JP2004187602A - Method for producing culture soil raw material - Google Patents

Method for producing culture soil raw material Download PDF

Info

Publication number
JP2004187602A
JP2004187602A JP2002360746A JP2002360746A JP2004187602A JP 2004187602 A JP2004187602 A JP 2004187602A JP 2002360746 A JP2002360746 A JP 2002360746A JP 2002360746 A JP2002360746 A JP 2002360746A JP 2004187602 A JP2004187602 A JP 2004187602A
Authority
JP
Japan
Prior art keywords
cultivation
culture soil
fertilizer
support
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002360746A
Other languages
Japanese (ja)
Other versions
JP4315673B2 (en
Inventor
Hidemi Kawai
秀実 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAI HIRYO KK
Original Assignee
KAWAI HIRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAI HIRYO KK filed Critical KAWAI HIRYO KK
Priority to JP2002360746A priority Critical patent/JP4315673B2/en
Publication of JP2004187602A publication Critical patent/JP2004187602A/en
Application granted granted Critical
Publication of JP4315673B2 publication Critical patent/JP4315673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a culture soil raw material in which mixing with a culture soil main material is favorably carried out and culture soil having always definite quality can be obtained. <P>SOLUTION: In the method for producing the culture soil raw material, mixed in a definite ratio with the culture soil main material and used for giving nutrient ingredients to plants, liquid fertilizer containing desired nutrient ingredients is absorbed into a support having the nearly same specific gravity as the culture soil main material and the support containing the liquid fertilizer is dried to provide the culture soil raw material. In the production method, it is particularly preferable that a plurality of culture soil raw materials A to E obtained by absorbing liquid fertilizers having mutually different nutrient ingredients to the support are prepared and these raw materials are arbitrarily and selectively mixed to provide desired culture soil. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、培土主材に対して一定の割合で混合され、植物に栄養成分を付与するための培土原料の製造方法に関するものである。
【0002】
【従来の技術】
一般に、園芸用培土は、鉢やプランターに充填される培土主材と、該培土主材と混合されて栄養成分の補強、通気性、排水性、保水性等の特性を改善するための培土原料とから成り、これら培土主材及び培土原料の混合比率を変えて所望の培土を得ていた。然るに、培土主材と培土原料とは、性質が異なるものであるため、混合したものの品質が一定でなく、通気性等の特性を同時に改善し得るものではなかった。しかして、上記不具合を改善すべく、例えば特許文献1に開示されているように、培土原料としてゼオライトを含むものが提案されるに至っている。
【0003】
【特許文献1】
特開2002−84877号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の培土原料は、培土全体の品質の一定化をある程度は図ることができるものの、培土主材との比重の違いにより、混合作業した後においても均等に混ざり合わせることが困難であるという問題があった。即ち、混合作業の過程において、比重の大きなものが下方へ、比重の小さなものが上方へ偏在してしまう可能性が高く、均等に混在させるのが困難であり、培土全体として品質が一定化しないという問題があった。
【0005】
本発明は、このような事情に鑑みてなされたもので、培土主材との混合がより良好に行われ、常に一定品質の培土を得ることができる培土原料の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、培土主材に対して一定の割合で混合され、植物に栄養成分を付与するための培土原料の製造方法において、前記培土主材と略同一の比重を有した支持体に対し、所望の栄養成分を含む液肥を吸着させた後、乾燥させて培土原料を得ることを特徴とする。
【0007】
請求項2記載の発明は、請求項1記載の培土原料の製造方法において、前記支持体に対して互いに異なった栄養成分の液肥を吸着させた複数の培土原料を用意し、これらを任意選択的に混合して所望の培土を得ることを特徴とする。
【0008】
請求項3記載の発明は、請求項1又は請求項2記載の培土原料の製造方法において、前記支持体は、ゼオライト又はパーライトであることを特徴とする。
【0009】
請求項4記載の発明は、請求項1〜請求項3のいずれか1つに記載の培土原料の製造方法において、前記液肥は、固体状又は粉末状の有機肥料を液状媒体に溶け込ませて得られた有機液肥であることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係る培土原料は、培土主材と略同一の比重を有した支持体に対し所望の有機液肥を吸着させて得られたものであり、培土主材と混合されて培土を構成するものである。まず、本実施形態に適用される有機液肥の製造方法について説明する。
【0011】
まず、予めドラム缶等から成る攪拌槽内に所定量の水(液状媒体)を満たしておき、これにJASに適合する有機肥料或いは有機質肥料素材と、好気性或いは通性嫌気性微生物とを投入した後、酸素濃度が高められたエアをブロアによって攪拌槽内に供給しつつ攪拌する。かかるブロアによって供給されるエアは、酸素富化膜に対して空気を通過させることにより得られたものであり、ブロアの排気作用によって攪拌槽の底面近傍から供給されるようになっている。
【0012】
ここで使用される有機肥料或いは有機質肥料素材は、従来より汎用的に使用されている固体状又は粉末状のものであり、例えば動物質肥料として魚カス、その他の魚肥類、肉カス粉末、骨粉、乾血又は血粉、グアノ、その他の動物性有機質肥料、植物質肥料としてナタネ油カス、ダイズ油カス、綿実油カス、ヤシ油カス、その他の油カス類、食品や醸造或いは薬品等の製造カス、ボカシ肥、乾燥菌体肥料、汚泥肥料、加工家きんふん肥料、ミミズふん肥料、堆肥、きゅう肥、下肥、緑肥、家畜や家きんのふん、蚕沙、草木灰などが挙げられる。
【0013】
また、攪拌槽内に満たされる水に代えて、他の液状媒体としてもよく、例えばJASに適合する液状有機酸、JASに適合する液状無機酸、或いはJASに適合するアルカリ溶液としてもよい。然るに、液状有機酸として、木酢液、醸造酢、ギ酸、酪酸、乳酸、クエン酸、酢酸、リンゴ酸、シュウ酸、酒石酸、イソクエン酸、コハク酸、アコニット酸、ケトグルタル酸、フマル酸等を成分として含むものが挙げられ、液状無機酸として、リン酸、硫酸、硝酸、塩酸等を成分として含むものを使用するのが好ましい。
【0014】
エアレーション時に使用される酸素富化膜とは、酸素を選択的に透過させ得る膜をいい、例えば高分子主鎖がケイ素原子と酸素原子とが連なった構造を有するシリコーン等から成るものである。尚、使用される酸素富化膜は、空気中の酸素を選択的に透過させて酸素濃度を高めるものであれば足り、他の構造のものを用いてもよい。
【0015】
より具体的には、図1に示すように、固体状又は粉末状の有機肥料及び液状媒体(水等)を収容した攪拌槽1の底部にエアの排出口が形成された排出部2を載置しておくとともに、この排出部2と酸素富化膜装置4とをホース3にて接続しておく。かかる酸素富化膜装置4内には、図示しない酸素富化膜が具備される一方、ブロア5が接続されている。
【0016】
そして、ブロア5を駆動させて空気を酸素富化膜装置4内に導入するとともに、内部の酸素富化膜にて選択的に酸素を透過させる。こうして酸素濃度が高められたエアは、ホース3を介して排出部2に至り、そこから気泡として攪拌槽1内の有機肥料及び液状媒体内に供給されることとなる。かかる気泡は、攪拌槽1の底部から上方に向かって移動するため、当該攪拌槽1の内部に対し万遍なくエアを供給することができるとともに、物理的な攪拌作用を及ぼすこととなる。
【0017】
尚、攪拌槽1内に、好気性或いは通性嫌気性微生物を投入すれば、かかる微生物によって固体状又は粉末状の有機肥料の分解を促進することができる。この微生物は、好気性或いは通性嫌気性微生物であるため、排出部2から供給されたエアによって活性化され、有機肥料の分解を早期に且つ確実に行うことができるようになっている。投入されるべき微生物は、攪拌槽1内の有機肥料や液状媒体に応じて任意に選択することができ、例えばバチルス、シュードモナス、ラクトバチルス等が挙げられる。勿論、これら微生物による有機肥料の分解促進を期待しなければ、当該微生物を投入しなくてもよい。
【0018】
有機肥料等が投入された液状媒体は、上記の如きエアレーション及び物理的攪拌作用に加え、撹拌作業時間が所定時間経過することにより、暴気されることとなる。これら作用により、液状媒体に対して投入された有機肥料等が分解して可溶化されるので、液状媒体に有機肥料を完全に溶け込ませることができ、高品質な有機液肥を得ることができる。
【0019】
次に、上記の如く製造された有機液肥を支持体に吸着させる。支持体は、混合されるべき培土主材と略同一の比重を有したものとされ、ゼオライト又はパーライト等の天然鉱物由来のもの、或いは腐植物や泥炭等の天然物由来のものを用いることができる。具体的には、かかる支持体を容器に収容した後、同容器内に有機液肥を投入することにより支持体に有機液肥を吸着させる。
【0020】
特に、上記のものの中でゼオライト又はパーライトを支持体として用いるようにすれば、一般的な培土主材の比重と略同一となり易く、且つ、品質を更に一定化させることができるとともに、植物に対する栄養成分の付与と同時に培土の土壌改良機能(通気性や保水性等の性質の向上)をも付加させることができる。
【0021】
そして、有機液肥が吸着された支持体を所定時間乾燥させれば、所望の比重を持った培土原料を得ることができる。かかる乾燥工程は、所定時間静置させて自然乾燥させることによってもよいし、熱風等をあてて強制的に乾燥させるようにしてもよい。こうして製造された培土原料を培土主材に混合して培土とし、鉢やプランターに充填させて使用すれば、植物を良好に育成させることができる。
【0022】
ところで、製造された有機液肥は、用いる有機肥料により成分が異なるため、単一の成分或いは複数の成分を有したものとすることができる。従って、図2に示すように、単一の成分を持った複数の有機液肥(同図の如く各N、P、K、Mg、Ca成分のもの)を支持体に吸着、乾燥させて複数種の培土原料A〜Eを用意し、これらを任意選択的に混合して所望の培土を得る(バルクブレンド方式)ようにしてもよい。これにより、総合的な栄養成分を有した、或いは特定の植物が特に必要とする栄養成分を有した培土を提供することができる。
【0023】
また、図3に示すように、複数成分(N、P、K、Mg、Ca)を持った単一の有機液肥を支持体に吸着、乾燥させて培土原料Fを得た後、該培土原料Fと培土主材とを混合して所望の培土を得るようにしてもよい。かかる方法の場合、図4に示すように、特定の成分を有した複数の有機液肥を所定割合にて混合し、これを支持体に吸着、乾燥させて培土原料Gを得た後、培土主材に混合して所望の培土を得るようにしてもよい。
【0024】
本実施形態によれば、培土主材と略同一の比重を有した支持体に対し、所望の栄養成分を含む液肥を吸着させた後、乾燥させて培土原料を得るので、培土主材と培土原料との混合をより良好に行わせることができ、常に一定品質の培土を得ることができる。本実施形態においては、支持体に有機液肥を吸着させているが、無機質の液肥を培土主材と略同一の比重を持った支持体に吸着させて、所望の培土原料を得るようにしてもよい。
【0025】
次に、本発明の更に具体的な実施例について説明する。勿論、本発明はこれら実施例に限定されず、任意に変更、追加等を施すことができる。
(実施例1)
まず、200Lのドラム缶(撹拌槽)に100Lの水(液状媒体)を収容させ、これに有機肥料としての粉末状のブランドミン(日本バイオ肥料株式会社製)を20kg、及び微生物としての光オーレス(株式会社松本微生物研究所製)を2kg投入した後、酸素富化膜により酸素濃度が高められたエアにてエアレーションを行った。
【0026】
かかる酸素富化膜は、1分間に4Lのエアレーションを行い得るものを使用した。また、投入される前のブランドミンの成分を以下の表1に示し、これが100%溶けた場合の計算値による液肥の成分を表2に、実際に製造された液肥の成分を表3に示した。
【0027】
【表1】

Figure 2004187602
【0028】
【表2】
Figure 2004187602
【0029】
【表3】
Figure 2004187602
【0030】
上記表1〜3における各成分を比較すると、N(窒素)が45%、P(リン)が1%しか溶けていないものの、K(カリウム)及びMg(マグネシウム:苦土)は概ね可溶化して溶けていることが分かる。従って、カリウム及びマグネシウムを多く含んだ有機液肥としては、比較的高品質なものを得ることができた。
【0031】
次に、上記の如く得られた有機液肥をパーライト及びサンパルファーに吸着させる実験を行った。吸着は、有機肥料とパーライトおよびサンパルファーの重量比について予備試験を行い、その結果に基づいて表4の割合で行った。尚、吸着は12時間行った。
【0032】
【表4】
Figure 2004187602
【0033】
上記実験の結果、パーライトは3倍重量の有機液肥を吸着したが、サンパルファーは126%の有機液肥しか吸着できなかった。尚、予備試験で行ったサンプルについて成分分析をした結果を以下の表5に示す。かかる表からも分かるように、3倍重量の有機肥料を吸着したパーライトの方が含水率は高く、N(窒素)成分も多く含まれているとともに、サンパルファーに比べ、K(カリウム)を多く含む一方、Ca(カルシウム)の含有が少ない。
【0034】
【表5】
Figure 2004187602
【0035】
(実施例2)
まず、200Lのドラム缶(撹拌槽)に100Lの水(液状媒体)を収容させ、これに有機肥料としての粉末状のブランドミン(日本バイオ肥料株式会社製)を4kg、及び微生物としての光オーレス(株式会社松本微生物研究所製)を2kg投入した後、酸素富化膜により酸素濃度が高められたエアにてエアレーションを行った。
【0036】
かかる酸素富化膜は、1分間に4Lのエアレーションを行い得るものを使用した。また、ブランドミンが100%溶けた場合の計算値による液肥の成分を表6に、実際に製造された液肥の成分(1日経過のもの及び2日経過のもの)を表7に示した。尚、投入される前のブランドミンの成分は、実施例1における表1と同様である。
【0037】
【表6】
Figure 2004187602
【0038】
【表7】
Figure 2004187602
【0039】
上記表6、7及び表1とを比較すると、ブランドミンを4kgにすることにより、N(窒素)が48%、P(リン)が0.5%しか溶けていないものの、K(カリウム)及びMg(マグネシウム:苦土)は80%の可溶化率を示し、概ね溶けていることが分かる。従って、カリウム及びマグネシウムを多く含んだ有機液肥としては、比較的高品質なものを得ることができた。
【0040】
次に、実施例1と同様な割合にて、上記有機肥料をパーライト及びサンパルファーに吸着させ、その吸着物の成分分析を行った。かかる成分分析を以下の表8に示す。
【0041】
【表8】
Figure 2004187602
【0042】
上記表からも分かるように、3倍重量を吸着するパーライトは、サンパルファーに比べ、N(窒素)及びK(カリウム)の含有量は多く、Ca(カルシウム)及びMg(マグネシウム)の含有率は少ない。また、抽出法においてサンパルファーの方がN(窒素)の含有量が多く、即効的であることが分かる。
【0043】
更に、上記の如く得られた培土原料を培土主材としてのピートモスに1:10の割合で混合した。その結果、両者を均一に混ぜ合わせることができた。尚、混合により得られた培土の成分を以下の表9に示す。
【0044】
【表9】
Figure 2004187602
【0045】
上記表からも分かるように、ピートモス混合の培土においては、N(窒素)及びK(カリウム)成分の添加効果が穏やかとなる一方、サンパルファー由来のCa(カルシウム)の含有率は高くなっている。
【0046】
(実施例3)
まず、200Lのドラム缶(撹拌槽)に50Lの水(液状媒体)を収容させ、これに有機肥料としての粒状の草木灰(日本バイオ肥料株式会社製)を2.5kg投入した後、酸素富化膜により酸素濃度が高められたエアにてエアレーションを行った。かかる酸素富化膜は、実施例1及び2と同様、1分間に4Lのエアレーションを行い得るものを使用し、5日間エアレーションを行った。
【0047】
以下に上記実験結果を示す。尚、表10は、投入する前の草木灰の成分、表11は、草木灰が100%溶けた場合の計算値による液肥の成分、及び表12は、実際に製造された液肥の成分を示している。
【0048】
【表10】
Figure 2004187602
【0049】
【表11】
Figure 2004187602
【0050】
【表12】
Figure 2004187602
【0051】
上記表10〜12を比較すると、K(カリウム)は、く溶性のものが34.4%及び水溶性のものが46.1%可溶化していた。従って、微生物を投入しなくても、カリウムを多く含んだ有機液肥として比較的優れたものを得ることができた。
【0052】
次に、上記の如く得られた有機肥料をパーライトの3倍重量にて吸着、乾燥させることにより培土原料を得た。かかる培土原料の成分を分析した結果を以下の表13に示す。この表からも分かるように、得られた培土原料にはK(カリウム)が多く含まれており、K(カリウム)成分を育苗培土に補充するには都合がよい。
【0053】
【表13】
Figure 2004187602
【0054】
(実施例4)
まず、200Lのドラム缶(撹拌槽)に50Lの水(液状媒体)を収容させ、これに有機肥料としての粒状の陸王25(日本バイオ肥料株式会社製)を2.5kg投入した後、酸素富化膜により酸素濃度が高められたエアにてエアレーションを行った。かかる酸素富化膜は、前の実施例と同様、1分間に4Lのエアレーションを行い得るものを使用し、4日間エアレーションを行った。
【0055】
以下に上記実験結果を示す。尚、表14は、投入する前の陸王25の成分、表15は、陸王25が100%溶けた場合の計算値による液肥の成分、及び表16は、実際に製造された液肥の成分(1日目と4日目を分析)を示している。
【0056】
【表14】
Figure 2004187602
【0057】
【表15】
Figure 2004187602
【0058】
【表16】
Figure 2004187602
【0059】
上記表14〜16を比較すると、Mg(マグネシウム:苦土)は、5.7%の可溶化率であったものの、Ca(カルシウム:石灰)は、85%と極めて高い可溶化率を示した。従って、微生物を投入しなくても、石灰を多く含む有機液肥として比較的優れたものを得ることができた。
【0060】
次に、上記の如く得られた有機肥料をパーライトの3倍重量にて吸着、乾燥させることにより培土原料を得た。かかる培土原料の成分を分析した結果を以下の表17に示す。この表からも分かるように、得られた培土原料には、若干のCa(カルシウム)と多くのMg(マグネシウム)が含まれており、苦土成分を育苗培土に補充するには都合がよい。
【0061】
【表17】
Figure 2004187602
【0062】
【発明の効果】
請求項1の発明によれば、培土主材と略同一の比重を有した支持体に対し、所望の栄養成分を含む液肥を吸着させた後、乾燥させて培土原料を得るので、培土主材と培土原料との混合をより良好に行わせることができ、常に一定品質の培土を得ることができる。
【0063】
請求項2の発明によれば、支持体に対して互いに異なった栄養成分の液肥を吸着させた複数の培土原料を用意し、これらを任意選択的に混合して所望の培土を得るので、総合的な栄養成分を有した、或いは特定の植物が特に必要とする栄養成分を有した培土を提供することができる。
【0064】
請求項3の発明によれば、一般的な培土主材の比重と略同一となり易く、且つ、品質を更に一定化させることができるとともに、ゼオライト又はパーライトを原料とするため、植物に対する栄養成分の付与と同時に培土の土壌改良機能をも付加させることができる。
【0065】
請求項4の発明によれば、支持体に吸着させる液肥が有機液肥であるので、有機栽培等にも使用することができ、適用範囲を広げることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る培土原料の製造方法において有機肥料を製造するための装置構成を示す模式図
【図2】本発明の実施形態に係る培土原料の製造方法の手順を示すブロック図
【図3】本発明の実施形態に係る培土原料の製造方法の他の手順を示すブロック図
【図4】本発明の実施形態に係る培土原料の製造方法の更に他の手順を示すブロック図
【符号の説明】
1…撹拌槽
2…排出部
3…ホース
4…酸素富化膜装置
5…ブロア[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a cultivation raw material for mixing a main material of a cultivation soil with a fixed ratio to provide a plant with a nutrient component.
[0002]
[Prior art]
Generally, horticultural cultivation is a cultivation main material to be filled in a pot or a planter, and a cultivation material for mixing with the cultivation main material to improve properties such as reinforcement of nutrients, air permeability, drainage, water retention and the like. The desired cultivation was obtained by changing the mixing ratio of the cultivation main material and the cultivation material. However, the soil cultivation main material and the soil cultivation raw material have different properties. Therefore, the quality of the mixed material is not constant, and characteristics such as air permeability cannot be simultaneously improved. Thus, in order to improve the above-mentioned problem, for example, as disclosed in Patent Document 1, a material containing zeolite as a cultivation material has been proposed.
[0003]
[Patent Document 1]
JP-A-2002-84877
[Problems to be solved by the invention]
However, although the above-mentioned conventional cultivation material can achieve a certain level of the quality of the entire cultivation material, it is difficult to mix evenly after the mixing operation due to a difference in specific gravity with the cultivation material. There was a problem. That is, in the course of the mixing work, it is highly likely that a material having a large specific gravity is eccentrically located downward and a material having a small specific gravity is eccentrically located upward, and it is difficult to mix them evenly. There was a problem.
[0005]
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for producing a cultivation material which can be mixed with a cultivation main material more satisfactorily and can always obtain cultivation of a constant quality. .
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a method for producing a cultivation raw material for adding nutrients to a plant, which is mixed at a fixed ratio with respect to the cultivation main material, wherein the support having substantially the same specific gravity as the cultivation main material is provided. After adsorbing liquid fertilizer containing a desired nutrient component to a body, it is dried to obtain a soil material.
[0007]
According to a second aspect of the present invention, in the method of the first aspect, a plurality of soil materials are prepared by adsorbing liquid fertilizers of different nutrients to the support, and these are optionally used. To obtain the desired soil.
[0008]
According to a third aspect of the present invention, in the method for producing a cultivation material according to the first or second aspect, the support is made of zeolite or pearlite.
[0009]
According to a fourth aspect of the present invention, in the method for producing a cultivated soil material according to any one of the first to third aspects, the liquid fertilizer is obtained by dissolving a solid or powdery organic fertilizer in a liquid medium. It is characterized by being an organic liquid fertilizer.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The soil cultivation raw material according to the present embodiment is obtained by adsorbing a desired organic liquid fertilizer on a support having substantially the same specific gravity as the soil cultivation main material, and is mixed with the soil cultivation main material to constitute the soil cultivation. Things. First, a method for producing an organic liquid fertilizer applied to the present embodiment will be described.
[0011]
First, a predetermined amount of water (liquid medium) was previously filled in a stirring tank composed of a drum can or the like, and an organic fertilizer or an organic fertilizer material compatible with JAS and aerobic or facultative anaerobic microorganisms were charged into this. Thereafter, the mixture is stirred while the air having an increased oxygen concentration is supplied into the stirring tank by a blower. The air supplied by the blower is obtained by passing the air through the oxygen-enriched film, and is supplied from the vicinity of the bottom surface of the stirring tank by the exhaust action of the blower.
[0012]
The organic fertilizer or the organic fertilizer material used here is a solid or powdered material that has been generally used in the past. For example, as animal and animal fertilizer, fish refuse, other fish manure, meat refuse powder, bone meal , Dried blood or blood meal, guano, other animal organic fertilizers, rapeseed oil scum, soybean oil scum, cottonseed oil scum, coconut oil scum, other oil scum as food fertilizer, food or brewing or chemical manufacturing scum, Bokashi manure, dried cell fertilizer, sludge fertilizer, processed poultry manure manure, earthworm manure, compost, manure, lower manure, green manure, livestock and poultry manure, silkworm grass, plant ash and the like.
[0013]
Further, instead of the water filled in the stirring tank, another liquid medium may be used, for example, a liquid organic acid compatible with JAS, a liquid inorganic acid compatible with JAS, or an alkaline solution compatible with JAS. However, as a liquid organic acid, wood vinegar liquid, brewed vinegar, formic acid, butyric acid, lactic acid, citric acid, acetic acid, malic acid, oxalic acid, tartaric acid, isocitric acid, succinic acid, aconitic acid, ketoglutaric acid, fumaric acid, etc. As the liquid inorganic acid, it is preferable to use one containing phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, or the like as a component.
[0014]
The oxygen-enriched film used at the time of aeration refers to a film that can selectively transmit oxygen, and is made of, for example, silicone having a structure in which a polymer main chain has silicon atoms and oxygen atoms connected. Note that the oxygen-enriched film to be used is only required to selectively transmit oxygen in the air to increase the oxygen concentration, and may have another structure.
[0015]
More specifically, as shown in FIG. 1, a discharge section 2 having an air discharge port formed at the bottom of a stirring tank 1 containing a solid or powdery organic fertilizer and a liquid medium (such as water) is mounted. The outlet 2 and the oxygen-enriched membrane device 4 are connected by a hose 3. The oxygen-enriched film device 4 includes an oxygen-enriched film (not shown) and a blower 5 connected thereto.
[0016]
Then, the blower 5 is driven to introduce air into the oxygen-enriched membrane device 4, and oxygen is selectively transmitted through the internal oxygen-enriched membrane. The air whose oxygen concentration has been increased in this way reaches the discharge section 2 via the hose 3, and is supplied therefrom as bubbles into the organic fertilizer and the liquid medium in the stirring tank 1. Since such bubbles move upward from the bottom of the stirring tank 1, air can be uniformly supplied to the inside of the stirring tank 1, and a physical stirring action is exerted.
[0017]
In addition, if an aerobic or facultative anaerobic microorganism is thrown into the stirring tank 1, the decomposition of the solid or powdery organic fertilizer can be promoted by the microorganism. Since these microorganisms are aerobic or facultative anaerobic microorganisms, they are activated by the air supplied from the discharge section 2 so that the organic fertilizer can be decomposed early and reliably. The microorganism to be introduced can be arbitrarily selected according to the organic fertilizer and the liquid medium in the stirring tank 1, and examples thereof include Bacillus, Pseudomonas, and Lactobacillus. Of course, if it is not expected that these microorganisms accelerate the decomposition of the organic fertilizer, the microorganisms need not be introduced.
[0018]
The liquid medium into which the organic fertilizer or the like has been introduced will be violent when the stirring operation time elapses a predetermined time in addition to the aeration and the physical stirring action as described above. By these actions, the organic fertilizer or the like put into the liquid medium is decomposed and solubilized, so that the organic fertilizer can be completely dissolved in the liquid medium, and a high-quality organic liquid fertilizer can be obtained.
[0019]
Next, the organic liquid fertilizer produced as described above is adsorbed on a support. The support is assumed to have substantially the same specific gravity as the main material of the soil to be mixed, and may be derived from natural minerals such as zeolite or perlite, or derived from natural materials such as humus or peat. it can. Specifically, such a support is accommodated in a container, and then the organic liquid fertilizer is charged into the container so that the organic liquid fertilizer is adsorbed on the support.
[0020]
In particular, if zeolite or pearlite is used as the support in the above, the specific gravity of the main material of the cultivated soil is likely to be substantially the same, and the quality can be further stabilized, and the nutrition for the plant can be improved. Simultaneously with the addition of the components, a soil improvement function of the cultivated soil (improvement of properties such as air permeability and water retention) can be added.
[0021]
Then, if the support to which the organic liquid fertilizer is adsorbed is dried for a predetermined time, a cultivation material having a desired specific gravity can be obtained. Such a drying step may be carried out by allowing it to stand for a predetermined time to allow it to dry naturally, or by forcibly drying it with hot air or the like. If the thus-produced cultivation material is mixed with the cultivation main material to form cultivation and filled in a pot or a planter, the plant can be satisfactorily grown.
[0022]
By the way, since the produced organic liquid fertilizer has different components depending on the organic fertilizer used, it can have a single component or a plurality of components. Therefore, as shown in FIG. 2, a plurality of organic liquid fertilizers having a single component (each having N, P, K, Mg, and Ca components as shown in FIG. The cultivation raw materials A to E may be prepared, and these may optionally be mixed to obtain a desired cultivation (bulk blending method). Thereby, it is possible to provide a cultivated soil having a comprehensive nutrient component or a nutrient component that is specifically required by a specific plant.
[0023]
As shown in FIG. 3, a single organic liquid fertilizer having a plurality of components (N, P, K, Mg, Ca) is adsorbed on a support and dried to obtain a cultivation material F. The desired soil may be obtained by mixing F and the main soil material. In the case of such a method, as shown in FIG. 4, a plurality of organic liquid fertilizers having specific components are mixed at a predetermined ratio, and this is adsorbed and dried on a support to obtain a cultivation material G. It may be mixed with a material to obtain a desired soil.
[0024]
According to the present embodiment, a liquid fertilizer containing a desired nutrient component is adsorbed to a support having substantially the same specific gravity as the cultivation main material, and then dried to obtain a cultivation raw material. Mixing with the raw material can be performed more favorably, and a soil of constant quality can be always obtained. In the present embodiment, the organic liquid fertilizer is adsorbed on the support, but the inorganic liquid fertilizer may be adsorbed on the support having substantially the same specific gravity as the cultivation main material to obtain a desired cultivation material. Good.
[0025]
Next, more specific examples of the present invention will be described. Of course, the present invention is not limited to these embodiments, and can be arbitrarily changed and added.
(Example 1)
First, 100 L of water (liquid medium) was accommodated in a 200 L drum (stirring tank), and 20 kg of powdered brandmin (manufactured by Nippon Bio Fertilizer Co., Ltd.) as an organic fertilizer, and light aures (microorganism) as a microorganism ( After 2 kg of Matsumoto Microorganisms Laboratory Co., Ltd.) was introduced, aeration was performed with air whose oxygen concentration was increased by an oxygen-enriched membrane.
[0026]
The oxygen-enriched membrane used was capable of performing aeration of 4 L per minute. In addition, the components of brandmin before being introduced are shown in Table 1 below, and the components of liquid fertilizer based on the calculated value when 100% of this was dissolved are shown in Table 2, and the components of liquid fertilizer actually manufactured are shown in Table 3. Was.
[0027]
[Table 1]
Figure 2004187602
[0028]
[Table 2]
Figure 2004187602
[0029]
[Table 3]
Figure 2004187602
[0030]
Comparing the components in Tables 1 to 3, only 45% of N (nitrogen) and 1% of P (phosphorus) are dissolved, but K (potassium) and Mg (magnesium: magnesium) are almost solubilized. You can see that it is melting. Therefore, a relatively high quality organic fertilizer containing a large amount of potassium and magnesium could be obtained.
[0031]
Next, an experiment was conducted in which the organic liquid fertilizer obtained as described above was adsorbed on perlite and sun parfer. Preliminary tests were conducted on the weight ratio of organic fertilizer to perlite and sun parfour, and the adsorption was performed at the ratio shown in Table 4 based on the results. The adsorption was performed for 12 hours.
[0032]
[Table 4]
Figure 2004187602
[0033]
As a result of the above experiment, perlite adsorbed the organic liquid fertilizer three times in weight, whereas sunpalfer could adsorb only 126% of the organic liquid fertilizer. Table 5 below shows the results of the component analysis performed on the samples performed in the preliminary test. As can be seen from this table, perlite adsorbed three times the weight of organic fertilizer has a higher water content, contains more N (nitrogen) components, and has more K (potassium) than sun parfour. On the other hand, the content of Ca (calcium) is small.
[0034]
[Table 5]
Figure 2004187602
[0035]
(Example 2)
First, 100 L of water (liquid medium) was accommodated in a 200 L drum (stirring tank), and 4 kg of powdered brandmin (manufactured by Nippon Bio Fertilizer Co., Ltd.) as an organic fertilizer, and light aures (microorganism) as a microorganism ( After 2 kg of Matsumoto Microorganisms Laboratory Co., Ltd.) was introduced, aeration was performed with air whose oxygen concentration was increased by an oxygen-enriched membrane.
[0036]
The oxygen-enriched membrane used was capable of performing aeration of 4 L per minute. Table 6 shows the components of the liquid fertilizer based on the calculated values when 100% of brandmin was dissolved, and Table 7 shows the components of the liquid fertilizer actually produced (one day old and two days old). The components of brandmin before being charged are the same as those in Table 1 in Example 1.
[0037]
[Table 6]
Figure 2004187602
[0038]
[Table 7]
Figure 2004187602
[0039]
Comparing the above Tables 6, 7 and Table 1, by setting the brandmin to 4 kg, N (nitrogen) is dissolved only 48% and P (phosphorus) is dissolved only 0.5%, but K (potassium) and Mg (magnesium: magnesium) shows a solubilization rate of 80%, which indicates that it is almost dissolved. Therefore, a relatively high quality organic fertilizer containing a large amount of potassium and magnesium could be obtained.
[0040]
Next, the organic fertilizer was adsorbed to pearlite and sun parfer at the same ratio as in Example 1, and the components of the adsorbed product were analyzed. Such a component analysis is shown in Table 8 below.
[0041]
[Table 8]
Figure 2004187602
[0042]
As can be seen from the above table, perlite that adsorbs three times the weight has a higher content of N (nitrogen) and K (potassium) and a higher content of Ca (calcium) and Mg (magnesium) than sun parfour. Few. In addition, in the extraction method, it can be seen that sun parfour has a higher N (nitrogen) content and is more effective.
[0043]
Further, the cultivation material obtained as described above was mixed with peat moss as a cultivation main material at a ratio of 1:10. As a result, both were able to be uniformly mixed. In addition, the components of the soil obtained by mixing are shown in Table 9 below.
[0044]
[Table 9]
Figure 2004187602
[0045]
As can be seen from the above table, in the peat moss mixed soil, the effect of adding the N (nitrogen) and K (potassium) components is moderate, but the content of Ca (calcium) derived from sun parfour is high. .
[0046]
(Example 3)
First, 50 L of water (liquid medium) was accommodated in a 200 L drum (stirring tank), and 2.5 kg of granular plant ash (manufactured by Nippon Bio Fertilizer Co., Ltd.) as an organic fertilizer was added thereto. Aeration was performed with air having an increased oxygen concentration. As the oxygen-enriched membrane, one capable of performing aeration of 4 L per minute was used as in Examples 1 and 2, and aeration was performed for 5 days.
[0047]
The results of the above experiments are shown below. Table 10 shows the components of the plant manure before being introduced, Table 11 shows the components of the liquid manure calculated based on the case where the plant ash was dissolved at 100%, and Table 12 shows the components of the actually produced manure. .
[0048]
[Table 10]
Figure 2004187602
[0049]
[Table 11]
Figure 2004187602
[0050]
[Table 12]
Figure 2004187602
[0051]
Comparing Tables 10 to 12, K (potassium) was solubilized 34.4% and water soluble 46.1% solubilized. Therefore, a relatively excellent organic liquid fertilizer containing a large amount of potassium could be obtained without introducing microorganisms.
[0052]
Next, the organic fertilizer obtained as described above was adsorbed and dried at a weight three times that of pearlite to obtain a cultivated soil raw material. The results of analyzing the components of the cultivation material are shown in Table 13 below. As can be seen from this table, the obtained cultivation soil raw material contains a large amount of K (potassium), and it is convenient to supplement the K (potassium) component to the seedling cultivation soil.
[0053]
[Table 13]
Figure 2004187602
[0054]
(Example 4)
First, 50 L of water (liquid medium) was placed in a 200 L drum (stirring tank), and 2.5 kg of granular Rikuo 25 (manufactured by Nippon Bio Fertilizer Co., Ltd.) as an organic fertilizer was added thereto. Aeration was performed with air in which the oxygen concentration was increased by the oxide film. As this oxygen-enriched membrane, one capable of performing aeration of 4 L per minute was used as in the previous example, and aeration was performed for 4 days.
[0055]
The results of the above experiments are shown below. Table 14 shows the components of Rikuo 25 before the injection, Table 15 shows the components of the liquid fertilizer based on the calculated values when 100% of Rikuo 25 was melted, and Table 16 shows the components of the liquid fertilizer actually manufactured. (Days 1 and 4 analyzed).
[0056]
[Table 14]
Figure 2004187602
[0057]
[Table 15]
Figure 2004187602
[0058]
[Table 16]
Figure 2004187602
[0059]
Comparing the above Tables 14 to 16, Mg (magnesium: magnesia) had a solubilization rate of 5.7%, but Ca (calcium: lime) showed an extremely high solubilization rate of 85%. . Therefore, a relatively excellent organic liquid fertilizer containing a large amount of lime could be obtained without introducing microorganisms.
[0060]
Next, the organic fertilizer obtained as described above was adsorbed and dried at a weight three times that of pearlite to obtain a cultivated soil raw material. The results of analyzing the components of the cultivation material are shown in Table 17 below. As can be seen from this table, the obtained cultivation material contains some Ca (calcium) and a lot of Mg (magnesium), and it is convenient to replenish the mafic component to the seedling cultivation.
[0061]
[Table 17]
Figure 2004187602
[0062]
【The invention's effect】
According to the first aspect of the present invention, a liquid fertilizer containing a desired nutrient component is adsorbed to a support having substantially the same specific gravity as that of the soil cultivation main material, and then dried to obtain a soil cultivation raw material. And the raw material for cultivation can be better mixed, and cultivation of constant quality can always be obtained.
[0063]
According to the second aspect of the present invention, a plurality of cultivation materials in which liquid fertilizers of different nutrients are adsorbed to the support are prepared, and these are optionally mixed to obtain a desired cultivation. It is possible to provide a cultivated soil having a specific nutrient or a nutrient required particularly by a specific plant.
[0064]
According to the invention of claim 3, it is easy to be substantially the same as the specific gravity of the general cultivation main material, and furthermore, the quality can be further stabilized, and zeolite or pearlite is used as a raw material, so that nutrient components for plants are used. At the same time, the soil improvement function of the cultivation can be added.
[0065]
According to the fourth aspect of the present invention, since the liquid fertilizer adsorbed on the support is an organic liquid fertilizer, the liquid fertilizer can be used for organic cultivation and the like, and the applicable range can be expanded.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an apparatus configuration for producing an organic fertilizer in a method for producing a soil material according to an embodiment of the present invention. FIG. 2 shows a procedure of a method for producing a soil material according to an embodiment of the present invention. FIG. 3 is a block diagram showing another procedure of the method for producing a cultivation material according to the embodiment of the present invention. FIG. 4 is a block diagram showing another procedure of the method for producing a cultivation material according to the embodiment of the present invention. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stirring tank 2 ... Discharge part 3 ... Hose 4 ... Oxygen-enriched membrane device 5 ... Blower

Claims (4)

培土主材に対して一定の割合で混合され、植物に栄養成分を付与するための培土原料の製造方法において、
前記培土主材と略同一の比重を有した支持体に対し、所望の栄養成分を含む液肥を吸着させた後、乾燥させて培土原料を得ることを特徴とする培土原料の製造方法。
In a method of manufacturing a cultivation raw material to be mixed with a certain ratio with respect to a cultivation main material and to provide a nutrient component to a plant,
A method for producing a cultivation material, comprising: adsorbing a liquid fertilizer containing a desired nutrient component onto a support having substantially the same specific gravity as the cultivation material;
前記支持体に対して互いに異なった栄養成分の液肥を吸着させた複数の培土原料を用意し、これらを任意選択的に混合して所望の培土を得ることを特徴とする請求項1記載の培土原料の製造方法。2. A cultivation material according to claim 1, wherein a plurality of cultivation materials are prepared by adsorbing liquid fertilizers of different nutrients to the support, and these are optionally mixed to obtain a desired cultivation material. Raw material production method. 前記支持体は、ゼオライト又はパーライトであることを特徴とする請求項1又は請求項2記載の培土原料の製造方法。The method according to claim 1, wherein the support is zeolite or pearlite. 前記液肥は、固体状又は粉末状の有機肥料を液状媒体に溶け込ませて得られた有機液肥であることを特徴とする請求項1〜請求項3のいずれか1つに記載の培土原料の製造方法。The method according to any one of claims 1 to 3, wherein the liquid fertilizer is an organic liquid fertilizer obtained by dissolving a solid or powdery organic fertilizer in a liquid medium. Method.
JP2002360746A 2002-12-12 2002-12-12 Manufacturing method of cultivation material Expired - Fee Related JP4315673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360746A JP4315673B2 (en) 2002-12-12 2002-12-12 Manufacturing method of cultivation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360746A JP4315673B2 (en) 2002-12-12 2002-12-12 Manufacturing method of cultivation material

Publications (2)

Publication Number Publication Date
JP2004187602A true JP2004187602A (en) 2004-07-08
JP4315673B2 JP4315673B2 (en) 2009-08-19

Family

ID=32759740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360746A Expired - Fee Related JP4315673B2 (en) 2002-12-12 2002-12-12 Manufacturing method of cultivation material

Country Status (1)

Country Link
JP (1) JP4315673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566884A (en) * 2018-08-01 2021-03-26 恩维罗库尔股份有限公司 Method for producing nutrient composition for plants and soil
CN114885794A (en) * 2022-04-14 2022-08-12 浙江大学 Landscaping matrix and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566884A (en) * 2018-08-01 2021-03-26 恩维罗库尔股份有限公司 Method for producing nutrient composition for plants and soil
CN112566884B (en) * 2018-08-01 2022-12-06 恩维罗库尔股份有限公司 Method for producing nutrient composition for plants and soil
CN114885794A (en) * 2022-04-14 2022-08-12 浙江大学 Landscaping matrix and preparation method thereof

Also Published As

Publication number Publication date
JP4315673B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
Yu et al. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting
US10618851B2 (en) Process for manufacturing liquid and solid organic fertilizer from animal manure
AU2017250776B2 (en) Method for creating nutrient rich biologically active soils and horticulture media with predetermined characteristics
Zhang et al. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste
US5738703A (en) Method to produce a substitute for peat moss
CN107311804A (en) A kind of slow-release compound fertilizer and its production technology rich in several mineral materials
CN104692542B (en) Increase complex microorganism oxygenation agent of breeding water body transparency and preparation method thereof
CN104193559A (en) Seashore saline soil improving and conditioning agent and preparation method thereof
CN107494042A (en) One kind is planted raw base material and its application
CA3020182C (en) Method for creating nutrient rich biologically active soils and horiculutre media with predetermined characteristics
CN105315028A (en) Production process of vegetable seedling breeding substrate
CN111925240A (en) Nitrogen-preserving deodorant for high-temperature composting of livestock and poultry manure
CN1286776C (en) Composite microbial manure and method for production thereof
JP4315673B2 (en) Manufacturing method of cultivation material
RU2086522C1 (en) Method of organomineral fertilizer producing
CN107162736A (en) The method that organic fertilizer is prepared by sludge fermentation biogas residue
JP4490529B2 (en) Recycling method of shellfish to soil calcium supplement for agriculture
JP2007039253A (en) Organic silicate fertilizer
KR100200031B1 (en) Waste processing apparatus and method
RU2296732C2 (en) Method for production of peat-grains compost
Lee et al. Characteristics of food waste composting with various particle sizes of sawdust
JP2005126678A (en) Soil-improving material and method for improving soil by using the same
CN1537831A (en) Method of producing ferfilizer from plant materia treated by KOH aqueous solution
CN106335996A (en) Water quality improver
RU2076087C1 (en) Process for preparing complex liquid humin fertilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Ref document number: 4315673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees