JP2004190597A - Swash plate compressor - Google Patents

Swash plate compressor Download PDF

Info

Publication number
JP2004190597A
JP2004190597A JP2002360766A JP2002360766A JP2004190597A JP 2004190597 A JP2004190597 A JP 2004190597A JP 2002360766 A JP2002360766 A JP 2002360766A JP 2002360766 A JP2002360766 A JP 2002360766A JP 2004190597 A JP2004190597 A JP 2004190597A
Authority
JP
Japan
Prior art keywords
swash plate
contact surface
piston
side wall
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002360766A
Other languages
Japanese (ja)
Inventor
Kiyoshi Terauchi
清 寺内
Seiichi Yamamoto
清一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2002360766A priority Critical patent/JP2004190597A/en
Priority to US10/730,942 priority patent/US20040112210A1/en
Publication of JP2004190597A publication Critical patent/JP2004190597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • F04B27/0886Piston shoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons

Abstract

<P>PROBLEM TO BE SOLVED: To provide a swash plate compressor capable of enlarging the outer diameters of sliding members without increasing the size of a compressor body or reducing the strength of pistons and unfailingly preventing the sliding members from incomplete sliding or falling off. <P>SOLUTION: The contacting surfaces 10d of engaging portions 10a and 10b of pistons 10 are extended to the side walls 10c thereof, so that the spherical portions 12a of shoes 12 shifted toward the side walls 10c can slide on the contacting surfaces 10d at the sides of the side walls 10c, and therefore the contacting surfaces 10d need not be changed in shape or size even if shoes having large outer diameters are employed. In addition, even if the shoes 12 are shifted toward the side walls 10c, the spherical portions 12a can receive reaction force from the contacting surfaces 10d at the entire surfaces thereof, so that the shoes 12 can slide along the contacting surfaces 10d always smoothly even if the swash plate 11 is largely tilted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車両用空気調和装置の冷凍回路に用いられる斜板式圧縮機に関するものである。
【0002】
【従来の技術】
従来、この種の斜板式圧縮機としては、例えば図10に示すように、圧縮機本体1の一端側に互いに周方向に間隔をおいて設けられた複数のシリンダ2と、各シリンダ2内をそれぞれ往復動する複数のピストン3と、各ピストン3の一端側に摺動自在に係合する斜板4と、斜板4を回転させる駆動シャフト5とを備え、駆動シャフト5の一端に取付けられたプーリ6に外部からの駆動力を入力することにより、駆動シャフト5を回転させるようにしたものが知られている(例えば、特許文献1参照。)。
【0003】
この圧縮機では、斜板4を駆動シャフト5と一体に回転するロータ7にヒンジ7aを介して連結することにより、斜板4が傾動可能に回転するようになっている。この場合、斜板4は駆動シャフト5に巻回されたコイルスプリング7bによって各ピストン3側に付勢されている。
【0004】
また、図11に示すように、各ピストン3の一端側には、斜板4を間にして対向する一対の係合部3a,3bと、一方の係合部3aの一側部から他方の係合部3bの一側部に亘って形成された側壁部3cが設けられている。この場合、各係合部3a,3bと斜板4との間にはそれぞれ斜板4に摺動自在に接触する摺動部材としての一対のシュー8が介在しており、各係合部3a,3bにはそれぞれシュー8の球面部8aと摺動自在に接触する接触面3dが設けられている。尚、図11に示すピストン3は二酸化炭素冷媒用として外径を小さく形成したものである。
【0005】
前記圧縮機においては、プーリ6に入力された動力によって駆動シャフト5が回転すると、駆動シャフト5と共に斜板4が回転し、斜板4の傾斜によって各ピストン3が軸方向にそれぞれ往復動する。これにより、シリンダヘッド9の冷媒吸入室9aから各シリンダ2内に冷媒が吸入され、シリンダヘッド9の冷媒吐出室9bに吐出される。その際、冷媒吸入室9aと圧縮機本体1のクランク室1aとの間に生ずる差圧により、各ピストン3の背面側(クランク室1a側)に加わる圧力に応じて斜板4の傾斜角度が変化し、ピストン3の吐出量が変わるようになっている。
【0006】
【特許文献1】
特開2002−31047号公報
【0007】
【発明が解決しようとする課題】
ところで、前記圧縮機を用いた車両用空気調和装置等においては、環境保全の関係上、二酸化炭素冷媒が使用される傾向にある。この場合、フロン冷媒に比べると、圧縮機の吐出量は1/6〜1/8となるため、例えば図9に示すようにピストン3には外径の小さいものが用いられる。しかし、二酸化炭素冷媒を用いる場合は作動圧力がフロン冷媒の約10倍となるため、斜板4に作用するピストン3からの荷重はフロン冷媒の場合よりも20〜30%程度大きくなる。
【0008】
そこで、ピストン3からの高荷重に対応するため、斜板4に接触するシュー8には外径の大きなものを用いる必要があるが、シュー8の外径が大きくなると、ピストン3の側壁部3cをピストン3の側方に拡大させなければならず、圧縮機本体1が大型化するという問題点があった。この場合、ピストン3の側壁部3cにはシュー8の周縁部を非接触で受容する凹部3eが設けられているが、側壁部3cを拡大させずに凹部3eを深く形成すると、側壁部3cの肉厚が薄くなり、ピストン3の強度を低下させるという問題点があった。
【0009】
また、ピストン3が上死点または下死点に達したときのように、斜板4の傾斜角度が大きくなると、ピストン3の径方向への各シュー8の偏位量も大きくなり、各シュー12の球面部8aの一部が係合部3a,3bの接触面3dの外部まで移動する場合がある。この場合、シュー8の球面部8aと係合部3a,3bの接触面3dとの接触面積が小さくなるため、シュー8と係合部3a,3bの円滑な摺動が妨げられるなど、シュー8の摺動不良を生じたり、場合によってはシュー8が斜板4と係合部3a,3bとの間から脱落するおそれもあった。
【0010】
本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、圧縮機本体の大型化やピストンの強度低下を来すことなく摺動部材の外径を大きくすることができるとともに、摺動部材の摺動不良や脱落を確実に防止することのできる斜板式圧縮機を提供することにある。
【0011】
【課題を解決するための手段】
本発明は前記目的を達成するために、請求項1では、圧縮機本体の一端側に互いに周方向に間隔をおいて設けられた複数のシリンダと、各シリンダ内をそれぞれ往復動する複数のピストンと、各ピストンの一端側に摺動自在に係合する斜板と、斜板を回転させる駆動軸とを備え、各ピストンの一端側には、斜板を間にして対向する一対の係合部と、一方の係合部の一側部から他方の係合部の一側部に亘って形成された側壁部とを設け、各係合部と斜板との間にはそれぞれ斜板に摺動自在に接触する一対の摺動部材を介在させ、各係合部にはそれぞれ摺動部材の球面部と摺動自在に接触する接触面を設けた斜板式圧縮機において、前記各係合部の接触面を前記側壁部まで延在するように形成している。これにより、各係合部の接触面に接触する摺動部材が側壁部側に偏位すると、摺動部材の球面部が側壁部まで連続する接触面に接触しながら摺動することから、例えば外径の大きい摺動部材を用いた場合でも、大径化した分は接触面と接触する摺動部材の球面部が大きくなるだけで、各係合部の接触面の形状や寸法を変更する必要がない。この場合、摺動部材が側壁部側に偏位しても、摺動部材の球面部と係合部の接触面との接触面積が小さくなることがないため、摺動部材が接触面から受ける反力が球面部の全体に均一に加わる。
【0012】
また、請求項2では、請求項1記載の斜板式圧縮機において、前記接触面を側壁部を介して一方の係合部から他方の係合部に亘って形成している。これにより、請求項1の作用に加え、各係合部の接触面が一方の係合部から他方の係合部に亘って形成されていることから、摺動部材の大径化のみならず、摺動部材の摺動範囲が大きい場合にも対応可能となる。この場合、側壁部に接触面が形成されている分、ピストンが軽量化する。また、接触面が各係合部間に連続的に形成されていることにより、各摺動部材間の接触面に潤滑油を保持される。
【0013】
また、請求項3では、請求項1または2記載の斜板式圧縮機において、前記接触面を連続的に設けている。これにより、請求項1または2の作用に加え、接触面が連続的に設けられていることから、接触面を容易に成形することが可能となる。
【0014】
また、請求項4では、請求項1、2または3記載の斜板式圧縮機において、前記接触面を摺動部材の球面部と同一曲率の球面によって形成している。これにより、請求項1、2または3の作用に加え、接触面が摺動部材の球面部と同一曲率の球面によって形成されていることから、接触面を切削加工等により容易に成形することが可能となる。
【0015】
また、請求項5では、請求項1、2、3または4記載の斜板式圧縮機において、前記各ピストンによって圧縮される流体として二酸化炭素冷媒を用いている。これにより、請求項1、2、3または4の作用に加え、二酸化炭素冷媒を用いることにより、環境保全に有利な冷凍回路の実現が可能となる。
【0016】
【発明の実施の形態】
