JPH04210255A - Pulverizer and crushing method - Google Patents

Pulverizer and crushing method

Info

Publication number
JPH04210255A
JPH04210255A JP41057390A JP41057390A JPH04210255A JP H04210255 A JPH04210255 A JP H04210255A JP 41057390 A JP41057390 A JP 41057390A JP 41057390 A JP41057390 A JP 41057390A JP H04210255 A JPH04210255 A JP H04210255A
Authority
JP
Japan
Prior art keywords
powder
collision
nozzle
suction nozzle
collision member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41057390A
Other languages
Japanese (ja)
Inventor
Hiroyuki Moriya
博之 守屋
Junichi Tomonaga
淳一 朝長
Kazunari Muraoka
村岡 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP41057390A priority Critical patent/JPH04210255A/en
Publication of JPH04210255A publication Critical patent/JPH04210255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To crush powder with an impact force by providing a suction nozzle for introducing powder into a crushing chamber by jet air, accelerating and injecting the powder and a collision member arranged in the injecting direction of the nozzle in opposition to the nozzle and injecting the powder from the nozzle. CONSTITUTION:A material 8 to be crushed is supplied to a suction nozzle 3 by a material feeder from a material inlet 1 above the nozzle 3. Compressed air is supplied to the nozzle 3 from a compressor 12 through a supply nozzle 2, and the material 8 is material exceeding the speed of sound is injected into a crushing chamber 9 from the tip of the nozzle 3, collided with the face 10 of a collision member 4 and primarily crushed. The powder is circumferentially dispersed, collided with the wall surface 7 of the chamber 9 and secondarily crushed. The powder is repeatedly crushed primarily and secondarily. The powder discharged from a discharge pipe 6 is classified by a classifier 12 into coarse powder and fine powder. The coarse powder is returned to the material inlet 1, and the fine powder is used as the product. When a special material is used, the fine powder is further pulverized, classified and surface-reformed into a product. The energy for crushing is reduced in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、ジェットエアを利用す
る微粉砕装置及び粉砕方法、詳しくは、粉砕エネルギー
効率を向上させた微粉砕装置及び粉砕方法に関する。 [o o O2] 【従来の技術】一般に、微粉砕装置は、機械式粉砕機と
ジェット式粉砕機に大別される。機械式粉砕機は、ター
ボミル(ターボ工業(株)製)、KTM(川崎重工業(
株)製)に代表されるように、粉砕ローターを高速回転
し、ローターと粒子の衝突及び粒子同士の摩砕により微
粉砕を行う。一方、ジェット式粉砕機は、マイクロナイ
ザー型、ジェットマイザー型に代表されるように、ジェ
ットエアの超高速流の力で粒子同士の衝突により微粉砕
を行う。それぞれの粉砕メカニズムの差異により、長所
、短所が明確に分かれている。機械式粉砕機は、ジェッ
ト式粉砕機に比べ、消費エネルギーが小さいが、発熱の
問題があり、熱に弱い物質1例えば、トナー、化粧品等
の粉砕においては、製品の熱変質や装置内への付着融着
などが生じるので、採用することができなかった。逆に
、ジェット式粉砕機は、圧縮空気の断熱膨張効果により
、装置内を低温化でき、かつ、機械式粉砕機のように回
転駆動部分がないため発熱も起こらない。したがって、
熱に弱い物質の微粉砕に広く利用されている。しかしな
がら、ジェット式粉砕機は、大量の圧縮空気を使用する
ため、大型コンプレッサーを付帯しなければならず、消
費エネルギーが膨大であるという問題点を有している。 [0003]この様なジェット式粉砕機の問題点の改善
のために、ジェットエアのエネルギーを、粒子同士の衝
突と粒子と衝突板との衝突の二つに利用し、粉砕エネル
ギー効率の向上を目的とした粉砕装置が提案された。 (実開昭51−100374号、同51−100375
号、及び特開昭58143853号公報)さらに、前記
粉砕装置の衝突板形状を改善することにより、粉砕エネ
ルギー効率を向上させる試みが行われてきた。例えば、
(1)衝突板衝突面が、ジェットエアの噴射方向に対し
、垂直な場合、(2)衝突板衝突面が、ジェットエアの
噴射方向に対し、傾斜している場合(実開昭51(00
374号、同51−100375号公報)、(3)衝突
板衝突面が、凹凸面の場合(実開昭56−64754号
、特開昭57−50556号公報L(4)衝突板衝突面
が、円錐状の場合(特開平1−254266号及び同2
−68154号公報)などである。 [0004] (1)の衝突板衝突面が垂直な場合は、
図3に示すように、衝突板に衝突するジェットエアが衝
突面に背圧を生じさせるため、ジェットエア流に混合さ
れた粒子にとっての反発力となり粒子の濃度は高くなり
、粒子間の衝突確率は高いが背圧により粒子が減速され
、粉砕に必要なエネルギーが得にくい。また、粒子と衝
突板との衝突による粉砕を一次粉砕とすると、粒子と粉
砕室壁面との衝突による粉砕、すなわち二次粉砕は余り
起こらない。 [0005] (2)の傾斜している場合は、粉砕圧が
分散されて低下し、粒子は衝突板に効率よく衝突するが
、衝突力が小さくなるため、−次粉砕の効果は余り向上
しない。しかし、傾斜している方向へエアが流れて行く
ので、その方向での二次粉砕効果は、(1)の場合より
は改善されている。 [0006] (3)の凹凸面の場合は、ジェットエア
の流れが乱れるため、粉砕の効率は思ったほど向上しな
い。 [0007] (4)の円錐状の場合は、全周方向へエ
アが流れ、二次粉砕効果は向上するが、(2)と同様に
、粉砕圧が分散されて低下するため、−次粉砕の衝撃力
は小さい。 [00081以上のように、前記のような各種の改善が
行われたジェット式粉砕機においては、未だ機械式粉砕
機の粉砕エネルギー効率に勝るものはなく、さらに粉砕
エネルギー効率の良好な粉砕装置及び粉砕方法の出現が
望まれている。 [0009]したがって、本発明は、従来の技術におけ
る上記のような欠点を改善することを目的としてなされ
たものである。 [00101すなわち、本発明の目的は、粒子と衝突部
材との衝突による一次粉砕効果と、粒子と粉砕室壁面と
の衝突による二次粉砕効果を向上させた、粉砕エネルギ
ー効率の高い、ジェットエアを用いた微粉砕装置及び粉
砕方法を提供することにある。 [00111
[Industrial Field of Application] The present invention relates to a pulverizing apparatus and a pulverizing method that utilize jet air, and more particularly, to a pulverizing apparatus and a pulverizing method that improve the pulverizing energy efficiency. [o o O2] [Prior Art] Generally, pulverizers are broadly classified into mechanical pulverizers and jet pulverizers. Mechanical crushers include Turbo Mill (manufactured by Turbo Kogyo Co., Ltd.) and KTM (Kawasaki Heavy Industries Co., Ltd.).
