JP2004191135A - Method for inspecting molding defective hole of cast molded product - Google Patents

Method for inspecting molding defective hole of cast molded product Download PDF

Info

Publication number
JP2004191135A
JP2004191135A JP2002358250A JP2002358250A JP2004191135A JP 2004191135 A JP2004191135 A JP 2004191135A JP 2002358250 A JP2002358250 A JP 2002358250A JP 2002358250 A JP2002358250 A JP 2002358250A JP 2004191135 A JP2004191135 A JP 2004191135A
Authority
JP
Japan
Prior art keywords
light
guide member
light guide
pulse
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002358250A
Other languages
Japanese (ja)
Other versions
JP4007553B2 (en
Inventor
Miyuki Sato
幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryoei Engineering Co Ltd
Original Assignee
Ryoei Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoei Engineering Co Ltd filed Critical Ryoei Engineering Co Ltd
Priority to JP2002358250A priority Critical patent/JP4007553B2/en
Publication of JP2004191135A publication Critical patent/JP2004191135A/en
Application granted granted Critical
Publication of JP4007553B2 publication Critical patent/JP4007553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inspecting the molding defective hole of a cast molded product, wherein the blockade in a complicated flow passage is inspected. <P>SOLUTION: One or more floodlight projectors 10 are provided to the outside communication openings of one or more flow passages formed in the cast molded product and the pulse lights emitted from one or more floodlight projectors 10 are detected by the omnidirectional light detecting surface 21 of one light guide member 20 provided to the separate outside communication openings of the flow passages corresponding to the respective flow passages formed in the cast molded product provided with one or more floodlight projectors 10 and the passed lights are guided to the photodetector 30 provided to the end part of the light guide member 20. The detection output of the passed lights detected by the photodetector 30 is compared with a threshold value to measure the blockade degree of the flow passages to judge the quality of the flow passages. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は鋳造成形品に形成される流路が詰まったり狭窄されていないかを検査する鋳造成形品の成形不良孔検査方法に関するものである。
【0002】
【従来の技術】
自動車のシリンダブロックやシリンダヘッド等の鋳造成形品内部には冷却水を通す流路(ウオータージャケット)が複雑に張り巡らされている。この流路は鋳型内に中子を配置させることにより得られるが、鋳造成形時の熱や溶湯流により、中子が折れたり崩れたりして流路が詰まったり狭窄されたりすると、冷却水が流れなくなったり、流れが悪くなって冷却不良を生じさせ、オーバーヒート等エンジン故障の原因となる恐れがあるため、鋳造成形後、全ての流路を全製品検査しなければならなかった。しかも、シリンダやプラグ穴を囲むように形成される流路のように湾曲したり途中に段差が形成される複雑な流路は成形不良により詰まりや狭窄が発生しやすかった。
【0003】
このため複雑に曲がりくねっている流路は、人手により針金等を通して流路の良否を判断したり、光を流路の始端開口から照射して通過してくる反射光を見て良否を判断することが行われているが、複雑に曲がりくねった流路に針金を通すのは極めて難しいうえに、流路内面は鋳物砂により粗面となっているため、曲がりくねった流路では光はほとんど反射しないため検査光は減衰して終端開口まで光は到達しなかった。また例え、光が終端開口に到達しても減衰が激しく閉塞度を検出することは極めて難しかった。
【0004】
そこで、始端開口から流路内にエアを供給して終端開口におけるエア圧力やエア流量をセンサで検出する装置もある(例えば、特許文献1、2参照)。しかし検査すべき流路だけにエア圧を供給することは不可能なうえ、流路はそれほど長くないので両端に圧力差は大きくとれないことから、膨大なエア量を必要とした。しかも、エア圧力やエア流量も他の流路からエアが漏れ出るため、分岐点では1/1000以下に減衰して良否を判断できるレベルになく、いずれも実用化は極めて難しいものであった。さらに風速により検査を行なうものがある(特許文献3参照)。また超音波により検査を行なうものがある(特許文献4参照)。
【0005】
【特許文献1】特開平3−105203号公報
【特許文献2】特開平6−281548号公報
【特許文献3】特開2001−116663号公報
【特許文献4】特開2000−338090号公報
【0006】
【発明が解決しようとする課題】
本発明は、複雑な流路内の閉塞度を検査することができる鋳造成形品の成形不良孔検査方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
前述の目的を達成するため本発明は、鋳造成形品内部に形成される一つまたは複数の流路の外部連通開口に設けた一つまたは複数の投光器より放出されるパルス光を、別の外部連通開口に設けた一つの導光部材の全方向性受光面で受光したうえ導光部材の端部に設けた受光器に導光し、該受光器で検出された受光出力を閾値と比較して良否判定を行なう鋳造成形品の成形不良孔検査方法を請求項1の発明とし、請求項1の発明において、導光部材が透明ガラスまたは透明樹脂である鋳造成形品の成形不良孔検査方法を請求項2の発明とし、導光部材が導光性ファイバー束である鋳造成形品の成形不良孔検査方法を請求項3の発明とし、請求項1から3の発明において、全方向性受光面が略円錐形の磨りガラス状部よりなる鋳造成形品の成形不良孔検査方法を請求項4の発明とし、請求項1または2または4の発明において、導光部材の基端径を軸部径より小径とした鋳造成形品の成形不良孔検査方法を請求項5の発明とし、請求項1から5の発明において、投光器が発光ダイオードよりなる鋳造成形品の成形不良孔検査方法を請求項6の発明とし、請求項1から6の発明において、複数の投光器がパルス分配回路により重ならないタイミングでパルス光を放出するものである鋳造成形品の成形不良孔検査方法を請求項7の発明とするものである。
【0008】
【発明の実施の形態】
次に、シリンダヘッドの流路の検査を行う本発明の好ましい実施の形態を図に基づいて詳細に説明する。
本発明の測定装置1はパルス光を放出する複数の投光器10と、流路Rを通過してきたパルス光を受光する全方向性受光面21を有する一つの導光部材20と、導光部材20により基端まで導光された通過光を検出する一つの受光器30とよりなり、複数の投光器10と一つの導光部材20は鋳造成形品の内部に形成される流路Rのそれぞれ別の外部連通開口に設けられる。
【0009】
前記投光器10は図3に示されるように、パルス発振器11とパルス分配回路12と増幅器13と発光ダイオード14とよりなるものである。パルス分配回路12により発光ダイオード14にパルス信号を加えることにより瞬間的なピーク出力を高めたパルス光を放出することができるので、消費電力が小さく小出力の発光ダイオード14でも高輝度発光が可能となるので、鋳造成形品の粗面で形成されている流路Rを通過させることによるパルス光の減衰にも耐えることができるうえに小型であるため鋳造成形品の流路Rの小さな外部連通開口に配置させることができる。
【0010】
また流路Rの測定距離が長くパルス光の減衰が大きくなって光出力が不足する場合は複数の発光ダイオード14を並べて発光させることにより出力不足を補うことができる。さらに発光ダイオード14の発光色は有色光でもよいが赤外色光を用いれば外乱光に影響を受け難くなる。また発光ダイオード14は図6に示されるように指向性を持つものとしているが、特性上指向性にばらつきがある場合は指向性の鋭いものより鈍いものを用いたほうが検出精度は向上する。さらに発光ダイオード14のパルスの持続時間を短くすればするほどピーク出力は高くなるが、極短のパルスを発生させる投光器10にすると回路設計が難しく高価なものとなるから流路長に応じて持続時間を設定するようにすることが好ましい。さらに発光ダイオード14はパルス光の放出方向側を開口させた保護管内に収納して検査中不注意により破損されることがないようにしている。