図1乃至図5は本発明の一実施形態を示すもので、図1は圧縮機の要部側面断面図、図2はピストンの正面図、図3はその側面図、図4及び図5はピストンの側面断面図である。また、図6及び図7は比較例を示すピストンの側面断面図である。尚、従来例と同等の構成部分には同一の符号を付して示すとともに、同図に示す部分以外の構成は従来例と同等であるため図10及び図11を参照するものとする。
【0017】
本実施形態のピストン10は二酸化炭素冷媒用として外径を小さく形成されたもので、その一端側には、斜板11に係合する対向一対の係合部10a,10bと、一方の係合部10aの一側部から他方の係合部10bの一側部に亘って形成された側壁部10cとを有している。各係合部10a,10bと斜板11との間にはそれぞれ斜板11に摺動自在に接触する摺動部材としての一対のシュー12が介在しており、各係合部10a,10bにはそれぞれシュー12の球面部12aと摺動自在に接触する接触面10dが設けられている。接触面10dは側壁部10cまで延在するように形成されるとともに、側壁部10cを介して一方の係合部10aから他方の係合部10bに亘って連続的に形成されている。この場合、接触面10dはシュー12の球面部12aと同一曲率の球面によって形成されている。また、斜板11は、従来例よりも厚さ寸法が大きく形成されており、二酸化炭素冷媒の使用による高荷重に対応可能な強度を有している。
【0018】
前記圧縮機においては、駆動シャフト5によって斜板11が回転すると、斜板11に係合する各ピストン10がシリンダ2内を往復動する。また、斜板11は各シュー12の平面部12bに接触しながら摺動するとともに、各シュー12は球面部12aを各係合部10a,10bの接触面10dに接触させながら接触面10dに沿って摺動する。
【0019】
この場合、ピストン10が上死点または下死点に達したときのように、斜板11の傾斜角度が大きくなると、各シュー12の偏位量も大きくなるが、本実施形態では各係合部10a,10bの接触面10dが側壁部10cまで連続的に形成されているため、図4に示すように側壁部10c側に偏位するシュー12の球面部12aは側壁部10c側の接触面10dに接触しながら摺動する。従って、図中一点鎖線に示すように外径の大きいシュー12′を用いた場合でも、大径化した分は接触面10dと接触する球面部12aが大きくなるだけで、接触面10dの形状や寸法を変更する必要がない。
【0020】
これに対し、図6の比較例に示すピストン13のように、各係合部13a,13b間に側壁部13cを有するとともに、各係合部13a,13bのみに接触面13dを設け、側壁部13cにシュー12の側縁部を非接触で受容する凹部13eを設けた場合には、図中一点鎖線に示すように外径の大きいシュー12′を用いると、凹部13eを深く形成しなければシュー12′の側縁部と干渉するため、側壁部13cをピストン13の側方に拡大させる必要があり、その分だけ圧縮機本体1が大型化する。また、側壁部13cをピストン13の側方に拡大させずに凹部13eを深く形成すると、側壁部13cの肉厚が薄くなり、ピストン13の強度が低下する。
【0021】
また、本実施形態では、図5に示すようにシュー12が側壁部10c側に偏位しても、シュー12の球面部12aと係合部10a,10bの接触面10dとの接触面積が小さくなることがないため、図中矢印で示すようにシュー12が接触面10dから受ける反力が球面部12aの全体に均一に加わる。
【0022】
これに対し、図7の比較例に示すように側壁部13cにシュー12の側縁部を非接触で受容する凹部13eを設けた場合には、側壁部13c側に偏位したシュー12の球面部12aの一部が係合部13a,13bの接触面13dの外部まで移動するため、シュー12の球面部12aと係合部13a,13bの接触面13dとの接触面積が小さくなる。このため、図中矢印で示すようにシュー12が接触面13dから受ける反力が球面部12aの一部のみに加わり、シュー12の摺動不良や脱落を生ずるおそれがある。
【0023】
このように、本実施形態の圧縮機によれば、各係合部10a,10bの接触面10dを側壁部10cまで連続的に形成したので、側壁部10c側に偏位するシュー12の球面部12aを側壁部10c側の接触面10dに接触させながら摺動させることができ、外径の大きいシュー12′を用いた場合でも、接触面10dの形状や寸法を変更する必要はない。従って、側壁部10cをピストン10の側方に拡大させたり、側壁部10cの肉厚を薄くする必要がなく、圧縮機本体1の大型化やピストン10の強度低下を来すことないという利点がある。
【0024】
また、シュー12が側壁部10c側に偏位しても、接触面10dからの反力を球面部12aの全体で均一に受けることができるので、斜板11の傾斜角度が大きい場合でもシュー12を接触面10dに沿って常に円滑に摺動させることができる。従って、シュー12の摺動不良や脱落を確実に防止することができるとともに、接触面10dからの反力を分散させて局部摩耗を防止することができるので、耐久性の向上においても有利である。
【0025】
更に、各係合部10a,10bの接触面10dを側壁部10cを介して一方の係合部10aから他方の係合部10bに亘って形成するようにしたので、各シュー12の大径化のみならず、各シュー12の摺動範囲が大きい場合にも確実に対応することができ、汎用性の向上を図ることができる。この場合、側壁部10cに接触面10dが切削形成されている分、ピストン10の軽量化を図ることができるので、ピストン10の慣性力を小さくしたい場合に有利である。また、接触面10dが各係合部10a,10b間に連続的に形成されていることにより、図5に示すように各シュー12間の接触面10dに潤滑油Aを保持することができるので、各シュー12に潤滑油Aを確実に供給することができ、各シュー12の焼付き防止等に極めて効果的である。
【0026】
また、接触面10dを連続的に設けたことにより、接触面10dの加工を容易に行うことができる。この場合、接触面10dを各シュー12の球面部12aと同一曲率の球面によって形成するようにしたので、接触面10dを切削加工等により容易に成形することができ、生産性の向上を図ることができる。
【0027】
更に、前述のように圧縮機本体1の大型化やピストン10の強度低下を来すことなく耐久性の向上を図ることができるので、作動圧力の高い二酸化炭素冷媒を用いることができる。従って、二酸化炭素冷媒を用いることにより、環境保全に有利な冷凍回路を実現することができ、車両用空気調和装置等に用いる場合に極めて有利である。
【0028】
尚、前記実施形態では、各係合部10a,10bの接触面10dを一方の係合部10aから他方の係合部10bまで連続的に形成したものを示したが、このように連続したものに限らず、例えば図8に示すように各係合部10a,10bからそれぞれ側壁部10cの一部まで形成するようにしてもよく、また、図9に示すように接触面10dが溝10eで分断されているものであってもよい。
【0029】
また、前記実施形態では、駆動シャフト5に対する斜板11の傾斜角度を任意に変化させることにより、可変容量型の圧縮機を構成するようにしたものを示したが、斜板11及びロータ7に相当する部材を一体に構成することにより、駆動シャフト5に対して所定の固定された傾斜角度をなす斜板を用いた固定容量型の圧縮機を構成するようにしてもよい。
【0030】
更に、本発明は、前記実施形態に示したような片頭ピストンタイプのものに限定されるものではなく、両頭ピストンを用いた斜板式圧縮機にも適用することができる。
【0031】
【発明の効果】
以上説明したように、請求項1の斜板式圧縮機によれば、外径の大きい摺動部材を用いた場合でも、ピストン側の接触面の形状や寸法を変更する必要がないので、ピストンの側壁部をピストンの側方に拡大させたり、側壁部の肉厚を薄くする必要がなく、圧縮機本体の大型化やピストンの強度低下を来すことないという利点がある。また、斜板の傾斜角度が大きい場合でも摺動部材を接触面に沿って常に円滑に摺動させることができるので、摺動部材の摺動不良や脱落を確実に防止することができるとともに、接触面からの反力を分散させて局部摩耗を防止することができるので、耐久性の向上においても有利である。
【0032】
また、請求項2の斜板式圧縮機によれば、請求項1の効果に加え、摺動部材の大径化のみならず、摺動部材の摺動範囲が大きい場合にも確実に対応することができるので、汎用性の向上を図ることができる。この場合、ピストンの軽量化を図ることもできるので、ピストンの慣性力を小さくしたい場合に有利である。また、各摺動部材間の接触面に潤滑油を保持することもできるので、各摺動部材に潤滑油を確実に供給することができ、各摺動部材の焼付き防止等に極めて効果的である。
【0033】
また、請求項3の斜板式圧縮機によれば、請求項1または2の効果に加え、前記接触面を容易に成形することができるので、生産性の向上を図ることができる。
【0034】
また、請求項4の斜板式圧縮機によれば、請求項1、2または3の効果に加え、前記接触面を切削加工等により容易に成形することができるので、生産性をより一層向上させることができる。
【0035】
また、請求項5の斜板式圧縮機によれば、請求項1、2、3または4の効果に加え、環境保全に有利な冷凍回路を実現することができるので、車両用空気調和装置等に用いる場合に極めて有利である。
【図面の簡単な説明】
【図1】図1は本発明の一実施形態を示す斜板式圧縮機の要部側面断面図
【図2】ピストンの正面図
【図3】ピストンの側面図
【図4】ピストンの側面断面図
【図5】ピストンの側面断面図
【図6】比較例を示すピストンの側面断面図
【図7】比較例を示すピストンの側面断面図
【図8】変形例を示すピストンの正面図
【図9】他の変形例を示すピストンの正面図
【図10】従来例を示す斜板式圧縮機の側面断面図
【図11】従来例を示す斜板式圧縮機の要部側面断面図
【符号の説明】
1…圧縮機本体、2…シリンダ、10…ピストン、10a,10b…係合部、10c…側壁部、10d…接触面、11…斜板、12,12′…シュー、12a…球面部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a swash plate type compressor used for a refrigeration circuit of an air conditioner for a vehicle, for example.
[0002]
[Prior art]
Conventionally, as this type of swash plate compressor, for example, as shown in FIG. 10, a plurality of cylinders 2 provided at one end side of a compressor body 1 at intervals in the circumferential direction, A plurality of pistons 3 each reciprocating, a swash plate 4 slidably engaged with one end of each piston 3, and a drive shaft 5 for rotating the swash plate 4 are attached to one end of the drive shaft 5. There is a known pulley 6 in which a driving force is inputted from outside to rotate a driving shaft 5 (for example, see Patent Document 1).
[0003]
In this compressor, by connecting the swash plate 4 to a rotor 7 that rotates integrally with the drive shaft 5 via a hinge 7a, the swash plate 4 is configured to rotate in a tiltable manner. In this case, the swash plate 4 is urged toward each piston 3 by a coil spring 7b wound around the drive shaft 5.
[0004]
As shown in FIG. 11, one end of each piston 3 has a pair of engaging portions 3a and 3b opposed to each other with the swash plate 4 therebetween, and one side of one engaging portion 3a from the other side. A side wall portion 3c formed over one side of the engagement portion 3b is provided. In this case, a pair of shoes 8 as sliding members that slidably contact the swash plate 4 are interposed between the engagement portions 3a and 3b and the swash plate 4, respectively. , 3b are each provided with a contact surface 3d slidably in contact with the spherical portion 8a of the shoe 8. The piston 3 shown in FIG. 11 has a small outer diameter for carbon dioxide refrigerant.
[0005]
In the compressor, when the drive shaft 5 rotates by the power input to the pulley 6, the swash plate 4 rotates together with the drive shaft 5, and each piston 3 reciprocates in the axial direction due to the inclination of the swash plate 4. Thereby, the refrigerant is sucked into each cylinder 2 from the refrigerant suction chamber 9a of the cylinder head 9 and discharged to the refrigerant discharge chamber 9b of the cylinder head 9. At this time, due to the pressure difference between the refrigerant suction chamber 9a and the crank chamber 1a of the compressor body 1, the inclination angle of the swash plate 4 is changed in accordance with the pressure applied to the back side (crank chamber 1a side) of each piston 3. And the discharge amount of the piston 3 changes.
[0006]
[Patent Document 1]
JP-A-2002-31047
[Problems to be solved by the invention]
By the way, in an air conditioner for a vehicle or the like using the compressor, a carbon dioxide refrigerant tends to be used due to environmental protection. In this case, since the discharge amount of the compressor is 1/6 to 1/8 of that of the CFC refrigerant, for example, a piston 3 having a small outer diameter is used as shown in FIG. However, when the carbon dioxide refrigerant is used, the operating pressure is about 10 times that of the CFC refrigerant, so that the load applied to the swash plate 4 from the piston 3 is about 20 to 30% larger than that of the CFC refrigerant.
[0008]
Therefore, in order to cope with a high load from the piston 3, it is necessary to use a shoe 8 having a large outer diameter in contact with the swash plate 4, but when the outer diameter of the shoe 8 increases, the side wall 3c of the piston 3 becomes large. Has to be expanded to the side of the piston 3, and there is a problem that the compressor body 1 becomes large. In this case, the side wall 3c of the piston 3 is provided with a recess 3e for receiving the peripheral portion of the shoe 8 in a non-contact manner. However, if the recess 3e is formed deep without enlarging the side wall 3c, There is a problem that the wall thickness becomes thin and the strength of the piston 3 is reduced.
[0009]
Further, when the inclination angle of the swash plate 4 increases, such as when the piston 3 reaches the top dead center or the bottom dead center, the amount of deviation of each shoe 8 in the radial direction of the piston 3 also increases, and each shoe 8 In some cases, a part of the twelve spherical portions 8a may move to the outside of the contact surface 3d of the engaging portions 3a and 3b. In this case, since the contact area between the spherical portion 8a of the shoe 8 and the contact surface 3d of the engaging portions 3a, 3b is reduced, smooth sliding of the shoe 8 and the engaging portions 3a, 3b is prevented. In some cases, the sliding failure may occur, and in some cases, the shoe 8 may fall off between the swash plate 4 and the engaging portions 3a and 3b.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to increase the outer diameter of a sliding member without increasing the size of a compressor body or reducing the strength of a piston. In addition, an object of the present invention is to provide a swash plate type compressor that can reliably prevent poor sliding and falling off of a sliding member.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a plurality of cylinders are provided at one end of a compressor body at intervals in a circumferential direction, and a plurality of pistons reciprocate in each cylinder. And a swash plate slidably engaged with one end of each piston, and a drive shaft for rotating the swash plate. A pair of engagements opposed to one end of each piston with the swash plate therebetween. Part and a side wall formed from one side of one engagement part to one side of the other engagement part, and a swash plate is provided between each engagement part and the swash plate. In a swash plate type compressor, a pair of sliding members that slidably contact each other are interposed, and each engaging portion is provided with a contact surface that slidably contacts a spherical surface of the sliding member. The contact surface of the portion is formed to extend to the side wall portion. Thereby, when the sliding member that comes into contact with the contact surface of each engagement portion is deflected toward the side wall, the spherical portion of the sliding member slides while contacting the contact surface that continues to the side wall. Even when a sliding member having a large outer diameter is used, the increased diameter only changes the shape and dimensions of the contact surface of each engaging portion, only by increasing the spherical portion of the sliding member in contact with the contact surface. No need. In this case, even if the sliding member is displaced toward the side wall portion, the contact area between the spherical portion of the sliding member and the contact surface of the engaging portion does not decrease, so that the sliding member receives from the contact surface. The reaction force is uniformly applied to the entire spherical portion.
[0012]
According to a second aspect, in the swash plate type compressor according to the first aspect, the contact surface is formed from one engaging portion to the other engaging portion via a side wall portion. Thus, in addition to the function of the first aspect, the contact surface of each engaging portion is formed from one engaging portion to the other engaging portion, so that not only the diameter of the sliding member can be increased but also the diameter of the sliding member can be increased. It is also possible to cope with a case where the sliding range of the sliding member is large. In this case, since the contact surface is formed on the side wall, the weight of the piston is reduced. In addition, since the contact surface is formed continuously between the engaging portions, the lubricating oil is held on the contact surface between the sliding members.
[0013]
According to a third aspect, in the swash plate type compressor according to the first or second aspect, the contact surface is provided continuously. Accordingly, in addition to the function of the first or second aspect, since the contact surface is provided continuously, the contact surface can be easily formed.
[0014]
According to a fourth aspect of the present invention, in the swash plate type compressor according to the first, second or third aspect, the contact surface is formed by a spherical surface having the same curvature as a spherical portion of the sliding member. Accordingly, in addition to the operation of the first, second, or third aspect, since the contact surface is formed by a spherical surface having the same curvature as the spherical portion of the sliding member, the contact surface can be easily formed by cutting or the like. It becomes possible.
[0015]
According to a fifth aspect of the present invention, in the swash plate type compressor according to the first, second, third, or fourth aspect, a carbon dioxide refrigerant is used as a fluid compressed by each of the pistons. This makes it possible to realize a refrigeration circuit that is advantageous for environmental conservation by using a carbon dioxide refrigerant in addition to the effects of the first, second, third, or fourth aspect.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 5 show an embodiment of the present invention. FIG. 1 is a side sectional view of a main part of a compressor, FIG. 2 is a front view of a piston, FIG. 3 is a side view thereof, and FIGS. It is a side sectional view of a piston. 6 and 7 are side sectional views of a piston showing a comparative example. The same components as those in the conventional example are denoted by the same reference numerals, and the components other than those shown in FIG.
[0017]
The piston 10 according to the present embodiment is formed with a small outer diameter for carbon dioxide refrigerant. One end of the piston 10 is provided with a pair of opposed engagement portions 10a and 10b which engage with the swash plate 11, and one of the engagement portions is provided. And a side wall 10c formed from one side of the portion 10a to one side of the other engaging portion 10b. A pair of shoes 12 as sliding members that slidably contact the swash plate 11 are interposed between the engagement portions 10a and 10b and the swash plate 11, respectively. Are each provided with a contact surface 10d slidably in contact with the spherical portion 12a of the shoe 12. The contact surface 10d is formed so as to extend to the side wall portion 10c, and is formed continuously from the one engaging portion 10a to the other engaging portion 10b via the side wall portion 10c. In this case, the contact surface 10d is formed by a spherical surface having the same curvature as the spherical portion 12a of the shoe 12. The swash plate 11 is formed to have a larger thickness than the conventional example, and has a strength capable of coping with a high load due to the use of the carbon dioxide refrigerant.
[0018]
In the compressor, when the swash plate 11 is rotated by the drive shaft 5, each piston 10 engaging with the swash plate 11 reciprocates in the cylinder 2. In addition, the swash plate 11 slides while contacting the flat portion 12b of each shoe 12, and each shoe 12 moves along the contact surface 10d while contacting the spherical portion 12a with the contact surface 10d of each of the engaging portions 10a and 10b. Slide.
[0019]
In this case, when the inclination angle of the swash plate 11 increases, such as when the piston 10 reaches the top dead center or the bottom dead center, the amount of deviation of each shoe 12 also increases. Since the contact surfaces 10d of the portions 10a and 10b are continuously formed up to the side wall portion 10c, the spherical portion 12a of the shoe 12 which is deflected toward the side wall portion 10c as shown in FIG. It slides while contacting 10d. Therefore, even when the shoe 12 'having a large outer diameter is used as shown by the one-dot chain line in the figure, the increased diameter only increases the spherical portion 12a in contact with the contact surface 10d. There is no need to change the dimensions.
[0020]
On the other hand, like the piston 13 shown in the comparative example of FIG. 6, a side wall 13c is provided between the engaging portions 13a and 13b, and a contact surface 13d is provided only on each of the engaging portions 13a and 13b. In the case where a recess 13e for receiving the side edge portion of the shoe 12 in a non-contact manner is provided in the shoe 13c, if the shoe 12 'having a large outer diameter is used as shown by a dashed line in the drawing, the recess 13e must be formed deeply. Since it interferes with the side edge of the shoe 12 ′, the side wall 13 c needs to be expanded to the side of the piston 13, and the compressor body 1 is correspondingly enlarged. Further, when the recess 13e is formed deep without expanding the side wall 13c to the side of the piston 13, the thickness of the side wall 13c is reduced, and the strength of the piston 13 is reduced.
[0021]
Further, in the present embodiment, even if the shoe 12 is displaced toward the side wall portion 10c as shown in FIG. 5, the contact area between the spherical portion 12a of the shoe 12 and the contact surfaces 10d of the engaging portions 10a and 10b is small. Therefore, the reaction force that the shoe 12 receives from the contact surface 10d is uniformly applied to the entire spherical portion 12a as shown by the arrow in the drawing.
[0022]
On the other hand, as shown in the comparative example of FIG. 7, when the side wall 13c is provided with a recess 13e for receiving the side edge of the shoe 12 in a non-contact manner, the spherical surface of the shoe 12 displaced toward the side wall 13c. Since a part of the portion 12a moves to the outside of the contact surface 13d of the engaging portions 13a and 13b, the contact area between the spherical portion 12a of the shoe 12 and the contact surface 13d of the engaging portions 13a and 13b is reduced. For this reason, as shown by the arrow in the drawing, the reaction force that the shoe 12 receives from the contact surface 13d is applied only to a part of the spherical portion 12a, and there is a possibility that the shoe 12 may slide poorly or fall off.
[0023]
As described above, according to the compressor of the present embodiment, the contact surface 10d of each of the engaging portions 10a and 10b is continuously formed up to the side wall portion 10c, so that the spherical portion of the shoe 12 deviating toward the side wall portion 10c side. 12a can be slid while being in contact with the contact surface 10d on the side wall portion 10c side. Even when the shoe 12 'having a large outer diameter is used, there is no need to change the shape and dimensions of the contact surface 10d. Therefore, there is no need to expand the side wall portion 10c to the side of the piston 10 or to reduce the thickness of the side wall portion 10c, and there is an advantage that the size of the compressor body 1 is not increased and the strength of the piston 10 is not reduced. is there.
[0024]
Further, even if the shoe 12 is deviated toward the side wall 10c, the reaction force from the contact surface 10d can be uniformly received by the entire spherical portion 12a. Can always be slid smoothly along the contact surface 10d. Therefore, it is possible to reliably prevent poor sliding and falling off of the shoe 12 and to disperse the reaction force from the contact surface 10d to prevent local wear, which is advantageous in improving durability. .
[0025]
Further, since the contact surface 10d of each of the engaging portions 10a and 10b is formed from one engaging portion 10a to the other engaging portion 10b via the side wall portion 10c, the diameter of each shoe 12 can be increased. In addition, it is possible to reliably cope with a case where the sliding range of each shoe 12 is large, and to improve versatility. In this case, since the contact surface 10d is cut and formed on the side wall portion 10c, the weight of the piston 10 can be reduced, which is advantageous when it is desired to reduce the inertial force of the piston 10. Further, since the contact surface 10d is formed continuously between the engaging portions 10a and 10b, the lubricating oil A can be held on the contact surface 10d between the shoes 12 as shown in FIG. The lubricating oil A can be reliably supplied to each shoe 12, which is extremely effective in preventing seizure of each shoe 12.
[0026]
In addition, since the contact surface 10d is provided continuously, the processing of the contact surface 10d can be easily performed. In this case, since the contact surface 10d is formed by a spherical surface having the same curvature as the spherical portion 12a of each shoe 12, the contact surface 10d can be easily formed by cutting or the like, thereby improving productivity. Can be.
[0027]
Further, as described above, the durability can be improved without increasing the size of the compressor main body 1 or reducing the strength of the piston 10, so that a carbon dioxide refrigerant having a high working pressure can be used. Therefore, by using a carbon dioxide refrigerant, a refrigeration circuit advantageous for environmental protection can be realized, which is extremely advantageous when used in an air conditioner for a vehicle or the like.
[0028]
In the above-described embodiment, the contact surface 10d of each of the engaging portions 10a and 10b is formed continuously from one engaging portion 10a to the other engaging portion 10b. However, the present invention is not limited to this. For example, as shown in FIG. 8, each of the engaging portions 10a and 10b may be formed to a part of the side wall portion 10c. Further, as shown in FIG. It may be divided.
[0029]
In the above-described embodiment, the variable displacement compressor is configured by arbitrarily changing the inclination angle of the swash plate 11 with respect to the drive shaft 5. By forming corresponding members integrally, a fixed displacement compressor using a swash plate having a predetermined fixed inclination angle with respect to the drive shaft 5 may be formed.
[0030]
Further, the present invention is not limited to the single-headed piston type as shown in the above embodiment, but can be applied to a swash plate type compressor using a double-headed piston.
[0031]
【The invention's effect】
As described above, according to the swash plate type compressor of claim 1, even when a sliding member having a large outer diameter is used, it is not necessary to change the shape and dimensions of the contact surface on the piston side. There is no need to enlarge the side wall to the side of the piston or to reduce the thickness of the side wall, and there is an advantage that the compressor body does not become large and the strength of the piston does not decrease. In addition, even when the inclination angle of the swash plate is large, the sliding member can always be smoothly slid along the contact surface, so that poor sliding and falling off of the sliding member can be reliably prevented, and Since the reaction force from the contact surface can be dispersed to prevent local wear, it is also advantageous in improving durability.
[0032]
According to the swash plate type compressor of the second aspect, in addition to the effect of the first aspect, not only the diameter of the sliding member can be increased, but also the case where the sliding range of the sliding member is large can be reliably handled. Therefore, versatility can be improved. In this case, the weight of the piston can be reduced, which is advantageous when it is desired to reduce the inertial force of the piston. In addition, since the lubricating oil can be held on the contact surfaces between the sliding members, the lubricating oil can be reliably supplied to each sliding member, which is extremely effective in preventing seizure of each sliding member. It is.
[0033]
According to the swash plate compressor of the third aspect, in addition to the effect of the first or second aspect, the contact surface can be easily formed, so that productivity can be improved.
[0034]
According to the swash plate type compressor of the fourth aspect, in addition to the effects of the first, second or third aspect, the contact surface can be easily formed by cutting or the like, so that productivity is further improved. be able to.
[0035]
According to the swash plate type compressor of claim 5, in addition to the effects of claims 1, 2, 3, or 4, a refrigeration circuit advantageous for environmental protection can be realized. It is very advantageous when used.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a main part of a swash plate type compressor showing an embodiment of the present invention. FIG. 2 is a front view of a piston. FIG. 3 is a side view of a piston. FIG. 5 is a side sectional view of a piston showing a comparative example; FIG. 7 is a side sectional view of a piston showing a comparative example; FIG. 8 is a front view of a piston showing a modified example; FIG. 10 is a front view of a piston showing another modification. FIG. 10 is a side sectional view of a swash plate type compressor showing a conventional example. FIG. 11 is a side sectional view of a main part of a swash plate type compressor showing a conventional example.
DESCRIPTION OF SYMBOLS 1 ... Compressor main body, 2 ... Cylinder, 10 ... Piston, 10a, 10b ... Engaging part, 10c ... Side wall part, 10d ... Contact surface, 11 ... Swash plate, 12, 12 '... Shoe, 12a ... Spherical part.

Claims (5)

圧縮機本体の一端側に互いに周方向に間隔をおいて設けられた複数のシリンダと、各シリンダ内をそれぞれ往復動する複数のピストンと、各ピストンの一端側に摺動自在に係合する斜板と、斜板を回転させる駆動軸とを備え、各ピストンの一端側には、斜板を間にして対向する一対の係合部と、一方の係合部の一側部から他方の係合部の一側部に亘って形成された側壁部とを設け、各係合部と斜板との間にはそれぞれ斜板に摺動自在に接触する一対の摺動部材を介在させ、各係合部にはそれぞれ摺動部材の球面部と摺動自在に接触する接触面を設けた斜板式圧縮機において、
前記各係合部の接触面を前記側壁部まで延在するように形成した
ことを特徴とする斜板式圧縮機。
A plurality of cylinders provided at one end of the compressor body at intervals in the circumferential direction, a plurality of pistons reciprocating in each cylinder, and an obliquely slidably engaging one end of each piston. A plate and a drive shaft for rotating the swash plate are provided. One end of each piston is provided with a pair of engagement portions facing each other with the swash plate therebetween, and one engagement portion from one side to the other engagement portion. A side wall formed over one side of the joint is provided, and a pair of sliding members that slidably contact the swash plate are interposed between each engagement portion and the swash plate. In the swash plate type compressor in which the engaging portion is provided with a contact surface that slidably contacts the spherical portion of the sliding member,
A swash plate compressor, wherein a contact surface of each of the engaging portions is formed to extend to the side wall portion.
前記接触面を側壁部を介して一方の係合部から他方の係合部に亘って形成した
ことを特徴とする請求項1記載の斜板式圧縮機。
The swash plate type compressor according to claim 1, wherein the contact surface is formed from one engaging portion to the other engaging portion via a side wall portion.
前記接触面を連続的に設けた
ことを特徴とする請求項1または2記載の斜板式圧縮機。
The swash plate compressor according to claim 1, wherein the contact surface is provided continuously.
前記接触面を摺動部材の球面部と同一曲率の球面によって形成した
ことを特徴とする請求項1、2または3記載の斜板式圧縮機。
4. The swash plate compressor according to claim 1, wherein the contact surface is formed by a spherical surface having the same curvature as a spherical portion of the sliding member.
前記各ピストンによって圧縮される流体として二酸化炭素冷媒を用いた
ことを特徴とする請求項1、2、3または4記載の斜板式圧縮機。
5. The swash plate compressor according to claim 1, wherein a carbon dioxide refrigerant is used as a fluid compressed by each piston.
JP2002360766A 2002-12-12 2002-12-12 Swash plate compressor Pending JP2004190597A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002360766A JP2004190597A (en) 2002-12-12 2002-12-12 Swash plate compressor
US10/730,942 US20040112210A1 (en) 2002-12-12 2003-12-10 Swash plate compressor having a piston in which a contact surface to be contacted with a shoe is continuously and extensively formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360766A JP2004190597A (en) 2002-12-12 2002-12-12 Swash plate compressor

Publications (1)

Publication Number Publication Date
JP2004190597A true JP2004190597A (en) 2004-07-08

Family

ID=32501003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360766A Pending JP2004190597A (en) 2002-12-12 2002-12-12 Swash plate compressor

Country Status (2)

Country Link
US (1) US20040112210A1 (en)
JP (1) JP2004190597A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758728B2 (en) * 2005-10-25 2011-08-31 サンデン株式会社 Reciprocating fluid machine

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US44292A (en) * 1864-09-20 Improvement in riding-stirrups
US5478212A (en) * 1992-03-04 1995-12-26 Nippondenso Co., Ltd. Swash plate type compressor
JP3042650B2 (en) * 1992-11-26 2000-05-15 サンデン株式会社 Swash plate compressor
US5495789A (en) * 1993-03-10 1996-03-05 Sanden Corporation Swash plate type compressor with lubricating mechanism between the shoe and swash plate
JP3503154B2 (en) * 1993-10-01 2004-03-02 株式会社豊田自動織機 Swash plate compressor
US5461967A (en) * 1995-03-03 1995-10-31 General Motors Corporation Swash plate compressor with improved piston alignment
JPH09250451A (en) * 1996-03-19 1997-09-22 Sanden Corp Piston for variable displacement rocking swash plate type compressor
JP3789168B2 (en) * 1996-05-21 2006-06-21 サンデン株式会社 Swash plate compressor
USD417225S (en) * 1996-06-13 1999-11-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compressor piston
USD402295S (en) * 1996-06-27 1998-12-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compressor piston
TW428673U (en) * 1996-07-15 2001-04-01 Toyoda Automatic Loom Works Single piston for compressor
USD417876S (en) * 1996-09-27 1999-12-21 Kabushiki Kaisha Toyada Jidoshokki Seisakusho Compressor piston
JP3942219B2 (en) * 1996-12-18 2007-07-11 サンデン株式会社 Swash plate compressor
JPH10318129A (en) * 1997-05-16 1998-12-02 Sanden Corp Piston of swash type compressor
JP3495225B2 (en) * 1997-06-25 2004-02-09 サンデン株式会社 Method of manufacturing shoe for swash plate type compressor
JP3635608B2 (en) * 1997-06-30 2005-04-06 サンデン株式会社 Swash plate compressor
JPH11107912A (en) * 1997-10-08 1999-04-20 Sanden Corp Swash plate type compressor
JP3958420B2 (en) * 1997-11-28 2007-08-15 サンデン株式会社 Shoe for swash plate compressor and piston joint for swash plate compressor
JP3964534B2 (en) * 1998-03-27 2007-08-22 サンデン株式会社 piston
JPH11294320A (en) * 1998-04-15 1999-10-26 Sanden Corp Reciprocal type compressor
JP3260330B2 (en) * 1998-12-14 2002-02-25 サンデン株式会社 Engagement structure between piston and shoe of swash plate compressor
JP3566125B2 (en) * 1999-03-25 2004-09-15 サンデン株式会社 Swash plate compressor
JP2001132628A (en) * 1999-11-04 2001-05-18 Sanden Corp Swash plate compressor
JP2001140755A (en) * 1999-11-17 2001-05-22 Sanden Corp Swash plate compressor
USD452252S1 (en) * 1999-12-20 2001-12-18 Sanden Corporation Piston for refrigerant compressor
USD450060S1 (en) * 1999-12-20 2001-11-06 Sanden Corporation Pistons for a refrigerant compressor
USD447150S1 (en) * 1999-12-20 2001-08-28 Sanden Corporation Piston for a refrigerant compressor
JP2001207960A (en) * 2000-01-25 2001-08-03 Toyota Autom Loom Works Ltd Air conditioner
USD450329S1 (en) * 2000-06-20 2001-11-13 Sanden Corporation Pistons for a refrigerant compressor
JP2002031233A (en) * 2000-07-12 2002-01-31 Sanden Corp Hollow piston
USD454888S1 (en) * 2000-09-14 2002-03-26 Sanden Corporation Pistons for refrigerant compressors
USD453343S1 (en) * 2000-09-14 2002-02-05 Sanden Corporation Piston for a refrigerant compressor
JP4388239B2 (en) * 2001-03-26 2009-12-24 サンデン株式会社 Swash plate compressor
JP4731756B2 (en) * 2001-07-31 2011-07-27 サンデン株式会社 Swash plate compressor
US6575708B2 (en) * 2001-09-13 2003-06-10 Delphi Technologies, Inc. Compressor head with improved oil retention

Also Published As

Publication number Publication date
US20040112210A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
AU670526B2 (en) Variable displacement piston type compressor
US7757597B2 (en) Variable displacement swash plate type compressor with smooth inclined moving feature
JP2004190597A (en) Swash plate compressor
JP2000337250A (en) Swash plate type compressor
JP2005069215A (en) Piston
JP4731756B2 (en) Swash plate compressor
JP4431912B2 (en) Swash plate compressor
KR20140096607A (en) shoe for variable capacity swash plate type compressor
EP1972784A1 (en) Variable displacement swash plate type compressor
JPH09177670A (en) Piston type compressor
JP2002115657A (en) Cylinder of piston compressor
JP4314405B2 (en) Variable capacity swash plate compressor
JP5518650B2 (en) Shoe for swash plate compressor
JP2004190507A (en) Swash plate compressor
JP2005264740A (en) Hermetic compressor
JP2001153038A (en) Swash plate type compressor
JP5259526B2 (en) Shoe for swash plate compressor
JP2002005012A (en) Swash plate type compressor
JP2006250027A (en) Swash plate compressor
JPH09203379A (en) Piston compressor
JP2020016172A (en) Variable displacement swash plate type hydraulic rotary machine
KR20040079078A (en) Swash plate, compressor having the same and assembling method thereof
JP2002013472A (en) Swash plate type compressor
JP2001159392A (en) Single head piston for swash plate type compressor
JP2001280235A (en) Piston for compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310