずれかひとつにおいて、光検出部はビームサイズ法または非点収差法またはナイフエッジ法によりフォーカスエラー信号を検出する、光ピックアップ。
  5. 請求項2または請求項3において、光検出部は、光ディスクから戻る光ビームを収束させる収束レンズと、収束レンズからの収束光ビームを第一の収束光ビームと第二の収束光ビームに分割する分割用ビームスプリッターと、分割用ビームスプリッターで分割された第一の収束光ビームを検出する第一の光検出器と、分割用ビームスプリッターで分割された第二の収束光ビームを検出する第二の光検出器と、第一の光検出器と第二の光検出器の出力信号に基づいてフォーカスエラー信号を検出するフォーカスエラー信号検出回路とを有しており、第一の光検出器は光ディスクに収束される光ビームが合焦状態にあるときの第一の収束光ビームの集光点よりも手前に位置し、第二の光検出器は光ディスクに収束される光ビームが合焦状態にあるときの第二の収束光ビームの集光点よりも後方に位置しており、さらに、光ディスクに収束される光ビームが合焦状態にあるときの第一の収束光ビームの集光点と第一の光検出器の間隔は光ディスクに収束される光ビームが合焦状態にあるときの第二の収束光ビームの集光点と第二の光検出器の間隔に等しい、光ピックアップ。
  6. 請求項5において、第一の光検出器と第二の光検出器はそれぞれ互いに隣接して一列に整列している三つの矩形形状の受光領域を有しており、それらの中央の受光領域はいずれも光源から射出される光ビームの光の波長を入射する収束光ビームの開口数で割った値以下の寸法の幅を有している、光ピックアップ。
JP2002355610A 2002-12-06 2002-12-06 光ピックアップ Expired - Fee Related JP3911475B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355610A JP3911475B2 (ja) 2002-12-06 2002-12-06 光ピックアップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355610A JP3911475B2 (ja) 2002-12-06 2002-12-06 光ピックアップ

Publications (2)

Publication Number Publication Date
JP2004192663A true JP2004192663A (ja) 2004-07-08
JP3911475B2 JP3911475B2 (ja) 2007-05-09

Family

ID=32756256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355610A Expired - Fee Related JP3911475B2 (ja) 2002-12-06 2002-12-06 光ピックアップ

Country Status (1)

Country Link
JP (1) JP3911475B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302326A (ja) * 2005-04-15 2006-11-02 Hitachi Ltd 情報記録再生方法及び情報記録再生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302326A (ja) * 2005-04-15 2006-11-02 Hitachi Ltd 情報記録再生方法及び情報記録再生装置
JP4527591B2 (ja) * 2005-04-15 2010-08-18 株式会社日立製作所 情報記録再生方法及び情報記録再生装置

Also Published As

Publication number Publication date
JP3911475B2 (ja) 2007-05-09

Similar Documents

Publication Publication Date Title
JP3545233B2 (ja) 球面収差検出装置および光ピックアップ装置
JP3687939B2 (ja) 光ピックアップ装置
JP3574747B2 (ja) 光ピックアップ、情報再生装置及び情報記録装置
EP0164687B1 (en) Optical head for focusing a light beam on an optical disk
JP2000076665A (ja) 光ピックアップ装置
JP4505982B2 (ja) 光ヘッド装置、記録及び/又は再生装置並びに記録及び/又は再生方法
KR100656972B1 (ko) 광학 렌즈와 이것을 사용한 광학 픽업 및 광 디스크 장치
JP2626106B2 (ja) 光ピックアップ装置
EP0766236B1 (en) Optical head device with optically variable aperture
US6445668B2 (en) Astigmatism generating device to remove comma aberration and spherical aberration
JP3911475B2 (ja) 光ピックアップ
JPH1031841A (ja) 光ピックアップ
JPH0434740A (ja) 光学ヘッド
JP3545362B2 (ja) 球面収差検出装置及び光ピックアップ装置
JP3545361B2 (ja) 光ピックアップ装置
US20090109825A1 (en) Optical scanning device
JP3545360B2 (ja) 光ピックアップ装置
JP2005071544A (ja) 球面収差補正板、それを用いた光ピックアップ装置、および球面収差補正方法
JP2886230B2 (ja) 光ヘッド及びこれを用いた焦点誤差検出装置
EP1067532B1 (en) Optical pickup and optical disk apparatus
JPWO2003105143A1 (ja) 傾き検出装置、光ヘッド、光情報処理装置、コンピュータ、映像記録装置、映像再生装置、及びカーナビゲーションシステム
JP2746973B2 (ja) 光情報処理装置
KR100641088B1 (ko) 광픽업장치
JPS63257929A (ja) 光学式情報記録再生装置
JP2594957B2 (ja) 光記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees