JP2004190540A - 2サイクル運転可能な頭上弁式エンジン - Google Patents

2サイクル運転可能な頭上弁式エンジン Download PDF

Info

Publication number
JP2004190540A
JP2004190540A JP2002357800A JP2002357800A JP2004190540A JP 2004190540 A JP2004190540 A JP 2004190540A JP 2002357800 A JP2002357800 A JP 2002357800A JP 2002357800 A JP2002357800 A JP 2002357800A JP 2004190540 A JP2004190540 A JP 2004190540A
Authority
JP
Japan
Prior art keywords
engine
exhaust
catalyst
turning
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002357800A
Other languages
English (en)
Inventor
Tatsuo Kobayashi
辰夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002357800A priority Critical patent/JP2004190540A/ja
Publication of JP2004190540A publication Critical patent/JP2004190540A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4264Shape or arrangement of intake or exhaust channels in cylinder heads of exhaust channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】2サイクル運転が可能な頭上弁式エンジンにおいて、自着火燃焼が可能な運転条件の範囲を従来よりも広げることのできる技術を提供する。
【解決手段】エンジンは、2サイクル自着火運転が可能であり、排気のエネルギを利用して給気圧力を高めるための過給器を備えている。また、過給器よりも上流側の排気通路16に、酸化触媒を有する触媒層16aが設けられている。さらに、触媒層16aの位置またはその上流側に、排気通路内を通過する排気の流れに旋回を与えるための旋回付与部材200が設けられている。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、2サイクル運転が可能な頭上弁式エンジンに関する。
【0002】
【従来の技術】
ガソリンエンジンは、4サイクル運転を行うのが普通であるが、過給器を用いて2サイクル運転が可能なガソリンエンジンも提案されている(例えば特許文献1)。
【0003】
【特許文献1】特開平7−91267号公報
【特許文献2】特開2000−220446号公報
【特許文献3】特開平11−200845号公報
【0004】
特許文献1に記載されたエンジンは、給気弁と排気弁がいずれもシリンダヘッドに設けられている頭上弁式エンジンである。2サイクル運転が可能な頭上弁式エンジンでは、いわゆる掃気作用により、新気によって排気が燃焼室から排出される。
【0005】
近年では、頭上弁式の2サイクルエンジンにおいて、混合気を自着火させる燃焼方式(「予混合自着火燃焼方式」とも呼ばれている)を採用することが検討されている。この自着火燃焼方式は、例えば、ガソリンを給気と予混合しておき、圧縮によって自着火させるものである。このような自着火燃焼を利用すると、燃費が向上し、また、大気汚染物質(特にNOx )の排出量も大幅に低減できるという利点がある。
【0006】
【発明が解決しようとする課題】
頭上弁式の2サイクルエンジンでは、掃気を行うために過給器で過給を行うのが一般的である。しかし、低負荷運転時には排気温度が低くなるので、十分な給気圧が得られず、掃気が十分に行えない場合がある。この結果、低負荷運転時において自着火燃焼が可能な運転条件の範囲が狭く限定されてしまうという問題があった。
【0007】
本発明は、上述した従来の課題を解決するためになされたものであり、2サイクル運転が可能な頭上弁式エンジンにおいて、自着火燃焼が可能な運転条件の範囲を従来よりも広げることのできる技術を提供することを目的とする。
【0008】
【課題を解決するための手段およびその作用・効果】
上記目的の少なくとも一部を達成するために、本発明のエンジンは、2サイクル自着火運転が可能なエンジンであって、
排気のエネルギを利用して給気圧力を高めるための過給器を備えており、
前記過給器よりも上流側の排気通路に、酸化触媒を有する触媒反応部が設けられていることを特徴とする。
【0009】
このエンジンによれば、排気中に含まれる一酸化炭素や未燃の炭化水素の酸化・燃焼を酸化触媒によって促進することができるので、これによって排気温度が上昇する。この結果、過給器による過給効率を高めて給気圧力を上昇させることができ、低負荷運転時においても掃気を十分に行うことが可能である。従って、自着火燃焼が可能な運転条件の範囲を従来よりも広げることができる。
【0010】
なお、前記触媒反応部は、前記排気通路の内壁面に設けられた触媒層を含むことが好ましい。
【0011】
この構成によれば、触媒を設けることによる流路抵抗の低下を最小限に抑えられるので、排気エネルギの低下を抑制して過給器における過給効率をより高めることが可能である。
【0012】
なお、前記触媒層に凹凸を形成してもよい。
【0013】
この構成によれば、触媒層近傍における排気の流れに剥離を起こすことができ、触媒作用をより高めることが可能である。
【0014】
また、前記触媒層が設けられた排気通路に、前記触媒層を加熱するための加熱部を設けるようにしてもよい。
【0015】
この構成によれば、排気温度が低い低負荷運転時にも、触媒層を加熱して触媒作用をより高めることが可能である。
【0016】
また、前記触媒反応部の位置またはその上流側に、前記排気通路内を通過する排気の流れに旋回を与えるための旋回付与構造を設けるようにしてもよい。
【0017】
この構成によれば、旋回流によって触媒の効果をより高めることが可能である。特に、排気通路の内壁面に触媒層が設けられている場合には、比較的重い未燃の炭化水素や一酸化炭素が遠心力によって排気通路の内壁面近くに移動するので、それらの酸化・燃焼をより促進することが可能である。また、最も重い一酸化炭素は、炭化水素よりさらに低い温度で触媒と反応するため、その反応熱により触媒温度を高め、炭化水素も浄化することができる。
【0018】
前記旋回付与構造は、前記排気通路内に設けられた旋回フィンを有するようにしてもよい。
【0019】
この構成によれば、比較的簡単な構造で排気の流れに旋回を付与することができる。
【0020】
また、前記旋回フィンは、燃焼室の排気ポートとは別部材で構成されて、前記排気ポートに挿入される構成を有していてもよい。
【0021】
この構成によれば、排気ポートを形成する部材(通常はシリンダヘッド)の構造を複雑化することなく、比較的簡単な構成で旋回付与構造を得ることができる。
【0022】
また、前記旋回フィンは、前記旋回フィンを包む略中空円筒形状の筒状部に固定されており、
前記筒状部は、前記排気ポートの位置に挿入されたときに、前記排気ポートの内面と前記筒状部の外面との間に隙間ができるように構成されていてもよい。
【0023】
この構成によれば、排気ポートの内面と筒状部の外面との間の隙間が断熱層として機能するので、排気ポート壁面からの排気の冷却を抑制することができる。
この結果、排気エネルギを高めて過給器における過給効率を向上させることが可能である。
【0024】
前記旋回付与構造は、排気弁の傘部に設けられた旋回フィンを有するようにしてもよい。
【0025】
この構成によれば、比較的簡単な構成で排気の流れに旋回を付与することが可能である。
【0026】
また、前記旋回フィンの表面に酸化触媒が担持されているようにしてもよい。
【0027】
こうすれば、より多くの触媒を利用することができる。
【0028】
また、前記旋回付与構造の下流側から前記過給器までの排気通路が略円形で、流路断面積がほぼ一定に設定されていることが好ましい。
【0029】
この構成によれば、過給器までの排気経路における流路抵抗を少なく抑えることができるので、排気エネルギの低下を抑制できる。この結果、過給器における過給効率をより高めることが可能である。
【0030】
なお、本発明は、種々の態様で実現することが可能であり、例えば、エンジンや、エンジンの排気装置等の態様で実現することができる。
【0031】
【発明の実施の形態】
A.第1実施例:
次に、本発明の実施の形態を実施例に基づいて説明する。図1は、本発明の第1実施例としてのガソリンエンジン100の構成を概念的に示した説明図である。図1には、ガソリンエンジン100の燃焼室の中心で断面を取ったときの燃焼室の構造が表示されている。
【0032】
このガソリンエンジン100の燃焼室は、シリンダブロック140内に設けられた中空円筒形のシリンダ142と、シリンダ142内を上下に摺動するピストン144と、シリンダブロック140の上部に設けられたシリンダヘッド130によって形成されている。なお、シリンダブロック140とシリンダヘッド130の両方で構成される筒状体を、広義の「シリンダ」と呼ぶ。
【0033】
シリンダヘッド130には、吸入空気が流入する給気ポートの開口部を開閉する給気弁132と、排気ガスが流出する排気ポートの開口部を開閉する排気弁134と、点火プラグ136と、燃焼室内に燃料噴霧を噴射する燃料噴射弁14とが設けられている。給気弁132および排気弁134は、それぞれ電動アクチュエータ162,164で駆動されている。電動アクチュエータ162,164は、任意のタイミングでそれぞれの給気弁132および排気弁134を開閉することが可能である。なお、電動アクチュエータの代わりに、油圧アクチュエータやカム機構によって給気弁132および排気弁134を駆動しても良い。
