JP2004188370A - Collision type air flow grinder, collision member and method for recycling collision member - Google Patents

Collision type air flow grinder, collision member and method for recycling collision member Download PDF

Info

Publication number
JP2004188370A
JP2004188370A JP2002361983A JP2002361983A JP2004188370A JP 2004188370 A JP2004188370 A JP 2004188370A JP 2002361983 A JP2002361983 A JP 2002361983A JP 2002361983 A JP2002361983 A JP 2002361983A JP 2004188370 A JP2004188370 A JP 2004188370A
Authority
JP
Japan
Prior art keywords
collision
collision member
chromium
alloy layer
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002361983A
Other languages
Japanese (ja)
Inventor
Momosuke Takaichi
桃介 高市
Takatsura Nanba
崇貫 難波
Mitsuru Yonemura
満 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002361983A priority Critical patent/JP2004188370A/en
Publication of JP2004188370A publication Critical patent/JP2004188370A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new collision type air flow grinder which is excellent in economy, wear resistance and maintenance properties, and can efficiently grind a powder raw material. <P>SOLUTION: At least either one of an accelerating tube, an inner wall of a grinding room, an outlet part of the grinding room or a collision member of the collision type air flow grinder is composed of a material coated with a chromium alloy plating containing chromium carbide and satisfying a Vickers hardness of 900-1,300. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はジェット気流(高圧気体)を用い、粉体原料を粉砕する衝突式気流粉砕機に関する。
【0002】
【従来の技術】
従来ジェット気流を用いた衝突式気流粉砕機は、ジェット気流に粉体原料を乗せて粒子混合気流とし、加速管の出口より噴射させ、この粒子混合気流を加速管の出口前方に設けた衝突部材の衝突面に衝突させて、その衝撃力により粉体原料を粉砕するものである。衝突式気流粉砕機の一例を図1に基づいて説明する。
【0003】
図1の衝突式気流粉砕機は、高圧気体供給ノズル2を接続した加速管3の出口13に対向して衝突部材4を設け、加速管3に供給した高圧気体の流動により、加速管3の中途に連通させた被粉砕物供給口1から加速管3の内部に被粉砕物を導入し、これを高圧気体と共に噴射して衝突部材4の衝突面に衝突させ、その衝撃によって粉砕する様にしたものである。
【0004】
この様な衝突式気流粉砕機において、粉砕すべき粉体は常時、各装置要素と激しく衝突している為、各装置要素の磨耗劣化を避けることは出来ない。特に、大きな負荷がかかり磨耗が激しく進行する場所は、図1の装置においては、原料が投入され高速度で移動する加速管3、原料が激しく衝突する衝突部材4の衝突面及び衝突面で粉砕された粉砕物が更に二次衝突する粉砕室内壁6、そして粉砕室出口部分5である。これらの部材が磨耗により消耗すると、粉砕効率の低下をもたらし、磨耗した不純物が製品に混入することになり好ましくない。この為に、これらの部材の構成材料として耐磨耗性に優れたアルミナ系セラミックスや、炭化ケイ素セラミック焼結体が使用されている(特許文献1参照)。しかしながら、これらのセラミックス材料は一般的に高価であり、且つ磨耗後の再生利用は困難を極め、図3のように表面が僅かにでも磨耗したら廃棄せざるを得ない。また、不注意に落下させた場合、先端部や角部が容易に欠けてしまい、取り扱いに細心の注意を要し磨耗交換等の保全作業に熟練を要した。更に、これらのセラミックス材料はその製造工程に金型が必須のため、僅かな形状変更でもその製作納期が長期に及び、結果的に価格が高価に成らざるを得なかった。このようのに、経済性や保全時作業性の面で更に良質の材料が望まれている。
【0005】
また、衝突式気流粉砕機の耐磨耗性能向上を安価に達成させる方法として加速管、粉砕室内壁及び衝突部材等に、クロムモリブデン鋼等(SCM440等)の合金鋼を母体とし、粉砕処理面にWC−Co(タングステンカーバイド−コバルト)材やNi−Cr(ニッケル−クロム)材を溶射被覆後再溶融(フュージング)処理したり、或いはこれらの耐磨耗溶射材料を高速フレーム溶射(呼称HVOF)する方法もある(非特許文献1参照)。しかしながら、これら溶射による耐磨耗溶射被覆は、溶射された溶射材料と母材金属との分子間結合力が弱く、剥離耐磨耗性能において上記セラミックス材料に劣っていた。
【0006】
【特許文献1】
特許第3085510号
【非特許文献1】
日本規格協会発行「溶射技術マニュアル」69〜74ページ
【0007】
【発明が解決しようとする課題】
従って本発明の目的は、上記の様な従来技術の問題点を解決して、経済性・耐磨耗性・保全性のそれぞれに優れ、粉体原料を効率良く粉砕出来る新規な衝突式気流粉砕機を提供することである。
【0008】
【課題を解決する為の手段】
上記目的は以下の本発明によって達成される。
【0009】
即ち、本発明は、高圧気体により被粉砕物を搬送し加速する為の加速管と、被粉砕物を微粉砕する為の粉砕室を有し、該粉砕室内に、加速管の出口の開口面に対向して設けた衝突部材を有する衝突式気流粉砕機において、
上記加速管、粉砕室内壁、粉砕室出口部分及び衝突部材の少なくともいずれかが、炭化クロムを含有するクロム合金メッキでコーティングされ、且つビッカース硬度が900乃至1300を満足する材質により構成されていることを特徴とする衝突式気流粉砕機である。
【0010】
衝突式気流粉砕機内の加速管、粉砕室内壁、粉砕室出口部分及び衝突部材の母材には、S45Cなどの炭素鋼やSCM材などのクロムモリブデン鋼などが用いられることが多い。これらの母材表面をクロム合金でコーティングすることにより、表面硬さが大きく、耐摩耗性が高くなり、長寿命の部材となる。ここで、クロム合金に存在する、分子間結合力の強い炭化クロム(Cr236)が表層からある程度の深度以上まで、具体的には5μm以上の深度まで、存在することで母材表面との密着性を高め、剥離やクラックといった現象の発生頻度を極力少なくすることができる。
【0011】
本発明において、炭化クロムを含有するクロム合金の母材表面へのコーティングは「めっき」により処理し、表面を均一かつ滑らかに仕上げ、摩擦係数を小さくして耐摩耗性を向上させることが可能となる。このようなめっき処理としては、例えば、ダイクロン処理(千代田第一工業(株))があげられる。めっき処理した後、部材の表面粗さを整えるために、バフ研磨の如き研磨処理やショットブラストの如きブラスト処理を施しても良い。
【0012】
表面硬さがHV900乃至1300の範囲であることにより、粉砕面の摩耗量を極力少なくすることができ、部材の交換頻度を少なくすることができる。表面硬さがHV900未満では耐摩耗性が低下し始め、また粉砕能力を向上させることができなくなる。表面硬さがHV1300を超える場合には表面が硬すぎて脆くなるため剥離・クラックが生じやすくなり、部材の交換頻度が増加し始める。
【0013】
【作用】
衝突式気流粉砕機の加速管、粉砕室内壁、粉砕室出口部分及び衝突部材の少なくともいずれかを、炭化クロムを含有するクロム合金メッキでコーティングされ、且つビッカース硬度が900乃至1300を満足する材質により構成することによって、従来技術の問題点が解決され、耐摩耗性・経済性共に優れ、粉体原料を効率良く粉砕出来る新規な衝突式気流粉砕機を提供することが出来る。
【0014】
【発明の実施の形態】
好ましい構成の衝突式気流粉砕機として図4を例示する。図4の粉砕機について説明すると、高圧気体により被粉砕物を搬送加速する為に加速管21と、該加速管に対向して設けた衝突面を有する衝突部材30を有し、該加速管21がラバルノズル状をなし、該加速管21のスロート部上流に高圧気体供給ノズル23を配し、該高圧気体供給ノズルの外壁とスロート部22の内壁間に被粉砕物供給口を設け、更に該加速管21の出口に接続して設けた粉砕室の軸方向断面形状が円形状を有している。
【0015】
被粉砕物供給筒25より供給された被粉砕物は、中心軸を鉛直方向に配設した加速管21の加速管スロート部22の内壁と、中心が加速管21の中心軸と同軸上にある高圧気体供給ノズル23の外壁との間で形成された被粉砕物供給口24へ到達する。一方、高圧気体は高圧気体供給口26より導入され高圧気体チャンバー27を経て、一本好ましくは複数本の高圧気体導入管28を通り、高圧気体供給ノズル23より加速管出口29方向に向かって急激に膨脹しながら噴出する。この時、加速管スロート部22の近傍で発生するエゼクター効果により、被粉砕物はこれと共存している気体に同伴されながら、被粉砕物供給口24より加速管出口29方向に向けて吸引され、加速管スロート部22において高圧気体と均一に混合されながら急加速し、加速管出口29に対向配置された衝突部材30の衝突面に、粉塵濃度の偏りがなく均一な固気混合気流の状態で衝突して粉砕される。
【0016】
図4の粉砕機において、加速管21、衝突部材30、粉砕室出口33及び粉砕室内壁32の少なくともいずれかが、炭化クロムを含有するクロム合金メッキでコーティングされ、且つビッカース硬度が900乃至1300を満足する材質により構成されることにより、本発明の目的が達成される。また、衝突部材の形状は、図2に示された種々の形状のものが使用可能であるが、特に粉砕効率の高い形状は、図2(e)の形状である。この時、衝突部材の衝突面に突出している突出中央部14の頂角α(°)と、外周衝突面15の加速管の中心軸の垂直面に対する傾斜角β(°)が、
0<α<90、β>0
30≦α+2β≦90
を満足する時は、非常に効率よく粉砕が行われる。尚、この形状において、突出中央部14及び外周衝突面15の形状は、特に限定されるものではなく、円錐状、角錐状等、適宜選定すればよい。
【0017】
粉砕室の形状も図1及び図4の形状に限定されるものではなく、適宜設定すればよく、それに応じて粉砕室内壁の形状も最適なものを選定すればよい。
【0018】
粉砕機そのものの構成も図4に限られたものではなく、他の好ましい構成の衝突式気流粉砕機として図1を例示する。図1の粉砕機について説明すると、高圧気体供給ノズル2を接続した加速管3の出口13に対向して衝突部材4を設け、加速管3に供給した高圧気体の流動により、加速管3の中途に連通させた被粉砕物供給口1から加速管3の内部に被粉砕物を導入し、これを高圧気体と共に噴射して衝突部材4の衝突面に衝突させ、その衝撃によって粉砕する様にしたものである。
【0019】
図1と図4の衝突式気流粉砕機を比較すると、図4の粉砕機の方が、被粉砕物を粉塵濃度の偏りがなく被粉砕物を均一に高圧気流中に分散させることが出来る為に、より効率よく衝突部材に衝突し、被粉砕物が粉砕効率を向上させることが出来る。即ち、図4の粉砕機では、図1の粉砕機に較べ、高圧空気と粉体の混合流の速度を落とさずに対向する衝突部材に衝突させる事が出来、その為に粉砕効率の向上と共に衝突部材の磨耗度合いも図1の粉砕機より激しい。その為に本発明で提案している部材を用いる事がより効果的である。
【0020】
本発明において、好ましく用いられる素材としてはクロムモリブデン鋼を母体とした金属から成り、炭化クロムを含有するクロム合金メッキでコーティングされていて、且つビッカース硬度が900乃至1300を満足する素材を用いる事によって本発明の目的がより好ましく達成される。
【0021】
本発明では、加速管、粉砕室内壁、粉砕室出口部分及び衝突部材各部の粉体原料が接触する表面近傍を所定の材質のもので構成する。
【0022】
【実施例】
以下、本発明を実施例に基づいて更に具体的に説明する。
【0023】
表1に図4の衝突式気流粉砕機を用いた場合の実施例と比較例をまとめて表したので参考にされたい。なお、表中の「コスト」は本発明の所定の材質で製作した場合を100とし、比較例の材質を割合で表現した。
【0024】
<実施例1>
図1に示す衝突式気流粉砕機を用い、衝突面形状は、加速管の長軸方向に対して垂直な平面状のものを用いた。加速管、粉砕室内壁及び衝突部材の材質として、クロムモリブデン鋼(SCM440)を母材とした合金鋼から成り、炭化クロムを含有するクロム合金メッキでコーティングされていて、且つビッカース硬度が900乃至1300を満足する素材を用いた。
【0025】
粉砕原料として、静電荷像現像用トナーのハンマーミル粗砕物(1mmスクリーン通過品)を使用し、粉砕には、圧力0.59MPa、風量6.0Nm3/minの圧縮エアーを用いた。原料を定量供給機にて20Kg/hrの割合で粉砕機に供給し、重量平均粒径8μmの粉砕された微粉砕品が得られる条件で、ロングランテストを行った。その結果、1日当たり24時間連続操業で1カ月間運転した後粉砕機を分解して点検したところ、加速管及び粉砕室内壁には全く磨耗の痕は見られず、衝突部材については平面状の衝突面の中央付近において、僅かながら磨耗の痕が見られた。尚、微粉砕品の粒度は常に安定していた。
【0026】
<実施例2>
図4に示す衝突式気流粉砕機を用い、衝突面形状は中央部に頂角55°の円錐状の突起を有し、その外周に加速管の中心軸の垂直面に対する傾斜角が10°の外周衝突面を有するものを用いた。加速管、粉砕室内壁、粉砕室出口及び衝突部材の材質として、クロムモリブデン鋼(SCM440)を母体とした金属から成り、炭化クロムを含有するクロム合金メッキでコーティングされていて、且つビッカース硬度が900乃至1300を満足する素材を用いた。
【0027】
粉砕原料として、実施例1と同じ静電荷像現像用トナーのハンマーミル粗砕物(1mmスクリーン通過品)を使用し、粉砕には、圧力0.59MPa、風量6.0Nm3/minの圧縮エアーを用いた。原料を定量供給機にて45Kg/hrの割合で粉砕機に供給し、重量平均粒径8μmの粉砕された微粉砕品が得られる条件でロングランテストを行った。その結果、1日当たり24時間連続操業で1カ月間運転した後粉砕機を分解して点検したところ、加速管及び粉砕室内壁には全く磨耗の痕跡は見られず、衝突部材については外周衝突面付近において僅かながら磨耗の痕が見られた。尚、微粉砕品の粒度は常に安定していた。
【0028】
<実施例3>
実施例3では、衝突部材が磨耗した衝突式気流粉砕機の再生例を紹介する。図4に示す衝突式気流粉砕機を用い、衝突面形状、加速管、粉砕室内壁、粉砕室出口及び衝突部材の材質は実施例2と同様にした。すなわち、衝突面形状は中央部に頂角55°の円錐状の突起を有し、その外周に加速管の中心軸の垂直面に対する傾斜角が10°の外周衝突面を有するものを用い、これら部材の材質はクロムモリブデン鋼を母体とした金属から成り、炭化クロムを含有するクロム合金メッキでコーティングされていて、且つビッカース硬度が900乃至1300を満足する素材を用いた。
【0029】
粉砕原料として、実施例1と同じ静電荷像現像用トナーのハンマーミル粗砕物(1mmスクリーン通過品)を使用し、粉砕には、圧力0.59MPa、風量6.0Nm3/minの圧縮エアーを用いた。原料を定量供給機にて45Kg/hrの割合で粉砕機に供給し、重量平均粒径8μmの粉砕された微粉砕品が得られる条件でロングランテストを行った。その結果、1日当たり24時間連続操業で3カ月間運転した後粉砕機を分解して点検したところ、加速管及び粉砕室内壁に僅かに磨耗の痕跡が見られ、衝突部材については外周衝突面においてえぐれた様な磨耗の痕跡があり、深さを測ってみたところ1.5mmであった(図3)。また、微粉砕品の粒度は1ヶ月と15日過ぎから徐々に粗目にシフトしていき、2カ月後には重量平均粒径が8.5μmになった。
【0030】
次に、上記の外周衝突面においてえぐれた様に磨耗した衝突部材を再生した。再生方法は、先ず衝突部材を砥石で研削し、鍍金層をあらかた剥離し更に衝突部材を磨耗する前の外形と同じになるまで加工した(図5)。この時の再生加工に備え、衝突部材のベース部厚さは予め再加工を見越して、再生加工する回数代だけ厚めに設計しておくことが重要である。研削加工後、炭化クロムを含有するクロム合金層を、ビッカース硬度が900乃至1300を満足するように鍍金により形成した。
【0031】
次に、衝突部材再生後の粉砕テストについて記す。粉砕原料として、実施例1と同じ静電荷像現像用トナーのハンマーミル粗砕物(1mmスクリーン通過品)を使用し、粉砕には、圧力0.59MPa、風量6.0Nm3/minの圧縮エアーを用いた。原料を定量供給機にて45Kg/hrの割合で粉砕機に供給し、重量平均粒径8μmの粉砕された微粉砕品が得られる条件でロングランテストを行った。その結果、1日当たり24時間連続操業で1カ月間運転した後粉砕機を分解して点検したところ、加速管及び粉砕室内壁には全く磨耗の痕跡は見られず、衝突部材については外周衝突面付近において僅かながら磨耗の痕が見られた。尚、微粉砕品の粒度は常に安定していた。
【0032】
<比較例1>
図1に示す衝突式気流粉砕機を用い、衝突面形状は、実施例1と同じ加速管の長軸方向に対して垂直な平面状のものを用いた。加速管、粉砕室内壁及び衝突部材の材質として、クロムモリブデン鋼(SCM440)の粉砕処理面にWC−Co(タングステンカーバイド−コバルト)材を耐磨耗高速フレーム溶射(呼称HVOF)したものを用いた。粉砕原料として、実施例1と同じ静電荷像現像用トナーのハンマーミル粗砕物(1mmスクリーン通過品)を使用し、粉砕には、圧力0.59MPa、風量6.0Nm3/minの圧縮エアーを用いた。原料を定量供給機にて20Kg/hrの割合で粉砕機に供給し、重量平均粒径8μmの粉砕された微粉砕品が得られる条件でロングランテストを行った。
【0033】
その結果、1日当たり24時間連続操業で1カ月間運転した後、粉砕機を分解して点検したところ、加速管及び粉砕室内壁には僅かながら磨耗の痕が見られ、衝突部材については平面状の衝突面の中央付近においてえぐれた様な磨耗の痕跡があり、深さを測ってみたところ1.5mmであった。また、微粉砕品の粒度は15日過ぎから徐々に粗目にシフトしていき、1カ月後には重量平均粒径が8.5μmになった。
【0034】
<比較例2>
図4に示す衝突式気流粉砕機を用い、衝突面形状は中央部に頂角55°の円錐状の突起を有し、その外周に加速管の中心軸の垂直面に対する傾斜角が10°の外周衝突面を有するものを用いた。加速管、粉砕室内壁及び衝突部材の材質として、体積固有抵抗率104Ωcm、ビッカース硬度が2,400Kg/mm2の炭化ケイ素セラミック焼結体を用いた。
【0035】
粉砕原料として、実施例1と同じ静電荷像現像用トナーのハンマーミル粗砕物(1mmスクリーン通過品)を使用し、粉砕には、圧力0.59MPa、風量6.0Nm3/minの圧縮エアーを用いた。原料を定量供給機にて45Kg/hrの割合で粉砕機に供給し、重量平均粒径8μmの粉砕された微粉砕品が得られる条件でロングランテストを行った。その結果、実施例2と同様、1日当たり24時間連続操業で1カ月間運転した後粉砕機を分解して点検したところ、加速管及び粉砕室内壁には全く磨耗の痕跡は見られず、衝突部材については外周衝突面において僅かながら磨耗の痕が見られた。尚、微粉砕品の粒度は常に安定していた。
【0036】
<比較例3>
図4に示す衝突式気流粉砕機を用い、衝突面形状は中央部に頂角55°の円錐状の突起を有し、その外周に加速管の中心軸の垂直面に対する傾斜角が10°の外周衝突面を有するものを用いた。加速管、粉砕室内壁及び衝突部材の材質として、クロムモリブデン鋼(SCM440)の粉砕処理面にWC−Co(タングステンカーバイド−コバルト)材を耐磨耗高速フレーム溶射(呼称HVOF)したものを用いた。
【0037】
粉砕原料として、実施例1と同じ静電荷像現像用トナーのハンマーミル粗砕物(1mmスクリーン通過品)を使用し、粉砕には、圧力0.59MPa、風量6.0Nm3/minの圧縮エアーを用いた。原料を定量供給機にて45Kg/hrの割合で粉砕機に供給し、重量平均粒径8μmの粉砕された微粉砕品が得られる条件でロングランテストを行った。その結果実施例2と同様、1日当たり24時間連続操業で1カ月間運転した後粉砕機を分解して点検したところ、加速管及び粉砕室内壁には僅かながら磨耗の痕が見られ、衝突部材については外周衝突面においてえぐれた様な磨耗の痕跡があり、深さを測ってみたところ1.5mmであった(図3)。また、微粉砕品の粒度は15日過ぎから徐々に粗目にシフトしていき、1カ月後には重量平均粒径が8.5μmになった。
【0038】
【表1】

Figure 2004188370
【0039】
【発明の効果】
以上の説明で明らかな様に、本発明の衝突式気流粉砕機によれば、その加速管、粉砕室内壁、粉砕室出口及び衝突部材の少なくともいずれかが、特定の素材によって形成されることにより、炭化ケイ素セラミック素材で形成されたものより経済的に安く、且つ耐磨耗性は炭化ケイ素セラミック品と同等であり、且つ磨耗後は表面のメッキ層を剥離し母材を磨耗量だけ再加工し再メッキ出来ることで、更に経済的に優位である。また強固な合金鋼で出来ているため、手荒く取り扱っても破損せず保全時作業性も向上した。更には、金属材料を使用することで、粉体との接触時に生じる剥離放電を予防することになり、より安全性の高い運転が可能になる(特許文献1参照)。特に、静電荷像現像用トナーの様な磨耗性が高く、且つ厳しい粒度の安定性を要求される様な粉体を製造する場合に本発明は有効である。
【図面の簡単な説明】
【図1】本発明を説明するための衝突式気流粉砕機の概略的断面図である。
【図2】本発明に用いられる衝突部材の衝突面形状を模式的に表した図である。
【図3】本発明を説明するための衝突部材の磨耗具合を模式的に表した図である。
【図4】本発明を説明するための別の衝突式気流粉砕機の概略的断面図である。
【図5】本発明を説明するための衝突部材の再生方法を模式的に表した図である。
【符号の説明】
1・・・・・被粉砕物供給口
2・・・・・高圧気体供給ノズル
3・・・・・加速管
4・・・・・衝突部材
5・・・・・排出口(粉砕室出口)
6・・・・・粉砕室内壁
13・・・・加速管出口
14・・・・突出中央部
15・・・・外周衝突面
21・・・・加速管
22・・・・加速管スロート部
23・・・・高圧気体供給ノズル
24・・・・被粉砕物供給口
25・・・・被粉砕物供給筒
26・・・・高圧気体供給口
27・・・・高圧気体チャンバー
28・・・・高圧気体導入管
29・・・・加速管出口
30・・・・衝突部材
32・・・・粉砕室内壁
33・・・・粉砕物排出口(粉砕室出口)
34・・・・粉砕室[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an impingement airflow pulverizer for pulverizing a powder raw material using a jet airflow (high-pressure gas).
[0002]
[Prior art]
Conventionally, a collision-type air flow pulverizer using a jet stream is a method in which a powder material is put on a jet stream to form a particle mixture stream, which is jetted from an outlet of an acceleration tube, and the particle mixture stream is provided in front of an acceleration tube outlet. And crushes the powder raw material by the impact force. An example of the collision type air flow pulverizer will be described with reference to FIG.
[0003]
1 is provided with a collision member 4 opposed to an outlet 13 of an acceleration tube 3 to which a high-pressure gas supply nozzle 2 is connected. The object to be ground is introduced into the interior of the acceleration tube 3 from the object supply port 1 which is communicated on the way, and is injected together with a high-pressure gas to collide with the collision surface of the collision member 4 so that the material is pulverized by the impact. It was done.
[0004]
In such a collision-type airflow pulverizer, since the powder to be pulverized always violently collides with each device element, it is not possible to avoid wear and deterioration of each device element. In particular, in a place where a large load is applied and abrasion progresses severely, in the apparatus shown in FIG. 1, the accelerating tube 3 into which the raw material is supplied and moves at a high speed, and the collision surface of the collision member 4 where the raw material violently collide and the pulverization at the collision surface. The pulverized material further impinges on the inner wall 6 of the pulverizing chamber and the outlet 5 of the pulverizing chamber. If these members are worn out due to wear, the crushing efficiency is reduced, and the worn impurities are mixed in the product, which is not preferable. For this reason, as a constituent material of these members, alumina-based ceramics having excellent wear resistance and sintered silicon carbide ceramics have been used (see Patent Document 1). However, these ceramic materials are generally expensive, and it is extremely difficult to reuse them after abrasion, and if the surface is slightly worn as shown in FIG. 3, it must be discarded. In addition, if it is dropped carelessly, the tip and corners are easily chipped, requiring careful handling and requiring skill in maintenance work such as abrasion replacement. Furthermore, since a mold is indispensable for the production process of these ceramic materials, even a slight change in the shape requires a long production delivery time, resulting in an expensive price. As described above, there is a demand for higher quality materials in terms of economy and workability during maintenance.
[0005]
In addition, as a method of inexpensively improving the abrasion resistance performance of the impingement type air current pulverizer, an alloy pipe such as chromium molybdenum steel (SCM440, etc.) is used as a base material for the accelerating tube, the inner wall of the pulverization chamber, and the collision member. Spray coating with WC-Co (tungsten carbide-cobalt) or Ni-Cr (nickel-chromium) material, or high-speed flame spraying of these wear-resistant sprayed materials (namely HVOF) (See Non-Patent Document 1). However, these abrasion-resistant thermal spray coatings have a low intermolecular bonding force between the thermal sprayed material and the base metal, and are inferior to the above-mentioned ceramic materials in peeling and abrasion resistance.
[0006]
[Patent Document 1]
Patent No. 3085510 [Non-Patent Document 1]
“Thermal Spraying Technology Manual” published by the Japan Standards Association, pages 69-74 [0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a novel impingement-type airflow pulverizer capable of efficiently pulverizing powdery raw materials with excellent economy, abrasion resistance, and maintainability. Is to provide a machine.
[0008]
[Means for solving the problem]
The above object is achieved by the present invention described below.
[0009]
That is, the present invention has an accelerating tube for conveying and accelerating an object to be pulverized by a high-pressure gas, and a pulverizing chamber for finely pulverizing the object to be pulverized. In a collision type airflow pulverizer having a collision member provided opposite to,
At least one of the accelerating tube, the inner wall of the pulverizing chamber, the outlet of the pulverizing chamber, and the collision member is coated with a chromium alloy plating containing chromium carbide, and is made of a material having a Vickers hardness of 900 to 1300. Is a collision type airflow pulverizer.
[0010]
Carbon steel such as S45C or chromium molybdenum steel such as SCM material is often used for the acceleration tube, the inner wall of the crushing chamber, the outlet of the crushing chamber, and the base material of the colliding member in the impingement type air current crusher. By coating the surface of these base materials with a chromium alloy, the surface hardness is high, the wear resistance is high, and the member has a long life. Here, chromium carbide (Cr 23 C 6 ) having a strong intermolecular bonding force existing in the chromium alloy is present from the surface layer to a certain depth or more, specifically, to a depth of 5 μm or more, so that the base material surface and And the frequency of occurrence of phenomena such as peeling and cracks can be minimized.
[0011]
In the present invention, the coating of the base material surface of the chromium alloy containing chromium carbide is treated by "plating", whereby the surface can be finished uniformly and smoothly, the friction coefficient can be reduced, and the wear resistance can be improved. Become. As such a plating treatment, for example, a diklone treatment (Chiyoda Daiichi Kogyo Co., Ltd.) can be mentioned. After plating, a polishing process such as buffing or a blasting process such as shot blasting may be performed to adjust the surface roughness of the member.
[0012]
When the surface hardness is in the range of HV900 to 1300, the amount of wear on the crushed surface can be reduced as much as possible, and the frequency of replacement of members can be reduced. If the surface hardness is less than HV900, the wear resistance starts to decrease, and the pulverizing ability cannot be improved. When the surface hardness exceeds HV1300, the surface is too hard and brittle, so that peeling and cracking are likely to occur, and the frequency of replacing members starts to increase.
[0013]
[Action]
At least one of the acceleration tube, the inner wall of the crushing chamber, the outlet of the crushing chamber and the colliding member of the impingement type air current crusher is coated with a chromium alloy plating containing chromium carbide and has a Vickers hardness of 900 to 1300. With this configuration, it is possible to provide a novel collision-type airflow pulverizer that solves the problems of the prior art, is excellent in both abrasion resistance and economic efficiency, and can efficiently pulverize powder raw materials.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 4 shows an example of a collision-type pulverizer having a preferable configuration. The crusher shown in FIG. 4 will be described. The crusher includes an accelerating tube 21 for conveying and accelerating an object to be crushed by high-pressure gas, and a collision member 30 having a collision surface provided opposite to the accelerating tube. Has a Laval nozzle shape, a high-pressure gas supply nozzle 23 is disposed upstream of the throat portion of the acceleration tube 21, and a material supply port is provided between an outer wall of the high-pressure gas supply nozzle and an inner wall of the throat portion 22. The axial cross-sectional shape of the grinding chamber provided to be connected to the outlet of the pipe 21 has a circular shape.
[0015]
The pulverized material supplied from the pulverized material supply cylinder 25 is coaxial with the inner wall of the accelerating tube throat portion 22 of the accelerating tube 21 having the central axis arranged in the vertical direction, and the center is coaxial with the central axis of the accelerating tube 21. It reaches the pulverized material supply port 24 formed between the high pressure gas supply nozzle 23 and the outer wall. On the other hand, the high-pressure gas is introduced from the high-pressure gas supply port 26, passes through the high-pressure gas chamber 27, passes through one or more preferably high-pressure gas introduction pipes 28, and sharply moves from the high-pressure gas supply nozzle 23 toward the acceleration pipe outlet 29. Spouting while expanding. At this time, due to the ejector effect generated in the vicinity of the accelerating tube throat portion 22, the material to be ground is sucked from the material to be ground 24 toward the acceleration tube outlet 29 while being entrained by the gas coexisting therewith. A state of a uniform solid-gas mixed gas flow without unevenness of the dust concentration on the collision surface of the collision member 30 arranged opposite to the acceleration tube outlet 29 while rapidly accelerating while being uniformly mixed with the high-pressure gas in the acceleration tube throat portion 22. And crushed.
[0016]
In the pulverizer of FIG. 4, at least one of the accelerating tube 21, the collision member 30, the pulverization chamber outlet 33, and the pulverization chamber wall 32 is coated with a chromium alloy plating containing chromium carbide and has a Vickers hardness of 900 to 1300. The object of the present invention is achieved by being constituted by a satisfactory material. Further, as the shape of the collision member, various shapes shown in FIG. 2 can be used, and the shape having particularly high crushing efficiency is the shape shown in FIG. At this time, the apex angle α (°) of the protruding central portion 14 protruding from the collision surface of the collision member and the inclination angle β (°) of the outer peripheral collision surface 15 with respect to the vertical plane of the central axis of the accelerating tube are:
0 <α <90, β> 0
30 ≦ α + 2β ≦ 90
Is satisfied, grinding is performed very efficiently. In this shape, the shapes of the projecting central portion 14 and the outer peripheral collision surface 15 are not particularly limited, and may be appropriately selected, such as a conical shape or a pyramid shape.
[0017]
The shape of the pulverizing chamber is not limited to the shapes shown in FIGS. 1 and 4 and may be set as appropriate, and the shape of the inner wall of the pulverizing chamber may be appropriately selected accordingly.
[0018]
The configuration of the crusher itself is not limited to that of FIG. 4, and FIG. 1 illustrates a collision type air crusher of another preferable configuration. 1, the collision member 4 is provided to face the outlet 13 of the acceleration tube 3 to which the high-pressure gas supply nozzle 2 is connected. The object to be ground is introduced into the inside of the accelerating tube 3 from the object supply port 1 which is communicated with, and is injected together with a high-pressure gas to collide with the collision surface of the collision member 4 and to be ground by the impact. Things.
[0019]
Comparing the impingement type air current pulverizers of FIG. 1 and FIG. 4, the pulverizer of FIG. 4 can uniformly disperse the pulverized object in the high-pressure air stream without unevenness of the dust concentration. In addition, it is possible to more efficiently collide with the collision member, and the object to be pulverized can improve the pulverization efficiency. That is, in the pulverizer of FIG. 4, compared with the pulverizer of FIG. 1, it is possible to collide with the opposing collision member without reducing the speed of the mixed flow of the high-pressure air and the powder. The degree of wear of the collision member is also more intense than in the crusher of FIG. Therefore, it is more effective to use the members proposed in the present invention.
[0020]
In the present invention, by using a material that is preferably made of a metal based on chromium molybdenum steel, is coated with a chromium alloy plating containing chromium carbide, and has a Vickers hardness of 900 to 1300 in the present invention. The object of the present invention is more preferably achieved.
[0021]
In the present invention, the vicinity of the surfaces of the accelerating tube, the inner wall of the pulverizing chamber, the outlet of the pulverizing chamber, and the respective parts of the collision member, which are in contact with the powder material, are made of a predetermined material.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0023]
Table 1 summarizes examples and comparative examples in which the impingement airflow pulverizer shown in FIG. 4 is used. The “cost” in the table is 100 when a product made of a predetermined material of the present invention is used, and the material of the comparative example is expressed as a ratio.
[0024]
<Example 1>
The collision type air-flow crusher shown in FIG. 1 was used, and the collision surface shape used was a plane shape perpendicular to the longitudinal direction of the acceleration tube. The accelerating tube, the inner wall of the crushing chamber and the collision member are made of an alloy steel based on chromium molybdenum steel (SCM440), coated with a chromium alloy plating containing chromium carbide, and have a Vickers hardness of 900 to 1300. A material satisfying the above conditions was used.
[0025]
As a pulverizing raw material, a hammer mill crushed toner for electrostatic image development (a product passed through a 1 mm screen) was used, and compressed air having a pressure of 0.59 MPa and a flow rate of 6.0 Nm 3 / min was used for pulverization. The raw material was supplied to the pulverizer at a rate of 20 kg / hr by a quantitative feeder, and a long run test was performed under the condition that a finely pulverized product having a weight average particle size of 8 μm was obtained. As a result, when the crusher was disassembled and inspected after being operated for 24 hours continuously for one month for 24 hours a day, no trace of wear was seen on the accelerating tube and the inner wall of the crushing chamber. Near the center of the collision surface, slight traces of wear were observed. The particle size of the finely pulverized product was always stable.
[0026]
<Example 2>
The collision type air crusher shown in FIG. 4 was used. The collision surface shape had a conical protrusion with a vertical angle of 55 ° at the center and an inclination angle of 10 ° with respect to the vertical plane of the central axis of the accelerating tube on the outer periphery. One having an outer peripheral collision surface was used. The accelerating tube, the inner wall of the pulverizing chamber, the outlet of the pulverizing chamber, and the collision member are made of a chromium-molybdenum steel (SCM440) -based metal, are coated with a chromium alloy plating containing chromium carbide, and have a Vickers hardness of 900. A material satisfying 乃至 1300 was used.
[0027]
The same hammer mill crushed toner (product passed through a 1 mm screen) of the electrostatic image developing toner as in Example 1 was used as the pulverizing raw material, and compressed air with a pressure of 0.59 MPa and an air flow of 6.0 Nm 3 / min was used for pulverization. Using. The raw material was supplied to the pulverizer at a rate of 45 kg / hr by a quantitative feeder, and a long run test was performed under the condition that a finely pulverized product having a weight average particle size of 8 μm was obtained. As a result, when the crusher was disassembled and inspected after 24 hours of continuous operation per day for one month, no trace of wear was seen on the accelerating tube and the inner wall of the crushing chamber. Slight traces of wear were observed in the vicinity. The particle size of the finely pulverized product was always stable.
[0028]
<Example 3>
In a third embodiment, a regeneration example of a collision type airflow crusher in which a collision member is worn will be described. Using the collision type air current pulverizer shown in FIG. 4, the shape of the collision surface, the accelerating tube, the inner wall of the pulverization chamber, the outlet of the pulverization chamber, and the material of the collision member were the same as those in Example 2. That is, the collision surface shape has a conical projection with a vertical angle of 55 ° in the center and an outer peripheral collision surface with an inclination angle of 10 ° with respect to the vertical plane of the central axis of the accelerating tube on the outer periphery. The material of the member was made of a metal based on chromium molybdenum steel, coated with a chromium alloy plating containing chromium carbide, and used a material having a Vickers hardness of 900 to 1300.
[0029]
The same hammer mill crushed toner (product passed through a 1 mm screen) of the electrostatic image developing toner as in Example 1 was used as the pulverizing raw material, and compressed air with a pressure of 0.59 MPa and an air flow of 6.0 Nm 3 / min was used for pulverization. Using. The raw material was supplied to the pulverizer at a rate of 45 kg / hr by a quantitative feeder, and a long run test was performed under the condition that a finely pulverized product having a weight average particle size of 8 μm was obtained. As a result, when the crusher was disassembled and inspected after being operated for 24 months in a continuous operation for 24 hours a day, traces of wear were found on the accelerating tube and the inner wall of the crushing chamber. There were traces of wear that seemed to be scuffed, and the depth was measured to be 1.5 mm (FIG. 3). The particle size of the finely pulverized product gradually shifted to coarse after 1 month and 15 days, and the weight average particle size became 8.5 μm after 2 months.
[0030]
Next, the collision member that had been worn away in the outer peripheral collision surface was regenerated. In the regeneration method, first, the collision member was ground with a grindstone, the plated layer was roughly peeled off, and the collision member was processed until the outer shape became the same as before the wear (FIG. 5). It is important to prepare the thickness of the base portion of the collision member to be thicker by the number of times of reprocessing in anticipation of reprocessing in preparation for the reprocessing at this time. After the grinding, a chromium alloy layer containing chromium carbide was formed by plating so as to satisfy Vickers hardness of 900 to 1300.
[0031]
Next, a pulverization test after regenerating the collision member will be described. The same hammer mill crushed toner (product passed through a 1 mm screen) of the electrostatic image developing toner as in Example 1 was used as the pulverizing raw material, and compressed air with a pressure of 0.59 MPa and an air flow of 6.0 Nm 3 / min was used for pulverization. Using. The raw material was supplied to the pulverizer at a rate of 45 kg / hr by a quantitative feeder, and a long run test was performed under the condition that a finely pulverized product having a weight average particle size of 8 μm was obtained. As a result, when the crusher was disassembled and inspected after 24 hours of continuous operation per day for one month, no trace of wear was seen on the accelerating tube and the inner wall of the crushing chamber. Slight traces of wear were observed in the vicinity. The particle size of the finely pulverized product was always stable.
[0032]
<Comparative Example 1>
The collision type air crusher shown in FIG. 1 was used, and the collision surface shape used was a planar shape perpendicular to the long axis direction of the same accelerating tube as in Example 1. As the material of the accelerating tube, the inner wall of the crushing chamber, and the collision member, a WC-Co (tungsten carbide-cobalt) material subjected to abrasion-resistant high-speed flame spraying (referred to as HVOF) on a crushed surface of chromium molybdenum steel (SCM440) was used. . The same hammer mill crushed toner (product passed through a 1 mm screen) of the electrostatic image developing toner as in Example 1 was used as the pulverizing raw material, and compressed air with a pressure of 0.59 MPa and an air flow of 6.0 Nm 3 / min was used for pulverization. Using. The raw material was supplied to the pulverizer at a rate of 20 kg / hr by a quantitative feeder, and a long run test was performed under the condition that a pulverized fine pulverized product having a weight average particle size of 8 μm was obtained.
[0033]
As a result, after 24 hours of continuous operation per day for one month, the crusher was disassembled and inspected. As a result, a slight trace of wear was seen on the accelerating tube and the inner wall of the crushing chamber. In the vicinity of the center of the impact surface, there was a trace of abrasion, such as a digging, and the depth was measured to be 1.5 mm. The particle size of the finely pulverized product gradually shifted to coarse after 15 days, and after one month, the weight average particle size was 8.5 μm.
[0034]
<Comparative Example 2>
The collision type air crusher shown in FIG. 4 was used. The collision surface shape had a conical protrusion with a vertical angle of 55 ° at the center and an inclination angle of 10 ° with respect to the vertical plane of the central axis of the accelerating tube on the outer periphery. One having an outer peripheral collision surface was used. A silicon carbide ceramic sintered body having a volume resistivity of 10 4 Ωcm and a Vickers hardness of 2,400 Kg / mm 2 was used as a material of the acceleration tube, the inner wall of the grinding chamber, and the collision member.
[0035]
The same hammer mill crushed toner (product passed through a 1 mm screen) of the electrostatic image developing toner as in Example 1 was used as the pulverizing raw material, and compressed air with a pressure of 0.59 MPa and an air flow of 6.0 Nm 3 / min was used for pulverization. Using. The raw material was supplied to the pulverizer at a rate of 45 kg / hr by a quantitative feeder, and a long run test was performed under the condition that a finely pulverized product having a weight average particle size of 8 μm was obtained. As a result, when the crusher was disassembled and inspected after operating for 24 hours a day in a continuous operation, as in Example 2, no trace of wear was seen on the accelerating tube and the inner wall of the crushing chamber. Regarding the member, a slight trace of wear was observed on the outer peripheral collision surface. The particle size of the finely pulverized product was always stable.
[0036]
<Comparative Example 3>
The collision type air crusher shown in FIG. 4 was used. The collision surface shape had a conical protrusion with a vertical angle of 55 ° at the center and an inclination angle of 10 ° with respect to the vertical plane of the central axis of the accelerating tube on the outer periphery. One having an outer peripheral collision surface was used. As the material of the accelerating tube, the inner wall of the crushing chamber, and the collision member, a WC-Co (tungsten carbide-cobalt) material subjected to abrasion-resistant high-speed flame spraying (referred to as HVOF) on a crushed surface of chromium molybdenum steel (SCM440) was used. .
[0037]
The same hammer mill crushed toner (product passed through a 1 mm screen) of the electrostatic image developing toner as in Example 1 was used as the pulverizing raw material, and compressed air with a pressure of 0.59 MPa and an air flow of 6.0 Nm 3 / min was used for pulverization. Using. The raw material was supplied to the pulverizer at a rate of 45 kg / hr by a quantitative feeder, and a long run test was performed under the condition that a finely pulverized product having a weight average particle size of 8 μm was obtained. As a result, as in Example 2, after operating for 24 hours a day in a continuous operation for 24 hours per day, the crusher was disassembled and inspected. In the case of, there was a trace of abrasion, such as abrasion, on the outer peripheral collision surface, and when the depth was measured, it was 1.5 mm (FIG. 3). The particle size of the finely pulverized product gradually shifted to coarse after 15 days, and after one month, the weight average particle size was 8.5 μm.
[0038]
[Table 1]
Figure 2004188370
[0039]
【The invention's effect】
As is clear from the above description, according to the collision type airflow pulverizer of the present invention, at least one of the accelerating tube, the pulverization chamber inner wall, the pulverization chamber outlet, and the collision member is formed by a specific material. , It is economically cheaper than silicon carbide ceramic material, and has the same abrasion resistance as silicon carbide ceramic products. After abrasion, the surface plating layer is peeled off and the base material is reworked by the amount of wear. Re-plating is more economical. In addition, since it is made of strong alloy steel, it is not damaged even when handled roughly, and workability during maintenance has been improved. Furthermore, by using a metal material, peeling discharge occurring at the time of contact with powder can be prevented, and a safer operation can be performed (see Patent Document 1). In particular, the present invention is effective for producing a powder having a high abrasion property such as a toner for developing an electrostatic image and requiring a strict particle size stability.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a collision-type airflow pulverizer for explaining the present invention.
FIG. 2 is a diagram schematically illustrating a collision surface shape of a collision member used in the present invention.
FIG. 3 is a diagram schematically showing the degree of wear of a collision member for explaining the present invention.
FIG. 4 is a schematic cross-sectional view of another impingement airflow pulverizer for explaining the present invention.
FIG. 5 is a view schematically showing a method of reproducing a collision member for explaining the present invention.
[Explanation of symbols]
1 ·········································································································
6 ... Crushing chamber inner wall 13 Accelerator tube outlet 14 Projecting central portion 15 Outer peripheral collision surface 21 Accelerator tube 22 Accelerator tube throat portion 23 High pressure gas supply nozzle 24 High pressure gas supply port 25 High pressure gas supply port 27 High pressure gas chamber 28 High pressure gas inlet pipe 29 Accelerator pipe outlet 30 Collision member 32 Crushing chamber inner wall 33 Crushed material discharge port (Crushing chamber outlet)
34 ・ ・ ・ ・ Crushing room

Claims (6)

高圧気体により被粉砕物を搬送し加速する為の加速管と、被粉砕物を微粉砕する為の粉砕室とを有し、該粉砕室内に加速管の出口の開口面に対向して設けた衝突部材を有する衝突式気流粉砕機において、
該加速管、該粉砕室の内壁、該衝突部材又は該粉砕室の出口部分の少なくともいずれかが、表面に炭化クロムを含有するクロム合金層を有し、且つ該炭化クロムを含有するクロム合金層のビッカース硬度が900乃至1300であることを特徴とする衝突式気流粉砕機。
It has an accelerating tube for conveying and accelerating the object to be pulverized by high-pressure gas, and a pulverizing chamber for finely pulverizing the object to be pulverized, and is provided in the pulverizing chamber so as to face an opening surface of an outlet of the accelerating tube. In a collision type air flow pulverizer having a collision member,
At least one of the accelerating tube, the inner wall of the pulverizing chamber, the collision member or the outlet of the pulverizing chamber has a chromium alloy layer containing chromium carbide on the surface, and a chromium alloy layer containing the chromium carbide A Vickers hardness of 900 to 1300.
該衝突部材が衝突面に突出している突出中央部と、該突出中央部で粉砕された被粉砕物の一次粉砕物を更に衝突により粉砕する為に、該突出中央部の周囲に外周衝突面を有しており、該被粉砕物又は該被粉砕物の一次粉砕物が衝突する面に炭化クロムを含有するクロム合金層を有することを特徴とする請求項1に記載の衝突式気流粉砕機。An outer peripheral collision surface is provided around the central portion of the projection in order to further crush the primary crushed material crushed at the central portion of the projection by the collision with the central portion of the collision member projecting from the collision surface. The impingement-type airflow pulverizer according to claim 1, wherein a chromium alloy layer containing chromium carbide is provided on a surface on which the object to be pulverized or the primary pulverized object of the object to be pulverized collides. 該炭化クロムを含有するクロム合金層は鍍金により形成されたことを特徴とする請求項1又は2に記載の衝突式気流粉砕機。The impingement type air current crusher according to claim 1 or 2, wherein the chromium alloy layer containing chromium carbide is formed by plating. 被粉砕物を衝突させて粉砕する粉砕機に用いられる衝突部材において、被粉砕物が衝突する部分に、炭化クロムを含有し、ビッカース硬度が900乃至1300であるクロム含有層を有することを特徴とする衝突部材。In a collision member used for a crusher that crushes and crushes an object to be crushed, a portion where the object to be crushed collides contains chromium carbide, and has a chromium-containing layer having a Vickers hardness of 900 to 1300, Collision member. 被粉砕物を衝突させて粉砕する粉砕機に用いられる衝突部材において、該衝突部材が、突出している衝突面たる突出中央部と該突出中央部の周囲に外周衝突面を有し、該突出中央部と外周衝突面に、炭化クロムを含有し、ビッカース硬度が900乃至1300であるクロム合金層を有することを特徴とする衝突部材。A collision member used in a crusher that crushes and crushes an object to be crushed, wherein the collision member has a projecting central portion as a projecting collision surface and an outer peripheral collision surface around the projecting central portion. A collision member comprising a chromium alloy layer containing chromium carbide and having a Vickers hardness of 900 to 1300 on a portion and an outer peripheral collision surface. 炭化クロムを含有し、ビッカース硬度が900乃至1300であるクロム合金層を有する衝突部材が使用によって磨耗或いは剥離した時に、該クロム合金層の一部又は全部を除去し、炭化クロムを含有し、ビッカース硬度が900乃至1300であるクロム含有層を鍍金により形成することを特徴とする衝突部材の再生方法。When a collision member having a chromium alloy layer containing chromium carbide and having a Vickers hardness of 900 to 1300 is worn or peeled off by use, part or all of the chromium alloy layer is removed, and the chromium carbide is contained. A method for reproducing a collision member, wherein a chromium-containing layer having a hardness of 900 to 1300 is formed by plating.
JP2002361983A 2002-12-13 2002-12-13 Collision type air flow grinder, collision member and method for recycling collision member Pending JP2004188370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361983A JP2004188370A (en) 2002-12-13 2002-12-13 Collision type air flow grinder, collision member and method for recycling collision member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361983A JP2004188370A (en) 2002-12-13 2002-12-13 Collision type air flow grinder, collision member and method for recycling collision member

Publications (1)

Publication Number Publication Date
JP2004188370A true JP2004188370A (en) 2004-07-08

Family

ID=32760561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361983A Pending JP2004188370A (en) 2002-12-13 2002-12-13 Collision type air flow grinder, collision member and method for recycling collision member

Country Status (1)

Country Link
JP (1) JP2004188370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212904A (en) * 2007-03-08 2008-09-18 Kyoorin Food Kogyo Kk Jet mill
KR200456966Y1 (en) 2009-03-18 2011-11-30 베스트화학기계공업(주) Crushing implement of high pressure nano mill system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212904A (en) * 2007-03-08 2008-09-18 Kyoorin Food Kogyo Kk Jet mill
KR200456966Y1 (en) 2009-03-18 2011-11-30 베스트화학기계공업(주) Crushing implement of high pressure nano mill system

Similar Documents

Publication Publication Date Title
US8016642B2 (en) Blasting device for steel pipe inner surface, blasting method for steel pipe inner surface, and method for producing steel pipe with excellent inner surface texture
JP5775600B2 (en) Mill material grinding method and roller mill
TWI390025B (en) Abrasive material made of atomized slag, manufacturing facility and method for the same
JPH04271853A (en) Fluidized bed jet mill
CN113373400B (en) Preparation method of wear-resistant ceramic coating and wear-resistant ceramic coating
JP2007038109A (en) Air flow type pulverizer
JP2004188370A (en) Collision type air flow grinder, collision member and method for recycling collision member
JP5272302B2 (en) Crushing device, pulverizing method, toner production method using the same, and toner obtained thereby
CN109048699A (en) A kind of method of preparation and use of aircraft coating removal amino film plastics abrasive material
US5628464A (en) Fluidized bed jet mill nozzle and processes therewith
US5562253A (en) Throughput efficiency enhancement of fluidized bed jet mill
EP0218671B1 (en) An air-jet mill for fine and/or cryogenic milling and surface treatment of preferably hard, elastic and/or thermoplastic materials
JP2015038033A (en) Molybdenum disulfide powder and method and device for producing the same
JP4123078B2 (en) Fine grinding machine and its fine powder product
JP2017176956A (en) Magnetic high-hardness metal particle crushing device
CN114892038B (en) High sphericity Cr-base alloy-TiB with excellent fluidity 2 Micro-nano powder and preparation method thereof
JP2006297305A (en) Crusher and crushing method method
JP2004073992A (en) Fluidized bed type crushing classifier
JP3295560B2 (en) Toner crusher
JPH04210255A (en) Pulverizer and crushing method
JPH08103684A (en) Impact type pneumatic pulverizer
JP3085510B2 (en) Collision type air crusher
JP2005336525A (en) Composite powder for forming metal product and method for manufacturing granular material for forming, and method for producing metal product
JP3090547B2 (en) Collision type supersonic jet crusher
CN86104423A (en) To hard partially, flexible and/or thermoplastic material carries out meticulous and/or low-temperature grinding and surface-treated airslide disintegrating mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A131 Notification of reasons for refusal

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A521 Written amendment

Effective date: 20080926

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A02 Decision of refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A02