(manufactured by Co., Ltd.), a grinding rotor is rotated at high speed, and fine grinding is performed by collision between the rotor and the particles and grinding of the particles. On the other hand, jet-type pulverizers, such as the micronizer type and jet miser type, perform fine pulverization by colliding particles with each other using the force of ultra-high-speed jet air flow. Each type has distinct advantages and disadvantages due to differences in the crushing mechanism. Mechanical pulverizers consume less energy than jet pulverizers, but they do have the problem of generating heat, and when pulverizing materials that are sensitive to heat (1), for example, when crushing toner, cosmetics, etc., it can cause thermal deterioration of the product or damage to the inside of the equipment. It could not be used because it would cause adhesion and fusion. On the other hand, a jet crusher can lower the temperature inside the device due to the adiabatic expansion effect of compressed air, and unlike a mechanical crusher, it does not generate heat because it does not have rotating parts. therefore,
Widely used for pulverizing heat-sensitive substances. However, since the jet crusher uses a large amount of compressed air, it must be accompanied by a large compressor, which has the problem of consuming a huge amount of energy. [0003] In order to improve the problems of jet-type crushers, the energy of jet air is used for both collisions between particles and collisions between particles and a collision plate, thereby improving the energy efficiency of crushing. A crushing device for this purpose was proposed. (Utility Model No. 51-100374, No. 51-100375
Furthermore, attempts have been made to improve the crushing energy efficiency by improving the shape of the collision plate of the crushing device. for example,
(1) When the collision plate collision surface is perpendicular to the jet air injection direction; (2) When the collision plate collision surface is inclined with respect to the jet air injection direction
374, Japanese Patent Application Laid-Open No. 51-100375), (3) When the collision plate collision surface is an uneven surface (Utility Model Application No. 56-64754, Japanese Patent Application Laid-Open No. 57-50556) (4) When the collision plate collision surface is an uneven surface , in the case of a conical shape (JP-A-1-254266 and JP-A-1-254266)
-68154). [0004] If the collision plate collision surface in (1) is vertical,
As shown in Figure 3, the jet air colliding with the collision plate creates back pressure on the collision surface, which becomes a repulsive force for the particles mixed in the jet air flow, increasing the concentration of particles and increasing the probability of collision between particles. is high, but the particles are slowed down by the back pressure, making it difficult to obtain the energy necessary for crushing. Further, if pulverization due to the collision between the particles and the collision plate is considered as primary pulverization, pulverization due to the collision between the particles and the wall surface of the pulverization chamber, that is, secondary pulverization does not occur much. [0005] In the case of slope (2), the crushing pressure is dispersed and lowered, and the particles collide efficiently with the collision plate, but the collision force becomes smaller, so the effect of -order crushing does not improve much. . However, since the air flows in the inclined direction, the secondary crushing effect in that direction is improved compared to the case (1). [0006] In the case of the uneven surface (3), the flow of jet air is disturbed, so the efficiency of pulverization is not improved as much as expected. [0007] In the case of the conical shape (4), air flows in the circumferential direction and the secondary crushing effect is improved, but as in (2), the crushing pressure is dispersed and reduced, so the -second crushing The impact force is small. [00081 As mentioned above, among jet-type crushers that have been improved in various ways as described above, there is still no one that surpasses the crushing energy efficiency of mechanical crushers, and there is still a crushing device and a crusher with good crushing energy efficiency. It is hoped that a pulverization method will emerge. [0009] Therefore, the present invention has been made with the aim of improving the above-mentioned drawbacks in the conventional technology. [00101] That is, an object of the present invention is to provide jet air with high crushing energy efficiency, which improves the primary crushing effect due to the collision between particles and a collision member, and the secondary crushing effect due to the collision between the particles and the wall surface of the crushing chamber. The object of the present invention is to provide a pulverizing device and a pulverizing method. [00111

【課題を解決するための手段]本発明者等は、ジェット
エアを用いた微粉砕装置における衝突部材の衝突面形状
を、球面形状とすることにより、上記の目的が達成され
ることを見出だし、本発明を完成するに至った。 [0012]本発明の微粉砕装置は、粉砕室内に、ジェ
ットエアの力により粉体を搬入、加速し、噴射する吸込
ノズルと、その吸込ノズルの噴射方向に、吸込ノズルと
対向して配置された衝突部材とを備え、吸込ノズルから
粉体を噴射して粉体を衝撃力により粉砕するものであリ
、そして、前記衝突部材の衝突面が球面形状を有するこ
とを特徴とする。 [0013]また、本発明の粉砕方法は、吸込ノズルに
より粉体を搬入、加速し、さらに噴射し、衝突面が球面
形状を有する衝突部材に粉体を衝突させて粉砕を行い、
衝突後の粉体を分級機に搬送し、未粉砕物を吸込ノズル
に戻す閉回路粉砕を行うことを特徴とする。 [00141本発明を実施例に相当する図面によって説
明する。図1は、本発明の微粉砕装置の概略断面図及び
微粉砕装置と分級機を組み合わせた閉回路粉砕方法のフ
ローチャートを示す。本発明の微粉砕装置は、粉砕室9
内に、ジェットエアの力により、粉体を搬入、加速し、
噴射する吸込ノズル3と、衝突部材4を設けてなり、さ
らに排出管6を有している。衝突部材は、吸込ノズルの
噴射方向に対向して設けられており、ジェットエアの力
により、搬入、加速された粉体は、吸込ノズル3から、
噴射室内に噴射され、衝突部材4の衝突面10に衡突し
て、−次粉砕される。衝突部材の衝突面が球面形状を有
しているため、粉体は、全周方向に分散され、粉砕室壁
面7に衝突して、二次粉砕される。排出管6より排出さ
れた粉砕物は、分級機に搬送し、分離された粗粉は閉回
路において吸込ノズルに戻し、閉回路粉砕を行う。 [0015] 【作用】本発明の微粉砕装置において、吸込ノズルから
噴射されたジェットエアは吸込ノズル前方に設けられた
衝突部材の球面形状の衝突面に衝突する。その時のエア
の流れと圧力は、図3に示すような挙動を示す。なお、
図3(a)及び(b)は、衝突部材が平板の場合、(C
)及び(d)は、衝突部材が球形の場合を示す。 [0016]圧力抗力が正の場合は、ジェットエアと粒
子に対して反発力として働き、負の場合は引力として働
く。平板の場合は全体が正圧(反発力)であるのに対し
て、球体はθ=30度(中心角60度)の範囲は、負圧
(引力)として作用する。本発明は、衝突部材の衝突面
が球面形状のため、エア中の粉体は、このゾーン(中心
角60度の衝突面)で効率よく衝突し、−次粉砕が行わ
れる。また、衝突部材の衝突面が球面形状のため、粉体
は全周方向に効率よく分散され、粉砕室壁面と衝突し、
二次粉砕され、圧縮エアエネルギーを有効に粉砕に活用
することができる。 [0017]
[Means for Solving the Problems] The present inventors have discovered that the above object can be achieved by making the collision surface shape of the collision member in a pulverizing device using jet air into a spherical shape. , we have completed the present invention. [0012] The pulverizer of the present invention includes a suction nozzle that carries, accelerates, and injects powder by the force of jet air into a crushing chamber, and is arranged opposite to the suction nozzle in the jetting direction of the suction nozzle. The collision member is characterized in that the collision member has a spherical shape and the collision surface of the collision member has a spherical shape. [0013] Furthermore, the pulverization method of the present invention includes carrying in powder by a suction nozzle, accelerating it, and further injecting it, and colliding the powder against a collision member having a spherical collision surface to perform pulverization.
It is characterized by performing closed-circuit pulverization in which the powder after collision is transported to a classifier and the unpulverized material is returned to the suction nozzle. [00141] The present invention will be explained with reference to drawings corresponding to embodiments. FIG. 1 shows a schematic cross-sectional view of a pulverizer of the present invention and a flowchart of a closed circuit pulverizer method combining the pulverizer and a classifier. The pulverizing device of the present invention has a pulverizing chamber 9
The powder is brought in and accelerated by the power of jet air,
It includes a suction nozzle 3 for injecting water, a collision member 4, and a discharge pipe 6. The collision member is provided to face the injection direction of the suction nozzle, and the powder carried in and accelerated by the force of the jet air is transported from the suction nozzle 3 to
It is injected into the injection chamber, collides with the collision surface 10 of the collision member 4, and is pulverized. Since the collision surface of the collision member has a spherical shape, the powder is dispersed in the entire circumferential direction, collides with the crushing chamber wall surface 7, and is secondary crushed. The pulverized material discharged from the discharge pipe 6 is transported to a classifier, and the separated coarse powder is returned to the suction nozzle in a closed circuit to perform closed circuit pulverization. [0015] In the pulverizer of the present invention, jet air injected from the suction nozzle collides with the spherical collision surface of the collision member provided in front of the suction nozzle. The air flow and pressure at that time behave as shown in FIG. In addition,
In FIGS. 3(a) and (b), when the collision member is a flat plate, (C
) and (d) show the case where the collision member is spherical. [0016] When the pressure drag is positive, it acts as a repulsive force on the jet air and particles, and when it is negative, it acts as an attractive force. In the case of a flat plate, the entire body is under positive pressure (repulsive force), whereas in the case of a sphere, the range of θ=30 degrees (center angle 60 degrees) acts as negative pressure (attractive force). In the present invention, since the collision surface of the collision member has a spherical shape, the powder in the air collides efficiently in this zone (collision surface with a central angle of 60 degrees), and -order pulverization is performed. In addition, since the collision surface of the collision member is spherical, the powder is efficiently dispersed in the entire circumferential direction and collides with the wall surface of the crushing chamber.
Secondary pulverization is performed, and compressed air energy can be effectively utilized for pulverization. [0017]

【実施例】本発明の実施例を図面によって説明する。図
1は、本発明の微粉砕装置の断面及び分級機と組合わせ
た閉回路粉砕工程の概略図であり、図2は、図1に示す
微粉砕装置のA−B断面図である。 [00181図中、9は粉砕室であり、内壁の一方に吸
込ノズル3が設けられ、上方に排出管6が設けられてい
る。吸込)文ル3の噴射方向には、それに対向する位置
に、衝突部材4が衝突部材支持部5によって支持されて
いる。吸込ノズル3の一端は、粉砕原料8を供給する粉
砕原料投入口1と連通しており、その近傍に圧縮エア供
給ノズル2が配設されている。圧縮エア供給ノズル2は
、コンプレッサー13から、圧縮エアが供給されるよう
になっている。衝突部材4の吸込ノズル3に対向する面
は、球面形状の衝突面10を形成している。なお、7は
粉砕室内壁、11は吸込ノズル先端、12は回転式分級
機である。 [0019]上記微粉砕装置において、原料供給装置に
より粉砕原料8は、吸込ノズル3上方の粉砕原料投入口
1より吸込ノズル3に供給される。吸込ノズル3には、
コンプレッサー12から3〜10kg/c+m2Gの圧
力を有する圧縮エアが圧縮エア供給ノズル2を通して導
入され、それによって粉砕原料8は搬入と同時に、吸込
ノズル内において瞬時に音速を超えた速度に加速される
。音速を超えた粉砕原料は、吸込ノズル3の先端から、
粉砕室9に噴射され、衝突部材4の衝突面10に衝突し
て、−次粉砕される。衝突部材の衝突面が球面形状を有
しているため、粉体は、全周方向に分散され、粉砕室壁
面7に衝突して、二次粉砕される。そして、粉体は、排
出管6へ搬送されるまで、−次粉砕、二次粉砕が繰り返
される。排出管6から排出された粉体は、分級機12に
より粗粉と細粉に分級される。粗粉側は、再び粉砕原料
投入口1に搬送され、細粉側は、製品として使用される
。使用する粉砕材料によっては、細粉側をさらに微粉分
級、表面改質等の処理を行い、製品化する。 [00201本発明において、衝突部材の設置位置は、
吸込ノズル3からの噴射エアの中心方向を0度としたと
き、衝突部材の衝突面の中心が0度になるようにするの
が最も好ましい。衝突面の中心が吸込ノズル3からの噴
射エアの中心方向から極端にずれている場合は、ジェッ
トエアが有効に衝突面に当たらないため、−次粉砕の効
率が低下してしまう。この様な理由より、衝突部材の設
置位置は、0度近傍にあれば特に問題はない。また、距
離については、圧縮エアをノズルより噴射した場合、噴
射された圧縮エアが有効なエネルギーを有するゾーンを
ポテンシャルコアゾーン(通常、ノズル内径の5倍の距
離)と呼ぶが、衝突部材の衝突面先端と吸込ノズル先端
11との距離が、前記ポテンシャルコアゾーンの5倍以
下、好ましくは1〜3倍であることが好ましい。上記距
離が5倍を超える場合は、粒子の速度が低下し、粉砕効
果を低下させる。 [00213また、この衝突部材のサイズとしては、噴
射エアの抵抗にならない程度の範囲の大きさがよく、噴
射エアの中心方向に対して垂直な面または断面の面積が
、吸込みノズルの最小内径部の50倍以下であることが
好ましい。 [0022]衝突部材の材質は、耐摩耗性のものならば
問題なく使用できる。特に耐摩耗性合金、耐摩耗表面処
理金属、セラミックスなどが望ましい。具体的には、合
金類として、超硬をはじめ、コバルトベースのステライ
ト合金、ニッケルベースのデロロ合金、鉄ベースのデル
クロム合金及びトリバロイ金、属間化合物があげられ、
セラミックスとしては、アルミナ、チタニア、ジルコニ
アなどの酸化物、炭化ケイ素、炭化クロムなどの炭化物
。 窒化ケイ素、窒化チタンなどの窒化物、硼化クロム、硼
化チタン等の硼化物があげられる。 [00231次に、本発明の微粉砕装置を使用して微粉
砕を行う場合の具体例を示す。 [0024]実施例1図1及び図2に示す微粉砕装置を
使用した。この微粉砕装置は、直径が35mmφの超硬
味の衝突部材4を有し、粉砕室内径100111mφ、
粉砕室内壁7は、アルミナコートされていた。圧縮エア
供給ノズル内径は、9. 0mmφ、排出管6は内径6
5mmφであり、衝突部材4は、吸込ノズル先端11よ
り65mmの位置で噴出エアの中心軸上に設置されてお
り、粉砕圧7゜0kg/Cm2Gの条件で粉砕を行った
。 [0025]粉砕原料としては、電子写真用トナーのハ
ンマーミル破砕物(重量平均粒径D50=300〜50
0am)を使用し、重量平均粒径D50(以下、単にD
50という)が9μmと7μmになるように前記の条件
で粉砕し、粒度分布をコールタールカウンターTA−I
I  (コールタ−エレクトロニクス社製)で測定した
。その結果を表1および表2に示す。 [0026]比較例1 衝突部材の衝突面形状を、図4b)のようにジェットエ
アの噴射方向に対し垂直にした以外は、実施例1と同じ
条件でD50が9μmと7μmになるように粉砕を行っ
た。その結果を表1および表2に示す。 [0027]比較例2 衝突部材の衝突面形状を、図4c)のようにジェットエ
アの噴射方向に対し45度の角度に傾斜させた以外は、
実施例1と同じ条件でD50が9μmと7μmになるよ
うに粉砕を行った。その結果を表1および表2に示す。 [0028]比較例3 衝突部材の衝突面形状を、図4d)のように頂角120
度の円錐形とした以外は、実施例1と同じ条件でD50
が9μmと7μmになるように粉砕を行った。その結果
を表1および表2に示す。 [0029]
[Embodiment] An embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is a cross-sectional view of the pulverizing apparatus of the present invention and a schematic diagram of a closed circuit pulverizing process in combination with a classifier, and FIG. 2 is a sectional view taken along line A-B of the pulverizing apparatus shown in FIG. [00181 In the figure, 9 is a crushing chamber, in which a suction nozzle 3 is provided on one of the inner walls, and a discharge pipe 6 is provided above. A collision member 4 is supported by a collision member support portion 5 at a position opposite to the jetting direction of the suction) paper 3. One end of the suction nozzle 3 communicates with the pulverized raw material input port 1 that supplies the pulverized raw material 8, and a compressed air supply nozzle 2 is disposed near the pulverized raw material input port 1. Compressed air is supplied from the compressor 13 to the compressed air supply nozzle 2 . The surface of the collision member 4 facing the suction nozzle 3 forms a spherical collision surface 10 . In addition, 7 is a crushing chamber wall, 11 is a suction nozzle tip, and 12 is a rotary classifier. [0019] In the above-mentioned pulverizing device, the pulverized raw material 8 is supplied to the suction nozzle 3 from the pulverized raw material input port 1 above the suction nozzle 3 by the raw material supply device. In the suction nozzle 3,
Compressed air having a pressure of 3 to 10 kg/c+m2G is introduced from the compressor 12 through the compressed air supply nozzle 2, whereby the pulverized raw material 8 is instantly accelerated to a speed exceeding the speed of sound in the suction nozzle at the same time as it is introduced. The pulverized raw material exceeding the speed of sound is discharged from the tip of the suction nozzle 3.
It is injected into the crushing chamber 9, collides with the collision surface 10 of the collision member 4, and is crushed. Since the collision surface of the collision member has a spherical shape, the powder is dispersed in the entire circumferential direction, collides with the crushing chamber wall surface 7, and is secondary crushed. The secondary pulverization and secondary pulverization are then repeated until the powder is conveyed to the discharge pipe 6. The powder discharged from the discharge pipe 6 is classified into coarse powder and fine powder by a classifier 12. The coarse powder side is again conveyed to the pulverized raw material input port 1, and the fine powder side is used as a product. Depending on the pulverized material used, the fine powder side is further subjected to treatments such as fine classification and surface modification before being turned into a product. [00201 In the present invention, the installation position of the collision member is
When the center direction of the jet air from the suction nozzle 3 is 0 degrees, it is most preferable that the center of the collision surface of the collision member is 0 degrees. If the center of the collision surface is extremely shifted from the center direction of the jet air from the suction nozzle 3, the jet air will not effectively hit the collision surface, resulting in a decrease in the efficiency of -order pulverization. For these reasons, there is no particular problem with the installation position of the collision member as long as it is near 0 degrees. Regarding the distance, when compressed air is injected from a nozzle, the zone where the injected compressed air has effective energy is called the potential core zone (usually a distance five times the inner diameter of the nozzle), but the collision surface of the collision member It is preferable that the distance between the tip and the suction nozzle tip 11 is 5 times or less, preferably 1 to 3 times the potential core zone. If the distance is more than 5 times, the particle velocity will be reduced and the grinding effect will be reduced. [00213 Also, the size of this collision member is preferably within a range that does not create resistance to the jet air, and the area of the plane or cross section perpendicular to the center direction of the jet air is equal to the minimum inner diameter of the suction nozzle. It is preferable that it is 50 times or less. [0022] Any wear-resistant material can be used for the collision member without any problem. Particularly desirable are wear-resistant alloys, wear-resistant surface-treated metals, and ceramics. Specifically, alloys include carbide, cobalt-based stellite alloy, nickel-based Deloro alloy, iron-based Delchrome alloy, tribaloy metal, and intermetallic compounds.
Ceramics include oxides such as alumina, titania, and zirconia, and carbides such as silicon carbide and chromium carbide. Examples include nitrides such as silicon nitride and titanium nitride, and borides such as chromium boride and titanium boride. [00231] Next, a specific example of pulverization using the pulverizer of the present invention will be shown. [0024] Example 1 A pulverizer shown in FIGS. 1 and 2 was used. This fine grinding device has a super hard collision member 4 with a diameter of 35 mmφ, a grinding chamber diameter of 100111 mφ,
The grinding chamber wall 7 was coated with alumina. The inner diameter of the compressed air supply nozzle is 9. 0mmφ, discharge pipe 6 has an inner diameter of 6
The collision member 4 was installed on the central axis of the ejected air at a position 65 mm from the suction nozzle tip 11, and the crushing was carried out under the conditions of a crushing pressure of 7°0 kg/Cm2G. [0025] As the pulverized raw material, a hammer mill crushed product of electrophotographic toner (weight average particle diameter D50 = 300 to 50
0 am), and the weight average particle diameter D50 (hereinafter simply referred to as D
50) was crushed under the above conditions to 9 μm and 7 μm, and the particle size distribution was checked using a coal tar counter TA-I.
I (manufactured by Coulter Electronics). The results are shown in Tables 1 and 2. [0026] Comparative Example 1 Pulverization was performed under the same conditions as in Example 1, except that the collision surface shape of the collision member was made perpendicular to the injection direction of jet air as shown in Figure 4b) so that D50 was 9 μm and 7 μm. I did it. The results are shown in Tables 1 and 2. [0027] Comparative Example 2 Except that the collision surface shape of the collision member was inclined at an angle of 45 degrees with respect to the injection direction of jet air as shown in FIG. 4c),
Grinding was performed under the same conditions as in Example 1 so that D50 was 9 μm and 7 μm. The results are shown in Tables 1 and 2. [0028] Comparative Example 3 The collision surface shape of the collision member was changed to an apex angle of 120 as shown in FIG. 4d).
D50 under the same conditions as Example 1 except that it was made into a conical shape.
Grinding was performed so that the diameters were 9 μm and 7 μm. The results are shown in Tables 1 and 2. [0029]

【表1】[Table 1]

【表2】 [00301上記実施例と比較例の結果から明らかなよ
うに、ジェットエアを用いた微粉砕装置における衝突部
材の衝突面形状を球面形状にすることにより、粒子と衝
突部材との衝突による一次粉砕効果と、粒子と粉砕室壁
面との衝突による二次粉砕効果を上げ、粉砕消費エネル
ギーを低減することができることが分かる。また、粒度
分布に関しても、シャープな粉砕物が得られることが分
かる。 (00311次に、衝突部材の材質を選定するために、
実施例1と比較例1〜3において使用した微粉砕装置で
、衝突部材として、図4a)のような形状で、超硬(材
質WH40、日立金属(株)製)、粉末高速度工具鋼(
HAP40、日立金属(株)製)、サイアロン(HCN
10、日立金属(株)製)、比較のために5US304
を用い、実施例1と同じ条件で磁性粉含有樹脂のハンマ
ーミル破砕物(200〜500μm)を原料とし、原料
供給量10kg/hrで4時間粉砕を行い、衝突部材の
摩耗重電変化(摩耗度)を測定した。その結果を表3に
示す。 [0032]
[Table 2] [00301 As is clear from the results of the above Examples and Comparative Examples, by making the collision surface shape of the collision member in a pulverization device using jet air into a spherical shape, the collision between particles and the collision member can be improved. It can be seen that it is possible to increase the primary pulverization effect due to the collision between the particles and the wall surface of the pulverization chamber, and the secondary pulverization effect due to the collision between the particles and the wall surface of the pulverization chamber, thereby reducing the energy consumption of pulverization. Furthermore, it can be seen that a sharp pulverized product can be obtained in terms of particle size distribution. (00311Next, in order to select the material of the collision member,
In the pulverizer used in Example 1 and Comparative Examples 1 to 3, the collision member was made of carbide (material WH40, manufactured by Hitachi Metals, Ltd.), powdered high-speed tool steel (
HAP40, manufactured by Hitachi Metals, Ltd.), Sialon (HCN)
10, manufactured by Hitachi Metals, Ltd.), 5US304 for comparison
Using a hammer mill crushed product (200 to 500 μm) of a magnetic powder-containing resin as a raw material under the same conditions as in Example 1, pulverization was carried out for 4 hours at a raw material supply rate of 10 kg/hr. degree) was measured. The results are shown in Table 3. [0032]

【表3】 [00331上記の結果から明らかなように、超硬はS
US 304の96.6倍、HAP40は71.2倍、
サイアロンは55.4倍であり、いずれも良好な耐摩耗
性が得られた。 [00341 【発明の効果]本発明の微粉砕装置は、上記のように衝
突部材の衝突面形状を球面形状にすることにより、粒子
と衝突部材との衝突による一次粉砕効果と、粒子と粉砕
室壁面との衝突による二次粉砕効果を上げ、粉砕消費エ
ネルギーを低減することができる。また、粒度分布に関
してもシャープな粉砕物を得ることができる。さらに耐
摩耗材質により、摩耗性の強い粉体の粉砕も可能である
[Table 3] [00331 As is clear from the above results, carbide is S
96.6 times that of US 304, 71.2 times that of HAP40,
For Sialon, it was 55.4 times higher, and good wear resistance was obtained in both cases. [00341] [Effects of the Invention] The pulverizing device of the present invention has a spherical collision surface shape of the collision member as described above, so that the primary pulverization effect due to the collision between the particles and the collision member and the separation between the particles and the crushing chamber can be achieved. It is possible to increase the secondary crushing effect due to collision with the wall surface and reduce the crushing energy consumption. Furthermore, a pulverized product with a sharp particle size distribution can be obtained. Furthermore, the wear-resistant material makes it possible to crush highly abrasive powders.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】 本発明の微粉砕装置の断面及び分級機を組合
せた閉回路粉砕工程の概略図である。
FIG. 1 is a cross-sectional view of a pulverizing device of the present invention and a schematic view of a closed circuit pulverizing process combining a classifier.

【図2】 図1における微粉砕装置のA−B断面図であ
る。
FIG. 2 is a sectional view taken along line AB of the pulverizer in FIG. 1.

【図3】 ジェットエアが衝突部材の衝突面に衝突する
場合の、エアの流れと圧力を模式的に表した図でありる
FIG. 3 is a diagram schematically showing the flow and pressure of air when jet air collides with the collision surface of the collision member.

【図4】 衝突部材の衝突面形状を模式的に表した図で
ある。
FIG. 4 is a diagram schematically showing the shape of a collision surface of a collision member.

【符号の説明】[Explanation of symbols]

1、、、、粉砕原料投入口、2.、、、圧縮エア供給ノ
ズル、3、、、、吸込ノズル、4.、、、衝突部材、5
.、、、衝突部材支持部、6.、、、排出管、7.、、
、粉砕室内壁、8.、、、粉砕原料、9.、、、粉砕室
、10.、、、衝突面、11.、、、吸込ノズル先端、
12.、、、回転式分級機、13.、、、コンプレッサ
1. pulverized raw material input port, 2. , , Compressed air supply nozzle, 3, , Suction nozzle, 4. , , Collision member, 5
.. , , collision member support section, 6. ,,,exhaust pipe,7. ,,
, grinding chamber wall, 8. ,,,pulverized raw material,9. , , Grinding chamber, 10. , , Collision surface, 11. ,,, Suction nozzle tip,
12. , , Rotary classifier, 13. ,,,compressor

【図1】[Figure 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粉砕室内に、ジェットエアの力により粉体
を搬入、加速し、噴射する吸込ノズルと、該吸込ノズル
の噴射方向に、吸込ノズルと対向して配置された衝突部
材とを備え、吸込ノズルから粉体を噴射して粉体を衝撃
力により粉砕する微粉砕装置において、前記衝突部材の
衝突面が球面形状を有することを特徴とする微粉砕装置
1. A grinding chamber includes a suction nozzle that carries, accelerates and injects powder by the force of jet air, and a collision member disposed opposite the suction nozzle in the jetting direction of the suction nozzle. A pulverizer which injects powder from a suction nozzle and pulverizes the powder by impact force, wherein the collision surface of the collision member has a spherical shape.
【請求項2】吸込ノズルにより粉体を搬入、加速し、さ
らに噴射し、衝突面が球面形状を有する衝突部材に粉体
を衝突させて粉砕を行い、衝突後の粉体を分級機に搬送
し、未粉砕物を吸込ノズルに戻す閉回路粉砕を行うこと
を特徴とする粉砕方法。
[Claim 2] Powder is carried in by a suction nozzle, accelerated, and further injected, and the powder is pulverized by colliding with a collision member whose collision surface has a spherical shape, and the powder after collision is conveyed to a classifier. A pulverization method characterized by performing closed-circuit pulverization in which the unpulverized material is returned to a suction nozzle.
JP41057390A 1990-12-14 1990-12-14 Pulverizer and crushing method Pending JPH04210255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41057390A JPH04210255A (en) 1990-12-14 1990-12-14 Pulverizer and crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41057390A JPH04210255A (en) 1990-12-14 1990-12-14 Pulverizer and crushing method

Publications (1)

Publication Number Publication Date
JPH04210255A true JPH04210255A (en) 1992-07-31

Family

ID=18519721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41057390A Pending JPH04210255A (en) 1990-12-14 1990-12-14 Pulverizer and crushing method

Country Status (1)

Country Link
JP (1) JPH04210255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297212A (en) * 2005-04-18 2006-11-02 Mikasa Sangyo Kk Finely pulverizing manufacturing method of high fat food and fine powder food obtained thereby
US7866581B2 (en) 2004-02-10 2011-01-11 Kao Corporation Method of manufacturing toner
CN103025433A (en) * 2010-07-30 2013-04-03 细川密克朗集团股份有限公司 Jet mill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866581B2 (en) 2004-02-10 2011-01-11 Kao Corporation Method of manufacturing toner
JP2006297212A (en) * 2005-04-18 2006-11-02 Mikasa Sangyo Kk Finely pulverizing manufacturing method of high fat food and fine powder food obtained thereby
CN103025433A (en) * 2010-07-30 2013-04-03 细川密克朗集团股份有限公司 Jet mill

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
US20060032953A1 (en) Hydraulic opposed jet mill
JP2000042441A (en) Jet mill
US4875629A (en) Particle pulverizer injection nozzle
US5628464A (en) Fluidized bed jet mill nozzle and processes therewith
JPH04210255A (en) Pulverizer and crushing method
CN117258956A (en) Jet mill
JP5790042B2 (en) Crusher and cylindrical adapter
JP3087201B2 (en) Jet mill
JP2531028B2 (en) Pulverizer
JP3984120B2 (en) Fluidized bed type pulverization and classification device
JP2017176956A (en) Magnetic high-hardness metal particle crushing device
US5547135A (en) Micromilling apparatus
KR930005170B1 (en) Pulverizing apparatus
JP2006297305A (en) Crusher and crushing method method
JPH01215354A (en) Crushing and coating device
JP2005118725A (en) Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same
JPH0321356A (en) Pulverizing apparatus
JP2000140675A (en) Pulverizer
JPH02152559A (en) Pulverizing and coating device
JPH03213161A (en) Pulverizing apparatus
JP3219918B2 (en) Crusher
JP2004188370A (en) Collision type air flow grinder, collision member and method for recycling collision member
JP3085510B2 (en) Collision type air crusher
JP3102902B2 (en) Collision type supersonic jet crusher