【0034】
給気ポートには吸入空気を導く給気通路12が接続され、排気ポートには排気ガスが通過する排気通路16が接続されている。排気通路16の下流には、排気ガスに含まれる大気汚染物質を浄化するための触媒26と、過給器50のタービン52とが設けられている。排気通路16内を通過する排気ガスはタービン52を回転させた後、大気に放出される。また、給気通路12には、過給器50のコンプレッサ54が設けられている。コンプレッサ54は、シャフト56を介してタービン52に接続されており、排気ガスによってタービン52が回転するとコンプレッサ54も回転する。その結果、コンプレッサ54はエアクリーナ20から吸い込んだ空気を加圧した後、給気ポートに向かって圧送する。
【0035】
排気ポートの中には、排気の流れに旋回を与えるための旋回付与部材200(「旋回付与構造」とも呼ぶ)が設けられている。旋回付与部材200の詳細については後述する。
【0036】
コンプレッサ54で加圧すると空気温度が上昇するので、吸入空気を冷却するために、コンプレッサ54の下流側にはインタークーラ62が設けられている。
また、給気通路12内にはサージタンク60や、スロットル弁22も設けられている。サージタンク60は、燃焼室が空気を吸い込んだときに生じる圧力波を緩和させる作用を有しており、またスロットル弁22は電動アクチュエータ24によって適切な開度に設定されて、吸入空気量を調整する機能を有している。
【0037】
ピストン144は、コネクティングロッド146を介してクランクシャフト148に接続されており、クランクシャフト148には、クランク角度を検出するクランク角センサ32が取り付けられている。
【0038】
このガソリンエンジン100の動作は、エンジン制御用ユニット(以下、ECU)30によって制御されている。ECU30は、エンジン回転速度Ne やアクセル開度θacを検出し、これらに基づいてスロットル弁22の開度の制御や、点火プラグ136の点火タイミング制御、燃料噴射弁14の制御を実行する。エンジン回転速度Ne はクランク角センサ32によって検出され、アクセル開度θacはアクセルペダルに内蔵されたアクセル開度センサ34によって検出される。
【0039】
図2は、第1実施例のエンジン100の運転モードを示すマップである。このマップに示されているように、第1実施例のエンジン100は、2サイクル運転と4サイクル運転とを切り換えて実行することが可能である。図2の横軸はエンジンの回転数、縦軸は負荷(トルク)である。エンジンの回転数が小さいときには2サイクル運転が実行され、回転数が大きいときには4サイクル運転が実行される。2サイクル運転領域は、低負荷および高負荷時の火花点火領域と、中負荷時の自着火領域に区分されている。自着火領域は、火花点火を行わずに自着火によって燃焼を起こさせる運転領域である。なお、4サイクル運転時でも自着火燃焼を行うことが可能である。
【0040】
このように2サイクル運転と4サイクル運転を使い分けるのは、以下のような理由による。一般に、2サイクル運転はクランクシャフトの1回転に1度ずつ爆発が起こるので、1回の燃料噴射量が同じ条件では、4サイクル運転の約2倍のトルクが得られる。従って、同じトルクを出力する場合には、2サイクル運転の方が4サイクル運転よりも1回の燃料噴射量が少なくて済み、よりリーンな条件(空気過剰率がより大きな条件)で運転が可能である。ガソリンエンジンにおいてよりリーンな条件で運転を行うことによって、燃費が向上し、また、排気ガス中の汚染物質濃度を低下させることが可能である。さらに、自着火運転を行えば、燃費の向上と排気ガス中の汚染物質濃度が低下するという効果がさらに高まることが知られている。但し、2サイクル運転ではいわゆる掃気(給気によって排気を押し出す動作)が行われるが、高回転では掃気を十分に行えない場合がある。そこで、高回転の運転条件では、4サイクル運転の方が適している。
【0041】
図3は、2サイクル運転の自着火燃焼の様子を示す説明図である。図3(a)〜(c)には、2サイクル運転の膨張・排気・前期掃気行程(下降行程)が示されており、図3(d)〜(f)には後期掃気・吸気・圧縮行程(上昇行程)が示されている。図4は、2サイクル運転時の給気弁(IN弁)と排気弁(EX弁)の開閉期間を模式的に示している。
【0042】
図3(a)は、燃焼室内の混合気が自着火によって燃焼を開始した状態を示している。混合気が燃焼すると、燃焼室内には高圧の燃焼ガスが発生してピストン144を押し下げる。ピストン144がある程度まで降下すると、適切なタイミングで排気弁134が開かれる(図3(b))。図4の例では、排気弁134は、ピストンの下死点(BDC)前、約70°のタイミングで開かれている。
【0043】
排気弁から燃焼ガスがある程度流出したタイミングで給気弁132が開くと、これに伴って給気ポートから空気が流入する(図3(c))。給気通路12内の空気は過給器50によって所定圧力に加圧されているので、給気弁132から流入する新気によって、燃焼室内の燃焼ガスを掃気することができる。図4の例では、給気弁132は、ピストンの下死点(BDC)前、約60°のタイミングで開いている。
【0044】
掃気期間であってピストン144が下死点近傍にあるときに、燃料噴射弁14が燃焼室内に燃料噴霧を噴射する(図3(d),図4)。下死点の後、まもなく排気弁134が閉じられるので、下死点近傍で燃料噴霧を噴射すれば、噴射した燃料噴霧が排気弁134から排出されることがなく、また、燃料と新気とを十分に混合させることができる。
【0045】
燃料を噴射後、所定のタイミングで排気弁134を閉じた後は、図3(e)に示すように、給気弁132から加圧された空気が燃焼室内に流入する。図4の例では、排気弁134を閉じるタイミングは、ピストンの下死点後、約50°に設定されている。掃気期間に噴射された燃料噴霧は、吸入空気の流れによって燃焼室内に分散され、吸入空気と混合する。
【0046】
給気弁132が閉じた以降は、ピストン144の上昇とともに燃焼室内の混合気が圧縮される。給気弁132が開いている間は、ピストンが上昇しても燃焼室内の混合気を圧縮することはできない。従って、2サイクル運転においては、給気弁132を閉じるタイミングによって混合気の実質的な圧縮比が決定される。
図4の例では、給気弁132を閉じるタイミングは、ピストンの下死点後、約60°に設定されている。
【0047】
給気弁132を閉じた後、ピストン144を上昇していくと、図3(f)に示すように、燃焼室内で混合気が圧縮され、ピストン144の上死点付近で自着火する。その結果、燃焼室内の形成された混合気を速やかに燃焼させることができる。
【0048】
このように、2サイクル自着火運転では、空気過剰率の大きいリーンな混合気を圧縮自着火させるので、燃料消費量を低減でき、また、大気汚染物質の排出量も大幅に低減することができる。なお、高負荷時には燃料噴射量が増えて空気過剰率が小さくなるので、圧縮時にノッキングが発生しやすくなる傾向にある。そこで、高負荷時には、圧縮比を若干低く設定するとともに、点火プラグで点火することによって混合気を燃焼させることが好ましい。一方、極く低負荷時には、燃料噴射量が少ないので、自着火が不安定になる場合がある。そこで、極く低負荷時にも、点火プラグで点火することによって混合気を燃焼させるようにしてもよい。
【0049】
図5(A)は、第1実施例の排気ポート70近傍の構造を示す要部断面図である。排気ポート70の中には、排気の流れに旋回を付与するための旋回付与部材200が挿入されている。旋回付与部材200は、排気ポート70を構成するシリンダヘッド130や、外部の排気管16(排気マニフォールド)とは別部材として作成されている。図5(C)は旋回付与部材200の断面を示しており、図5(B)はその左側面図、図5(D)は右側面図である。
【0050】
旋回付与部材200は、旋回フィン210と、その周囲を覆う略中空円筒状の筒状部220とを有している。筒状部220の一端にはフランジ部222(リング状部材)が設けられている。旋回フィン210は、一枚の板状の金属片の両端を持って90°ひねったときに得られる形状を有している。換言すれば、旋回フィン210は、らせん状に捻りを施した形状を有している。図5の例では、旋回フィン210は、旋回付与部材200の入口では上下方向を向いており(図5(B))、出口では左右方向を向いている(図5(D))。この旋回フィン210は、例えば溶接によって筒状部220に固定されている。このような旋回付与部材200は、ステンレス鋼のような金属で作成することができる。排気がこの旋回付与部材200の中を通過すると、旋回フィン210によって排気の流れに旋回が付与される。
【0051】
排気ポート70の出口近傍には、フランジ部222を有する筒状部220を収納するための凹部72が形成されている。フランジ部222は、排気ポート70の出口に設けられたフランジ部用凹部と、外部の排気管16のフランジ(排気マニフォールドの取り付け部)とに挟まれて固定され、これによって旋回付与部材200が排気ポート70内に位置決めされる。筒状部220の内面は、排気ポート70の他の部分の内面や、排気管16の内面の形状にほぼ一致する円筒面を構成している。また、排気ポート70の凹部72の内面と、筒状部220の外面との間には、ギャップ(隙間)が設けられている。ここにギャップを設ける意義については後述する。
【0052】
排気ポート70の下流側の排気管16の内面には、酸化触媒を担持した触媒層16aが設けられている。この触媒層16aは、排気中に含まれているHC(未燃炭化水素)やCO(一酸化炭素)の酸化・燃焼を促進するためのものである。
エンジン100が2サイクル運転を行うと、掃気に伴ってかなりの量のHCやCOが排気中に排出される。排気中のHCやCOは、完全燃焼によって生成される既燃ガス(二酸化炭素や水蒸気など)に比べて温度が低く、従って既燃ガスよりも密度が高い傾向にある。従って、旋回フィン210によって排気に旋回流が付与されると、比較的重いHC,COは遠心力によって排気通路の外周を流れ、一方、比較的軽い既燃ガスは排気通路の中央を流れる。これらのHC,COは、旋回フィン210の下流側の排気管内面に設けられた触媒層16aで酸化・燃焼し、これによって排気ガス温度(すなわち排気エネルギ)が上昇する。排気ガス温度が上昇すると過給器50による過給効率が向上して給気圧が上昇するので、低負荷でも十分な掃気を行うことが可能となる。特に、本実施例では、触媒層16aを排気通路16の内面に設けているので、ハニカムやペレット形状の触媒を使用する場合に比べて流路抵抗を低く抑えることができる。従って、触媒層16aを設けることによって排気エネルギを逆に低下させることが無いという利点がある。
【0053】
また、排気中のHC,COは、排気管16の出口付近に設けられている通常の触媒26だけでなく、排気ポート70のすぐ下流側に設けられている触媒層16aによっても酸化・燃焼が促進されるので、排気ガス中のHC,COを低減できるという利点がある。なお、一酸化炭素は炭化水素に比べて重いので、遠心力によって炭化水素よりも触媒層16aに近づき易く、ここで比較的早く酸化・燃焼する。一酸化炭素は、炭化水素よりさらに低い温度で触媒と反応するため、その反応熱により触媒温度が高くなり、炭化水素も浄化することができる。
【0054】
なお、図3で説明した予混合自着火燃焼方式を利用した2サイクル自着火運転では、通常の4サイクル火花点火運転よりも多くのHCやCOが排気中に排出される傾向にある。この理由は、予混合燃焼方式による自着火運転では実質的な圧縮比が高く設定されるので、燃焼時において、いわゆるクエンチングエリア(消炎層)にかなり多量の未燃のHC,COが含まれてしまうという傾向があり、掃気の際にそれらが排気ポート70に排出されるからである。本実施例では、自着火運転の際にかなり多量のHC,COが排出された場合にも、排気ポート70のすぐ下流側の触媒層16aによってこれらの酸化・燃焼を促進することができるので、自着火運転時の過給効率を高め、また、HC,COの外部への排出を低減できるという効果が特に顕著である。また、自着火運転時に過給効率が高まると、十分な掃気を達成できるので、自着火運転可能な運転条件の範囲をより低負荷まで拡大することが可能である。
【0055】
前述したように、本実施例の旋回付与部材200は、筒状部220の外面と排気ポート凹部72の内面との間にギャップが形成されるように構成されている(図5(A))。この理由は、このギャップを断熱層として機能させることによって、排気からシリンダヘッド130への熱移動を低下させるためである。旋回フィン210によって排気に旋回流が付与されると、排気通路の外周におけるガス流速が高まり、壁面における熱伝達率が大きくなる。仮に筒状部220の外面と排気ポート凹部72の内面とをぴったりと密着させると、排気ガスの熱が高い熱伝達率で筒状部220に伝わり、さらに排気ポート70の壁面を介して外部に熱が伝わり易くなる。一方、本実施例では、このような熱の移動が筒状部220の外面と排気ポート凹部72の内面との間のギャップによって妨げられるので、排気エネルギがここで低下することを抑制できる。
【0056】
また、本実施例の旋回付与部材200は、シリンダヘッド130や排気管16とは別部材として構成されているので、筒状部220と排気ポート70の内面との間にギャップがある方が、組み付けが容易であり、従って旋回付与部材200の製作も容易であるという利点もある。さらに、このようなギャップを設けておくことにより、シリンダヘッド130と旋回付与部材200の材質が互いに異なるときにも、それらの熱膨張差による寸法精度への影響も緩和できる。
【0057】
なお、触媒層16aの表面には、微妙な凹凸を設けることが好ましい。こうすることによって、触媒層16a近傍の流れに微細な剥離を発生させることができる。この結果、触媒の表面近傍を流れる排気ガスの実質的な流速を低下させて、排気ガスが触媒と接触する時間を十分長く確保することが可能である。これによって、HC,COの浄化と排気ガスの昇温との両方の効果をさらに向上させることができる。
【0058】
また、触媒層16aが設けられている排気通路の位置(例えばその外周)に、触媒層16aを加熱するためのヒータなどの加熱部(図示せず)を設けるようにしてもよい。ヒータを設けるようにすれば、排気温度が低い低負荷運転時に触媒層を加熱することによって触媒作用を高め、HCやCOの酸化・燃焼をより促進することが可能である。
【0059】
また、過給器50の効率を向上させて給気圧を高めるためには、排気通路16(図1)が、燃焼室から過給器50まで断面形状が略円形であることが好ましく、特に、その流路断面積がほぼ一定であることが好ましい。この理由は、このように排気通路16を構成すれば、排気通路16内における排気エネルギの低下を抑制できるからである。なお、「略円形」とは、内面が曲面で構成されており、その内径の最大値と最小値との差が±20%以下であることを意味する。また、「断面積がほぼ一定」とは、断面積の最大値と最小値との差が±20%以下であることを意味する。
【0060】
B.第2実施例:
図6は、第2実施例における排気ポート70近傍の構造を示す要部断面図である。第2実施例の旋回付与部材300は、リング状のフランジ部330を有しており、フランジ部330の上流側と下流側に旋回フィン310,320がそれぞれ伸びている。上流側の旋回フィン310は、排気の流れの方向に向かって右回り(時計回り)に90°捻られており、下流側の旋回フィン320も、同様に右回りに90°捻られている。旋回フィン310,320は、1枚の金属片の両端を180°捻ることによって作成することができるが、別々に作成しても良い。
旋回フィン310,320は、例えば溶接によってフランジ部330に固定されている。フランジ部330は、シリンダヘッド130と排気管16との間に挟まれて位置決めされる。
【0061】
第2実施例では、排気管16の内面の触媒層16aに加えて、排気ポート70の内面にも酸化触媒を担持した触媒層70aが設けられている。従って、排気ガス中のHC,COは、これらの触媒層70a,16aによって酸化・燃焼が促進される。
【0062】
第2実施例の旋回付与部材300は、第1実施例の筒状部220(図5(C))を有していないので、旋回付与部材を構成する部品点数が少なくなり、また、軽量化することが可能である。さらに、排気ポート70とその下流側の排気管16の内面に触媒層70a,16aが設けられているので、第1実施例よりも多くの触媒で排気の酸化・燃焼を促進ことができる。この結果、HC,COの浄化と、排気ガス温度の上昇との両方をより効率よく行うことが可能である。
【0063】
第2実施例では、旋回付与部材300が設けられている範囲に触媒層70a,16aも設けられているのに対して、前述した第1実施例では、旋回付与部材200の下流側にのみ触媒層16aが設けられていた。これから理解できるように、触媒層は、旋回付与部材が設けられている位置またはその下流側に設けられていれば良い。但し、この触媒層は、過給器50のタービン52(図1)に到達する前に排気ガス温度を上昇させるためのものなので、過給器50の上流側に設けられている。これに対して、外部に排出される排気ガスを浄化するための触媒26(図1)は、過給器50の下流側に設けられているのが普通である。
【0064】
以上のように、第2実施例においても、旋回付与部材と触媒層とを用いて排気ガス中のHC,COの酸化・燃焼を促進させることによって、過給効率を向上させることができ、低負荷側に自着火運転領域を広げることが可能である。
【0065】
C.第3実施例:
図7は、第3実施例における排気ポート70近傍の構造を示す要部断面図である。第3実施例では、独立した構成を有する旋回付与部材は用いられておらず、この代わりに、排気弁134の傘部135の斜面に複数の旋回フィン135aが設けられている。これらの旋回フィン135aは、排気が傘部135の周辺を通過する際に、排気に旋回流を付与する機能を有している。なお、排気ポート70の内面と排気管16の内面には、触媒層70a,16aがそれぞれ設けられている。
【0066】
このように排気弁134の傘部135に旋回フィン135aを設けることによっても、第1実施例や第2実施例と同様な効果を達成することができる。また、第3実施例では、旋回付与部材(旋回フィン)を、シリンダヘッド130や排気管16(排気マニフォールド)と別体に構成する必要が無いので、エンジン全体の部品点数を低減することができ、軽量化できるという利点がある。
【0067】
D.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
【0068】
D1.変形例1:
上記実施例では、触媒層を排気通路の内面(内壁面)のみに設けていたが、例えばフィン状の担体に触媒を担持させたものを排気通路内に設置しても良い。また、旋回フィンに触媒を担持させても良い。すなわち、本発明では、過給器よりも上流側の排気通路に酸化触媒を有する触媒反応部を設けるようにすることが好ましい。但し、排気通路の内壁面に触媒層を設けるようにすれば、流路抵抗を少なく抑えて排気エネルギの低下を抑制することができるので、過給効率を向上させて給気圧をより上昇させることができるという利点がある。
【0069】
D2.変形例2:
上記各実施例では、排気ポートの位置に旋回フィンが設けられていたが、旋回フィンを設けなくても良い。この場合にも、過給器よりも上流側の排気通路に触媒反応部を設けることによって、排気中のHC,COの酸化・燃焼を促進させることができる。但し、触媒反応部の位置またはその上流側に、排気通路内を通過する排気の流れに旋回を与えるための旋回付与構造を設けるようにすれば、排気に付与された旋回流によってHC,COの酸化・燃焼をより促進することができるという利点がある。
【0070】
D3.変形例3:
上記実施例では、2サイクル運転と4サイクル運転とを切り換えることが可能なエンジンについて説明したが、本発明は、2サイクル運転のみを行うエンジンにも適用可能である。
【図面の簡単な説明】
【図1】本発明の第1実施例としてのガソリンエンジン100の構成を概念的に示した説明図。
【図2】第1実施例のエンジン100の運転モードを示すマップ。
【図3】2サイクル運転の様子を示す説明図。
【図4】2サイクル運転時の給気弁と排気弁を開閉期間を模式的に示す説明図。
【図5】第1実施例における排気ポート70近傍の構造を示す図。
【図6】第2実施例における排気ポート70近傍の構造を示す要部断面図。
【図7】第3実施例における排気ポート70近傍の構造を示す要部断面図。
【符号の説明】
12…給気通路
14…燃料噴射弁
16…排気管(排気通路)
16a…触媒層
20…エアクリーナ
22…スロットル弁
24…電動アクチュエータ
26…触媒
30…ECU
32…クランク角センサ
34…アクセル開度センサ
50…過給器
52…タービン
54…コンプレッサ
56…シャフト
60…サージタンク
62…インタークーラ
70…排気ポート
70a…触媒層
72…凹部
100…ガソリンエンジン
130…シリンダヘッド
132…給気弁
134…排気弁
135…傘部
135a…旋回フィン
136…点火プラグ
140…シリンダブロック
142…シリンダ
144…ピストン
146…コネクティングロッド
148…クランクシャフト
162,164…電動アクチュエータ
200…旋回付与部材
210…旋回フィン
220…筒状部
222…フランジ部
300…旋回付与部材
310,320…旋回フィン
330…フランジ部

Claims (11)

  1. 2サイクル自着火運転が可能なエンジンであって、
    排気のエネルギを利用して給気圧力を高めるための過給器を備えており、
    前記過給器よりも上流側の排気通路に、酸化触媒を有する触媒反応部が設けられていることを特徴とするエンジン。
  2. 請求項1記載のエンジンであって、
    前記触媒反応部は、前記排気通路の内壁面に設けられた触媒層を含む、エンジン。
  3. 請求項2記載のエンジンであって、
    前記触媒層に凹凸が形成されている、エンジン。
  4. 請求項2または3記載のエンジンであって、
    前記触媒層が設けられた排気通路に、前記触媒層を加熱するための加熱部が設けられている、エンジン。
  5. 請求項1ないし4のいずれかに記載のエンジンであって、
    前記触媒反応部の位置またはその上流側に、前記排気通路内を通過する排気の流れに旋回を与えるための旋回付与構造が設けられている、エンジン。
  6. 請求項5記載のエンジンであって、
    前記旋回付与構造は、前記排気通路内に設けられた旋回フィンを有する、エンジン。
  7. 請求項6記載のエンジンであって、
    前記旋回フィンは、燃焼室の排気ポートとは別部材で構成されており、前記排気ポートに挿入されている、エンジン。
  8. 請求項7記載のエンジンであって、
    前記旋回フィンは、前記旋回フィンを包む略中空円筒形状の筒状部に固定されており、
    前記筒状部は、前記排気ポートの位置に挿入されたときに、前記排気ポートの内面と前記筒状部の外面との間に隙間ができるように構成されている、エンジン。
  9. 請求項5記載のエンジンであって、
    前記旋回付与構造は、排気弁の傘部に設けられた旋回フィンを有する、エンジン。
  10. 請求項6ないし9のいずれかに記載のエンジンであって、
    前記旋回フィンの表面に酸化触媒が担持されている、エンジン。
  11. 請求項5ないし9のいずれかに記載のエンジンであって、前記旋回付与構造の下流側から前記過給器までの排気通路が略円形で、流路断面積がほぼ一定に設定されている、エンジン。
JP2002357800A 2002-12-10 2002-12-10 2サイクル運転可能な頭上弁式エンジン Withdrawn JP2004190540A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357800A JP2004190540A (ja) 2002-12-10 2002-12-10 2サイクル運転可能な頭上弁式エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357800A JP2004190540A (ja) 2002-12-10 2002-12-10 2サイクル運転可能な頭上弁式エンジン

Publications (1)

Publication Number Publication Date
JP2004190540A true JP2004190540A (ja) 2004-07-08

Family

ID=32757701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357800A Withdrawn JP2004190540A (ja) 2002-12-10 2002-12-10 2サイクル運転可能な頭上弁式エンジン

Country Status (1)

Country Link
JP (1) JP2004190540A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270703A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp 内燃機関の排気浄化装置
DE102014220569A1 (de) * 2014-10-10 2016-04-14 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit zweiflutiger Turbine und gruppierten Zylindern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270703A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp 内燃機関の排気浄化装置
JP4650325B2 (ja) * 2006-03-31 2011-03-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102014220569A1 (de) * 2014-10-10 2016-04-14 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit zweiflutiger Turbine und gruppierten Zylindern

Similar Documents

Publication Publication Date Title
US11008995B2 (en) Dynamic charge compression ignition engine with multiple aftertreatment systems
US8051830B2 (en) Two-stroke uniflow turbo-compound internal combustion engine
JP3991789B2 (ja) 混合気を圧縮自着火させる内燃機関
US8561581B2 (en) Two-stroke uniflow turbo-compound internal combustion engine
US7654245B2 (en) Method of operating a spark ignition internal combustion engine
US9482166B2 (en) Method of controlling a direct-injection gaseous-fuelled internal combustion engine system with a selective catalytic reduction converter
US8550042B2 (en) Full expansion internal combustion engine
US20120330534A1 (en) Enhanced efficiency and pollutant control by multi-variable engine operation control
JP4126971B2 (ja) 混合気を圧縮自着火させて運転する内燃機関、および内燃機関の制御方法
US20140182549A1 (en) Piston shrouding of sleeve valve-controlled ports
US20130312704A1 (en) Two-stroke uniflow turbo-compound internal combustion engine
WO2017134822A1 (ja) 内燃機関の制御方法及び制御装置
JP4093074B2 (ja) 混合気を圧縮自着火させる自着火運転が可能な内燃機関
WO2012048314A1 (en) Sound attenuation device and method for a combustion engine
US8973539B2 (en) Full expansion internal combustion engine
US20040025829A1 (en) Method and computer programme for operating an internal combustion engine and an internal combustion engine
JP6634774B2 (ja) 天然ガスエンジン及び天然ガスエンジンの遮熱方法
JP3934934B2 (ja) 理論空燃比で成層燃焼するエンジン及び該エンジンの成層燃焼方法
JP2004190540A (ja) 2サイクル運転可能な頭上弁式エンジン
CN108779701A (zh) 内燃发动机
JP4779386B2 (ja) ディーゼルエンジン
JP6631575B2 (ja) 予混合圧縮着火式エンジンの制御装置
JP2004270566A (ja) 予混合圧縮自着火式内燃機関
JP2005163686A (ja) 混合気を圧縮自着火させる自着火運転が可能な内燃機関
JP3931752B2 (ja) 混合気を圧縮自着火させる内燃機関、および内燃機関の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061219