JP2004190478A - Tunnel reinforcing material separation detecting method and device - Google Patents

Tunnel reinforcing material separation detecting method and device Download PDF

Info

Publication number
JP2004190478A
JP2004190478A JP2004003059A JP2004003059A JP2004190478A JP 2004190478 A JP2004190478 A JP 2004190478A JP 2004003059 A JP2004003059 A JP 2004003059A JP 2004003059 A JP2004003059 A JP 2004003059A JP 2004190478 A JP2004190478 A JP 2004190478A
Authority
JP
Japan
Prior art keywords
strain
optical fiber
reinforcing material
tunnel
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004003059A
Other languages
Japanese (ja)
Other versions
JP3759144B2 (en
Inventor
Toshihiro Asakura
俊弘 朝倉
Tsuyotoshi Yamaura
剛俊 山浦
Hironori Kii
博徳 紀
Yoshiaki Inoue
好章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Mitsubishi Heavy Industries Ltd
Original Assignee
Railway Technical Research Institute
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Mitsubishi Heavy Industries Ltd filed Critical Railway Technical Research Institute
Priority to JP2004003059A priority Critical patent/JP3759144B2/en
Publication of JP2004190478A publication Critical patent/JP2004190478A/en
Application granted granted Critical
Publication of JP3759144B2 publication Critical patent/JP3759144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tunnel reinforcing material separation detecting method and a device for accurately measuring separation of a reinforcing material in a reinforcing place in a tunnel at a remote point. <P>SOLUTION: When reinforcing an inner wall surface of a tunnel lining 3 by a reinforcing material 31, after confirming a position of a crack 4, an optical fiber 2 is arranged in the direction orthogonal to the crack 4 on a surface of the reinforcing material 31 after finishing reinforcement, and two points are adhered and fixed by a fixing member 5. A strain measuring instrument 6 for measuring strain of the optical fiber 2 in a separation monitoring position and an arithmetic processing unit 7 are connected to a starting end part of the optical fiber 2. The strain measuring instrument 6 inputs the strain to the arithmetic processing unit 7 by measuring the strain of the optical fiber 2 in the separation monitoring position. The arithmetic processing unit 7 stores the strain measured by the strain measuring instrument 6, and compares strain measured last time with strain measured this time always or with every specific time, and detects separation of the reinforcing material 31 by detecting a state of changing to compression strain from tensile strain. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、トンネルの内壁面を補強している補強材の剥離を検知するトンネル補強材剥離検知方法及び装置に関する。   The present invention relates to a method and an apparatus for detecting peeling of a tunnel reinforcing material for detecting peeling of a reinforcing material reinforcing an inner wall surface of a tunnel.

従来、経年変化しているトンネルの検査については、全般的に目視検査と破壊検査に大きく依存している。道路トンネルのひび割れ検査は、作業者がトンネル内を徒歩または高所作業車にて移動し、目視観察による調査を中心に行なっている。また、覆工背面の空洞探査、覆工圧の測定は、コアボーリングを行ない、内視鏡などを用いて調査している。   2. Description of the Related Art Conventionally, inspection of an aged tunnel largely depends on visual inspection and destructive inspection in general. Inspections for cracks in road tunnels are conducted mainly by visual inspection, with workers walking in the tunnel or using aerial vehicles. In addition, core borings are used for exploration of cavities on the back of the lining and measurement of the lining pressure.

また鉄道トンネルでは、トンネルの新旧、構造種別に関わりなく、2年を越えない期間に1回の周期で検査、所謂全般検査を実施している。この全般検査は、主に徒歩による目視で行ない、覆工表面のひび割れの発生、レンガコンクリートブロックなど覆工材料の目地切れ及び漏水など、変状の発生及び進行の箇所を探し出すことを目的として行なわれている。   In addition, in the case of railway tunnels, inspections, so-called general inspections, are performed once every two years or less, irrespective of the type of the tunnels, new or old, and structural type. This general inspection is mainly conducted visually on foot, and is conducted with the purpose of finding cracks on the lining surface, breaks in the lining material such as brick concrete blocks, leaks of water, etc. Have been.

上記全般検査で変状などの異常が発見された箇所については、変状の原因を究明し適切な処置をとる必要から、更に詳細な検査、所謂個別作業を実施するという2段階の検査方式がとられている。   For the places where abnormalities such as abnormalities are found in the above general inspection, it is necessary to investigate the cause of the abnormalities and take appropriate measures. Has been taken.

上記のようにしてトンネルのひび割れ検査を行なった結果、補強が必要な箇所には、例えば繊維シートなどの補強材を接着剤にて固定するなどの補強工事を行なう。この補強工事を行なった箇所についても、繊維シートの剥離を上記ひび割れ検査の場合と同様に目視により検査している。   As a result of the crack inspection of the tunnel as described above, a reinforcing work such as fixing a reinforcing material such as a fiber sheet with an adhesive is performed at a place where the reinforcing is necessary. At the places where this reinforcement work was performed, the peeling of the fiber sheet was visually inspected similarly to the case of the crack inspection.

一方、最近では、補強材として電気的に導通性を有する炭素繊維シートを使用し、炭素繊維糸状の電気抵抗の変化を測定して構造物の疲労、劣化を検出するようにした構造物のモニタリング方法が考えられている(例えば、特許文献1参照。)。これは構造物の疲労、劣化状態に応じて炭素繊維シートの単糸が破断して電気抵抗が変化することを利用したものである。
特開平10−253561号公報
On the other hand, recently, monitoring of a structure using a carbon fiber sheet having electrical conductivity as a reinforcing material, and measuring the change in the electric resistance of the carbon fiber thread to detect fatigue and deterioration of the structure. A method has been considered (for example, see Patent Document 1). This is based on the fact that the single yarn of the carbon fiber sheet breaks and the electrical resistance changes in accordance with the fatigue or deterioration state of the structure.
JP-A-10-253561

上述した従来の目視によるトンネルひび割れ検査方法では、ひび割れ検査を行なう場合、トンネル内が暗いため、トンネル壁面の変状を見逃す確率が高く、アーチ部などの高所の変状を把握し難く、また、得られる検査結果に個人誤差などがあり、客観性に乏しいと共に、調査に多大な時間と費用を要するという問題がある。   In the conventional visual inspection method for tunnel cracks described above, when performing a crack inspection, since the inside of the tunnel is dark, the probability of overlooking the deformation of the tunnel wall surface is high, and it is difficult to grasp the deformation of high places such as arches, In addition, there is a problem in that the obtained test results have individual errors and the like, and the objectivity is poor.

また、トンネルのひび割れを繊維シートで補強した場合においても、その補強箇所の異常を目視により検査しなければならず、ひび割れ検査の場合と同様の問題がある。   Further, even when a crack in a tunnel is reinforced with a fiber sheet, an abnormality in the reinforced portion must be visually inspected, which has the same problem as in the crack inspection.

また、補強材として電気的に導通性を有する炭素繊維シートを使用し、炭素繊維糸状の電気抵抗の変化を測定して構造物の疲労、劣化を検知するようにした構造物のモニタリング方法は、鉄道トンネルのように架線等の電気設備が設けられる場合には導電体である炭素繊維シートを使用することに問題がある。すなわち、壁面から炭素繊維シートが剥離した場合に、この剥離した炭素繊維シートによって電気設備に短絡事故が発生する可能性があるので、電気設備が設けられているトンネルには炭素繊維シートを使用することができない。   In addition, using a carbon fiber sheet having electrical conductivity as a reinforcing material, a structure monitoring method that detects fatigue, deterioration of the structure by measuring the change in the electrical resistance of the carbon fiber thread, When electric facilities such as overhead lines are provided as in a railway tunnel, there is a problem in using a carbon fiber sheet as a conductor. That is, when the carbon fiber sheet is peeled from the wall surface, a short circuit accident may occur in the electric equipment due to the peeled carbon fiber sheet. Therefore, the carbon fiber sheet is used for a tunnel provided with the electric equipment. I can't.

本発明は上記の課題を解決するためになされたもので、トンネル内の補強箇所における補強材の剥離を遠隔地点で正確に計測し得るトンネル補強材剥離検知方法及び装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method and an apparatus for detecting a tunnel reinforcing material peeling which can accurately measure the peeling of a reinforcing material at a reinforcing point in a tunnel at a remote point. I do.

第1の発明は、トンネル内の壁面を補強した補強材の表面に光ファイバを固定し、前記光ファイバの歪みと位置の関係を計測して補強材の剥離を検知するトンネル補強材剥離検知方法において、前記トンネル内面の補強材の表面に光ファイバを張力をかけながらひび割れの上に一方の固定端が位置するように固定すると共に、剥離監視位置における光ファイバの歪みを歪み計測器で計測し、前記剥離監視位置の歪みが引張り歪みから圧縮歪みに変化した状態を検出して補強材の剥離を検知することを特徴とする。   According to a first aspect of the present invention, there is provided a tunnel reinforcing member peeling detecting method for fixing an optical fiber to a surface of a reinforcing material which reinforced a wall surface in a tunnel, measuring a relationship between a distortion and a position of the optical fiber, and detecting peeling of the reinforcing material. At the same time, while applying tension to the surface of the reinforcing material on the inner surface of the tunnel while fixing so that one fixed end is located on the crack, the strain of the optical fiber at the peeling monitoring position is measured with a strain measuring instrument. And detecting a state in which the strain at the peel monitoring position has changed from a tensile strain to a compressive strain to detect the peeling of the reinforcing material.

第2の発明は、トンネル内の壁面を補強した補強材の表面に光ファイバを固定し、前記光ファイバの歪と位置の関係を計測して補強材の剥離を検知するトンネル補強材剥離検知装置において、前記トンネル内面の補強材の表面に光ファイバを張力をかけながらひび割れの上に一方の固定端が位置するように固定する固定手段と、剥離監視位置における光ファイバの歪みを計測する歪み計測器と、この歪み計測器により計測された歪みを記憶する記憶手段と、前記歪み計測器により今回計測された歪と前記記憶手段に記憶された前回計測時の歪みとを比較し、計測された歪が引張り歪みから圧縮歪みに変化した状態を検出して補強材の剥離を検知する手段とを具備したことを特徴とする。   According to a second aspect of the present invention, there is provided a tunnel reinforcing member peeling detection device for fixing an optical fiber to a surface of a reinforcing material which reinforces a wall surface in a tunnel, measuring a relation between a strain and a position of the optical fiber, and detecting peeling of the reinforcing material. A fixing means for fixing the optical fiber so that one fixed end is positioned on the crack while applying tension to the surface of the reinforcing material on the inner surface of the tunnel; and a strain measurement for measuring the strain of the optical fiber at the separation monitoring position. And the storage means for storing the strain measured by the strain measuring instrument, and the strain measured this time by the strain measuring instrument is compared with the strain at the previous measurement stored in the storing means, and the strain is measured. Means for detecting a state in which the strain has changed from tensile strain to compressive strain and detecting peeling of the reinforcing material.

第3の発明は、前記第2の発明において、固定手段により光ファイバを複数回折り返して固定することを特徴とする。   A third invention is characterized in that, in the second invention, the optical fiber is fixed by bending a plurality of times by the fixing means.

本発明によれば、トンネル覆工の内壁面を補強した補強材の剥離を検知する場合に、補強材の表面上にひび割れと直交する方向に光ファイバを配設してひび割れ上に一方の固定端が位置するように固定し、上記光ファイバの歪みが引張り歪みから圧縮歪みに変化する位置を検知するようにしたので、補強材の剥離を確実に検知することができる。   According to the present invention, when detecting the separation of the reinforcing material that has reinforced the inner wall surface of the tunnel lining, an optical fiber is disposed on the surface of the reinforcing material in a direction orthogonal to the crack, and one of the optical fibers is fixed on the crack. Since the end of the optical fiber is fixed so as to be located and the position where the strain of the optical fiber changes from the tensile strain to the compressive strain is detected, the separation of the reinforcing material can be reliably detected.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係るトンネルひび割れ検知装置の構成を示す図である。図1では、トンネル覆工のひび割れ部分の進行を検知するために、トンネル1の長手方向に沿って内壁に光ファイバ2を敷設している。光ファイバ2を敷設する際に、図2に示すようにトンネル覆工3のひび割れ4をまたぐように、かつ緩みがないように光ファイバ2を接着剤により壁面に固定する。この場合、光ファイバ2は、ひび割れ4をまたいだ両側において例えば固定部材5により壁面に接着固定すると共に、固定部分の間は緩みのない程度の張力をかける。上記光ファイバ2の固定間隔は、ひび割れ4の幅に極力近い方が良いが、光ファイバ2の距離分解能に応じて設定される。
(1st Embodiment)
FIG. 1 is a diagram showing a configuration of a tunnel crack detection device according to a first embodiment of the present invention. In FIG. 1, an optical fiber 2 is laid on the inner wall along the longitudinal direction of the tunnel 1 in order to detect the progress of a crack in the tunnel lining. When the optical fiber 2 is laid, the optical fiber 2 is fixed to the wall surface with an adhesive so as to straddle the crack 4 of the tunnel lining 3 and not loosen as shown in FIG. In this case, the optical fiber 2 is bonded and fixed to the wall surface by, for example, a fixing member 5 on both sides straddling the crack 4, and a tension is applied between the fixed portions so as not to loosen. The fixed interval of the optical fiber 2 is preferably as close as possible to the width of the crack 4, but is set according to the distance resolution of the optical fiber 2.

光ファイバ2の距離分解能が長い場合には、図3(a)、(b)に示すように折り返して固定することで固定間隔を短くする。図3(a)は、光ファイバ2を4回折り返して2.5巻(5本)のループ2aを形成した場合である。上記光ファイバ2の各折り返し点は、所定の長さを有する固定部材5を用いて接着剤により壁面に固定する。   When the distance resolution of the optical fiber 2 is long, the fixed interval is shortened by folding back and fixing as shown in FIGS. 3 (a) and 3 (b). FIG. 3A shows a case where the optical fiber 2 is turned four times to form a loop 2a of 2.5 turns (five). Each turning point of the optical fiber 2 is fixed to a wall surface with an adhesive using a fixing member 5 having a predetermined length.

また、図3(b)は、ひび割れ4の両側にそれぞれ2個の固定部材5を設け、この固定部材5に光ファイバ2を巻き付けて2.5巻(5本)のループ2aを形成した場合の例を示したものである。上記光ファイバ2は、固定部材5に巻き付ける所で接着剤により固定する。   FIG. 3B shows a case where two fixing members 5 are provided on both sides of the crack 4, and the optical fiber 2 is wound around the fixing members 5 to form 2.5 (five) loops 2 a. This is an example. The optical fiber 2 is fixed by an adhesive at a place where the optical fiber 2 is wound around the fixing member 5.

上記のように光ファイバ2を折り返して2.5巻(5本)のループ2aを形成した場合には、例えば光ファイバ2の距離分解能が2mであっても、ひび割れ4に対する光ファイバ2の固定間隔を1/5の40cmとすることができる。   When the optical fiber 2 is folded back to form a loop 2a of 2.5 turns (five) as described above, for example, even if the distance resolution of the optical fiber 2 is 2 m, the optical fiber 2 is fixed to the crack 4 The spacing can be 1/5, 40 cm.

また、ひび割れ4が複数ある場合は、次のひび割れ4との間の光ファイバ2に緩み、つまり、あそび部を設け、各ひび割れ4部分における光ファイバ2の張力が互いに影響しないようにしている。   When there are a plurality of cracks 4, the optical fiber 2 between the next crack 4 is loosened, that is, a play is provided so that the tension of the optical fiber 2 at each crack 4 does not affect each other.

そして、上記光ファイバ2の始端部には、例えば光ファイバ損失分布測定器(OTDR:Optical Time Domain Reflectometry)や歪み分布測定器(BOTDR:Brillouin Optical Time Domain Reflectometry)等の歪み計測器6が接続され、光ファイバ2の末端には終端処理用ループ(図示せず)が設けられる。上記歪み計測器6は、例えばトンネルの外部、すなわち遠隔地点において、光ファイバ2に接続される。また、上記歪み計測器6の計測結果は、演算処理装置7に入力される。この演算処理装置7は、歪み計測器6の計測値から上記ひび割れ4の幅を求めるためのもので、その詳細については後述する。   A distortion measuring instrument 6 such as an optical fiber loss distribution measuring instrument (OTDR: Optical Time Domain Reflectometry) or a strain distribution measuring instrument (BOTDR: Brillouin Optical Time Domain Reflectometry) is connected to the starting end of the optical fiber 2. At the end of the optical fiber 2, a termination loop (not shown) is provided. The strain measuring instrument 6 is connected to the optical fiber 2 outside the tunnel, for example, at a remote location. The measurement result of the distortion measuring device 6 is input to the arithmetic processing device 7. The arithmetic processing device 7 is for obtaining the width of the crack 4 from the measured value of the strain measuring device 6, and details thereof will be described later.

次に上記歪み計測器6として用いられる歪み分布測定器(BOTDR)について説明する。この歪み分布測定器(BOTDR)は、光ファイバの散乱光を分析することにより、光ファイバにかかる歪み量を計測するもので、後方ブリルアン散乱光の周波数シフト、すなわち入射光の光周波数からブリルアン散乱光スペクトルの中心周波数を引いた値が光ファイバに加わった引張り応力、すなわちそれと等価な引張り応力による相対伸びである光ファイバの伸び歪みと共に変化することに着目し、ブリルアン周波数シフトの変化量から、光ファイバ(あるいは光ケーブル)の歪み分布を測定している。   Next, a strain distribution measuring device (BOTDR) used as the strain measuring device 6 will be described. This strain distribution measuring device (BOTDR) measures the amount of strain applied to the optical fiber by analyzing the scattered light of the optical fiber. The frequency shift of the backward Brillouin scattered light, that is, the Brillouin scattering from the optical frequency of the incident light is measured. Focusing on the fact that the value obtained by subtracting the center frequency of the optical spectrum changes with the tensile stress applied to the optical fiber, that is, the elongation strain of the optical fiber, which is the relative elongation due to the equivalent tensile stress, and from the amount of change in the Brillouin frequency shift, The strain distribution of an optical fiber (or optical cable) is measured.

上記歪み分布測定器(BOTDR)は、光ファイバの片端からパルスを入射し、該光ファイバ内で生じるブリルアン散乱光及びレーリー散乱光の後方散乱光をコヒーレント検波方法により好感度に検知する。このとき、散乱光の光波と光ファイバ中の音波との相互作用により入射したパルス光の光周波数に対して上方及び下方にシフトしたブリルアン散乱光が検知されることを利用し、ブリルアン散乱光の周波数シフト分布から光ファイバの歪み分布を測定する。   The BOTDR receives a pulse from one end of the optical fiber and detects the Brillouin scattered light and the backscattered Rayleigh scattered light generated in the optical fiber with good sensitivity by a coherent detection method. At this time, utilizing the fact that the Brillouin scattered light shifted upward and downward with respect to the optical frequency of the incident pulse light by the interaction between the light wave of the scattered light and the sound wave in the optical fiber is detected, The strain distribution of the optical fiber is measured from the frequency shift distribution.

図4は、歪み分布測定器(BOTDR)10の基本構成を示す図である。光源11から発光した光周波数νのCW光は、光周波数シフタ12によりΔνの周波数シフトを受け、光周波数ν+Δνのパルス光として被測定光ファイバ13の片端から入射される。このパルス光の入射により光ファイバ13内で散乱光が発生する。この散乱光のうち、後方散乱光が光周波数νのCW光(ローカル光)と合波され、検波器14へ入射される。   FIG. 4 is a diagram showing a basic configuration of the distortion distribution measuring device (BOTDR) 10. The CW light of the optical frequency ν emitted from the light source 11 undergoes a frequency shift of Δν by the optical frequency shifter 12, and is incident from one end of the optical fiber 13 to be measured as pulse light of the optical frequency ν + Δν. Scattered light is generated in the optical fiber 13 by the incidence of the pulse light. Of the scattered light, the backscattered light is multiplexed with the CW light (local light) having the optical frequency ν, and is incident on the detector 14.

ブリルアン散乱光の周波数は、入射パルス光に対してブリルアン周波数シフトνB だけシフトするため、光周波数シフタ12の周波数シフト量ΔνをνB にすることにより、後方散乱光に含まれるブリルアン後方散乱光のみを検知することができる。 Since the frequency of the Brillouin scattered light is shifted by the Brillouin frequency shift ν B with respect to the incident pulse light, the frequency shift amount Δν of the optical frequency shifter 12 is set to ν B , so that the Brillouin back scattered light included in the back scattered light is Only can be detected.

上記光周波数シフタ12の周波数シフト量を変化さながら繰り返し測定を行なうことにより、光ファイバの長手方向の各位置におけるブリルアンスペクトル、すなわちブリルアン周波数シフトνB の分布を測定することができる。ブリルアン周波数シフトνB は、光ファイバに生じた歪みに比例して変化する。その関係を次式(1)に示す。 By repeatedly performing the measurement while changing the frequency shift amount of the optical frequency shifter 12, the Brillouin spectrum at each position in the longitudinal direction of the optical fiber, that is, the distribution of the Brillouin frequency shift ν B can be measured. The Brillouin frequency shift ν B changes in proportion to the strain generated in the optical fiber. The relationship is shown in the following equation (1).

ν(ε)=νB (0)×(1+K×ε) ・・・(1)
ν(ε):実測のブリルアンスペクトルの最大レベルの周波数
νB (0):光ファイバの固有ブリルアン周波数シフト
(ゼロ歪みの周波数)
K:歪み係数
ε:歪み量(%)
上記歪み分布測定器10等の歪み計測器6によりひび割れ監視区間における光ファイバの歪みを計測し、その計測値を演算処理装置7に入力する。この演算処理装置7は、例えば図5に示すようにCPU(中央処理装置)21、入力装置22、記憶装置23、表示装置24等からなっている。なお、必要に応じて演算結果等を印刷するプリンタ(図示せず)を設けても良い。上記記憶装置23には、初期歪み用メモリ25、初期ひび割れ幅用メモリ26、歪/幅テーブル(歪み変化とひび割れ幅変化対応テーブル)27、データメモリ28等の各種メモリが設けられている。
ν (ε) = ν B (0) × (1 + K × ε) (1)
ν (ε): frequency of the maximum level of the measured Brillouin spectrum ν B (0): intrinsic Brillouin frequency shift of the optical fiber
(Zero distortion frequency)
K: strain coefficient ε: strain amount (%)
The strain measuring device 6 such as the strain distribution measuring device 10 measures the strain of the optical fiber in the crack monitoring section, and inputs the measured value to the arithmetic processing device 7. The arithmetic processing unit 7 includes, for example, a CPU (central processing unit) 21, an input device 22, a storage device 23, a display device 24 and the like as shown in FIG. It should be noted that a printer (not shown) for printing calculation results and the like may be provided as necessary. The storage device 23 is provided with various memories such as an initial distortion memory 25, an initial crack width memory 26, a distortion / width table (strain change and crack width change correspondence table) 27, and a data memory 28.

上記初期歪み用メモリ25には、光ファイバ2を設置した際の各ひび割れ4に対する光ファイバ歪み(初期歪み)を歪み計測器6で計測して記憶させ、初期ひび割れ幅用メモリ26には各ひび割れ4に対する初期ひび割れ幅を計測して記憶させる。また、歪/幅テーブル27には、予め計測しておいた光ファイバ歪み値変化量とひび割れ幅変化量との対応関係を記憶させる。   The initial strain memory 25 measures and stores the optical fiber strain (initial strain) with respect to each crack 4 when the optical fiber 2 is installed by the strain measuring device 6, and the initial crack width memory 26 stores each crack. The initial crack width for No. 4 is measured and stored. Further, the strain / width table 27 stores the correspondence between the previously measured optical fiber strain value change amount and the crack width change amount.

図6は予め計測した光ファイバ歪み値変化量(με)とひび割れ幅変化量(mm)との関係の一例をグラフで示し、図7は計測データの一部を数値で示したものである。なお、図6中の直線は、上記計測データを直線近似したものである。上記図6、図7に示すような計測値を演算処理装置7のCPU21に入力し、このCPU21で例えば計測値から光ファイバ歪み値変化量(με)とひび割れ幅変化量(mm)との関係を例えば直線近似した変換テーブルを作成し、記憶装置23に歪/幅テーブル27として記憶する。この結果、ひび割れ幅変化量をy、光ファイバ歪み値変化量をXとすると、ひび割れ幅変化量yは、
y=aX
の式で求めることが可能となる。なお、上式における「a」は、ひび割れ幅変化量と光ファイバ歪み値変化量との関係を示す係数である。
FIG. 6 is a graph showing an example of the relationship between the previously measured optical fiber strain value change amount (με) and the crack width change amount (mm), and FIG. 7 shows a part of the measured data by numerical values. The straight line in FIG. 6 is obtained by linearly approximating the above measured data. The measured values as shown in FIGS. 6 and 7 are input to the CPU 21 of the arithmetic processing unit 7, and the CPU 21 uses the measured values, for example, to determine the relationship between the change amount of the optical fiber strain value (με) and the change amount of the crack width (mm). Is created, for example, by linear approximation, and stored in the storage device 23 as the distortion / width table 27. As a result, assuming that a crack width change amount is y and an optical fiber strain value change amount is X, the crack width change amount y is
y = aX
Can be obtained by the following equation. Note that “a” in the above equation is a coefficient indicating the relationship between the amount of change in the crack width and the amount of change in the optical fiber distortion value.

次に上記実施形態における演算処理装置7の動作を図8に示すフローチャートを参照して説明する。
演算処理装置7におけるCPU21は、まず、処理番号N(計測位置を示す)を設定して(ステップA1)、歪み計測器6により各ひび割れ監視区間における光ファイバ2の歪みを計測し(ステップA2)、処理番号に対応した光ファイバ2上の位置XN ,初期歪み値εN0 ,及び初期ひび割れ幅gN0を取得する(ステップA3)。次いで、ひび割れ位置に対応する歪み値εN を取得し(ステップA4)、この歪み値εN から初期歪み値εN0 を減算して歪み変化量ΔεN を取得する(ステップA5)。次に、CPU21は、上記歪み変化量ΔεN を予め歪/幅テーブル27に記憶させておいた「歪とひび割れ幅との関係」に代入し、ひび割れ幅変化量ΔgN を取得する(ステップA6)。このひび割れ幅変化量ΔgN にひび割れ幅の初期値gN0 を加算して現在のひび割れ幅(推定値)gN を得る(ステップA7)。このひび割れ幅gN を時刻tとの対応を取り、データg(N,t)としてデータメモリ28に保存する(ステップA8)。
Next, the operation of the arithmetic processing unit 7 in the above embodiment will be described with reference to the flowchart shown in FIG.
First, the CPU 21 in the arithmetic processing unit 7 sets a process number N (indicating a measurement position) (step A1), and measures the strain of the optical fiber 2 in each crack monitoring section by the strain measuring device 6 (step A2). , The position X N on the optical fiber 2 corresponding to the process number, the initial strain value ε N0 , and the initial crack width g N0 are obtained (step A3). Then obtains the distortion value epsilon N corresponding to crack position (step A4), to obtain the distortion change amount [Delta] [epsilon] N of the initial strain value epsilon N0 from the strain value epsilon N is subtracted (step A5). Next, the CPU 21 substitutes the strain change amount Δε N into “the relationship between strain and crack width” stored in the strain / width table 27 in advance, and acquires the crack width change amount Δg N (step A6). ). The current crack width (estimated value) g N is obtained by adding the initial value g N0 of the crack width to the crack width change amount Δg N (step A7). The crack width g N is made to correspond to the time t and stored in the data memory 28 as data g (N, t) (step A8).

そして、上記ひび割れ幅g(N,t)及びそのひび割れ幅変化率(g(N,t)-g(N,t-1))を基準ひび割れ幅gA ,及び基準ひび割れ幅変化率ΔgA と比較して、基準値以上になるかを評価する(ステップA9)。すなわち、
g(N,t)> gA
g(N,t)-g(N,t-1)> ΔgA
但し、「t−1」は、1回前あるいは一定期間前を意味する。
Then, the crack width g (N, t) and the crack width change rate (g (N, t) -g (N, t-1)) are compared with the standard crack width gA and the standard crack width change rate ΔgA. Then, it is evaluated whether it is equal to or more than the reference value (step A9). That is,
g (N, t)> gA
g (N, t) -g (N, t-1)> ΔgA
However, “t−1” means one time before or a certain period before.

の比較処理を行なって、ひび割れ幅g(N,t)が基準値gA 以上であるか、また、そのひび割れ幅変化率が基準ひび割れ幅変化率ΔgA 以上であるかを評価する。 Is evaluated to determine whether the crack width g (N, t) is equal to or greater than the reference value gA and whether the crack width change rate is equal to or greater than the reference crack width change rate ΔgA.

上記の評価を行なった結果、ひび割れ幅g(N,t)及びそのひび割れ幅変化率が基準値以上でなければ、位置を変更、すなわちNの値を変更して上記と同様の処理を実行する(ステップA10)。そして、計測処理を終了した後は、計測結果を表示装置24に表示し、必要に応じて印刷する。   As a result of the above evaluation, if the crack width g (N, t) and the crack width change rate are not equal to or larger than the reference value, the position is changed, that is, the value of N is changed and the same processing as described above is executed. (Step A10). Then, after the measurement processing is completed, the measurement result is displayed on the display device 24 and printed as necessary.

また、上記ステップA9で評価を行なった結果、ひび割れ幅g(N,t)及び、ひび割れ幅変化率の一方あるいは両方が基準値以上であった場合は、警報を発すると共に警報を示すメッセージ及び計測値を表示装置24上に表示する(ステップA11)。この場合、更に、危険を示す情報を演算処理装置7から有線あるいは無線等で監視センターに送信するようにしても良い。   If one or both of the crack width g (N, t) and the crack width change rate are equal to or more than the reference values as a result of the evaluation in step A9, an alarm is issued, a message indicating the alarm, and a measurement. The value is displayed on the display device 24 (step A11). In this case, the information indicating the danger may be further transmitted from the arithmetic processing unit 7 to the monitoring center in a wired or wireless manner.

なお、上記歪み計測器6及び演算処理装置7は、光ファイバ2に常時接続しておいても良いが、例えば定期点検の際に光ファイバ2に接続してひび割れ幅を検知するようにしても良い。   The strain measuring device 6 and the arithmetic processing device 7 may be connected to the optical fiber 2 at all times. For example, the strain measuring device 6 and the arithmetic processing device 7 may be connected to the optical fiber 2 to detect a crack width during a periodic inspection. good.

上記のように歪み計測器6の計測結果を演算処理装置7に入力し、予め計測して歪/幅テーブル27に記憶させておいた歪とひび割れ幅との関係からひび割れ幅を求めることにより、ひび割れ幅を高精度で検知することができる。   As described above, the measurement result of the strain measuring device 6 is input to the arithmetic processing unit 7, and the crack width is obtained from the relationship between the strain and the crack width which is measured in advance and stored in the strain / width table 27. Crack width can be detected with high accuracy.

(第2実施形態)
次に本発明の第2実施形態について説明する。
この第2実施形態は、図9に示すようにトンネル覆工3の内壁面を例えば繊維シート等の補強材31により補強した場合において、補強材31の剥離を光ファイバ2を利用して検知する場合の例について示したものである。
(2nd Embodiment)
Next, a second embodiment of the present invention will be described.
In the second embodiment, as shown in FIG. 9, when the inner wall surface of the tunnel lining 3 is reinforced by a reinforcing material 31 such as a fiber sheet, the separation of the reinforcing material 31 is detected by using the optical fiber 2. This is an example of the case.

トンネル覆工3の内壁面を補強材31により補強する際、ひび割れ4の位置を確認しておき、補強終了後、補強材31の表面上に上記ひび割れ4と直交する方向に光ファイバ2を配設し、2点を固定部材5で接着固定する。この場合、光ファイバ2は、ひび割れ4の上に一方の固定端が位置するように例えば直径が60mm程度の固定部材5を用いて接着固定する。上記光ファイバ2の固定部分の間は緩みのない程度の張力をかけ、その固定間隔は光ファイバ2の距離分解能に応じて設定する。光ファイバ2の距離分解能が長い場合には、上記図3に示したように折り返して固定することで固定間隔を短くする。また、上記光ファイバ2は、他の補強部分においても同様にひび割れ4の上に一方の固定端が位置するように固定部材5により固定される。   When reinforcing the inner wall surface of the tunnel lining 3 with the reinforcing material 31, the positions of the cracks 4 are confirmed, and after the reinforcement is completed, the optical fiber 2 is arranged on the surface of the reinforcing material 31 in a direction orthogonal to the cracks 4. Then, two points are bonded and fixed with the fixing member 5. In this case, the optical fiber 2 is bonded and fixed using a fixing member 5 having a diameter of, for example, about 60 mm so that one fixed end is located on the crack 4. A tension is applied between the fixed portions of the optical fiber 2 so as not to loosen, and the fixing interval is set according to the distance resolution of the optical fiber 2. When the distance resolution of the optical fiber 2 is long, the fixed interval is shortened by folding back and fixing as shown in FIG. Further, the optical fiber 2 is similarly fixed by the fixing member 5 so that one fixed end is located on the crack 4 in the other reinforcing portion.

そして、上記光ファイバ2の始端部には、剥離監視位置における光ファイバ2の歪みを計測する歪み計測器6、演算処理装置7が接続され、光ファイバ2の末端には終端処理用ループ(図示せず)が設けられる。   At the start end of the optical fiber 2, a strain measuring instrument 6 for measuring the strain of the optical fiber 2 at the peel monitoring position and an arithmetic processing unit 7 are connected, and at the end of the optical fiber 2, a termination processing loop (FIG. (Not shown).

上記の構成において、トンネル1が変形してひび割れ4の幅が広くなる際、図10に矢印で示すように補強材31に引張り歪みが発生し、それに伴って光ファイバ2に引張り歪みが発生する。この光ファイバ2の引張り歪みは、歪み計測器6にて計測され、その計測値が演算処理装置7に入力される。   In the above configuration, when the tunnel 1 is deformed and the width of the crack 4 is widened, a tensile strain is generated in the reinforcing member 31 as shown by an arrow in FIG. 10 and, accordingly, a tensile strain is generated in the optical fiber 2. . The tensile strain of the optical fiber 2 is measured by the strain measuring device 6, and the measured value is input to the arithmetic processing device 7.

その後、トンネル1の変形が進み、ひび割れ4の幅が広くなるに伴って光ファイバ2の引張り歪みが増大し、やがて図11に示すように補強材31がトンネル覆工3の内壁面から剥離する。補強材31がトンネル覆工3の内壁面から剥離すると、剥離開始位置、すなわち、ひび割れ4の位置にある固定部材5が補強材31と一緒に壁面から浮くために光ファイバ2の張力が減少して見かけ上、圧縮歪みが発生する。従って、歪み計測器6により計測された光ファイバ2の歪みを演算処理装置7でメモリに記憶し、常時あるいは予め設定された一定時間毎に前回計測した歪と今回計測した歪とを比較し、引張り歪みから圧縮歪みに変化した位置を検知することにより、補強材31が剥離した位置を検知することができる。   Thereafter, the deformation of the tunnel 1 progresses, and the tensile strain of the optical fiber 2 increases as the width of the crack 4 increases, and the reinforcing material 31 eventually peels off from the inner wall surface of the tunnel lining 3 as shown in FIG. . When the reinforcing member 31 peels off from the inner wall surface of the tunnel lining 3, the fixing member 5 at the peeling start position, that is, the position of the crack 4 floats together with the reinforcing member 31 from the wall surface, so that the tension of the optical fiber 2 decreases. Apparently, compression distortion occurs. Therefore, the distortion of the optical fiber 2 measured by the distortion measuring device 6 is stored in the memory by the arithmetic processing unit 7, and the previously measured distortion is compared with the previously measured distortion at all times or at predetermined time intervals. By detecting the position where the tensile strain changes to the compressive strain, the position where the reinforcing material 31 has peeled can be detected.

図12は、大型トンネルをモデルとして、補強材31の剥離に伴う光ファイバ2の歪分布の変化状態を示したもので、横軸に光ファイバの位置(mm)をとり、縦軸に光ファイバ歪み(με)をとって示した。図12(a)は、補強材31が剥離する前における光ファイバ2の歪み発生状態を示したもので、ひび割れ4が発生している位置に大きな引張り歪みが発生している。図12(b)は、補強材31が壁面から剥離したときの光ファイバ2の歪み発生状態を示したもので、剥離した位置に大きな圧縮歪みが発生している。   FIG. 12 shows the state of change in the strain distribution of the optical fiber 2 due to the separation of the reinforcing material 31 using a large tunnel as a model. The horizontal axis indicates the position (mm) of the optical fiber, and the vertical axis indicates the optical fiber The strain (με) is shown. FIG. 12A shows a state in which the optical fiber 2 is strained before the reinforcing material 31 is peeled off, and a large tensile strain is generated at the position where the crack 4 is generated. FIG. 12B shows a state in which the optical fiber 2 is distorted when the reinforcing member 31 is separated from the wall surface, and a large compressive strain is generated at the separated position.

上記のように補強材31がトンネル覆工3の内壁面から剥離すると、剥離開始位置にある固定部材5が補強材31と一緒に壁面から浮くために光ファイバ2の張力が減少して見かけ上圧縮歪みが発生するので、引張り歪みから圧縮歪みに変化した位置を演算処理装置7にて検知することにより、補強材31が剥離した位置を確実に検知することができる。また、光ファイバの引張り歪みから圧縮歪みに変化する点を検出するようにしているので、補強材31として導電性のものを使用することなく補強材31の剥離を検出でき、電気設備が設置される鉄道トンネル等においても安全に使用することができる。   When the reinforcing member 31 peels off from the inner wall surface of the tunnel lining 3 as described above, the tension of the optical fiber 2 decreases because the fixing member 5 at the peeling start position floats from the wall surface together with the reinforcing member 31 and apparently decreases. Since a compressive strain occurs, the position where the reinforcing material 31 has peeled off can be reliably detected by detecting the position where the tensile strain changes to the compressive strain by the arithmetic processing unit 7. Also, since the point at which the optical fiber changes from tensile strain to compressive strain is detected, the peeling of the reinforcing material 31 can be detected without using a conductive material as the reinforcing material 31, and electric equipment is installed. It can be used safely even in railway tunnels.

上記演算処理装置7の検知結果は、第1実施形態と同様に表示装置に表示し、必要に応じて印刷する。また、演算処理装置7が補強材31の剥離を検知した場合、警報を発すると共に、補強材31が剥離した位置情報を表示装置24に表示する。この場合、更に、上記補強材31が剥離したことを示す危険情報を演算処理装置7から有線あるいは無線等で監視センターに送信するようにしても良い。   The detection result of the arithmetic processing unit 7 is displayed on the display device as in the first embodiment, and is printed if necessary. Further, when the arithmetic processing device 7 detects the separation of the reinforcing member 31, an alarm is issued and information on the position where the reinforcing member 31 has separated is displayed on the display device 24. In this case, danger information indicating that the reinforcing member 31 has peeled off may be transmitted from the arithmetic processing unit 7 to a monitoring center by wire or wirelessly.

なお、上記歪み計測器6及び演算処理装置7は、光ファイバ2に常時接続しておいても良いが、例えば定期点検の際に光ファイバ2に接続して補強材31の剥離を検知するようにしても良い。   The strain measuring device 6 and the arithmetic processing device 7 may be connected to the optical fiber 2 at all times. For example, the strain measuring device 6 and the arithmetic processing device 7 may be connected to the optical fiber 2 to detect peeling of the reinforcing member 31 during a periodic inspection. You may do it.

本発明の一実施形態に係るトンネルひび割れ検知装置の構成を示す図。The figure which shows the structure of the tunnel crack detection apparatus which concerns on one Embodiment of this invention. 同実施形態における光ファイバの敷設状態を示す図。FIG. 3 is a diagram showing a laid state of the optical fibers in the embodiment. 同実施形態におけるひび割れに対する光ファイバのループ装着例を示す図。The figure which shows the example of loop attachment of the optical fiber with respect to the crack in the embodiment. 同実施形態における歪み分布測定器(BOTDR)の基本構成を示す図。FIG. 2 is a diagram showing a basic configuration of a distortion distribution measuring device (BOTDR) according to the embodiment. 同実施形態における演算処理装置の構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of an arithmetic processing device in the embodiment. 同実施形態における予め計測した光ファイバ歪み値変化量とひび割れ幅値変化量との関係を示すグラフ。5 is a graph showing a relationship between a previously measured optical fiber strain value change amount and a crack width value change amount in the embodiment. 同実施形態における予め計測した光ファイバ歪み値変化量とひび割れ幅値変化量との関係を数値データで示す図。The figure which shows the relationship between the optical fiber distortion value change amount and the crack width value change amount measured in advance in the embodiment by numerical data. 同実施形態における演算処理装置の動作を示すフローチャート。4 is a flowchart showing the operation of the arithmetic processing device according to the embodiment. 本発明の第2実施形態に係るトンネル補強材剥離検装置の光ファイバの敷設状態を示す図。The figure which shows the laying state of the optical fiber of the tunnel reinforcement peeling inspection apparatus which concerns on 2nd Embodiment of this invention. 同実施形態における補強材が剥離する前の引張り歪み発生状態を示す図。The figure in the same embodiment which shows the tensile strain generation state before the peeling of the reinforcement material. 同実施形態における補強材が壁面から剥離したときの圧縮歪み状態を示す図。The figure which shows the compression strain state when the reinforcement material in the same embodiment peels off from the wall surface. (a)は同実施形態における補強材が剥離する前における光ファイバの引張り歪み発生状態を示す図、(b)は補強材が壁面から剥離したときの光ファイバの圧縮歪み発生状態を示す図。(A) is a figure which shows the tensile strain generation state of the optical fiber before the reinforcing material peels off in the embodiment, (b) is a figure which shows the compressive distortion generating state of the optical fiber when the reinforcing material peels off from the wall surface.

符号の説明Explanation of reference numerals

1…トンネル、2…光ファイバ、3…トンネル覆工、4…ひび割れ、5…固定部材、6…歪み計測器、7…演算処理装置、10…歪み分布測定器、11…光源、12…光周波数シフタ、13…被測定光ファイバ、14…検波器、21…CPU、22…入力装置、23…記憶装置、24…表示装置、25…初期歪み用メモリ、26…初期ひび割れ幅用メモリ、27…歪/幅テーブル、28…データメモリ、31…補強材。   DESCRIPTION OF SYMBOLS 1 ... Tunnel, 2 ... Optical fiber, 3 ... Tunnel lining, 4 ... Cracking, 5 ... Fixing member, 6 ... Strain measuring device, 7 ... Processing device, 10 ... Strain distribution measuring device, 11 ... Light source, 12 ... Light Frequency shifter 13, 13 optical fiber under measurement, 14 detector, 21 CPU, 22 input device, 23 storage device, 24 display device, 25 initial distortion memory, 26 initial crack width memory, 27 ... Strain / width table, 28 ... Data memory, 31 ... Reinforcing material.

Claims (3)

トンネル内の壁面を補強した補強材の表面に光ファイバを固定し、前記光ファイバの歪みと位置の関係を計測して補強材の剥離を検知するトンネル補強材剥離検知方法において、
前記トンネル内面の補強材の表面に光ファイバを張力をかけながらひび割れの上に一方の固定端が位置するように固定すると共に、剥離監視位置における光ファイバの歪みを歪み計測器で計測し、前記剥離監視位置の歪みが引張り歪みから圧縮歪みに変化した状態を検出して補強材の剥離を検知することを特徴とするトンネル補強材剥離検知方法。
An optical fiber is fixed to the surface of a reinforcing material that reinforces a wall surface in a tunnel, and in a tunnel reinforcing material peeling detection method for detecting the peeling of the reinforcing material by measuring the relationship between the strain and the position of the optical fiber,
Affixing the optical fiber to the surface of the reinforcing material on the inner surface of the tunnel so that one fixed end is located on the crack while applying tension, and measuring the strain of the optical fiber at the peel monitoring position with a strain measuring instrument, A method for detecting peeling of a tunnel reinforcing material, comprising detecting a state in which a strain at a peel monitoring position changes from a tensile strain to a compressive strain to detect peeling of a reinforcing material.
トンネル内の壁面を補強した補強材の表面に光ファイバを固定し、前記光ファイバの歪と位置の関係を計測して補強材の剥離を検知するトンネル補強材剥離検知装置において、
前記トンネル内面の補強材の表面に光ファイバを張力をかけながらひび割れの上に一方の固定端が位置するように固定する固定手段と、剥離監視位置における光ファイバの歪みを計測する歪み計測器と、この歪み計測器により計測された歪みを記憶する記憶手段と、前記歪み計測器により今回計測された歪と前記記憶手段に記憶された前回計測時の歪みとを比較し、計測された歪が引張り歪みから圧縮歪みに変化した状態を検出して補強材の剥離を検知する手段とを具備したことを特徴とするトンネル補強材剥離検知装置。
An optical fiber is fixed to a surface of a reinforcing material that reinforces a wall surface in a tunnel, and a tunnel reinforcing material peeling detection device that detects a peeling of the reinforcing material by measuring a relationship between a strain and a position of the optical fiber,
A fixing means for fixing the optical fiber on the surface of the reinforcing material on the inner surface of the tunnel so that one fixed end is located on the crack while applying tension, and a strain measuring instrument for measuring the strain of the optical fiber at the peeling monitoring position. A storage means for storing the strain measured by the strain measuring instrument, and comparing the strain measured this time by the strain measuring instrument with the strain at the previous measurement stored in the storage means, and A means for detecting a state in which the tensile strain has changed from a compressive strain to a compressive strain and detecting peeling of the reinforcing material.
前記固定手段は、光ファイバを複数回折り返して固定することを特徴とする請求項2記載のトンネル補強材剥離検知装置。   The device for detecting separation of a tunnel reinforcing member according to claim 2, wherein the fixing means fixes the optical fiber by bending the optical fiber a plurality of times.
JP2004003059A 2004-01-08 2004-01-08 Tunnel reinforcing material peeling detection method and apparatus Expired - Fee Related JP3759144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003059A JP3759144B2 (en) 2004-01-08 2004-01-08 Tunnel reinforcing material peeling detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003059A JP3759144B2 (en) 2004-01-08 2004-01-08 Tunnel reinforcing material peeling detection method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24333699A Division JP3534659B2 (en) 1999-08-30 1999-08-30 Tunnel crack detection method and device

Publications (2)

Publication Number Publication Date
JP2004190478A true JP2004190478A (en) 2004-07-08
JP3759144B2 JP3759144B2 (en) 2006-03-22

Family

ID=32768088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003059A Expired - Fee Related JP3759144B2 (en) 2004-01-08 2004-01-08 Tunnel reinforcing material peeling detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3759144B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200449473Y1 (en) 2009-01-14 2010-07-13 (주)한국해외기술공사 Safety check-up apparatus in tunnel is easing measurement and confirmation of crack position
CN111120005A (en) * 2019-12-31 2020-05-08 华中科技大学 Distributed tunnel reinforcing steel ring failure monitoring device and method
KR102393354B1 (en) * 2021-09-30 2022-05-03 경북대학교 산학협력단 Reinforcing material for civil structures provided with light emitting members and civil structures using the same to form reinforcing force
WO2023033460A1 (en) * 2021-08-31 2023-03-09 경북대학교 산학협력단 Structure reinforcement material having light-emitting member, and structure having stiffening force formed using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374323B (en) * 2014-10-30 2015-08-12 河海大学 Distributed monitoring device and method inside and outside the micro-macroscopic fracture of hydraulic structures polytropism
JP7146192B2 (en) * 2018-12-04 2022-10-04 東電設計株式会社 Method for estimating residual prestress force of PC girder
CN109827519B (en) * 2019-03-14 2020-06-02 广东聚源管业实业有限公司 Pipeline deformation monitoring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200449473Y1 (en) 2009-01-14 2010-07-13 (주)한국해외기술공사 Safety check-up apparatus in tunnel is easing measurement and confirmation of crack position
CN111120005A (en) * 2019-12-31 2020-05-08 华中科技大学 Distributed tunnel reinforcing steel ring failure monitoring device and method
WO2023033460A1 (en) * 2021-08-31 2023-03-09 경북대학교 산학협력단 Structure reinforcement material having light-emitting member, and structure having stiffening force formed using same
KR102393354B1 (en) * 2021-09-30 2022-05-03 경북대학교 산학협력단 Reinforcing material for civil structures provided with light emitting members and civil structures using the same to form reinforcing force

Also Published As

Publication number Publication date
JP3759144B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP3534659B2 (en) Tunnel crack detection method and device
US5723857A (en) Method and apparatus for detecting cracks and strains on structures using optical fibers and Bragg gratings
JP3668199B2 (en) Tunnel deformation measurement method
KR20200088439A (en) Wire rope inspection device, wire rope inspection system and wire rope inspection method
EP0845672A1 (en) Wire rope damage index monitoring device
RU2686839C2 (en) Device and method for electromechanical cable overvoltage indicator
JP3759144B2 (en) Tunnel reinforcing material peeling detection method and apparatus
JP3758905B2 (en) Optical fiber laying method and strain detection apparatus using optical fiber
JP2007113991A (en) Crack detector and installation method therefor
JP2000046527A (en) Pc material with strain detection system and method for detecting strain
JP2001194109A (en) Displacement measuring apparatus using rayleigh scattering
JP2000111339A (en) Method for laying optical fiber and distortion-detecting device using optical fiber
JPH1172481A (en) Detector and method for detecting fracture of reinforcing bar
WO2018034062A1 (en) Management method and management device
JP2008139238A (en) Optical fiber sensor cable
KR102197696B1 (en) Structure health monitoring system using optic fiber-based hybrid nerve network sensor, and method for the same
JP3586611B2 (en) Strain detection method and strain detection system using optical fiber
JPH11325822A (en) Crack monitoring equipment
CN105572329B (en) Concrete crack scale distance adaptive monitoring method
JP2000097647A (en) Method for measuring deformation of structure using optical fiber and optical fiber sensor
JP2008014641A (en) Optical fiber sensor, and distortion measuring method using the same
CN210177368U (en) Intelligent inhaul cable and fiber reinforced optical fiber lacing wire
JP2010112942A (en) Method for monitoring of steel structure
JP6554065B2 (en) Method and system for evaluating deterioration state of metal structure
JP2017211266A (en) Foundation and bedrock distortion measurement device, and foundation and bedrock measurement method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060130

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees