JP2004190374A - Soft ground improving method and soft ground improving unit - Google Patents

Soft ground improving method and soft ground improving unit Download PDF

Info

Publication number
JP2004190374A
JP2004190374A JP2002360698A JP2002360698A JP2004190374A JP 2004190374 A JP2004190374 A JP 2004190374A JP 2002360698 A JP2002360698 A JP 2002360698A JP 2002360698 A JP2002360698 A JP 2002360698A JP 2004190374 A JP2004190374 A JP 2004190374A
Authority
JP
Japan
Prior art keywords
unit
ground
ground improvement
soft ground
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002360698A
Other languages
Japanese (ja)
Inventor
Takashi Tsuchida
孝 土田
Masaaki Kiyama
正明 木山
Takahiko Shiina
貴彦 椎名
Hiroshi Yonetani
宏史 米谷
Toru Yamashita
徹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Original Assignee
Penta Ocean Construction Co Ltd
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd, National Institute of Maritime Port and Aviation Technology filed Critical Penta Ocean Construction Co Ltd
Priority to JP2002360698A priority Critical patent/JP2004190374A/en
Publication of JP2004190374A publication Critical patent/JP2004190374A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft ground improving method and a soft ground improving unit applicable to the soft ground improving method facilitating ground improvement under the bottom of water without leaving remaining materials such as drain materials in the ground after improved. <P>SOLUTION: In this soft ground improving method, a unit 10 integrally composed of a columnar member 12 with a drainage function, and a cover member 11 with a water permeating function at the inner surface upper part is installed so that the columnar member is positioned almost vertically in the ground 70 and that the cover member faces the ground surface 71, and negative pressure is applied to the ground surface from the cover member by a vacuum pump 81 connected to the unit, to eject water and air in the ground. The unit is removed after the improvement of the ground. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、軟弱粘性土地盤等の軟弱地盤を改良するための軟弱地盤改良工法及び軟弱地盤改良ユニットに関する。
【0002】
【従来の技術】
従来、軟弱な粘性土地盤の減容化・強度増加を図る場合、地盤に鉛直ドレーン材を打設し、水平排水材等で排水経路を確保した後に盛土による荷重載荷や真空ポンプによる減圧などによって圧密を促進させる工法がよく用いられる。この工法では、ドレーン材としてプラスチックドレーンを用いることが多く、改良後の地盤にドレーン材が残ってしまうことから、後に掘削を行う際の障害となる問題がある。
【0003】
また、海底、湖底、川底等の水底下の地盤を圧密改良しようとする場合、従来の真空圧密工法、例えば鉛直ドレーン打設後に密封シートで改良域を覆う工法などを適用しているが、水底下においては水平方向の排水経路の確保や密封シートの施工等が非常に困難な作業となる。
【0004】
【発明が解決しようとする課題】
本発明は、上述のような従来技術の問題に鑑み、改良後の地盤にドレーン材等の残材が残らずに、また水底下での地盤改良を容易に行うことが可能な軟弱地盤改良工法、及びその軟弱地盤改良工法に適用可能な軟弱地盤改良ユニットを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明による軟弱地盤改良工法は、排水機能を有する柱状部材と、内面上部に透水機能を有する蓋部材とが一体に構成されたユニットを前記柱状部材が地盤内にほぼ垂直に位置し前記蓋部材が地盤表面に対向するように設置する工程と、前記ユニットに連結された真空ポンプによって負圧を前記蓋部材から前記地盤表面に作用させることで前記地盤内の水及び空気を排出する工程と、前記地盤の改良後に前記ユニットを撤去する工程と、を含むことを特徴とする。
【0006】
この軟弱地盤改良工法によれば、ユニットが排水機能を有する柱状部材と透水機能を有する蓋部材とを一体に備えているので、この一体化したユニットを改良対象の地盤(陸上及び水底下の地盤)に容易に設置でき、水底下であっても地盤改良を容易に行うことができる。また、一体化したユニットを地盤改良後につり上げ等により撤去するので地盤に残材が一切残らない。
【0007】
また、河川、湖沼または海域における水底地盤の近傍に前記真空ポンプの代わりに排水ポンプを設置し、その排水ポンプによる水頭差による圧力が前記蓋部材から前記地盤表面に作用するようにできる。これにより、排水ポンプによる水頭差による圧力が地盤表面に作用するので、地盤の圧密を促進でき、また、特に水底下において原位置での地盤改良を容易に行うことが可能となる。
【0008】
この場合、真空ポンプを更に設置し、前記真空ポンプによる減圧と大気圧との差圧が前記蓋部材から前記地盤表面に作用するようにすることで、地盤の圧密を更に促進することができる。なお、真空ポンプと排水ポンプとを同時に作動させ、また、排水ポンプだけを作動させるように切り換えることで、地盤改良工事の状況等に応じて適宜選択可能となる。
【0009】
また、前記ユニットを撤去する際に前記ユニットに対し外部から空気を圧入することで、ユニット撤去の実行が容易になる。この場合、外部からの空気をユニットの蓋部材及び柱状部材を通して地盤表面及び地盤内部に圧入する。
【0010】
また、前記柱状部材がドレーン材を取り付けた鋼管であり、また、前記柱状部材が集水孔付きの管またはメッシュ構造の管とすることができる。
【0011】
また、前記蓋部材が鉄鋼製の蓋部とスカート部とを備え、前記ユニットの設置時に前記スカート部が前記地盤内に位置するようにして前記ユニットを設置できる。また、前記蓋部材が鉄鋼製の枠部材と前記枠部材に貼り付けられた樹脂系材料または密閉シート材とを備えることで、密封効果のより高い構造にできる。
【0012】
また、前記柱状部材が伸縮できる構造を備えることが好ましく、これにより、柱状部材が伸縮することで地盤の沈下に追従でき、沈下追従性を高めることができる。また、前記ユニットは前記柱状部材を複数備え、前記複数の柱状部材の前記蓋部材の近傍に水平方向に水平ドレーン材を配置することが好ましい。これにより、水底下においても水平方向の排水経路を容易に確保できる。
【0013】
本発明による軟弱地盤改良ユニットは、排水機能を有する柱状部材と、内面上部に透水機能を有する蓋部材とが一体に構成されかつ前記柱状部材が地盤内にほぼ垂直に位置し前記蓋部材の内面が地盤表面に対向するように設置可能であるとともに地盤改良後に一体に撤去可能に構成されたことを特徴とする。
【0014】
この軟弱地盤改良ユニットによれば、柱状部材と蓋部材とが一体に構成されているので、地盤に容易に設置できかつ撤去も容易にできるとともに、地盤改良後にユニットを撤去できるので、地盤に残材が一切残らない。また、撤去後のユニットの再使用も可能であり、ユニットを効率的に使用できる。なお、柱状部材を複数備えることが好ましい。
【0015】
上記ユニットは、前記蓋部材が外部の真空ポンプまたは排水ポンプと連結する管と接続可能な吸出口を有することが好ましい。吸出口を通して真空ポンプまたは排水ポンプによる減圧・排水を行うことができる。また、上述のようにユニット撤去時の外部からの空気の圧入も吸出口を通して行うことができる。
【0016】
前記柱状部材がドレーン材をその外周面に取り付けた鋼管を備えることができる。また、前記柱状部材が集水孔付きの管またはメッシュ構造の管を備えることができる。
【0017】
また、前記蓋部材が鉄鋼製の蓋部とスカート部とを備えることが好ましく、ユニットの設置時には、スカート部が地盤内に位置する。また、前記蓋部材が鉄鋼製の枠部材と前記枠部材に貼り付けられた樹脂系板材または密閉シート材とを備えることで、ユニットの軽量化を図ることができる。また、前記柱状部材が伸縮できる構造を備えることが好ましく、これにより、柱状部材が伸縮することで地盤の沈下に追従でき、沈下追従性を高めることができる。
【0018】
また、上記軟弱地盤改良ユニットを上述の軟弱地盤改良工法におけるユニットとして使用することができる。
【0019】
【発明の実施の形態】
以下、本実施の形態による軟弱地盤改良ユニット及びその設置工程について図面を用いて説明する。
【0020】
〈軟弱地盤改良ユニット〉
【0021】
図1は本発明の実施の形態による軟弱地盤改良ユニットの側面図であり、図2は図1の軟弱地盤改良ユニットの一部側断面図であり、図3は図1の軟弱地盤改良ユニットの平面図である。図4は図1の鋼管杭の縦断面図(a)及び拡大した横断面図(b)である。
【0022】
図1〜図3に示すように、軟弱地盤改良ユニット(以下、「ユニット」)10は、ドレーン材12aがその外周面に取り付けられた複数の鋼管杭12と、各鋼管杭12が取り付けられて各鋼管杭12と一体に構成され蓋部材11と、を備える。
【0023】
蓋部材11は、図3のように平面が略正四角形状に構成され、略正四角形状の鉄鋼製の板部材からなる蓋部13と、蓋部13の外周から下方に突き出るようにして設けられた鉄鋼製のスカート部14と、を備え、蓋部13の上側の部分はH型鋼等の構造用鋼から構成されている。蓋部13には、図3のように、鋼管杭12が平面的に3列×3列に並ぶようにほぼ等間隔に取り付けられており、また、対角中心近傍には外部の真空ポンプ等に連結する管と接続可能なパイプ状の吸出口16が設けられている。吸出口16は蓋部13を貫通しており蓋部13の内面13aに開口している。
【0024】
鋼管杭12は、図4(a)(b)のように、長尺で円筒形状の鋼管の外周面に長尺状の板材からなるプラスチックボードドレーン材12aが鋼管の長手方向に延びるように複数取り付けられている。複数のプラスチックボードドレーン材12aが図4(b)のように鋼管の外周面にほぼ等間隔に貼り付けられている。ユニット10の地盤への設置が容易となるように各鋼管杭12の先端12bが円錐形状に尖っている。
【0025】
また、図1,図2のように、ユニット10の蓋部13の内面13aに水平ドレーン材として不織布15が配置されており、複数の鋼管杭12の各プラスチックボードドレーン材12aを上部で水平方向に排水可能なように連結している。
【0026】
〈陸上におけるユニットの設置及び撤去工程〉
【0027】
次に、図5により、軟弱地盤改良ユニットを改良対象の陸上の地盤に設置し撤去するまでの工程について図1〜図4を参照して説明する。図5は、陸上の地盤を改良対象とした場合の各工程(a)乃至(d)を示す図である。
【0028】
まず、クレーン80を用いて上述の図1〜図3のユニット10(但し、鋼管杭12の数が増えている。)を持ち上げて地盤改良対象となる軟弱粘性土地盤等の軟弱地盤70上に移動させてから、ユニット10の鋼管杭12を先端からユニット10の自重で軟弱地盤70の地盤表面71に圧入し設置する(a)。このようにしてユニット10を必要な数だけ設置し、各鋼管杭12が地盤70内に垂直に位置することで、地盤70内に垂直方向の排水経路が形成される。なお、このとき、ユニット10の蓋部13の内面13aが接地した後は、次の工程(b)、(c)を行い、サクションを併用して蓋部材11の圧入を行ってもよい。また、水平ドレーン材の不織布15を図1,図2のようにユニット10側に取り付けているので、ユニット10の設置で水平方向の排水経路が形成される。
【0029】
次に、各ユニット10の蓋部材11の吸出口16に配水管82を接続し、配水管82を真空ポンプ81及び排水タンク(図示省略)に連結する(b)。
【0030】
次に、真空ポンプ81を稼動すると、各鋼管杭12のプラスチックボードドレーン材12a及び水平ドレーン材の不織布15を通してユニット10の蓋部13の内面13aに排出された地盤70内の水や空気が各吸出口16及び配水管82を介して外部の排水タンクへと排出される。これにより、地盤70の圧密が促進し、地盤70における地盤改良を行う(c)。なお、蓋部材11のスカート部14が鋼管杭12の上部と地盤表面71との間に位置するので、真空吸引による圧密時に周囲の地盤表面から空気を吸引してしまうことを防止できる
【0031】
この地盤改良後に、クレーン80を用いてユニット10をつり上げることで、改良後の地盤72からユニット10全体を撤去する(d)。なお、ユニット10の撤去時に、配水管82にコンプレッサ(図示省略)等を接続し、各ユニット10の吸出口16から蓋部13の内面13a及びドレーン材12aへと空気を圧入することで、ユニット10の撤去作業を容易に行うことができる。
【0032】
以上のように、図5の軟弱地盤改良工法によれば、ユニット10が鋼管杭12と蓋部材11とを一体に備えており、鋼管杭と蓋部材とを別々に設置する必要がなく、ユニット10として一体に設置できるので、密封シートで改良域を覆う必要はなく、改良対象の陸上の地盤70への設置を容易に行うことができる。また、一体化したユニット10を地盤改良後につり上げにより撤去し、改良後の地盤72にドレーン材等の残材が一切残らないので、後に掘削等を行う際に障害となることはない。また、水平ドレーン材(不織布15)もユニット10に取り付け一体にできるので、設置が容易であり水平方向の排水経路を容易に確保でき、また撤去も一体にできるので、不織布15も地盤表面71に残らない。
【0033】
〈水低下の地盤におけるユニットの設置及び撤去工程〉
【0034】
次に、図6により、軟弱地盤改良ユニットを海底、湖底、川底等の水底下の地盤改良対象となる軟弱粘性土地盤等の軟弱地盤に設置し撤去するまでの工程について図1〜図4を参照して説明する。図6は、水底下の地盤を改良対象とした場合の各工程(a)乃至(d)を示す図である。
【0035】
まず、起重機船90を用いて上述の図1〜図3のユニット10(但し、鋼管杭12の数が増えている。)を持ち上げて水75の中に没し、ユニット10の鋼管杭12を先端からユニット10の自重で軟弱地盤76の地盤表面77に圧入し設置する(a)。このようにしてユニット10を必要な数だけ設置し、各鋼管杭12が地盤76内に垂直に位置することで、地盤76内に垂直方向の排水経路が形成される。なお、このとき、ユニット10の蓋部13の内面13aが接地した後は、次の工程(b)、(c)を行い、サクションを併用して蓋部材11の圧入を行ってもよい。また、水平ドレーン材の不織布15を図1,図2のようにユニット10側に取り付けているので、ユニット10の設置で水平方向の排水経路が形成される。
【0036】
上述のようにしてユニット10を水底下の軟弱地盤76に設置してから、起重機船90により水中真空ポンプ85を設置し、また、潜水作業によって、各ユニット10の吸出口16への配水管86等の設置を行う(b)。
【0037】
次に、水中真空ポンプ85を稼動すると、各鋼管杭12のプラスチックボードドレーン材12a及び水平ドレーン材の不織布15を通してユニット10の蓋部13の内面13aに排出された地盤76内の水や空気が各吸出口16及び配水管86を介して排出される。これにより、地盤76の圧密が促進し、地盤76における地盤改良を行う(c)。
【0038】
この地盤改良後に、起重機船90を用いてユニット10をつり上げることで、改良後の地盤78からユニット10全体を撤去する(d)。なお、ユニット10の撤去時に、配水管86にコンプレッサ(図示省略)等を接続し、各ユニット10の吸出口16から蓋部13の内面13a及びドレーン材12aへと空気を圧入することで、ユニット10の撤去作業を容易に行うことができる。
【0039】
以上のように、図6の軟弱地盤改良工法によれば、ユニット10が鋼管杭12と蓋部材11とを一体に備えており、鋼管杭と蓋部材とを別々に改良対象の水底下の地盤に設置する必要がなく、ユニット10として一体に設置できるので、密封シートで水底下の改良域を覆う必要はなく、水底下の地盤への設置を容易に行うことができる。また、一体化したユニット10を地盤改良後につり上げにより撤去し、改良後の地盤78にドレーン材等の残材が一切残らないので、後に掘削等を行う際に障害となることはない。また、水平ドレーン材(不織布15)もユニット10に取り付け一体にできるので、水底下においても設置が容易であり水平方向の排水経路を容易に確保でき、また撤去も一体にできるので、不織布15も地盤表面77に残らない。
【0040】
次に、図7により、水底下の地盤の改良工法の変形例について説明する。図7は、水底下の地盤の改良工程の別の例を説明するための図である。
【0041】
図7の水底下の地盤の改良工程は、真空ポンプの減圧による大気圧との差圧による圧力及び水位低下による水頭差による圧力の両方が荷重として改良対象の水底下の地盤に作用するようにしたものである。
【0042】
即ち、図7のように、水底下の地盤表面77上に密閉タンクから構成された揚水井87を設置し、各ユニット10の吸出口16に接続された配水管86に連結した水中排水ポンプ79を揚水井87の底部に設置するとともに、その頂部に真空ポンプ88を連結する。揚水井87の内部の水を水中排水ポンプ79により配水管89を通して外部に排出し揚水井87内の水位を低下させることで、水位低下による水頭差Δhによる圧力がユニット10の蓋部13から地盤76に加わる。更に、真空ポンプ88により揚水井87の内部を減圧することで、大気圧と揚水井87内の圧力との差圧が蓋部13から地盤76に加わる。このように、大気圧との差圧による圧力及び水位低下による水頭差による圧力の両方が地盤76に荷重として加わることにより、より大きな圧密促進の効果を得ることができる。
【0043】
また、図7において、揚水井87の上端87aを開放し、水中排水ポンプ79により揚水井87内の水位を低下させることで、水位低下による水頭差による圧力だけがユニット10の蓋部13から地盤76に加わるようにしてもよい。この場合、図7のように真空ポンプ88と排水ポンプ79とを同時に作動させ、または、上端87aを開放し排水ポンプ79だけを作動させるように切り換える構成にすることで、工事の状況等に応じて適宜2つの作動状態を選択可能になる。
【0044】
〈鋼管杭の地盤内の伸縮構造〉
【0045】
次に、地盤に設置されたユニットの鋼管杭が地盤の沈下に追従できるように伸縮可能にした構造について図8,図9により説明する。図8は、図1〜図3のユニットに設けた鋼管杭の伸縮構造を示す部分的な側断面図であり、図9は、図8の伸縮構造を有するユニットの施工及び沈下追従の各工程(a)乃至(g)を示す工程図である。
【0046】
図8に示すように、ユニット10は、各鋼管杭12の位置毎に、蓋部13を貫通するように設置され上部にフランジ17aを有するさや管17と、下端側に外ねじ部を有し上部に盲フランジ18aを有するスペーサ管18と、盲フランジ19と、を更に備える。この場合、各鋼管杭12は、さや管17の内径より小なる外径を有し、上部にスペーサ管18のねじ部と係合する内ねじ部を有している。
【0047】
図9により図8のようなユニット10の設置工程について説明する。まず、鋼管杭12の上部の内ねじ部にスペーサ管18をねじ込み、鋼管杭12をさや管17に挿入し、3枚のフランジ17a、18a、19をボルトで止める(a)。
【0048】
上述のような構造のユニット10を図5または図6と同様にして、鋼管杭12を地盤表面71から地盤内に貫入する(b)。
【0049】
次に、スペーサ管18を取り除き、さや管17のフランジ17aに盲フランジ19を取り付ける(c)。
【0050】
図5乃至図7のようにして地盤表面71から負圧載荷を開始すると、周辺地盤の沈下にともなってユニット10は蓋部13等とともに沈下するが、このとき、鋼管杭12はスぺーサ管18の取り除かれたストローク分だけ上方に移動しあたかも縮むようにして動くために、ユニット10は地盤の沈下に追従でき、沈下追従性が向上する(d)。また、鋼管杭12はスぺーサ管18のストローク分だけの移動であるので、引き続いて排水を同様にして行うことができる。
【0051】
上述の負圧載荷の終了後、盲フランジ19を取り除き、再びスペーサ管18を鋼管杭12の上部にねじ込む(e)。
【0052】
次に、ユニット10を撤去するため上方に持ち上げると、鋼管杭12は、地盤内での周辺抵抗により残置されそうになるが、ユニット10のさや管17のフランジ17aが鋼管杭12と一体化したスペーサ管18のフランジ18aと当接し、このフランジ18aがストッパになり、ユニット10と一体化してつり上げられる(f)。
【0053】
ユニット10が更につり上げられることで、鋼管杭12とともに地盤表面71から離されて回収され撤去が完了する(g)。
【0054】
〈ユニットの変形例〉
【0055】
次に、図10乃至図13により図1〜図3のユニットの変形例を説明する。図10は変形例のユニット20の枠部材等の外観を示す斜視図であり、図11は平面図、図12は側面図、図13は一部断面図である。
【0056】
図10〜図13に示すように、ユニット20は、骨組み構造を持つ鉄鋼製の枠部材21を備える。枠部材21は、I型鋼等からなる複数のビーム部材21aと、複数のビーム部材21aに直交するように配置されたI型鋼等からなる複数のビーム部材21bと、上部の周囲側面に配置された上枠21cと、下部の周囲側面に配置された下枠21dと、四隅で上枠21cと下枠21dを連結する脚部21eと、を備える。
【0057】
ユニット20は、更に、各ビーム21aと21bとの交点部分に配置された複数の鋼管杭23と、枠部材21の全体を覆うように枠部材21の内面側に貼り付けられた樹脂系板材22と、を備える。樹脂系板材22を貼り付けることで、図10のような枠部材21が図1〜図3と同様の蓋部材を構成する。
【0058】
鋼管杭23には図1〜図4と同様にプラスチックボードドレーン材23aが貼り付けられている。各鋼管杭23のドレーン材23aを水平方向に連結するために水平ドレーン材の不織布15が図1,図2と同様に配置されている。また、上面側の樹脂系板材22の一部に樹脂系板材22の代わりに鋼板27を取り付けており、この鋼板27に真空ポンプ等に接続される吸出口26が設けられている。ユニット20を改良対象の地盤に設置し吸出口26から真空吸引等することで同様に地盤の圧密を促進することができる。
【0059】
図10のユニット20によれば、図1〜図3のユニットと同様の効果を得ることができるとともに、枠部材21に樹脂系板材22を貼り付けた構造であるから、ユニットをより軽量に構成でき、好ましい。なお、樹脂系板材22の代わりにシート材を貼り付けるようにしてもよい。また、図13のように枠部材21の側面周囲の上枠21cから下枠21dの間に貼り付けられる樹脂系板材またはシート材は、上枠21cと下枠21dの内面側に貼り付けてあるが、外面側に貼り付けてもよい。
【0060】
〈鋼管杭(ドレーン材)の変形例〉
【0061】
次に、図4のドレーン機能を有する鋼管杭の変形例を図14(a)、(b)により説明する。図14(a)は多数の集水孔を外周面に形成した鋼管杭を示す図であり、図14(b)は外周面をメッシュ構造とした鋼管杭を示す図である。
【0062】
図14(a)の鋼管杭24は、その外周面の全面に上端から下端に至るまで多数の孔24aを形成し、これらの孔24aを集水孔として用いるものである。また、図14(b)の鋼管杭25は、その外周面の全面を上端から下端までメッシュ構造としたものである。
【0063】
上記鋼管杭24及び25は、地盤内に設置されたときに集水孔またはメッシュを通して導かれた水を更に鋼管の上端まで導くために鋼管内部に、天然繊維を用いたファイバドレーン材、不織布を兼ね合わせた透水機能を有するドレーン材等の公知の排水材を充填している。なお、地盤に設置したときに鋼管杭24,25の内部の水位が上昇する場合には、これらの排水材は省略してもよい。
【0064】
以上のように、本実施の形態の軟弱地盤改良工法によれば、陸上または水底下の軟弱な粘性土地盤等の改良に当たり、排水機能を備えた複数の鋼管杭と、内面上部に透水機能を持つ蓋部材とが一体となったユニットを改良対象の地盤に設置し、真空ポンプによる負圧の作用等により圧密を促進させ、改良後にユニットを撤去することにより、改良後の地盤にドレーン等の残材を一切残さずに、また、水底下でも容易な地盤改良が可能になる。
【0065】
以上のように本発明を実施の形態により説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図1〜図3のユニット10、図10のユニット20における鋼管杭12、23は適宜その数及び配置を変更することができることは勿論である。また、各鋼管杭12,23,24,25は、断面形状が円形に限らず、四角形等の多角形状であってもよい。
【0066】
【発明の効果】
本発明によれば、改良後の地盤にドレーン材等の残材が残らずに、また水底下での地盤改良を容易に行うことが可能な軟弱地盤改良工法、及びその軟弱地盤改良工法に適用可能な軟弱地盤改良ユニットを提供できる。
【図面の簡単な説明】
【図1】本実施の形態による軟弱地盤改良ユニットの側面図である。
【図2】図1の軟弱地盤改良ユニットの一部側断面図である。
【図3】図1の軟弱地盤改良ユニットの平面図である。
【図4】図1の鋼管杭の縦断面図(a)及び拡大した横断面図(b)である。
【図5】本実施の形態による軟弱地盤改良工法において陸上の地盤を改良対象とした場合の各工程(a)乃至(d)を示す図である。
【図6】本実施の形態による軟弱地盤改良工法において水底下の地盤を改良対象とした場合の各工程(a)乃至(d)を示す図である。
【図7】図6(c)における水底下の地盤改良工程の別の例を説明するための図である。
【図8】図1〜図3のユニットに設けた鋼管杭の伸縮構造を示す部分的な側断面図である。
【図9】図8の伸縮構造を有するユニットの施工及び沈下追従の各工程(a)乃至(g)を示す工程図である。
【図10】図1〜図3の変形例のユニット20の枠部材等の外観を示す斜視図である。
【図11】図10のユニットの平面図である。
【図12】図10のユニットの側面図である。
【図13】図11の破線で示すXIII-XIII線に沿って切断してみた一部断面図である。
【図14】図14(a)は多数の集水孔を外周面に形成した鋼管杭を示す図であり、図14(b)は外周面をメッシュ構造とした鋼管杭を示す図である。
【符号の説明】
10,20 ユニット、軟弱地盤改良ユニット
11 蓋部材
12、23 鋼管杭(柱状部材)
24,25 鋼管杭(柱状部材)
12a ドレーン材
13 蓋部
14 スカート部
15 不織布、水平ドレーン材
16 吸出口
17 さや管
18 スペーサ管
19 盲フランジ
21 枠部材
22 樹脂系板材
23 鋼管杭
70、76 地盤
71,77 地盤表面
81 真空ポンプ
82 配水管
85 水中真空ポンプ
86 配水管
79 水中排水ポンプ
87 揚水井
88 真空ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a soft ground improvement method and a soft ground improvement unit for improving soft ground such as soft viscous ground.
[0002]
[Prior art]
Conventionally, when trying to reduce the volume and increase the strength of soft viscous ground, a vertical drain material is poured into the ground, a drainage path is secured with horizontal drainage material, etc. A method of promoting consolidation is often used. In this method, a plastic drain is often used as the drain material, and the drain material remains on the ground after the improvement, and thus there is a problem that it becomes an obstacle when excavating later.
[0003]
In addition, when consolidating the ground under the water bottom such as the seabed, lake bottom, and riverbed, a conventional vacuum consolidation method, for example, a method of covering the improved area with a sealing sheet after placing a vertical drain, is used. Under the bottom, it is very difficult work to secure a horizontal drainage path and apply a sealing sheet.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems of the related art, and has a soft ground improvement method capable of easily performing ground improvement under water without leaving residual materials such as drain materials on the ground after the improvement. And a soft ground improvement unit applicable to the soft ground improvement method.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the soft ground improvement method according to the present invention provides a unit in which a columnar member having a drainage function and a lid member having a water-permeable function on an inner surface are integrally formed with the columnar member in the ground. A step of installing the lid member so as to be substantially vertical and facing the ground surface, and applying a negative pressure to the ground surface from the lid member by a vacuum pump connected to the unit, thereby forming water in the ground. Discharging the air, and removing the unit after the ground has been improved.
[0006]
According to this soft ground improvement method, the unit is integrally provided with a columnar member having a drainage function and a lid member having a water-permeability function. ), And the ground can be easily improved even under the water. Further, since the integrated unit is removed by lifting or the like after the ground improvement, no residual material remains on the ground.
[0007]
In addition, a drainage pump may be installed in the vicinity of the underwater ground in a river, a lake, or a sea area instead of the vacuum pump, so that the pressure caused by the head difference caused by the drainage pump acts on the ground surface from the lid member. Thereby, the pressure due to the head difference caused by the drain pump acts on the ground surface, so that the consolidation of the ground can be promoted and the ground can be easily improved particularly at the original position under the water bottom.
[0008]
In this case, by further installing a vacuum pump so that the differential pressure between the reduced pressure by the vacuum pump and the atmospheric pressure acts on the ground surface from the lid member, it is possible to further promote the consolidation of the ground. It should be noted that the vacuum pump and the drainage pump can be operated simultaneously, or the drainage pump alone can be operated so as to be appropriately selected according to the situation of the ground improvement work.
[0009]
In addition, when the unit is removed, the unit is easily removed by injecting air from outside into the unit. In this case, air from the outside is pressed into the ground surface and the ground through the cover member and the columnar member of the unit.
[0010]
Further, the columnar member may be a steel pipe to which a drain material is attached, and the columnar member may be a pipe having a water collecting hole or a pipe having a mesh structure.
[0011]
The lid member may include a steel lid and a skirt, and the unit may be installed such that the skirt is positioned in the ground when the unit is installed. Further, since the lid member includes a steel frame member and a resin-based material or a sealing sheet material attached to the frame member, a structure having a higher sealing effect can be achieved.
[0012]
In addition, it is preferable that the columnar member has a structure capable of expanding and contracting, whereby the columnar member can expand and contract to follow the settlement of the ground, and the settlement following ability can be improved. In addition, it is preferable that the unit includes a plurality of the columnar members, and a horizontal drain member is arranged in a horizontal direction near the lid member of the plurality of columnar members. Thereby, a horizontal drainage path can be easily secured even under the water bottom.
[0013]
The soft ground improvement unit according to the present invention is configured such that a columnar member having a drainage function and a lid member having a water permeable function are integrally formed at an upper portion of the inner surface, and the columnar member is located substantially vertically in the ground, and an inner surface of the lid member is provided. Can be installed so as to face the ground surface and can be integrally removed after the ground is improved.
[0014]
According to this soft ground improvement unit, the columnar member and the cover member are integrally formed, so that the unit can be easily installed on the ground and can be easily removed, and the unit can be removed after the ground has been improved. No wood remains. In addition, the unit after removal can be reused, and the unit can be used efficiently. Preferably, a plurality of columnar members are provided.
[0015]
It is preferable that the unit has a suction port that can be connected to a pipe in which the lid member is connected to an external vacuum pump or a drain pump. Decompression and drainage by a vacuum pump or a drainage pump can be performed through the suction port. In addition, as described above, air can be injected from outside when the unit is removed through the suction port.
[0016]
The columnar member may include a steel pipe having a drain material attached to an outer peripheral surface thereof. Further, the columnar member may include a pipe having a water collecting hole or a pipe having a mesh structure.
[0017]
Preferably, the lid member includes a steel lid and a skirt. When the unit is installed, the skirt is located in the ground. In addition, since the lid member includes a steel frame member and a resin-based plate member or a sealing sheet member attached to the frame member, the weight of the unit can be reduced. In addition, it is preferable that the columnar member has a structure capable of expanding and contracting, whereby the columnar member can expand and contract to follow the settlement of the ground, and the settlement following ability can be improved.
[0018]
The soft ground improvement unit can be used as a unit in the soft ground improvement method described above.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the soft ground improvement unit according to the present embodiment and the installation process thereof will be described with reference to the drawings.
[0020]
<Soft ground improvement unit>
[0021]
FIG. 1 is a side view of a soft ground improvement unit according to an embodiment of the present invention, FIG. 2 is a partial side sectional view of the soft ground improvement unit of FIG. 1, and FIG. 3 is a view of the soft ground improvement unit of FIG. It is a top view. FIG. 4 is a longitudinal sectional view (a) and an enlarged transverse sectional view (b) of the steel pipe pile of FIG. 1.
[0022]
As shown in FIGS. 1 to 3, a soft ground improvement unit (hereinafter, “unit”) 10 includes a plurality of steel pipe piles 12 each having a drain member 12 a attached to an outer peripheral surface thereof, and each steel pipe pile 12 being attached. And a cover member 11 configured integrally with each steel pipe pile 12.
[0023]
As shown in FIG. 3, the lid member 11 has a substantially square square planar shape, and is provided so as to protrude downward from the outer periphery of the lid portion 13, which is made of a steel plate member having a substantially square shape. And a skirt portion 14 made of steel, and an upper portion of the lid portion 13 is made of a structural steel such as an H-shaped steel. As shown in FIG. 3, the steel pipe piles 12 are attached to the lid 13 at substantially equal intervals so as to be arranged in three rows and three rows in a plane, and an external vacuum pump or the like is provided near the diagonal center. Is provided with a pipe-shaped suction port 16 which can be connected to a pipe connected to the pipe. The suction port 16 penetrates through the lid 13 and opens on the inner surface 13 a of the lid 13.
[0024]
As shown in FIGS. 4 (a) and 4 (b), the steel pipe pile 12 has a plurality of plastic board drain members 12a formed of a long plate material on the outer peripheral surface of a long cylindrical steel pipe so as to extend in the longitudinal direction of the steel pipe. Installed. As shown in FIG. 4B, a plurality of plastic board drain members 12a are attached to the outer peripheral surface of the steel pipe at substantially equal intervals. The tip 12b of each steel pipe pile 12 is pointed in a conical shape so that the unit 10 can be easily installed on the ground.
[0025]
As shown in FIGS. 1 and 2, a nonwoven fabric 15 is disposed as a horizontal drain material on the inner surface 13 a of the lid 13 of the unit 10, and the plastic board drain materials 12 a of the plurality of steel pipe piles 12 are horizontally positioned at the top. It is connected so that it can be drained.
[0026]
<Unit installation and removal process on land>
[0027]
Next, with reference to FIG. 5, a process until the soft ground improvement unit is installed on the ground on the ground to be improved and removed is described with reference to FIGS. 1 to 4. FIG. 5 is a diagram showing each of the steps (a) to (d) when the ground on land is an object of improvement.
[0028]
First, using the crane 80, the unit 10 of FIGS. 1 to 3 described above (however, the number of the steel pipe piles 12 is increased) is lifted and placed on the soft ground 70 such as the soft viscous ground to be ground improved. After being moved, the steel pipe pile 12 of the unit 10 is pressed into the ground surface 71 of the soft ground 70 by its own weight from the tip and installed (a). In this manner, the required number of units 10 are installed, and the respective steel pipe piles 12 are vertically positioned in the ground 70, so that a vertical drainage path is formed in the ground 70. At this time, after the inner surface 13a of the lid portion 13 of the unit 10 is grounded, the following steps (b) and (c) may be performed, and the lid member 11 may be press-fitted together with suction. In addition, since the nonwoven fabric 15 of the horizontal drain material is attached to the unit 10 side as shown in FIGS. 1 and 2, a horizontal drainage path is formed by installing the unit 10.
[0029]
Next, a water distribution pipe 82 is connected to the suction port 16 of the lid member 11 of each unit 10, and the water distribution pipe 82 is connected to a vacuum pump 81 and a drainage tank (not shown) (b).
[0030]
Next, when the vacuum pump 81 is operated, water and air in the ground 70 discharged to the inner surface 13a of the lid 13 of the unit 10 through the plastic board drain material 12a of each steel pipe pile 12 and the nonwoven fabric 15 of the horizontal drain material are discharged. The water is discharged to an external drain tank via the suction port 16 and the water distribution pipe 82. Thereby, the consolidation of the ground 70 is promoted, and the ground in the ground 70 is improved (c). Since the skirt portion 14 of the lid member 11 is located between the upper part of the steel pipe pile 12 and the ground surface 71, it is possible to prevent air from being sucked from the surrounding ground surface during compaction by vacuum suction.
After this ground improvement, the entire unit 10 is removed from the improved ground 72 by lifting the unit 10 using the crane 80 (d). When the unit 10 is removed, a compressor (not shown) or the like is connected to the water distribution pipe 82, and air is press-fitted from the suction port 16 of each unit 10 to the inner surface 13a of the lid 13 and the drain material 12a. 10 can be easily removed.
[0032]
As described above, according to the soft ground improvement method of FIG. 5, the unit 10 includes the steel pipe pile 12 and the cover member 11 integrally, and there is no need to separately install the steel pipe pile and the cover member. Since it can be installed integrally as 10, there is no need to cover the improved area with a sealing sheet, and installation on the land 70 on land to be improved can be easily performed. Further, the integrated unit 10 is removed by lifting after the ground improvement, and no residual material such as drain material remains on the ground 72 after the improvement, so that there is no obstacle to performing excavation or the like later. Also, since the horizontal drain material (nonwoven fabric 15) can be attached to the unit 10 and integrated therewith, the installation is easy, the horizontal drainage path can be easily secured, and the removal can also be integrated, so that the nonwoven fabric 15 is also attached to the ground surface 71. Will not remain.
[0033]
<Installation and removal process of units on the ground where water drops>
[0034]
Next, referring to FIG. 6, a process until the soft ground improvement unit is installed on the soft ground such as the soft viscous ground to be ground-improved under the seabed, the lake bottom, and the riverbed such as a seabed, a lake bottom, and a riverbed and removed is shown in FIGS. 1 to 4. It will be described with reference to FIG. FIG. 6 is a diagram showing each of the steps (a) to (d) when the ground under the water bottom is targeted for improvement.
[0035]
First, using the hoist ship 90, the unit 10 of FIGS. 1 to 3 described above (however, the number of the steel pipe piles 12 is increased) is lifted and immersed in water 75, and the steel pipe piles 12 of the unit 10 are removed. The tip of the unit 10 is press-fitted into the ground surface 77 of the soft ground 76 with its own weight and installed (a). In this way, a required number of units 10 are installed, and each steel pipe pile 12 is vertically positioned in the ground 76, so that a vertical drainage path is formed in the ground 76. At this time, after the inner surface 13a of the lid portion 13 of the unit 10 is grounded, the following steps (b) and (c) may be performed, and the lid member 11 may be press-fitted together with suction. In addition, since the nonwoven fabric 15 of the horizontal drain material is attached to the unit 10 side as shown in FIGS. 1 and 2, a horizontal drainage path is formed by installing the unit 10.
[0036]
After installing the unit 10 on the soft ground 76 under the water bottom as described above, the underwater vacuum pump 85 is installed by the hoist ship 90, and the water distribution pipe 86 to the suction port 16 of each unit 10 is provided by diving work. (B).
[0037]
Next, when the underwater vacuum pump 85 is operated, water and air in the ground 76 discharged to the inner surface 13a of the cover 13 of the unit 10 through the plastic board drain material 12a of each steel pipe pile 12 and the nonwoven fabric 15 of the horizontal drain material are discharged. It is discharged through each suction port 16 and the water pipe 86. Thereby, the consolidation of the ground 76 is promoted, and the ground is improved in the ground 76 (c).
[0038]
After the ground improvement, the entire unit 10 is removed from the improved ground 78 by lifting the unit 10 using the hoist ship 90 (d). When the unit 10 is removed, a compressor (not shown) or the like is connected to the water distribution pipe 86, and air is press-fitted from the suction port 16 of each unit 10 to the inner surface 13a of the lid 13 and the drain material 12a. 10 can be easily removed.
[0039]
As described above, according to the soft ground improvement method of FIG. 6, the unit 10 integrally includes the steel pipe pile 12 and the cover member 11, and separates the steel pipe pile and the cover member from the underwater ground to be improved. And the unit 10 can be installed integrally as a unit 10. Therefore, there is no need to cover the improved area under the water bottom with a sealing sheet, and installation on the ground under the water bottom can be easily performed. In addition, the integrated unit 10 is removed by lifting after the ground improvement, and no residual material such as a drain material remains on the ground 78 after the improvement, so that there is no obstacle to performing excavation or the like later. In addition, since the horizontal drain material (nonwoven fabric 15) can also be integrally attached to the unit 10, it can be easily installed under the water bottom, and a horizontal drainage path can be easily secured. It does not remain on the ground surface 77.
[0040]
Next, a modified example of the method of improving the ground under the water will be described with reference to FIG. FIG. 7 is a diagram for explaining another example of the ground improvement process under the water floor.
[0041]
The subsurface improvement process of FIG. 7 is such that both the pressure due to the pressure difference from the atmospheric pressure due to the decompression of the vacuum pump and the pressure due to the head difference due to the lowering of the water level act as a load on the subsurface underground to be improved. It was done.
[0042]
That is, as shown in FIG. 7, a pumping well 87 composed of a sealed tank is installed on a ground surface 77 below the water bottom, and a submersible drainage pump 79 connected to a water distribution pipe 86 connected to the suction port 16 of each unit 10. Is installed at the bottom of the pumping well 87, and a vacuum pump 88 is connected to the top. By discharging the water inside the pumping well 87 to the outside through the water distribution pipe 89 by the submersible drainage pump 79 and lowering the water level in the pumping well 87, the pressure due to the head difference Δh due to the lowering of the water level causes the pressure from the lid 13 of the unit 10 to reach the ground. Join 76. Further, by reducing the pressure inside the pumping well 87 by the vacuum pump 88, a differential pressure between the atmospheric pressure and the pressure in the pumping well 87 is applied to the ground 76 from the lid 13. As described above, both the pressure due to the pressure difference from the atmospheric pressure and the pressure due to the head difference due to the decrease in the water level are applied to the ground 76 as a load, whereby a greater consolidation promoting effect can be obtained.
[0043]
In FIG. 7, by opening the upper end 87 a of the pumping well 87 and lowering the water level in the pumping well 87 by the submersible drainage pump 79, only the pressure due to the head difference due to the lowering of the water level moves from the cover 13 of the unit 10 to the ground. 76 may be added. In this case, as shown in FIG. 7, the vacuum pump 88 and the drainage pump 79 are simultaneously operated, or the upper end 87a is opened to switch only the drainage pump 79 to operate, so that the construction can be changed according to the construction conditions. Thus, two operation states can be appropriately selected.
[0044]
<Stretchable structure in the ground of steel pipe pile>
[0045]
Next, a structure in which a steel pipe pile of a unit installed on the ground is expandable and contractable so as to follow the settlement of the ground will be described with reference to FIGS. FIG. 8 is a partial side sectional view showing a telescopic structure of a steel pipe pile provided in the unit shown in FIGS. 1 to 3, and FIG. 9 is a diagram showing each step of construction and following settlement of the unit having the telescopic structure of FIG. It is process drawing which shows (a) thru | or (g).
[0046]
As shown in FIG. 8, the unit 10 has a sheath pipe 17 which is installed so as to penetrate the lid 13 and has a flange 17 a at an upper part and an external thread part at a lower end side for each position of each steel pipe pile 12. It further comprises a spacer tube 18 having a blind flange 18a at the top and a blind flange 19. In this case, each of the steel pipe piles 12 has an outer diameter smaller than the inner diameter of the sheath pipe 17, and has an inner thread portion that engages with the thread portion of the spacer tube 18 at the upper portion.
[0047]
The installation process of the unit 10 as shown in FIG. 8 will be described with reference to FIG. First, the spacer pipe 18 is screwed into the inner thread portion on the upper part of the steel pipe pile 12, the steel pipe pile 12 is inserted into the sheath pipe 17, and the three flanges 17a, 18a, 19 are bolted (a).
[0048]
5 or 6, the steel pipe pile 12 penetrates from the ground surface 71 into the ground in the same manner as in the unit 10 having the above-described structure (b).
[0049]
Next, the spacer tube 18 is removed, and a blind flange 19 is attached to the flange 17a of the sheath tube 17 (c).
[0050]
When negative pressure loading is started from the ground surface 71 as shown in FIGS. 5 to 7, the unit 10 sinks with the lid 13 and the like as the surrounding ground sinks. At this time, the steel pipe pile 12 is attached to the spacer pipe. Since the unit 10 moves upward by the removed stroke 18 and moves as if it contracts, the unit 10 can follow the settlement of the ground, and the settlement followability is improved (d). Further, since the steel pipe pile 12 is moved by the stroke of the spacer pipe 18, the drainage can be performed in the same manner.
[0051]
After the completion of the negative pressure loading, the blind flange 19 is removed, and the spacer pipe 18 is screwed into the upper portion of the steel pipe pile 12 again (e).
[0052]
Next, when the unit 10 is lifted upward for removal, the steel pipe pile 12 is likely to be left due to peripheral resistance in the ground, but the flange 17a of the sheath 17 of the unit 10 is integrated with the steel pipe pile 12. The flange 18a of the spacer tube 18 contacts the flange 18a, and the flange 18a serves as a stopper, and is lifted integrally with the unit 10 (f).
[0053]
When the unit 10 is further lifted, the unit 10 is separated from the ground surface 71 together with the steel pipe pile 12 to be collected and removed (g).
[0054]
<Modified example of unit>
[0055]
Next, modified examples of the units shown in FIGS. 1 to 3 will be described with reference to FIGS. FIG. 10 is a perspective view showing the appearance of a frame member and the like of the unit 20 of the modification, FIG. 11 is a plan view, FIG. 12 is a side view, and FIG. 13 is a partial cross-sectional view.
[0056]
As shown in FIGS. 10 to 13, the unit 20 includes a steel frame member 21 having a framework structure. The frame member 21 is arranged on a plurality of beam members 21a made of an I-beam or the like, a plurality of beam members 21b made of an I-beam or the like arranged so as to be orthogonal to the plurality of beam members 21a, and an upper peripheral side surface. An upper frame 21c, a lower frame 21d disposed on the lower peripheral side surface, and legs 21e connecting the upper frame 21c and the lower frame 21d at four corners are provided.
[0057]
The unit 20 further includes a plurality of steel pipe piles 23 arranged at the intersections of the beams 21a and 21b, and a resin-based plate material 22 attached to the inner surface side of the frame member 21 so as to cover the entire frame member 21. And. The frame member 21 as shown in FIG. 10 forms a lid member similar to FIGS. 1 to 3 by attaching the resin-based plate member 22.
[0058]
A plastic board drain material 23a is attached to the steel pipe pile 23 as in FIGS. In order to connect the drain members 23a of the steel pipe piles 23 in the horizontal direction, a non-woven fabric 15 of a horizontal drain member is arranged in the same manner as in FIGS. Also, a steel plate 27 is attached to a part of the resin-based plate 22 on the upper surface side instead of the resin-based plate 22, and the steel plate 27 is provided with a suction port 26 connected to a vacuum pump or the like. The consolidation of the ground can be similarly promoted by installing the unit 20 on the ground to be improved and performing vacuum suction or the like from the suction port 26.
[0059]
According to the unit 20 of FIG. 10, the same effects as those of the units of FIGS. 1 to 3 can be obtained, and since the resin-based plate 22 is attached to the frame member 21, the unit is configured to be lighter. Yes, it is preferable. Note that a sheet material may be attached instead of the resin-based plate material 22. Further, as shown in FIG. 13, the resin-based plate or sheet material adhered between the upper frame 21c and the lower frame 21d around the side surface of the frame member 21 is adhered to the inner surfaces of the upper frame 21c and the lower frame 21d. However, it may be attached to the outer surface side.
[0060]
<Modified example of steel pipe pile (drain material)>
[0061]
Next, a modified example of the steel pipe pile having the drain function in FIG. 4 will be described with reference to FIGS. FIG. 14A is a diagram illustrating a steel pipe pile having a plurality of water collecting holes formed on an outer peripheral surface, and FIG. 14B is a diagram illustrating a steel pipe pile having an outer peripheral surface having a mesh structure.
[0062]
The steel pipe pile 24 of FIG. 14A has a large number of holes 24a formed from the upper end to the lower end on the entire outer peripheral surface thereof, and these holes 24a are used as water collecting holes. The steel pipe pile 25 of FIG. 14B has a mesh structure from the upper end to the lower end on the entire outer peripheral surface.
[0063]
The steel pipe piles 24 and 25 are provided with a fiber drain material using a natural fiber and a nonwoven fabric inside the steel pipe in order to further guide water guided through a water collecting hole or a mesh when installed in the ground to the upper end of the steel pipe. It is filled with a known drainage material such as a drain material having a combined water permeability function. In addition, when the water level inside the steel pipe piles 24 and 25 rises when installed on the ground, these drainage materials may be omitted.
[0064]
As described above, according to the soft ground improvement method of the present embodiment, a plurality of steel pipe piles having a drainage function and a water-permeable function are provided on the upper inner surface in improving soft viscous ground on land or below the water floor. Install the unit with the lid member on the ground to be improved, promote the consolidation by the action of negative pressure by the vacuum pump, etc., and remove the unit after the improvement, so that drain etc. It is possible to easily improve the ground without leaving any residue and under the water.
[0065]
As described above, the present invention has been described with the embodiments, but the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention. For example, it is a matter of course that the number and arrangement of the steel pipe piles 12 and 23 in the unit 10 of FIGS. 1 to 3 and the unit 20 of FIG. 10 can be appropriately changed. Further, each of the steel pipe piles 12, 23, 24 and 25 is not limited to a circular cross section, but may be a polygon such as a quadrangle.
[0066]
【The invention's effect】
According to the present invention, it is applied to a soft ground improvement method capable of easily performing soil improvement under the water bottom without leaving residual materials such as drain materials on the improved ground, and a soft ground improvement method thereof. A possible soft ground improvement unit can be provided.
[Brief description of the drawings]
FIG. 1 is a side view of a soft ground improvement unit according to the present embodiment.
FIG. 2 is a partial side sectional view of the soft ground improvement unit of FIG.
FIG. 3 is a plan view of the soft ground improvement unit of FIG. 1;
FIG. 4 is a longitudinal sectional view (a) and an enlarged transverse sectional view (b) of the steel pipe pile of FIG.
FIG. 5 is a diagram showing each step (a) to (d) in a case where land on the ground is to be improved in the soft ground improvement method according to the present embodiment.
FIG. 6 is a view showing each step (a) to (d) when the ground under the water bottom is targeted for improvement in the soft ground improvement method according to the present embodiment.
FIG. 7 is a view for explaining another example of the ground improvement process under the water floor in FIG. 6 (c).
FIG. 8 is a partial side sectional view showing a telescopic structure of a steel pipe pile provided in the unit shown in FIGS.
FIG. 9 is a process diagram showing each of the steps (a) to (g) of construction and settlement following of the unit having the elastic structure of FIG.
FIG. 10 is a perspective view showing an appearance of a frame member and the like of a unit 20 of a modified example of FIGS.
FIG. 11 is a plan view of the unit of FIG. 10;
FIG. 12 is a side view of the unit of FIG. 10;
FIG. 13 is a partial cross-sectional view taken along line XIII-XIII shown by a broken line in FIG.
FIG. 14 (a) is a diagram showing a steel pipe pile having a large number of water collecting holes formed on an outer peripheral surface, and FIG. 14 (b) is a diagram showing a steel pipe pile having an outer peripheral surface having a mesh structure.
[Explanation of symbols]
10, 20 units, soft ground improvement unit 11 lid member 12, 23 steel pipe pile (columnar member)
24,25 steel pipe pile (columnar member)
12a Drain material 13 Lid portion 14 Skirt portion 15 Non-woven fabric, horizontal drain material 16 Suction port 17 Sheath tube 18 Spacer tube 19 Blind flange 21 Frame member 22 Resin-based plate material 23 Steel pipe pile 70, 76 Ground 71, 77 Ground surface 81 Vacuum pump 82 Water distribution pipe 85 Submersible vacuum pump 86 Water distribution pipe 79 Submersible drainage pump 87 Pumping well 88 Vacuum pump

Claims (18)

排水機能を有する柱状部材と、内面上部に透水機能を有する蓋部材とが一体に構成されたユニットを前記柱状部材が地盤内にほぼ垂直に位置し前記蓋部材の内面が地盤表面に対向するように設置する工程と、
前記ユニットに連結された真空ポンプによって負圧を前記蓋部材から前記地盤表面に作用させることで前記地盤内の水及び空気を排出する工程と、
前記地盤の改良後に前記ユニットを撤去する工程と、を含むことを特徴とする軟弱地盤改良工法。
A unit in which a columnar member having a drainage function and a lid member having a water-permeability function are integrally formed at the upper part of the inner surface is arranged such that the columnar member is located almost vertically in the ground, and the inner surface of the lid member faces the ground surface. The process of installing the
Draining water and air in the ground by applying a negative pressure to the ground surface from the lid member by a vacuum pump connected to the unit;
Removing the unit after the ground is improved.
河川、湖沼または海域における水底地盤の近傍に前記真空ポンプの代わりに排水ポンプを設置し、その排水ポンプによる水頭差による圧力が前記蓋部材から前記地盤表面に作用するようにしたことを特徴とする請求項1に記載の軟弱地盤改良工法。A drain pump is installed instead of the vacuum pump in the vicinity of the bottom of the water in a river, a lake or a sea area, and the pressure caused by the head difference caused by the drain pump acts on the ground surface from the lid member. The soft ground improvement method according to claim 1. 真空ポンプを更に設置し、前記真空ポンプによる減圧と大気圧との差圧が前記蓋部材から前記地盤表面に作用するようにしたことを特徴とする請求項2に記載の軟弱地盤改良工法。The soft ground improvement method according to claim 2, wherein a vacuum pump is further provided, and a differential pressure between the reduced pressure by the vacuum pump and the atmospheric pressure is applied to the ground surface from the lid member. 前記ユニットを撤去する際に前記ユニットに対し外部から空気を圧入することを特徴とする請求項1,2または3に記載の軟弱地盤改良工法。The soft ground improvement method according to claim 1, 2, or 3, wherein air is externally injected into the unit when the unit is removed. 前記柱状部材がドレーン材をその外周面に取り付けた鋼管であることを特徴とする請求項1乃至4のいずれか1項に記載の軟弱地盤改良工法。The soft ground improvement method according to any one of claims 1 to 4, wherein the columnar member is a steel pipe having a drain material attached to an outer peripheral surface thereof. 前記柱状部材が集水孔付きの管またはメッシュ構造の管であることを特徴とする請求項1乃至4のいずれか1項に記載の軟弱地盤改良工法。The soft ground improvement method according to any one of claims 1 to 4, wherein the columnar member is a pipe having a water collecting hole or a pipe having a mesh structure. 前記蓋部材が鉄鋼製の蓋部とスカート部とを備え、前記ユニットの設置時に前記スカート部が前記地盤内に位置することを特徴とする請求項1乃至6のいずれか1項に記載の軟弱地盤改良工法。The soft member according to any one of claims 1 to 6, wherein the cover member includes a steel cover portion and a skirt portion, and the skirt portion is located in the ground when the unit is installed. Ground improvement method. 前記蓋部材が鉄鋼製の枠部材と前記枠部材に貼り付けられた樹脂系板材または密閉シート材とを備えることを特徴とする請求項1乃至6のいずれか1項に記載の軟弱地盤改良工法。The soft ground improvement method according to any one of claims 1 to 6, wherein the lid member includes a steel frame member and a resin-based plate material or a sealing sheet material attached to the frame member. . 前記ユニットは前記柱状部材が伸縮できる構造を備えることを特徴とする請求項1乃至8のいずれか1項に記載の軟弱地盤改良工法。The soft ground improvement method according to any one of claims 1 to 8, wherein the unit has a structure in which the columnar member can expand and contract. 前記ユニットは前記柱状部材を複数備え、前記複数の柱状部材の前記蓋部材の近傍に水平方向に水平ドレーン材を配置したことを特徴とする請求項1乃至9のいずれか1項に記載の軟弱地盤改良工法。The soft unit according to any one of claims 1 to 9, wherein the unit includes a plurality of the columnar members, and a horizontal drain member is arranged in a horizontal direction near the lid member of the plurality of columnar members. Ground improvement method. 排水機能を有する柱状部材と、内面上部に透水機能を有する蓋部材とが一体に構成されかつ前記柱状部材が地盤内にほぼ垂直に位置し前記蓋部材の内面が地盤表面に対向するように設置可能であるとともに地盤改良後に一体に撤去可能に構成されたことを特徴とする軟弱地盤改良ユニット。A columnar member having a drainage function and a lid member having a water-permeability function are integrally formed at the upper part of the inner surface, and the columnar member is located substantially vertically in the ground, and is installed such that the inner surface of the lid member faces the ground surface. A soft ground improvement unit characterized in that it is possible and can be integrally removed after the ground improvement. 前記蓋部材が外部の真空ポンプまたは排水ポンプと連結する管と接続可能な吸出口を有することを特徴とする請求項11に記載の軟弱地盤改良ユニット。The soft ground improvement unit according to claim 11, wherein the lid member has a suction port that can be connected to a pipe connected to an external vacuum pump or a drain pump. 前記柱状部材がドレーン材をその外周面に取り付けた鋼管を備えることを特徴とする請求項11または12に記載の軟弱地盤改良ユニット。The soft ground improvement unit according to claim 11, wherein the columnar member includes a steel pipe having a drain material attached to an outer peripheral surface thereof. 前記柱状部材が集水孔付きの管またはメッシュ構造の管を備えることを特徴とする請求項11または12に記載の軟弱地盤改良ユニット。The soft ground improvement unit according to claim 11, wherein the columnar member includes a pipe having a water collecting hole or a pipe having a mesh structure. 前記蓋部材が鉄鋼製の蓋部とスカート部とを備えることを特徴とする請求項11乃至14のいずれか1項に記載の軟弱地盤改良ユニット。The soft ground improvement unit according to any one of claims 11 to 14, wherein the lid member includes a steel lid and a skirt. 前記蓋部材が鉄鋼製の枠部材と前記枠部材に貼り付けられた樹脂系板材または密閉シート材とを備えることを特徴とする請求項11乃至15のいずれか1項に記載の軟弱地盤改良ユニット。The soft ground improvement unit according to any one of claims 11 to 15, wherein the lid member includes a frame member made of steel and a resin-based plate member or a sealing sheet member attached to the frame member. . 前記柱状部材が伸縮できる構造を備えることを特徴とする請求項11乃至16のいずれか1項に記載の軟弱地盤改良ユニット。The soft ground improvement unit according to any one of claims 11 to 16, wherein the columnar member has a structure capable of expanding and contracting. 請求項11乃至17のいずれか1項に記載の軟弱地盤改良ユニットを使用することを特徴とする請求項1乃至10のいずれか1項に記載の軟弱地盤改良工法。The soft ground improvement method according to any one of claims 1 to 10, wherein the soft ground improvement unit according to any one of claims 11 to 17 is used.
JP2002360698A 2002-12-12 2002-12-12 Soft ground improving method and soft ground improving unit Pending JP2004190374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360698A JP2004190374A (en) 2002-12-12 2002-12-12 Soft ground improving method and soft ground improving unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360698A JP2004190374A (en) 2002-12-12 2002-12-12 Soft ground improving method and soft ground improving unit

Publications (1)

Publication Number Publication Date
JP2004190374A true JP2004190374A (en) 2004-07-08

Family

ID=32759707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360698A Pending JP2004190374A (en) 2002-12-12 2002-12-12 Soft ground improving method and soft ground improving unit

Country Status (1)

Country Link
JP (1) JP2004190374A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340721C (en) * 2005-04-01 2007-10-03 东南大学 Operation method for consolidating soft soil foundation by pneumatic flerry vacuum preloading method
CN101182781B (en) * 2007-08-06 2011-10-19 上海市政工程设计研究总院 Breathing place used for synthesis pipe canal
KR101188671B1 (en) 2012-05-24 2012-10-09 초석건설산업(주) High quality vacuum method and equipment
CN103015399A (en) * 2012-12-26 2013-04-03 中交四航工程研究院有限公司 Earthquake disaster reduction system for liquefiable foundation and foundation treatment method
KR20140124518A (en) * 2013-04-17 2014-10-27 현대중공업 주식회사 Draining method of soft ground of sea floor
CN104452734A (en) * 2014-11-12 2015-03-25 叶吉 Rapid soft foundation separation preloading method
CN106284291A (en) * 2016-08-12 2017-01-04 中交第四航务工程勘察设计院有限公司 The plug in draining board precipitation piling prepressing soft base processing method of steel cylinder structure sealing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340721C (en) * 2005-04-01 2007-10-03 东南大学 Operation method for consolidating soft soil foundation by pneumatic flerry vacuum preloading method
CN101182781B (en) * 2007-08-06 2011-10-19 上海市政工程设计研究总院 Breathing place used for synthesis pipe canal
KR101188671B1 (en) 2012-05-24 2012-10-09 초석건설산업(주) High quality vacuum method and equipment
CN103015399A (en) * 2012-12-26 2013-04-03 中交四航工程研究院有限公司 Earthquake disaster reduction system for liquefiable foundation and foundation treatment method
KR20140124518A (en) * 2013-04-17 2014-10-27 현대중공업 주식회사 Draining method of soft ground of sea floor
CN104452734A (en) * 2014-11-12 2015-03-25 叶吉 Rapid soft foundation separation preloading method
CN106284291A (en) * 2016-08-12 2017-01-04 中交第四航务工程勘察设计院有限公司 The plug in draining board precipitation piling prepressing soft base processing method of steel cylinder structure sealing

Similar Documents

Publication Publication Date Title
KR100679601B1 (en) Method of suction drain for water drainage in soft ground
JP4123248B2 (en) Underwater foundation structure
JPH0454004B2 (en)
KR101073695B1 (en) A drainage system for soft ground
JP2004190374A (en) Soft ground improving method and soft ground improving unit
KR20140058951A (en) Caisson tube water-tight structure and under water structure construction method for soft ground
JP2003261930A (en) Consolidation improvement method for water bottom soft ground
JP5713442B2 (en) Ground improvement method and decompression vessel
JP2007303270A (en) Ground improvement construction method
KR100617950B1 (en) Under Water Dry Structure Construction Method and Functional Working Ship
JP4114944B2 (en) Ground improvement method
KR20120012358A (en) Foundation construction methods
JP7163661B2 (en) Suction base structure
CN106592600A (en) Construction method for early warning supporting system adjacent to running subway in complex environment
JPH0220720A (en) Underground construction method by muddy water excavation
JP2002121754A (en) Method for constructing underwater foundation
JP3446647B2 (en) Construction method of underwater foundation structure using caisson frame and underbody for underwater foundation structure
KR100467282B1 (en) Drainage structure for basic improvement of soil of construction using vertical drainage member
JP2015218562A (en) Ground improvement method
JP4465808B2 (en) Construction method for underwater foundation
KR100621410B1 (en) Dry Construction Method of Underwater Structure Using Watertight Caisson
CN112030935A (en) Method for treating piping of deep foundation pit
JPS6143493B2 (en)
CN205501991U (en) Prevent blockking up multi -functional precast tubular pile
JP4346078B2 (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Effective date: 20070608

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070613

A521 Written amendment

Effective date: 20070725

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918