【0011】
パルス発振器11は1〜100KHz周期の矩形パルスを発生させるもので、パルス幅は周期の数分の1としている。パルス分配回路12は四つの投光器10の発光ダイオード14に重ならないタイミングで順次パルスを分配するものである。
【0012】
また受光器30は図3に示されるように、受光素子31と増幅器32とアナログスイッチ33と比較器34と表示器35とからなるものであり、該受光器30は導光部材20の基端に設けられるものである。アナログスイッチ33は受光器30が受けた受光出力を投光器10のタイミングで分配するものである。比較器34は検出された受光出力が図7に示されるように、閾値を越えるか越えないかにより流路Rの良否判定を行うものである。また表示器35は閉塞された流路Rや閾値以下の流路Rをランプ表示するためのものである。さらに増幅器32とアナログスイッチ33と比較器34と表示器35は投光器10の発光ダイオード14と同数設けられて1対1の対応がされている。これは受光素子31は一つであるが投光器10の増幅器13と受光器30のアナログスイッチ33は同期的に結合されることにより1対1の対応付けが行なわれる。
【0013】
また、導光部材20は全方向性受光面21となる先端を略円錐形の磨りガラス状部とした円型または角型の透明ガラス、透明プラスチック、導光性ファイバー束等よりなるもので、透明ガラス、透明プラスチック、導光性ファイバーの外周面は反射面として導光時に、受光したパルス光が外部に漏れで減衰することがないようしている。また全方向性受光面21を磨りガラス状部とすることにより、光は反射せずに吸収されやすくなって僅かな光でも確実に受光できるようこととなる。さらに先端を略円錐形の全方向性受光面21とすることにより導光部材20の全方位から入射されるパルス光を確実に受光できるものとしている。また透明ガラス、透明プラスチックよりなる導光部材20は図4(a)、(b)に示されるように、基端径を軸部径より小径とすることにより、入射光を集中させて輝度を高めることができるので受光器30による検出を確実にすることができる。また基端径を小さくできるので面積の小さな受光面を有する受光器30を用いることができ安価なものとすることができる。
【0014】
また図9に示される実験装置を用いて得られた開口率と通過光の受光出力との関係は図10のグラフに示されるように閉塞度を明確に判別できるものであった。この実験は角パイプの始端に投光器10を配設し、角パイプの終端に受光器30を配設しておき、角パイプの中間に設けた遮蔽板を出没させた際、受光器30で受光される受光出力を測定したものである。実験では閉塞度は明確に判別できるが実際の鋳造成形品では図8に示されるように製品間で流路寸法に若干のばらつきがあるので、良品判定された多数の製品の流路寸法を測定して平均値を求めておくことにより検出精度を向上させることができる。
【0015】
このように構成されたものは、検査台に横向きにシリンダヘッドHを載置したうえ、図1に示されるように、シリンダヘッドHに測定装置1の四つの投光器10と一つの導光部材20とを検査すべき一定距離を隔てた流路Rの各外部連通開口に位置決め配置する。次いで、パルス発振器11より発振されるパルス出力をパルス分配器12により放出タイミングが重ならないように各投光器10の発光ダイオード14を増幅する各増幅器13に順次入力する。これにより四つの発光ダイオード14は異なるタイミングでパルス光を放出することとなる。
【0016】
このようにして投光器10から放出されたパルス光は図1に示されるように流路Rを進むこととなる。パルス光は流路Rが非直線の場合は反射を繰り返しながら進み、直線の場合は直進することとなる。そして通過光は導光部材20の円錐形をした磨りガラス状部の全方向性受光面21に到達することとなる。磨りガラス状部の全方向性受光面21は円錐形をしているため略全方位からくる僅かな通過光をも受光するから、流路Rが閉塞されていなければ閉塞度に応じた輝度の通過光を受光することとなる。そして全方向性受光面21の磨りガラス状部で受光された導光部材20の基端に導光される。次いで基端に設けられた受光器30により通過光は検出されることとなる。
【0017】
また他の発光ダイオード14からのパルス光はそれぞれが重ならないタイミングで流路Rに順次放出され、流路Rが閉塞していない限り導光部材20の全方向性受光面21により受光され受光器30により通過光は検出されることとなる。各投光器10からのパルス光は一つの受光器30により検出されることとなるが、受光器30のアナログスイッチ33は投光器10の増幅器13と同期的に結合されているので、導光部材20の全方向性受光面21に受光された通過光は各流路R毎の受光出力として交じり合うことなく1対1の対応で検出されることとなる。
【0018】
そして受光器30により検出された受光出力は流路Rの狭窄あるいは閉塞による流路Rの閉塞度に応じて変化することとなるから、蓄積したデータから導き出されて設定された許容レベルの受光出力を閾値とし、該設定した閾値を越えた場合は流路Rに閉塞や許容レベルを超える狭窄がないものとし、流路Rは異常なしの良品と判定する。
【0019】
なお、前記好ましい実施の形態では、導光部材20は硬質の透明ガラスか透明プラスチックとしているが、フレキシブルな導光性ファイバーを用いれば受光器30を被検査体から離れた位置に配置することができるので、受光器30が損傷したり汚損したりすることを防げるので長期耐用が可能となる。しかも導光性ファイバーよりなる導光部材20は硬質のものより衝撃に強いので破損することがなく長期耐用できランニングコストを下げることができる。また前記好ましい実施の形態では、発光ダイオード14を用いた投光器10としているが、レーザを用いた投光器10としてもよいことは勿論であり、レーザ光を極短パルスとすることによりピーク出力を高められることは発光ダイオード14と同様である。
【0020】
【発明の効果】
本発明は前記説明によって明らかなように、鋳造成形品内部に形成される一つまたは複数の流路の外部連通開口に設けた一つまたは複数の投光器より放出されるパルス光を、別の外部連通開口に設けた一つの導光部材の全方向性受光面で受光したうえ導光部材の端部に設けた受光器に導光し、該受光器で検出された受光出力を閾値と比較して良否判定を行なうことにより、流路が粗面で光の減衰が大きく従来では検出が不可能な光による流路の閉塞度を検出することができることとなる。しかも全方向性受光面で受光するので通過光の未検出を防ぐことができるうえに一つの導光部材で複数箇所の流路の閉塞度を検出することができる。また投光器からパルス光を放出することにより流路毎の受光データを明確に識別できることとなり高い検出精度を得ることができる。
請求項3のように、導光部材が導光性ファイバー束よりなるものとすることにより、透明ガラスや透明樹脂より衝撃に強いものとすることができるうえに被検査体への装着が容易となる。しかも導光性ファイバー束を延長すれば受光器を被検査体から離すことができるから検査中に誤って受光器を破損することがなく長期耐用できランニングコストを低減できることとなる。
請求項4のように、全方向性受光面が円錐形の磨りガラス状部よりなるものとすることにより、僅かな光でも確実に受光できるので受光能力を高めることができる。
請求項5のように、導光部材の基端径を軸部径より小径とすることにより、通過光が集中し輝度が高くなるので検出精度を向上させることができる。このため受光器を小型で検出能力が低いものを用いることができるので安価なものとなる。
請求項6のように、投光器が発光ダイオードよりなるものとすることにより、レーザ等と比較して極めて安価な装置とすることができる。
請求項7のように、複数の投光器がパルス分配回路により重ならないタイミングでパルス光を放出するものとすることにより、ピーク出力を高めパルス光を高輝度とすることができるうえに、複数の流路を続けて検査することができる等種々の利点を有するものである。
従って、本発明は従来の問題点を解消した鋳造品の成形不良孔検査方法として業界の発展に寄与するところ極めて大なものである。
【図面の簡単な説明】
【図1】本発明の好ましい実施の形態の一部切欠平面図である。
【図2】本発明の好ましい実施の形態の図1におけるA−A断面図である。
【図3】本発明の好ましい実施の形態のブロック回路図である。
【図4】本発明の好ましい実施の形態に用いられる導光部材である。
(a)正面図
(b)側面図
【図5】本発明の好ましい実施の形態に用いられる他の導光部材である。
(a)正面図
(b)側面図
【図6】本発明の好ましい実施の形態に用いられる投光器の投光範囲を示す平面図である。
【図7】受光器により検出された受光出力を示すグラフである。
【図8】流路の閉塞レベルにおける出力電圧のばらつきを示すグラフである。
【図9】狭窄できる角パイプを用いてパルス光の受光出力の測定実験を行なった装置の原理説明図である。
【図10】実験による開口率と受光出力の関係を示すグラフである。
【符号の説明】
10 投光器
12 パルス分配回路
14 発光ダイオード
20 導光部材
21 全方向性受光面
30 受光器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for inspecting a molded article for defective molding holes for inspecting whether a flow path formed in the molded article is clogged or narrowed.
[0002]
[Prior art]
2. Description of the Related Art A flow passage (water jacket) through which cooling water passes is formed in a complicated manner inside a cast molded product such as a cylinder block or a cylinder head of an automobile. This flow path is obtained by disposing a core in a mold, but when the core is broken or collapsed due to heat or molten metal flow during casting and the flow path is clogged or narrowed, cooling water is discharged. Since there is a possibility that the flow stops or the flow deteriorates to cause poor cooling and cause engine failure such as overheating, all the flow paths must be inspected after casting and molding. In addition, a complicated flow path which is curved or has a step in the middle like a flow path formed so as to surround a cylinder or a plug hole is liable to be clogged or narrowed due to poor molding.
[0003]
For this reason, it is necessary to determine the quality of the flow path that is complicated and meandering by hand through a wire or the like, or to judge the quality by irradiating light from the opening at the start end of the flow path and looking at the reflected light passing through it. However, it is extremely difficult to pass the wire through the complicated and meandering channel, and since the inner surface of the channel is roughened by molding sand, almost no light is reflected in the meandering channel. The inspection light was attenuated and did not reach the terminal aperture. Even if the light reaches the terminal opening, the attenuation is so severe that it has been extremely difficult to detect the degree of blockage.
[0004]
Therefore, there is a device that supplies air into the flow path from the start end opening and detects the air pressure and the air flow rate at the end opening with a sensor (for example, see Patent Documents 1 and 2). However, it is impossible to supply air pressure only to the flow path to be inspected, and since the flow path is not so long, a large pressure difference cannot be obtained between both ends, so that an enormous amount of air is required. Moreover, since the air pressure and the air flow rate also leak out of the other flow paths, the air flow is attenuated to 1/1000 or less at the branch point and is not at a level at which the quality can be judged. Further, there is an apparatus that performs an inspection based on a wind speed (see Patent Document 3). In addition, there is an apparatus that performs inspection using ultrasonic waves (see Patent Document 4).
[0005]
[Patent Document 1] JP-A-3-105203 [Patent Document 2] JP-A-6-281548 [Patent Document 3] JP-A-2001-116663 [Patent Document 4] JP-A-2000-338090 ]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for inspecting a defective molding hole in a cast molded product, which can inspect the degree of blockage in a complicated flow path.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a method for transmitting pulse light emitted from one or more light emitters provided in an external communication opening of one or more flow paths formed inside a cast molded product to another external light source. The light is received by the omnidirectional light receiving surface of one light guide member provided in the communication opening, and then guided to the light receiver provided at the end of the light guide member, and the light output detected by the light receiver is compared with a threshold value. The invention of claim 1 provides a method for inspecting defective molding holes in a cast molded product, which performs pass / fail judgment, and the method for inspecting defective molding holes in a cast molded product in which the light guide member is transparent glass or transparent resin. According to a second aspect of the present invention, there is provided a method for inspecting a defective molding hole of a cast product in which the light guide member is a light guide fiber bundle, wherein the omnidirectional light receiving surface is provided in the first to third aspects. Unsatisfactory molding of a cast product consisting of an approximately conical ground glass part According to a fourth aspect of the present invention, there is provided the hole inspection method according to the first, second, or fourth aspect, wherein a method of inspecting a defective molding hole of a cast molded product in which the base end diameter of the light guide member is smaller than the diameter of the shaft portion. In the invention according to claims 1 to 5, the method for inspecting a defective molding hole of a cast molded product in which the light emitter is a light emitting diode is the invention according to claim 6, and in the invention according to claims 1 to 6, the plurality of light emitters are pulsed. The invention of claim 7 is a method for inspecting a defective molding hole of a cast molded product which emits pulsed light at a timing not overlapping with the distribution circuit.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a preferred embodiment of the present invention for inspecting the flow path of the cylinder head will be described in detail with reference to the drawings.
The measuring apparatus 1 of the present invention includes a plurality of light emitters 10 for emitting pulse light, one light guide member 20 having an omnidirectional light receiving surface 21 for receiving pulse light passing through the flow path R, and a light guide member 20. , One light receiver 30 for detecting the transmitted light guided to the base end, and the plurality of light projectors 10 and one light guide member 20 are provided separately for the respective flow paths R formed inside the casting. It is provided in the external communication opening.
[0009]
As shown in FIG. 3, the light projector 10 includes a pulse oscillator 11, a pulse distribution circuit 12, an amplifier 13, and a light emitting diode 14. By applying a pulse signal to the light emitting diode 14 by the pulse distribution circuit 12, pulse light with an increased instantaneous peak output can be emitted, so that high-luminance light emission is possible even with a small power consumption and a small output light emitting diode 14. Therefore, it is possible to withstand the attenuation of the pulse light caused by passing through the flow path R formed by the rough surface of the cast molded product, and because it is small, the small external communication opening of the flow path R of the cast molded product is small. Can be arranged.
[0010]
Further, when the measured distance of the flow path R is long and the attenuation of the pulse light is large and the light output is insufficient, the output shortage can be compensated for by arranging a plurality of light emitting diodes 14 to emit light. Further, the light emitting color of the light emitting diode 14 may be colored light. However, if infrared light is used, the light is hardly affected by disturbance light. Although the light emitting diode 14 has directivity as shown in FIG. 6, when the directivity varies in characteristics, the detection accuracy is improved by using a light emitting diode having a light directivity rather than a sharp directivity. Further, the shorter the duration of the pulse of the light emitting diode 14, the higher the peak output becomes. However, if the projector 10 generates an extremely short pulse, the circuit design becomes difficult and expensive, so It is preferable to set the time. Further, the light emitting diode 14 is housed in a protective tube having an opening on the side of the emission direction of the pulse light so as to prevent the light emitting diode 14 from being inadvertently damaged during the inspection.
[0011]
The pulse oscillator 11 generates a rectangular pulse having a period of 1 to 100 KHz, and the pulse width is set to a fraction of the period. The pulse distribution circuit 12 distributes pulses sequentially at a timing that does not overlap the light emitting diodes 14 of the four projectors 10.
[0012]
As shown in FIG. 3, the light receiver 30 includes a light receiving element 31, an amplifier 32, an analog switch 33, a comparator 34, and a display 35. The light receiver 30 is a base end of the light guide member 20. It is provided in. The analog switch 33 distributes the light output received by the light receiver 30 at the timing of the light projector 10. As shown in FIG. 7, the comparator 34 determines the quality of the flow path R based on whether the detected light receiving output exceeds or does not exceed a threshold value. The display 35 is for displaying a closed flow path R and a flow path R below a threshold value with a lamp. Further, the same number of the amplifiers 32, the analog switches 33, the comparators 34 and the indicators 35 as the light emitting diodes 14 of the light projector 10 are provided, and one-to-one correspondence is provided. Although the number of the light receiving elements 31 is one, the amplifier 13 of the light projector 10 and the analog switch 33 of the light receiver 30 are synchronously coupled, so that one-to-one correspondence is performed.
[0013]
The light guide member 20 is made of a circular or square transparent glass, a transparent plastic, a light guide fiber bundle, or the like having a substantially conical polished glass-like portion at the tip serving as an omnidirectional light receiving surface 21. The outer peripheral surfaces of the transparent glass, the transparent plastic, and the light-guiding fiber serve as reflection surfaces so that the received pulsed light is not attenuated by leakage to the outside during light guiding. Further, by forming the omnidirectional light receiving surface 21 as a polished glass portion, light is easily absorbed without being reflected, so that even a small amount of light can be reliably received. Further, the tip is formed as an omnidirectional light receiving surface 21 having a substantially conical shape, so that pulse light incident from all directions of the light guide member 20 can be reliably received. As shown in FIGS. 4A and 4B, the light guide member 20 made of transparent glass or transparent plastic has a base end diameter smaller than a shaft diameter to concentrate incident light and reduce luminance. Since it can be increased, detection by the light receiver 30 can be ensured. In addition, since the base end diameter can be reduced, the light receiver 30 having a light receiving surface with a small area can be used, and the cost can be reduced.
[0014]
Further, the relationship between the aperture ratio obtained using the experimental apparatus shown in FIG. 9 and the output of the received light of the passing light was such that the degree of blockage could be clearly determined as shown in the graph of FIG. In this experiment, the light projector 10 was arranged at the beginning of the square pipe, and the light receiver 30 was arranged at the end of the square pipe. When the shielding plate provided in the middle of the square pipe was protruded and retracted, the light was received by the light receiver 30. Of the received light output. In the experiment, the degree of blockage can be clearly discriminated, but in the case of an actual cast molded product, as shown in FIG. 8, there is a slight variation in the channel size between the products. By obtaining the average value in advance, the detection accuracy can be improved.
[0015]
In this configuration, the cylinder head H is placed on the inspection table in a horizontal direction, and the four light projectors 10 and one light guide member 20 of the measuring device 1 are mounted on the cylinder head H as shown in FIG. Are positioned and arranged at the respective external communication openings of the flow path R at a predetermined distance to be inspected. Next, the pulse output oscillated from the pulse oscillator 11 is sequentially input to each amplifier 13 for amplifying the light emitting diode 14 of each projector 10 so that the emission timing does not overlap by the pulse distributor 12. Thus, the four light emitting diodes 14 emit pulse light at different timings.
[0016]
The pulsed light emitted from the projector 10 in this way travels through the flow path R as shown in FIG. The pulse light travels while repeating reflection when the flow path R is non-linear, and travels straight when the flow path R is linear. The passing light reaches the omnidirectional light receiving surface 21 of the conical ground glass portion of the light guide member 20. Since the omnidirectional light-receiving surface 21 of the ground glass portion has a conical shape, it also receives a small amount of passing light coming from almost all directions. The transmitted light is received. Then, the light is guided to the base end of the light guide member 20 which is received by the ground glass portion of the omnidirectional light receiving surface 21. Next, the transmitted light is detected by the light receiver 30 provided at the base end.
[0017]
The pulse light from the other light emitting diodes 14 is sequentially emitted to the flow path R at a timing at which they do not overlap each other, and is received by the omnidirectional light receiving surface 21 of the light guide member 20 unless the flow path R is closed. By 30, the passing light is detected. The pulse light from each light emitter 10 is detected by one light receiver 30. However, since the analog switch 33 of the light receiver 30 is synchronously coupled with the amplifier 13 of the light emitter 10, The passing light received by the omnidirectional light receiving surface 21 is detected in a one-to-one correspondence without being mixed as a light receiving output for each flow path R.
[0018]
Since the light reception output detected by the light receiver 30 changes according to the degree of obstruction of the flow path R due to the narrowing or occlusion of the flow path R, the light reception output of an allowable level set based on the accumulated data. Is set as a threshold value, and when the set threshold value is exceeded, it is determined that there is no blockage or stenosis exceeding an allowable level in the flow path R, and the flow path R is determined to be a non-defective product having no abnormality.
[0019]
In the preferred embodiment, the light guide member 20 is made of hard transparent glass or transparent plastic. However, if a flexible light guide fiber is used, the light receiver 30 can be arranged at a position distant from the test object. Since it is possible to prevent the light receiver 30 from being damaged or soiled, long-term durability can be achieved. Moreover, since the light guide member 20 made of a light guide fiber is more resistant to impact than a hard one, it is not damaged and can be used for a long time, and the running cost can be reduced. Further, in the preferred embodiment, the light projector 10 using the light emitting diode 14 is used. However, it is needless to say that the light projector 10 using a laser may be used. This is similar to the light emitting diode 14.
[0020]
【The invention's effect】
As is apparent from the above description, the present invention converts the pulse light emitted from one or a plurality of projectors provided in the external communication opening of one or a plurality of flow paths formed inside the cast product into another external light. The light is received by the omnidirectional light receiving surface of one light guide member provided in the communication opening, and then guided to the light receiver provided at the end of the light guide member, and the light output detected by the light receiver is compared with a threshold value. By performing the pass / fail determination, it is possible to detect the degree of obstruction of the flow path due to light that cannot be detected in the past because the flow path is rough and light attenuation is large. Moreover, since the light is received by the omnidirectional light receiving surface, undetected transmitted light can be prevented, and the degree of blockage of a plurality of flow paths can be detected by one light guide member. In addition, by emitting pulsed light from the light projector, light reception data for each flow path can be clearly identified, and high detection accuracy can be obtained.
By making the light guide member a light guide fiber bundle as in claim 3, the light guide member can be more resistant to impact than transparent glass or transparent resin, and can be easily mounted on the test object. Become. In addition, if the length of the light-guiding fiber bundle is extended, the light receiver can be separated from the object to be inspected, so that the light receiver is not damaged by mistake during the inspection, so that it can be used for a long time and the running cost can be reduced.
Since the omnidirectional light receiving surface is formed of a conical ground glass portion as described above, even a small amount of light can be reliably received, so that the light receiving ability can be enhanced.
By making the base end diameter of the light guide member smaller than the diameter of the shaft portion, the passing light is concentrated and the luminance is increased, so that the detection accuracy can be improved. For this reason, a small-sized photodetector having a low detection ability can be used, so that the cost is low.
According to the sixth aspect of the present invention, the light emitting device is formed of a light emitting diode, so that the device can be made extremely inexpensive as compared with a laser or the like.
According to a seventh aspect of the present invention, the plurality of projectors emit pulse light at a timing not overlapping with each other by the pulse distribution circuit, so that the peak output can be increased and the pulse light can have high brightness. It has various advantages such as the ability to continuously inspect the road.
Therefore, the present invention is extremely significant in that it contributes to the development of the industry as a method for inspecting defective molding holes in cast products, which solves the conventional problems.
[Brief description of the drawings]
FIG. 1 is a partially cutaway plan view of a preferred embodiment of the present invention.
FIG. 2 is a sectional view taken along the line AA in FIG. 1 of a preferred embodiment of the present invention.
FIG. 3 is a block circuit diagram of a preferred embodiment of the present invention.
FIG. 4 is a light guide member used in a preferred embodiment of the present invention.
(A) Front view (b) Side view FIG. 5 shows another light guide member used in a preferred embodiment of the present invention.
(A) Front view (b) Side view FIG. 6 is a plan view showing a light projection range of a light projector used in a preferred embodiment of the present invention.
FIG. 7 is a graph showing a light receiving output detected by the light receiving device.
FIG. 8 is a graph showing a variation in output voltage at a flow path blockage level.
FIG. 9 is a diagram illustrating the principle of an apparatus in which an experiment for measuring the output of received pulsed light is performed using a square pipe that can be narrowed.
FIG. 10 is a graph showing a relationship between an aperture ratio and a received light output by an experiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Projector 12 Pulse distribution circuit 14 Light emitting diode 20 Light guide member 21 Omnidirectional light receiving surface 30 Light receiver

Claims (7)

鋳造成形品内部に形成される一つまたは複数の流路の外部連通開口に設けた一つまたは複数の投光器より放出されるパルス光を、別の外部連通開口に設けた一つの導光部材の全方向性受光面で受光したうえ導光部材の端部に設けた受光器に導光し、該受光器で検出された受光出力を閾値と比較して良否判定を行なうことを特徴とする鋳造成形品の成形不良孔検査方法。Pulse light emitted from one or more light emitters provided in one or more external communication openings of one or more flow paths formed inside the cast molded product is supplied to one light guide member provided in another external communication opening. Casting characterized by receiving light on an omnidirectional light receiving surface, guiding the light to a light receiver provided at the end of the light guide member, and comparing the light reception output detected by the light receiver with a threshold value to judge pass / fail. Inspection method for defective holes in molded products. 導光部材が透明ガラスまたは透明樹脂である請求項1に記載の鋳造成形品の成形不良孔検査方法。The method according to claim 1, wherein the light guide member is a transparent glass or a transparent resin. 導光部材が導光性ファイバー束である請求項1に記載の鋳造成形品の成形不良孔検査方法。The method according to claim 1, wherein the light guide member is a light guide fiber bundle. 全方向性受光面が略円錐形の磨りガラス状部よりなる請求項1から3のいずれかに記載の鋳造成形品の成形不良孔検査方法。4. The method according to claim 1, wherein the omnidirectional light receiving surface is formed of a substantially conical ground glass portion. 導光部材の基端径を軸部径より小径とした請求項1または2または4に記載の鋳造成形品の成形不良孔検査方法。5. The method according to claim 1, wherein the base end diameter of the light guide member is smaller than the shaft diameter. 投光器が発光ダイオードよりなるものである請求項1から5のいずれかに記載の鋳造成形品の成形不良孔検査方法。6. The method according to claim 1, wherein the floodlight comprises a light emitting diode. 複数の投光器がパルス分配回路により重ならないタイミングでパルス光を放出するものである請求項1から6のいずれかに記載の鋳造成形品の成形不良孔検査方法。7. The method according to claim 1, wherein the plurality of light emitters emit pulse light at a timing at which the light is not overlapped by the pulse distribution circuit.
JP2002358250A 2002-12-10 2002-12-10 Method for inspecting defective holes in cast products Expired - Fee Related JP4007553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358250A JP4007553B2 (en) 2002-12-10 2002-12-10 Method for inspecting defective holes in cast products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358250A JP4007553B2 (en) 2002-12-10 2002-12-10 Method for inspecting defective holes in cast products

Publications (2)

Publication Number Publication Date
JP2004191135A true JP2004191135A (en) 2004-07-08
JP4007553B2 JP4007553B2 (en) 2007-11-14

Family

ID=32758022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358250A Expired - Fee Related JP4007553B2 (en) 2002-12-10 2002-12-10 Method for inspecting defective holes in cast products

Country Status (1)

Country Link
JP (1) JP4007553B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026050A (en) * 2006-07-19 2008-02-07 Ryoei Engineering Kk Core hole inspection method
JP2008256683A (en) * 2007-03-30 2008-10-23 Honda Motor Co Ltd Coolant passage inspecting device and detection method of vehicle cylinder head coolant passage blockage
JP2012047534A (en) * 2010-08-25 2012-03-08 Ryoei Engineering Kk Flow channel hole inspection method and device thereof
JP2016201892A (en) * 2015-04-09 2016-12-01 株式会社三井ハイテック Inspection method for laminated core, and inspection apparatus therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026050A (en) * 2006-07-19 2008-02-07 Ryoei Engineering Kk Core hole inspection method
JP2008256683A (en) * 2007-03-30 2008-10-23 Honda Motor Co Ltd Coolant passage inspecting device and detection method of vehicle cylinder head coolant passage blockage
JP4629120B2 (en) * 2007-03-30 2011-02-09 本田技研工業株式会社 Coolant passage inspection device and method for detecting clogging of vehicle cylinder head coolant passage
JP2012047534A (en) * 2010-08-25 2012-03-08 Ryoei Engineering Kk Flow channel hole inspection method and device thereof
JP2016201892A (en) * 2015-04-09 2016-12-01 株式会社三井ハイテック Inspection method for laminated core, and inspection apparatus therefor

Also Published As

Publication number Publication date
JP4007553B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4521094B2 (en) Positioning device for coordinate positioning machine
US5864392A (en) Method for optically detecting gas bubbles moving in a coolant
CN101858758B (en) Photoelectric sensor
US7333203B2 (en) Device for scanning a yarn with a light beam
CN106448030B (en) Smoke detection unit and light emitting diode
CN101730497B (en) Device and method for obtaining geometrical data relating to a cavity
ATE524750T1 (en) OPTICAL RANGE FINDER
ITMI20071931A1 (en) OPTOELECTRONIC MONITORING WITH TEST BY MEANS OF DYNAMIZATION
CA2601842A1 (en) Superconducting wire inspection apparatus and method
JP2006189386A (en) Lens meter
CN102483381B (en) Device and method for optically scanning a moving textile material
CN104913796A (en) Long-distance correlated photoelectric sensor based on aspheric lens
JP2004191135A (en) Method for inspecting molding defective hole of cast molded product
GB2283813A (en) Photoelectric smoke sensor sensitivity test
DE59907030D1 (en) METHOD AND ARRANGEMENT FOR CARRYING OUT CONTROL AND MONITORING MEASURES ON OPTICAL TRANSMISSION LINKS
WO2006012330A3 (en) Method and apparatus for providing visual information indicative of tested fiber optic component
US6285451B1 (en) Noncontacting optical method for determining thickness and related apparatus
JPS62188907A (en) Range finder
JP2012509470A (en) Sensor device with distance sensor
CN209264249U (en) A kind of test of light source device
CA2553355A1 (en) Shared light pipe for a message indicator and light sensor
KR970062723A (en) Distance measuring method and device of high temperature object
JP2010217084A (en) Fluorescence temperature sensor and failure determination method of same
US7701556B2 (en) Light detecting circuit, laser distance measuring circuit and light detecting method
JP2009098003A (en) Vibration displacement detecting device and method of detecting displacement and vibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040825

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20070302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070824

A61 First payment of annual fees (during grant procedure)

Effective date: 20070824

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees